1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/chaitin.hpp"
  28 #include "opto/machnode.hpp"
  29 
  30 // see if this register kind does not requires two registers
  31 static bool is_single_register(uint x) {
  32 #ifdef _LP64
  33   return (x != Op_RegD && x != Op_RegL && x != Op_RegP);
  34 #else
  35   return (x != Op_RegD && x != Op_RegL);
  36 #endif
  37 }
  38 
  39 //---------------------------may_be_copy_of_callee-----------------------------
  40 // Check to see if we can possibly be a copy of a callee-save value.
  41 bool PhaseChaitin::may_be_copy_of_callee( Node *def ) const {
  42   // Short circuit if there are no callee save registers
  43   if (_matcher.number_of_saved_registers() == 0) return false;
  44 
  45   // Expect only a spill-down and reload on exit for callee-save spills.
  46   // Chains of copies cannot be deep.
  47   // 5008997 - This is wishful thinking. Register allocator seems to
  48   // be splitting live ranges for callee save registers to such
  49   // an extent that in large methods the chains can be very long
  50   // (50+). The conservative answer is to return true if we don't
  51   // know as this prevents optimizations from occurring.
  52 
  53   const int limit = 60;
  54   int i;
  55   for( i=0; i < limit; i++ ) {
  56     if( def->is_Proj() && def->in(0)->is_Start() &&
  57         _matcher.is_save_on_entry(lrgs(n2lidx(def)).reg()) )
  58       return true;              // Direct use of callee-save proj
  59     if( def->is_Copy() )        // Copies carry value through
  60       def = def->in(def->is_Copy());
  61     else if( def->is_Phi() )    // Phis can merge it from any direction
  62       def = def->in(1);
  63     else
  64       break;
  65     guarantee(def != NULL, "must not resurrect dead copy");
  66   }
  67   // If we reached the end and didn't find a callee save proj
  68   // then this may be a callee save proj so we return true
  69   // as the conservative answer. If we didn't reach then end
  70   // we must have discovered that it was not a callee save
  71   // else we would have returned.
  72   return i == limit;
  73 }
  74 
  75 
  76 
  77 //------------------------------yank_if_dead-----------------------------------
  78 // Removed an edge from 'old'.  Yank if dead.  Return adjustment counts to
  79 // iterators in the current block.
  80 int PhaseChaitin::yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
  81   int blk_adjust=0;
  82   while (old->outcnt() == 0 && old != C->top()) {
  83     Block *oldb = _cfg._bbs[old->_idx];
  84     oldb->find_remove(old);
  85     // Count 1 if deleting an instruction from the current block
  86     if( oldb == current_block ) blk_adjust++;
  87     _cfg._bbs.map(old->_idx,NULL);
  88     OptoReg::Name old_reg = lrgs(n2lidx(old)).reg();
  89     if( regnd && (*regnd)[old_reg]==old ) { // Instruction is currently available?
  90       value->map(old_reg,NULL);  // Yank from value/regnd maps
  91       regnd->map(old_reg,NULL);  // This register's value is now unknown
  92     }
  93     assert(old->req() <= 2, "can't handle more inputs");
  94     Node *tmp = old->req() > 1 ? old->in(1) : NULL;
  95     old->disconnect_inputs(NULL);
  96     if( !tmp ) break;
  97     old = tmp;
  98   }
  99   return blk_adjust;
 100 }
 101 
 102 //------------------------------use_prior_register-----------------------------
 103 // Use the prior value instead of the current value, in an effort to make
 104 // the current value go dead.  Return block iterator adjustment, in case
 105 // we yank some instructions from this block.
 106 int PhaseChaitin::use_prior_register( Node *n, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd ) {
 107   // No effect?
 108   if( def == n->in(idx) ) return 0;
 109   // Def is currently dead and can be removed?  Do not resurrect
 110   if( def->outcnt() == 0 ) return 0;
 111 
 112   // Not every pair of physical registers are assignment compatible,
 113   // e.g. on sparc floating point registers are not assignable to integer
 114   // registers.
 115   const LRG &def_lrg = lrgs(n2lidx(def));
 116   OptoReg::Name def_reg = def_lrg.reg();
 117   const RegMask &use_mask = n->in_RegMask(idx);
 118   bool can_use = ( RegMask::can_represent(def_reg) ? (use_mask.Member(def_reg) != 0)
 119                                                    : (use_mask.is_AllStack() != 0));
 120   // Check for a copy to or from a misaligned pair.
