1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciTypeFlow.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "libadt/dict.hpp"
  31 #include "memory/gcLocker.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/klassKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 // Dictionary of types shared among compilations.
  48 Dict* Type::_shared_type_dict = NULL;
  49 
  50 // Array which maps compiler types to Basic Types
  51 const BasicType Type::_basic_type[Type::lastype] = {
  52   T_ILLEGAL,    // Bad
  53   T_ILLEGAL,    // Control
  54   T_VOID,       // Top
  55   T_INT,        // Int
  56   T_LONG,       // Long
  57   T_VOID,       // Half
  58   T_NARROWOOP,  // NarrowOop
  59 
  60   T_ILLEGAL,    // Tuple
  61   T_ARRAY,      // Array
  62 
  63   T_ADDRESS,    // AnyPtr   // shows up in factory methods for NULL_PTR
  64   T_ADDRESS,    // RawPtr
  65   T_OBJECT,     // OopPtr
  66   T_OBJECT,     // InstPtr
  67   T_OBJECT,     // AryPtr
  68   T_OBJECT,     // KlassPtr
  69 
  70   T_OBJECT,     // Function
  71   T_ILLEGAL,    // Abio
  72   T_ADDRESS,    // Return_Address
  73   T_ILLEGAL,    // Memory
  74   T_FLOAT,      // FloatTop
  75   T_FLOAT,      // FloatCon
  76   T_FLOAT,      // FloatBot
  77   T_DOUBLE,     // DoubleTop
  78   T_DOUBLE,     // DoubleCon
  79   T_DOUBLE,     // DoubleBot
  80   T_ILLEGAL,    // Bottom
  81 };
  82 
  83 // Map ideal registers (machine types) to ideal types
  84 const Type *Type::mreg2type[_last_machine_leaf];
  85 
  86 // Map basic types to canonical Type* pointers.
  87 const Type* Type::     _const_basic_type[T_CONFLICT+1];
  88 
  89 // Map basic types to constant-zero Types.
  90 const Type* Type::            _zero_type[T_CONFLICT+1];
  91 
  92 // Map basic types to array-body alias types.
  93 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
  94 
  95 //=============================================================================
  96 // Convenience common pre-built types.
  97 const Type *Type::ABIO;         // State-of-machine only
  98 const Type *Type::BOTTOM;       // All values
  99 const Type *Type::CONTROL;      // Control only
 100 const Type *Type::DOUBLE;       // All doubles
 101 const Type *Type::FLOAT;        // All floats
 102 const Type *Type::HALF;         // Placeholder half of doublewide type
 103 const Type *Type::MEMORY;       // Abstract store only
 104 const Type *Type::RETURN_ADDRESS;
 105 const Type *Type::TOP;          // No values in set
 106 
 107 //------------------------------get_const_type---------------------------
 108 const Type* Type::get_const_type(ciType* type) {
 109   if (type == NULL) {
 110     return NULL;
 111   } else if (type->is_primitive_type()) {
 112     return get_const_basic_type(type->basic_type());
 113   } else {
 114     return TypeOopPtr::make_from_klass(type->as_klass());
 115   }
 116 }
 117 
 118 //---------------------------array_element_basic_type---------------------------------
 119 // Mapping to the array element's basic type.
 120 BasicType Type::array_element_basic_type() const {
 121   BasicType bt = basic_type();
 122   if (bt == T_INT) {
 123     if (this == TypeInt::INT)   return T_INT;
 124     if (this == TypeInt::CHAR)  return T_CHAR;
 125     if (this == TypeInt::BYTE)  return T_BYTE;
 126     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 127     if (this == TypeInt::SHORT) return T_SHORT;
 128     return T_VOID;
 129   }
 130   return bt;
 131 }
 132 
 133 //---------------------------get_typeflow_type---------------------------------
 134 // Import a type produced by ciTypeFlow.
 135 const Type* Type::get_typeflow_type(ciType* type) {
 136   switch (type->basic_type()) {
 137 
 138   case ciTypeFlow::StateVector::T_BOTTOM:
 139     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 140     return Type::BOTTOM;
 141 
 142   case ciTypeFlow::StateVector::T_TOP:
 143     assert(type == ciTypeFlow::StateVector::top_type(), "");
 144     return Type::TOP;
 145 
 146   case ciTypeFlow::StateVector::T_NULL:
 147     assert(type == ciTypeFlow::StateVector::null_type(), "");
 148     return TypePtr::NULL_PTR;
 149 
 150   case ciTypeFlow::StateVector::T_LONG2:
 151     // The ciTypeFlow pass pushes a long, then the half.
