1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_SUBNODE_HPP
  26 #define SHARE_VM_OPTO_SUBNODE_HPP
  27 
  28 #include "opto/node.hpp"
  29 #include "opto/opcodes.hpp"
  30 #include "opto/type.hpp"
  31 
  32 // Portions of code courtesy of Clifford Click
  33 
  34 //------------------------------SUBNode----------------------------------------
  35 // Class SUBTRACTION functionality.  This covers all the usual 'subtract'
  36 // behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
  37 // -float, and -double are all inherited from this class.  The compare
  38 // functions behave like subtract functions, except that all negative answers
  39 // are compressed into -1, and all positive answers compressed to 1.
  40 class SubNode : public Node {
  41 public:
  42   SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
  43     init_class_id(Class_Sub);
  44   }
  45 
  46   // Handle algebraic identities here.  If we have an identity, return the Node
  47   // we are equivalent to.  We look for "add of zero" as an identity.
  48   virtual Node *Identity( PhaseTransform *phase );
  49 
  50   // Compute a new Type for this node.  Basically we just do the pre-check,
  51   // then call the virtual add() to set the type.
  52   virtual const Type *Value( PhaseTransform *phase ) const;
  53 
  54   // Supplied function returns the subtractend of the inputs.
  55   // This also type-checks the inputs for sanity.  Guaranteed never to
  56   // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
  57   virtual const Type *sub( const Type *, const Type * ) const = 0;
  58 
  59   // Supplied function to return the additive identity type.
  60   // This is returned whenever the subtracts inputs are the same.
  61   virtual const Type *add_id() const = 0;
  62 
  63 };
  64 
  65 
  66 // NOTE: SubINode should be taken away and replaced by add and negate
  67 //------------------------------SubINode---------------------------------------
  68 // Subtract 2 integers
  69 class SubINode : public SubNode {
  70 public:
  71   SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  72   virtual int Opcode() const;
  73   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  74   virtual const Type *sub( const Type *, const Type * ) const;
  75   const Type *add_id() const { return TypeInt::ZERO; }
  76   const Type *bottom_type() const { return TypeInt::INT; }
  77   virtual uint ideal_reg() const { return Op_RegI; }
  78 };
  79 
  80 //------------------------------SubLNode---------------------------------------
  81 // Subtract 2 integers
  82 class SubLNode : public SubNode {
  83 public:
  84   SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  85   virtual int Opcode() const;
  86   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  87   virtual const Type *sub( const Type *, const Type * ) const;
  88   const Type *add_id() const { return TypeLong::ZERO; }
  89   const Type *bottom_type() const { return TypeLong::LONG; }
  90   virtual uint ideal_reg() const { return Op_RegL; }
  91 };
  92 
  93 // NOTE: SubFPNode should be taken away and replaced by add and negate
  94 //------------------------------SubFPNode--------------------------------------
  95 // Subtract 2 floats or doubles
  96 class SubFPNode : public SubNode {
  97 protected:
  98   SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
  99 public:
 100   const Type *Value( PhaseTransform *phase ) const;
 101 };
 102 
 103 // NOTE: SubFNode should be taken away and replaced by add and negate
 104 //------------------------------SubFNode---------------------------------------
 105 // Subtract 2 doubles
 106 class SubFNode : public SubFPNode {
 107 public:
 108   SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 109   virtual int Opcode() const;
 110   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 111   virtual const Type *sub( const Type *, const Type * ) const;
 112   const Type   *add_id() const { return TypeF::ZERO; }
 113   const Type   *bottom_type() const { return Type::FLOAT; }
 114   virtual uint  ideal_reg() const { return Op_RegF; }
 115 };
 116 
 117 // NOTE: SubDNode should be taken away and replaced by add and negate
 118 //------------------------------SubDNode---------------------------------------
 119 // Subtract 2 doubles
 120 class SubDNode : public SubFPNode {
 121 public:
 122   SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
 123   virtual int Opcode() const;
 124   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 125   virtual const Type *sub( const Type *, const Type * ) const;
 126   const Type   *add_id() const { return TypeD::ZERO; }
 127   const Type   *bottom_type() const { return Type::DOUBLE; }
 128   virtual uint  ideal_reg() const { return Op_RegD; }
 129 };
 130 
 131 //------------------------------CmpNode---------------------------------------
 132 // Compare 2 values, returning condition codes (-1, 0 or 1).