 121   can_use = can_use && !use_mask.is_misaligned_Pair() && !def_lrg.mask().is_misaligned_Pair();
 122 
 123   if (!can_use)
 124     return 0;
 125 
 126   // Capture the old def in case it goes dead...
 127   Node *old = n->in(idx);
 128 
 129   // Save-on-call copies can only be elided if the entire copy chain can go
 130   // away, lest we get the same callee-save value alive in 2 locations at
 131   // once.  We check for the obvious trivial case here.  Although it can
 132   // sometimes be elided with cooperation outside our scope, here we will just
 133   // miss the opportunity.  :-(
 134   if( may_be_copy_of_callee(def) ) {
 135     if( old->outcnt() > 1 ) return 0; // We're the not last user
 136     int idx = old->is_Copy();
 137     assert( idx, "chain of copies being removed" );
 138     Node *old2 = old->in(idx);  // Chain of copies
 139     if( old2->outcnt() > 1 ) return 0; // old is not the last user
 140     int idx2 = old2->is_Copy();
 141     if( !idx2 ) return 0;       // Not a chain of 2 copies
 142     if( def != old2->in(idx2) ) return 0; // Chain of exactly 2 copies
 143   }
 144 
 145   // Use the new def
 146   n->set_req(idx,def);
 147   _post_alloc++;
 148 
 149   // Is old def now dead?  We successfully yanked a copy?
 150   return yank_if_dead(old,current_block,&value,&regnd);
 151 }
 152 
 153 
 154 //------------------------------skip_copies------------------------------------
 155 // Skip through any number of copies (that don't mod oop-i-ness)
 156 Node *PhaseChaitin::skip_copies( Node *c ) {
 157   int idx = c->is_Copy();
 158   uint is_oop = lrgs(n2lidx(c))._is_oop;
 159   while (idx != 0) {
 160     guarantee(c->in(idx) != NULL, "must not resurrect dead copy");
 161     if (lrgs(n2lidx(c->in(idx)))._is_oop != is_oop)
 162       break;  // casting copy, not the same value
 163     c = c->in(idx);
 164     idx = c->is_Copy();
 165   }
 166   return c;
 167 }
 168 
 169 //------------------------------elide_copy-------------------------------------
 170 // Remove (bypass) copies along Node n, edge k.
 171 int PhaseChaitin::elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs ) {
 172   int blk_adjust = 0;
 173 
 174   uint nk_idx = n2lidx(n->in(k));
 175   OptoReg::Name nk_reg = lrgs(nk_idx ).reg();
 176 
 177   // Remove obvious same-register copies
 178   Node *x = n->in(k);
 179   int idx;
 180   while( (idx=x->is_Copy()) != 0 ) {
 181     Node *copy = x->in(idx);
 182     guarantee(copy != NULL, "must not resurrect dead copy");
 183     if( lrgs(n2lidx(copy)).reg() != nk_reg ) break;
 184     blk_adjust += use_prior_register(n,k,copy,current_block,value,regnd);
 185     if( n->in(k) != copy ) break; // Failed for some cutout?
 186     x = copy;                   // Progress, try again
 187   }
 188 
 189   // Phis and 2-address instructions cannot change registers so easily - their
 190   // outputs must match their input.
 191   if( !can_change_regs )
 192     return blk_adjust;          // Only check stupid copies!
 193 
 194   // Loop backedges won't have a value-mapping yet
 195   if( &value == NULL ) return blk_adjust;
 196 
 197   // Skip through all copies to the _value_ being used.  Do not change from
 198   // int to pointer.  This attempts to jump through a chain of copies, where
 199   // intermediate copies might be illegal, i.e., value is stored down to stack
 200   // then reloaded BUT survives in a register the whole way.
 201   Node *val = skip_copies(n->in(k));
 202 
 203   if( val == x ) return blk_adjust; // No progress?
 204 
 205   bool single = is_single_register(val->ideal_reg());
 206   uint val_idx = n2lidx(val);
 207   OptoReg::Name val_reg = lrgs(val_idx).reg();
 208 
 209   // See if it happens to already be in the correct register!
 210   // (either Phi's direct register, or the common case of the name
 211   // never-clobbered original-def register)
 212   if( value[val_reg] == val &&
 213       // Doubles check both halves
 214       ( single || value[val_reg-1] == val ) ) {
 215     blk_adjust += use_prior_register(n,k,regnd[val_reg],current_block,value,regnd);
 216     if( n->in(k) == regnd[val_reg] ) // Success!  Quit trying
 217       return blk_adjust;
 218   }
 219 
 220   // See if we can skip the copy by changing registers.  Don't change from
 221   // using a register to using the stack unless we know we can remove a
 222   // copy-load.  Otherwise we might end up making a pile of Intel cisc-spill
 223   // ops reading from memory instead of just loading once and using the
 224   // register.
 225 
 226   // Also handle duplicate copies here.
 227   const Type *t = val->is_Con() ? val->bottom_type() : NULL;
 228 
 229   // Scan all registers to see if this value is around already
 230   for( uint reg = 0; reg < (uint)_max_reg; reg++ ) {
 231     if (reg == (uint)nk_reg) {
 232       // Found ourselves so check if there is only one user of this
 233       // copy and keep on searching for a better copy if so.
 234       bool ignore_self = true;
 235       x = n->in(k);
 236       DUIterator_Fast imax, i = x->fast_outs(imax);
 237       Node* first = x->fast_out(i); i++;
 238       while (i < imax && ignore_self) {
 239         Node* use = x->fast_out(i); i++;
 240         if (use != first) ignore_self = false;
 241       }
 242       if (ignore_self) continue;
 243     }
 244 
 245     Node *vv = value[reg];
 246     if( !single ) {             // Doubles check for aligned-adjacent pair
 247       if( (reg&1)==0 ) continue;  // Wrong half of a pair
 248       if( vv != value[reg-1] ) continue; // Not a complete pair
 249     }
 250     if( vv == val ||            // Got a direct hit?
 251         (t && vv && vv->bottom_type() == t && vv->is_Mach() &&
 252          vv->as_Mach()->rule() == val->as_Mach()->rule()) ) { // Or same constant?
 253       assert( !n->is_Phi(), "cannot change registers at a Phi so easily" );
 254       if( OptoReg::is_stack(nk_reg) || // CISC-loading from stack OR
 255           OptoReg::is_reg(reg) || // turning into a register use OR
 256           regnd[reg]->outcnt()==1 ) { // last use of a spill-load turns into a CISC use
 257         blk_adjust += use_prior_register(n,k,regnd[reg],current_block,value,regnd);
 258         if( n->in(k) == regnd[reg] ) // Success!  Quit trying
 259           return blk_adjust;
 260       } // End of if not degrading to a stack
 261     } // End of if found value in another register
 262   } // End of scan all machine registers
 263   return blk_adjust;
 264 }
 265 
 266 
 267 //
 268 // Check if nreg already contains the constant value val.  Normal copy
 269 // elimination doesn't doesn't work on constants because multiple
 270 // nodes can represent the same constant so the type and rule of the
 271 // MachNode must be checked to ensure equivalence.
 272 //
 273 bool PhaseChaitin::eliminate_copy_of_constant(Node* val, Node* n,
 274                                               Block *current_block,
 275                                               Node_List& value, Node_List& regnd,
 276                                               OptoReg::Name nreg, OptoReg::Name nreg2) {
 277   if (value[nreg] != val && val->is_Con() &&
 278       value[nreg] != NULL && value[nreg]->is_Con() &&
 279       (nreg2 == OptoReg::Bad || value[nreg] == value[nreg2]) &&
 280       value[nreg]->bottom_type() == val->bottom_type() &&
 281       value[nreg]->as_Mach()->rule() == val->as_Mach()->rule()) {
 282     // This code assumes that two MachNodes representing constants
 283     // which have the same rule and the same bottom type will produce
 284     // identical effects into a register.  This seems like it must be
 285     // objectively true unless there are hidden inputs to the nodes
 286     // but if that were to change this code would need to updated.
 287     // Since they are equivalent the second one if redundant and can
 288     // be removed.
 289     //
 290     // n will be replaced with the old value but n might have
 291     // kills projections associated with it so remove them now so that
 292     // yank_if_dead will be able to eliminate the copy once the uses
 293     // have been transferred to the old[value].