 133 class CmpNode : public SubNode {
 134 public:
 135   CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
 136     init_class_id(Class_Cmp);
 137   }
 138   virtual Node *Identity( PhaseTransform *phase );
 139   const Type *add_id() const { return TypeInt::ZERO; }
 140   const Type *bottom_type() const { return TypeInt::CC; }
 141   virtual uint ideal_reg() const { return Op_RegFlags; }
 142 };
 143 
 144 //------------------------------CmpINode---------------------------------------
 145 // Compare 2 signed values, returning condition codes (-1, 0 or 1).
 146 class CmpINode : public CmpNode {
 147 public:
 148   CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 149   virtual int Opcode() const;
 150   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 151   virtual const Type *sub( const Type *, const Type * ) const;
 152 };
 153 
 154 //------------------------------CmpUNode---------------------------------------
 155 // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
 156 class CmpUNode : public CmpNode {
 157 public:
 158   CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 159   virtual int Opcode() const;
 160   virtual const Type *sub( const Type *, const Type * ) const;
 161 };
 162 
 163 //------------------------------CmpPNode---------------------------------------
 164 // Compare 2 pointer values, returning condition codes (-1, 0 or 1).
 165 class CmpPNode : public CmpNode {
 166 public:
 167   CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 168   virtual int Opcode() const;
 169   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 170   virtual const Type *sub( const Type *, const Type * ) const;
 171 };
 172 
 173 //------------------------------CmpNNode--------------------------------------
 174 // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
 175 class CmpNNode : public CmpNode {
 176 public:
 177   CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 178   virtual int Opcode() const;
 179   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 180   virtual const Type *sub( const Type *, const Type * ) const;
 181 };
 182 
 183 //------------------------------CmpLNode---------------------------------------
 184 // Compare 2 long values, returning condition codes (-1, 0 or 1).
 185 class CmpLNode : public CmpNode {
 186 public:
 187   CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 188   virtual int    Opcode() const;
 189   virtual const Type *sub( const Type *, const Type * ) const;
 190 };
 191 
 192 //------------------------------CmpL3Node--------------------------------------
 193 // Compare 2 long values, returning integer value (-1, 0 or 1).
 194 class CmpL3Node : public CmpLNode {
 195 public:
 196   CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
 197     // Since it is not consumed by Bools, it is not really a Cmp.
 198     init_class_id(Class_Sub);
 199   }
 200   virtual int    Opcode() const;
 201   virtual uint ideal_reg() const { return Op_RegI; }
 202 };
 203 
 204 //------------------------------CmpFNode---------------------------------------
 205 // Compare 2 float values, returning condition codes (-1, 0 or 1).
 206 // This implements the Java bytecode fcmpl, so unordered returns -1.
 207 // Operands may not commute.
 208 class CmpFNode : public CmpNode {
 209 public:
 210   CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 211   virtual int Opcode() const;
 212   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 213   const Type *Value( PhaseTransform *phase ) const;
 214 };
 215 
 216 //------------------------------CmpF3Node--------------------------------------
 217 // Compare 2 float values, returning integer value (-1, 0 or 1).
 218 // This implements the Java bytecode fcmpl, so unordered returns -1.
 219 // Operands may not commute.
 220 class CmpF3Node : public CmpFNode {
 221 public:
 222   CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
 223     // Since it is not consumed by Bools, it is not really a Cmp.
 224     init_class_id(Class_Sub);
 225   }
 226   virtual int Opcode() const;
 227   // Since it is not consumed by Bools, it is not really a Cmp.
 228   virtual uint ideal_reg() const { return Op_RegI; }
 229 };
 230 
 231 
 232 //------------------------------CmpDNode---------------------------------------
 233 // Compare 2 double values, returning condition codes (-1, 0 or 1).
 234 // This implements the Java bytecode dcmpl, so unordered returns -1.
 235 // Operands may not commute.