 294     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 295       Node* use = n->fast_out(i);
 296       if (use->is_Proj() && use->outcnt() == 0) {
 297         // Kill projections have no users and one input
 298         use->set_req(0, C->top());
 299         yank_if_dead(use, current_block, &value, &regnd);
 300         --i; --imax;
 301       }
 302     }
 303     _post_alloc++;
 304     return true;
 305   }
 306   return false;
 307 }
 308 
 309 
 310 //------------------------------post_allocate_copy_removal---------------------
 311 // Post-Allocation peephole copy removal.  We do this in 1 pass over the
 312 // basic blocks.  We maintain a mapping of registers to Nodes (an  array of
 313 // Nodes indexed by machine register or stack slot number).  NULL means that a
 314 // register is not mapped to any Node.  We can (want to have!) have several
 315 // registers map to the same Node.  We walk forward over the instructions
 316 // updating the mapping as we go.  At merge points we force a NULL if we have
 317 // to merge 2 different Nodes into the same register.  Phi functions will give
 318 // us a new Node if there is a proper value merging.  Since the blocks are
 319 // arranged in some RPO, we will visit all parent blocks before visiting any
 320 // successor blocks (except at loops).
 321 //
 322 // If we find a Copy we look to see if the Copy's source register is a stack
 323 // slot and that value has already been loaded into some machine register; if
 324 // so we use machine register directly.  This turns a Load into a reg-reg
 325 // Move.  We also look for reloads of identical constants.
 326 //
 327 // When we see a use from a reg-reg Copy, we will attempt to use the copy's
 328 // source directly and make the copy go dead.
 329 void PhaseChaitin::post_allocate_copy_removal() {
 330   NOT_PRODUCT( Compile::TracePhase t3("postAllocCopyRemoval", &_t_postAllocCopyRemoval, TimeCompiler); )
 331   ResourceMark rm;
 332 
 333   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 334   // map from register number to value-producing Node.
 335   Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 336   memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 337   // Need a mapping from basic block Node_Lists.  We need a Node_List to
 338   // map from register number to register-defining Node.
 339   Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1);
 340   memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) );
 341 
 342   // We keep unused Node_Lists on a free_list to avoid wasting
 343   // memory.
 344   GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
 345 
 346   // For all blocks
 347   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 348     uint j;
 349     Block *b = _cfg._blocks[i];
 350 
 351     // Count of Phis in block
 352     uint phi_dex;
 353     for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) {
 354       Node *phi = b->_nodes[phi_dex];
 355       if( !phi->is_Phi() )
 356         break;
 357     }
 358 
 359     // If any predecessor has not been visited, we do not know the state
 360     // of registers at the start.  Check for this, while updating copies
 361     // along Phi input edges
 362     bool missing_some_inputs = false;
 363     Block *freed = NULL;
 364     for( j = 1; j < b->num_preds(); j++ ) {
 365       Block *pb = _cfg._bbs[b->pred(j)->_idx];
 366       // Remove copies along phi edges
 367       for( uint k=1; k<phi_dex; k++ )
 368         elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false );
 369       if( blk2value[pb->_pre_order] ) { // Have a mapping on this edge?
 370         // See if this predecessor's mappings have been used by everybody
 371         // who wants them.  If so, free 'em.
 372         uint k;
 373         for( k=0; k<pb->_num_succs; k++ ) {
 374           Block *pbsucc = pb->_succs[k];
 375           if( !blk2value[pbsucc->_pre_order] && pbsucc != b )
 376             break;              // Found a future user
 377         }
 378         if( k >= pb->_num_succs ) { // No more uses, free!
 379           freed = pb;           // Record last block freed
 380           free_list.push(blk2value[pb->_pre_order]);
 381           free_list.push(blk2regnd[pb->_pre_order]);
 382         }
 383       } else {                  // This block has unvisited (loopback) inputs
 384         missing_some_inputs = true;
 385       }
 386     }
 387 
 388 
 389     // Extract Node_List mappings.  If 'freed' is non-zero, we just popped
 390     // 'freed's blocks off the list
 391     Node_List &regnd = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 392     Node_List &value = *(free_list.is_empty() ? new Node_List() : free_list.pop());
 393     assert( !freed || blk2value[freed->_pre_order] == &value, "" );
 394     value.map(_max_reg,NULL);
 395     regnd.map(_max_reg,NULL);
 396     // Set mappings as OUR mappings
 397     blk2value[b->_pre_order] = &value;
 398     blk2regnd[b->_pre_order] = &regnd;
 399 
 400     // Initialize value & regnd for this block
 401     if( missing_some_inputs ) {
 402       // Some predecessor has not yet been visited; zap map to empty
 403       for( uint k = 0; k < (uint)_max_reg; k++ ) {
 404         value.map(k,NULL);
 405         regnd.map(k,NULL);
 406       }
 407     } else {
 408       if( !freed ) {            // Didn't get a freebie prior block
 409         // Must clone some data
 410         freed = _cfg._bbs[b->pred(1)->_idx];
 411         Node_List &f_value = *blk2value[freed->_pre_order];
 412         Node_List &f_regnd = *blk2regnd[freed->_pre_order];
 413         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 414           value.map(k,f_value[k]);
 415           regnd.map(k,f_regnd[k]);
 416         }
 417       }
 418       // Merge all inputs together, setting to NULL any conflicts.
 419       for( j = 1; j < b->num_preds(); j++ ) {
 420         Block *pb = _cfg._bbs[b->pred(j)->_idx];
 421         if( pb == freed ) continue; // Did self already via freelist
 422         Node_List &p_regnd = *blk2regnd[pb->_pre_order];
 423         for( uint k = 0; k < (uint)_max_reg; k++ ) {
 424           if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
 425             value.map(k,NULL); // Then no value handy
 426             regnd.map(k,NULL);
 427           }
 428         }
 429       }
 430     }
 431 
 432     // For all Phi's
 433     for( j = 1; j < phi_dex; j++ ) {
 434       uint k;
 435       Node *phi = b->_nodes[j];
 436       uint pidx = n2lidx(phi);
 437       OptoReg::Name preg = lrgs(n2lidx(phi)).reg();
 438 
 439       // Remove copies remaining on edges.  Check for junk phi.
 440       Node *u = NULL;
 441       for( k=1; k<phi->req(); k++ ) {
 442         Node *x = phi->in(k);
 443         if( phi != x && u != x ) // Found a different input
 444           u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
 445       }
 446       if( u != NodeSentinel ) {    // Junk Phi.  Remove
 447         b->_nodes.remove(j--); phi_dex--;
 448         _cfg._bbs.map(phi->_idx,NULL);
 449         phi->replace_by(u);
 450         phi->disconnect_inputs(NULL);
 451         continue;
 452       }
 453       // Note that if value[pidx] exists, then we merged no new values here
 454       // and the phi is useless.  This can happen even with the above phi
 455       // removal for complex flows.  I cannot keep the better known value here
 456       // because locally the phi appears to define a new merged value.  If I
 457       // keep the better value then a copy of the phi, being unable to use the
 458       // global flow analysis, can't "peek through" the phi to the original
 459       // reaching value and so will act like it's defining a new value.  This
 460       // can lead to situations where some uses are from the old and some from
 461       // the new values.  Not illegal by itself but throws the over-strong
 462       // assert in scheduling.
 463       if( pidx ) {
 464         value.map(preg,phi);
 465         regnd.map(preg,phi);
 466         OptoReg::Name preg_lo = OptoReg::add(preg,-1);
 467         if( !is_single_register(phi->ideal_reg()) ) {
 468           value.map(preg_lo,phi);
 469           regnd.map(preg_lo,phi);
 470         }
 471       }
 472     }
 473 
 474     // For all remaining instructions
 475     for( j = phi_dex; j < b->_nodes.size(); j++ ) {
 476       Node *n = b->_nodes[j];
 477 
 478       if( n->outcnt() == 0 &&   // Dead?
 479           n != C->top() &&      // (ignore TOP, it has no du info)
 480           !n->is_Proj() ) {     // fat-proj kills
 481         j -= yank_if_dead(n,b,&value,&regnd);
 482         continue;
 483       }
 484 
 485       // Improve reaching-def info.  Occasionally post-alloc's liveness gives
 486       // up (at loop backedges, because we aren't doing a full flow pass).
 487       // The presence of a live use essentially asserts that the use's def is
 488       // alive and well at the use (or else the allocator fubar'd).  Take
 489       // advantage of this info to set a reaching def for the use-reg.