 236 class CmpDNode : public CmpNode {
 237 public:
 238   CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
 239   virtual int Opcode() const;
 240   virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
 241   const Type *Value( PhaseTransform *phase ) const;
 242   virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
 243 };
 244 
 245 //------------------------------CmpD3Node--------------------------------------
 246 // Compare 2 double values, returning integer value (-1, 0 or 1).
 247 // This implements the Java bytecode dcmpl, so unordered returns -1.
 248 // Operands may not commute.
 249 class CmpD3Node : public CmpDNode {
 250 public:
 251   CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
 252     // Since it is not consumed by Bools, it is not really a Cmp.
 253     init_class_id(Class_Sub);
 254   }
 255   virtual int Opcode() const;
 256   virtual uint ideal_reg() const { return Op_RegI; }
 257 };
 258 
 259 
 260 //------------------------------BoolTest---------------------------------------
 261 // Convert condition codes to a boolean test value (0 or -1).
 262 // We pick the values as 3 bits; the low order 2 bits we compare against the
 263 // condition codes, the high bit flips the sense of the result.
 264 struct BoolTest VALUE_OBJ_CLASS_SPEC {
 265   enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
 266   mask _test;
 267   BoolTest( mask btm ) : _test(btm) {}
 268   const Type *cc2logical( const Type *CC ) const;
 269   // Commute the test.  I use a small table lookup.  The table is created as
 270   // a simple char array where each element is the ASCII version of a 'mask'
 271   // enum from above.
 272   mask commute( ) const { return mask("038147858"[_test]-'0'); }
 273   mask negate( ) const { return mask(_test^4); }
 274   bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
 275 #ifndef PRODUCT
 276   void dump_on(outputStream *st) const;
 277 #endif
 278 };
 279 
 280 //------------------------------BoolNode---------------------------------------
 281 // A Node to convert a Condition Codes to a Logical result.
 282 class BoolNode : public Node {
 283   virtual uint hash() const;
 284   virtual uint cmp( const Node &n ) const;
 285   virtual uint size_of() const;
 286 public:
 287   const BoolTest _test;
 288   BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
 289     init_class_id(Class_Bool);
 290   }
 291   // Convert an arbitrary int value to a Bool or other suitable predicate.
 292   static Node* make_predicate(Node* test_value, PhaseGVN* phase);
 293   // Convert self back to an integer value.
 294   Node* as_int_value(PhaseGVN* phase);
 295   // Invert sense of self, returning new Bool.
 296   BoolNode* negate(PhaseGVN* phase);
 297   virtual int Opcode() const;
 298   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 299   virtual const Type *Value( PhaseTransform *phase ) const;
 300   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 301   uint match_edge(uint idx) const { return 0; }
 302   virtual uint ideal_reg() const { return Op_RegI; }
 303 
 304   bool is_counted_loop_exit_test();
 305 #ifndef PRODUCT
 306   virtual void dump_spec(outputStream *st) const;
 307 #endif
 308 };
 309 
 310 //------------------------------AbsNode----------------------------------------
 311 // Abstract class for absolute value.  Mostly used to get a handy wrapper
 312 // for finding this pattern in the graph.
 313 class AbsNode : public Node {
 314 public:
 315   AbsNode( Node *value ) : Node(0,value) {}
 316 };
 317 
 318 //------------------------------AbsINode---------------------------------------
 319 // Absolute value an integer.  Since a naive graph involves control flow, we
 320 // "match" it in the ideal world (so the control flow can be removed).
 321 class AbsINode : public AbsNode {
 322 public:
 323   AbsINode( Node *in1 ) : AbsNode(in1) {}
 324   virtual int Opcode() const;
 325   const Type *bottom_type() const { return TypeInt::INT; }
 326   virtual uint ideal_reg() const { return Op_RegI; }
 327 };
 328 
 329 //------------------------------AbsFNode---------------------------------------
 330 // Absolute value a float, a common float-point idiom with a cheap hardware
 331 // implemention on most chips.  Since a naive graph involves control flow, we
 332 // "match" it in the ideal world (so the control flow can be removed).
 333 class AbsFNode : public AbsNode {
 334 public:
 335   AbsFNode( Node *in1 ) : AbsNode(in1) {}
 336   virtual int Opcode() const;
 337   const Type *bottom_type() const { return Type::FLOAT; }
 338   virtual uint ideal_reg() const { return Op_RegF; }
 339 };
 340 
 341 //------------------------------AbsDNode---------------------------------------
 342 // Absolute value a double, a common float-point idiom with a cheap hardware
 343 // implemention on most chips.  Since a naive graph involves control flow, we
 344 // "match" it in the ideal world (so the control flow can be removed).
 345 class AbsDNode : public AbsNode {
 346 public:
 347   AbsDNode( Node *in1 ) : AbsNode(in1) {}
 348   virtual int Opcode() const;
 349   const Type *bottom_type() const { return Type::DOUBLE; }
 350   virtual uint ideal_reg() const { return Op_RegD; }
 351 };
 352 
 353 
 354 //------------------------------CmpLTMaskNode----------------------------------
 355 // If p < q, return -1 else return 0.  Nice for flow-free idioms.
 356 class CmpLTMaskNode : public Node {
 357 public:
 358   CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
 359   virtual int Opcode() const;
 360   const Type *bottom_type() const { return TypeInt::INT; }
 361   virtual uint ideal_reg() const { return Op_RegI; }
 362 };
 363 
 364 
 365 //------------------------------NegNode----------------------------------------
 366 class NegNode : public Node {
 367 public:
 368   NegNode( Node *in1 ) : Node(0,in1) {}
 369 };
 370 
 371 //------------------------------NegFNode---------------------------------------
 372 // Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
 373 // zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
 374 // cannot be used to replace negation we have to implement negation as ideal
 375 // node; note that negation and addition can replace subtraction.
 376 class NegFNode : public NegNode {
 377 public:
 378   NegFNode( Node *in1 ) : NegNode(in1) {}
 379   virtual int Opcode() const;
 380   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 381   const Type *bottom_type() const { return Type::FLOAT; }
 382   virtual uint ideal_reg() const { return Op_RegF; }
 383 };
 384 
 385 //------------------------------NegDNode---------------------------------------
 386 // Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
 387 // zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
 388 // cannot be used to replace negation we have to implement negation as ideal
 389 // node; note that negation and addition can replace subtraction.
 390 class NegDNode : public NegNode {
 391 public:
 392   NegDNode( Node *in1 ) : NegNode(in1) {}
 393   virtual int Opcode() const;
 394   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 395   const Type *bottom_type() const { return Type::DOUBLE; }
 396   virtual uint ideal_reg() const { return Op_RegD; }
 397 };
 398 
 399 //------------------------------CosDNode---------------------------------------
 400 // Cosinus of a double
 401 class CosDNode : public Node {
 402 public:
 403   CosDNode( Node *in1  ) : Node(0, in1) {}
 404   virtual int Opcode() const;
 405   const Type *bottom_type() const { return Type::DOUBLE; }
 406   virtual uint ideal_reg() const { return Op_RegD; }
 407   virtual const Type *Value( PhaseTransform *phase ) const;
 408 };
 409 
 410 //------------------------------CosDNode---------------------------------------
 411 // Sinus of a double
 412 class SinDNode : public Node {
 413 public:
 414   SinDNode( Node *in1  ) : Node(0, in1) {}
 415   virtual int Opcode() const;
 416   const Type *bottom_type() const { return Type::DOUBLE; }
 417   virtual uint ideal_reg() const { return Op_RegD; }
 418   virtual const Type *Value( PhaseTransform *phase ) const;
 419 };
 420 
 421 
 422 //------------------------------TanDNode---------------------------------------
 423 // tangens of a double
 424 class TanDNode : public Node {
 425 public:
 426   TanDNode(Node *in1  ) : Node(0, in1) {}
 427   virtual int Opcode() const;
 428   const Type *bottom_type() const { return Type::DOUBLE; }
 429   virtual uint ideal_reg() const { return Op_RegD; }
 430   virtual const Type *Value( PhaseTransform *phase ) const;
 431 };
 432 
 433 
 434 //------------------------------AtanDNode--------------------------------------