 490       uint k;
 491       for( k = 1; k < n->req(); k++ ) {
 492         Node *def = n->in(k);   // n->in(k) is a USE; def is the DEF for this USE
 493         guarantee(def != NULL, "no disconnected nodes at this point");
 494         uint useidx = n2lidx(def); // useidx is the live range index for this USE
 495 
 496         if( useidx ) {
 497           OptoReg::Name ureg = lrgs(useidx).reg();
 498           if( !value[ureg] ) {
 499             int idx;            // Skip occasional useless copy
 500             while( (idx=def->is_Copy()) != 0 &&
 501                    def->in(idx) != NULL &&  // NULL should not happen
 502                    ureg == lrgs(n2lidx(def->in(idx))).reg() )
 503               def = def->in(idx);
 504             Node *valdef = skip_copies(def); // tighten up val through non-useless copies
 505             value.map(ureg,valdef); // record improved reaching-def info
 506             regnd.map(ureg,   def);
 507             // Record other half of doubles
 508             OptoReg::Name ureg_lo = OptoReg::add(ureg,-1);
 509             if( !is_single_register(def->ideal_reg()) &&
 510                 ( !RegMask::can_represent(ureg_lo) ||
 511                   lrgs(useidx).mask().Member(ureg_lo) ) && // Nearly always adjacent
 512                 !value[ureg_lo] ) {
 513               value.map(ureg_lo,valdef); // record improved reaching-def info
 514               regnd.map(ureg_lo,   def);
 515             }
 516           }
 517         }
 518       }
 519 
 520       const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
 521 
 522       // Remove copies along input edges
 523       for( k = 1; k < n->req(); k++ )
 524         j -= elide_copy( n, k, b, value, regnd, two_adr!=k );
 525 
 526       // Unallocated Nodes define no registers
 527       uint lidx = n2lidx(n);
 528       if( !lidx ) continue;
 529 
 530       // Update the register defined by this instruction
 531       OptoReg::Name nreg = lrgs(lidx).reg();
 532       // Skip through all copies to the _value_ being defined.
 533       // Do not change from int to pointer
 534       Node *val = skip_copies(n);
 535 
 536       // Clear out a dead definition before starting so that the
 537       // elimination code doesn't have to guard against it.  The
 538       // definition could in fact be a kill projection with a count of
 539       // 0 which is safe but since those are uninteresting for copy
 540       // elimination just delete them as well.
 541       if (regnd[nreg] != NULL && regnd[nreg]->outcnt() == 0) {
 542         regnd.map(nreg, NULL);
 543         value.map(nreg, NULL);
 544       }
 545 
 546       uint n_ideal_reg = n->ideal_reg();
 547       if( is_single_register(n_ideal_reg) ) {
 548         // If Node 'n' does not change the value mapped by the register,
 549         // then 'n' is a useless copy.  Do not update the register->node
 550         // mapping so 'n' will go dead.
 551         if( value[nreg] != val ) {
 552           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) {
 553             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 554           } else {
 555             // Update the mapping: record new Node defined by the register
 556             regnd.map(nreg,n);
 557             // Update mapping for defined *value*, which is the defined
 558             // Node after skipping all copies.
 559             value.map(nreg,val);
 560           }
 561         } else if( !may_be_copy_of_callee(n) ) {
 562           assert( n->is_Copy(), "" );
 563           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 564         }
 565       } else {
 566         // If the value occupies a register pair, record same info
 567         // in both registers.
 568         OptoReg::Name nreg_lo = OptoReg::add(nreg,-1);
 569         if( RegMask::can_represent(nreg_lo) &&     // Either a spill slot, or
 570             !lrgs(lidx).mask().Member(nreg_lo) ) { // Nearly always adjacent
 571           // Sparc occasionally has non-adjacent pairs.
 572           // Find the actual other value
 573           RegMask tmp = lrgs(lidx).mask();
 574           tmp.Remove(nreg);
 575           nreg_lo = tmp.find_first_elem();
 576         }
 577         if( value[nreg] != val || value[nreg_lo] != val ) {
 578           if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) {
 579             j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 580           } else {
 581             regnd.map(nreg   , n );
 582             regnd.map(nreg_lo, n );
 583             value.map(nreg   ,val);
 584             value.map(nreg_lo,val);
 585           }
 586         } else if( !may_be_copy_of_callee(n) ) {
 587           assert( n->is_Copy(), "" );
 588           j -= replace_and_yank_if_dead(n, nreg, b, value, regnd);
 589         }
 590       }
 591 
 592       // Fat projections kill many registers
 593       if( n_ideal_reg == MachProjNode::fat_proj ) {
 594         RegMask rm = n->out_RegMask();
 595         // wow, what an expensive iterator...
 596         nreg = rm.find_first_elem();
 597         while( OptoReg::is_valid(nreg)) {
 598           rm.Remove(nreg);
 599           value.map(nreg,n);
 600           regnd.map(nreg,n);
 601           nreg = rm.find_first_elem();
 602         }
 603       }
 604 
 605     } // End of for all instructions in the block
 606 
 607   } // End for all blocks
 608 }