 435 // arcus tangens of a double
 436 class AtanDNode : public Node {
 437 public:
 438   AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 439   virtual int Opcode() const;
 440   const Type *bottom_type() const { return Type::DOUBLE; }
 441   virtual uint ideal_reg() const { return Op_RegD; }
 442 };
 443 
 444 
 445 //------------------------------SqrtDNode--------------------------------------
 446 // square root a double
 447 class SqrtDNode : public Node {
 448 public:
 449   SqrtDNode(Node *c, Node *in1  ) : Node(c, in1) {}
 450   virtual int Opcode() const;
 451   const Type *bottom_type() const { return Type::DOUBLE; }
 452   virtual uint ideal_reg() const { return Op_RegD; }
 453   virtual const Type *Value( PhaseTransform *phase ) const;
 454 };
 455 
 456 //------------------------------ExpDNode---------------------------------------
 457 //  Exponentiate a double
 458 class ExpDNode : public Node {
 459 public:
 460   ExpDNode( Node *c, Node *in1 ) : Node(c, in1) {}
 461   virtual int Opcode() const;
 462   const Type *bottom_type() const { return Type::DOUBLE; }
 463   virtual uint ideal_reg() const { return Op_RegD; }
 464   virtual const Type *Value( PhaseTransform *phase ) const;
 465 };
 466 
 467 //------------------------------LogDNode---------------------------------------
 468 // Log_e of a double
 469 class LogDNode : public Node {
 470 public:
 471   LogDNode( Node *in1 ) : Node(0, in1) {}
 472   virtual int Opcode() const;
 473   const Type *bottom_type() const { return Type::DOUBLE; }
 474   virtual uint ideal_reg() const { return Op_RegD; }
 475   virtual const Type *Value( PhaseTransform *phase ) const;
 476 };
 477 
 478 //------------------------------Log10DNode---------------------------------------
 479 // Log_10 of a double
 480 class Log10DNode : public Node {
 481 public:
 482   Log10DNode( Node *in1 ) : Node(0, in1) {}
 483   virtual int Opcode() const;
 484   const Type *bottom_type() const { return Type::DOUBLE; }
 485   virtual uint ideal_reg() const { return Op_RegD; }
 486   virtual const Type *Value( PhaseTransform *phase ) const;
 487 };
 488 
 489 //------------------------------PowDNode---------------------------------------
 490 // Raise a double to a double power
 491 class PowDNode : public Node {
 492 public:
 493   PowDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
 494   virtual int Opcode() const;
 495   const Type *bottom_type() const { return Type::DOUBLE; }
 496   virtual uint ideal_reg() const { return Op_RegD; }
 497   virtual const Type *Value( PhaseTransform *phase ) const;
 498 };
 499 
 500 //-------------------------------ReverseBytesINode--------------------------------
 501 // reverse bytes of an integer
 502 class ReverseBytesINode : public Node {
 503 public:
 504   ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
 505   virtual int Opcode() const;
 506   const Type *bottom_type() const { return TypeInt::INT; }
 507   virtual uint ideal_reg() const { return Op_RegI; }
 508 };
 509 
 510 //-------------------------------ReverseBytesLNode--------------------------------
 511 // reverse bytes of a long
 512 class ReverseBytesLNode : public Node {
 513 public:
 514   ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
 515   virtual int Opcode() const;
 516   const Type *bottom_type() const { return TypeLong::LONG; }
 517   virtual uint ideal_reg() const { return Op_RegL; }
 518 };
 519 
 520 //-------------------------------ReverseBytesUSNode--------------------------------
 521 // reverse bytes of an unsigned short / char
 522 class ReverseBytesUSNode : public Node {
 523 public:
 524   ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
 525   virtual int Opcode() const;
 526   const Type *bottom_type() const { return TypeInt::CHAR; }
 527   virtual uint ideal_reg() const { return Op_RegI; }
 528 };
 529 
 530 //-------------------------------ReverseBytesSNode--------------------------------
 531 // reverse bytes of a short
 532 class ReverseBytesSNode : public Node {
 533 public:
 534   ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
 535   virtual int Opcode() const;
 536   const Type *bottom_type() const { return TypeInt::SHORT; }
 537   virtual uint ideal_reg() const { return Op_RegI; }
 538 };
 539 
 540 #endif // SHARE_VM_OPTO_SUBNODE_HPP