 152     // We do the same.
 153     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 154     return TypeInt::TOP;
 155 
 156   case ciTypeFlow::StateVector::T_DOUBLE2:
 157     // The ciTypeFlow pass pushes double, then the half.
 158     // Our convention is the same.
 159     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 160     return Type::TOP;
 161 
 162   case T_ADDRESS:
 163     assert(type->is_return_address(), "");
 164     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 165 
 166   default:
 167     // make sure we did not mix up the cases:
 168     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 169     assert(type != ciTypeFlow::StateVector::top_type(), "");
 170     assert(type != ciTypeFlow::StateVector::null_type(), "");
 171     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 172     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 173     assert(!type->is_return_address(), "");
 174 
 175     return Type::get_const_type(type);
 176   }
 177 }
 178 
 179 
 180 //------------------------------make-------------------------------------------
 181 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 182 // and look for an existing copy in the type dictionary.
 183 const Type *Type::make( enum TYPES t ) {
 184   return (new Type(t))->hashcons();
 185 }
 186 
 187 //------------------------------cmp--------------------------------------------
 188 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 189   if( t1->_base != t2->_base )
 190     return 1;                   // Missed badly
 191   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 192   return !t1->eq(t2);           // Return ZERO if equal
 193 }
 194 
 195 //------------------------------hash-------------------------------------------
 196 int Type::uhash( const Type *const t ) {
 197   return t->hash();
 198 }
 199 
 200 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 201 
 202 //--------------------------Initialize_shared----------------------------------
 203 void Type::Initialize_shared(Compile* current) {
 204   // This method does not need to be locked because the first system
 205   // compilations (stub compilations) occur serially.  If they are
 206   // changed to proceed in parallel, then this section will need
 207   // locking.
 208 
 209   Arena* save = current->type_arena();
 210   Arena* shared_type_arena = new Arena();
 211 
 212   current->set_type_arena(shared_type_arena);
 213   _shared_type_dict =
 214     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 215                                   shared_type_arena, 128 );
 216   current->set_type_dict(_shared_type_dict);
 217 
 218   // Make shared pre-built types.
 219   CONTROL = make(Control);      // Control only
 220   TOP     = make(Top);          // No values in set
 221   MEMORY  = make(Memory);       // Abstract store only
 222   ABIO    = make(Abio);         // State-of-machine only
 223   RETURN_ADDRESS=make(Return_Address);
 224   FLOAT   = make(FloatBot);     // All floats
 225   DOUBLE  = make(DoubleBot);    // All doubles
 226   BOTTOM  = make(Bottom);       // Everything
 227   HALF    = make(Half);         // Placeholder half of doublewide type
 228 
 229   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 230   TypeF::ONE  = TypeF::make(1.0); // Float 1
 231 
 232   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 233   TypeD::ONE  = TypeD::make(1.0); // Double 1
 234 
 235   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 236   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 237   TypeInt::ONE     = TypeInt::make( 1);  //  1
 238   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 239   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 240   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 241   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 242   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 243   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 244   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 245   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 246   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 247   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 248   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 249   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 250   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 251   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 252   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 253   // CmpL is overloaded both as the bytecode computation returning
 254   // a trinary (-1,0,+1) integer result AND as an efficient long
 255   // compare returning optimizer ideal-type flags.
 256   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 257   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 258   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 259   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 260   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 261 
 262   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 263   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 264   TypeLong::ONE     = TypeLong::make( 1);        //  1
 265   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 266   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 267   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 268   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 269 
 270   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 271   fboth[0] = Type::CONTROL;
 272   fboth[1] = Type::CONTROL;
 273   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 274 
 275   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 276   ffalse[0] = Type::CONTROL;
 277   ffalse[1] = Type::TOP;
 278   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 279 
 280   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 281   fneither[0] = Type::TOP;
 282   fneither[1] = Type::TOP;
 283   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 284 
 285   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 286   ftrue[0] = Type::TOP;
 287   ftrue[1] = Type::CONTROL;
 288   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 289 
 290   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 291   floop[0] = Type::CONTROL;
 292   floop[1] = TypeInt::INT;
 293   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 294 
 295   TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
 296   TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
 297   TypePtr::BOTTOM  = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
 298 
 299   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 300   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 301 
 302   const Type **fmembar = TypeTuple::fields(0);
 303   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 304 
 305   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 306   fsc[0] = TypeInt::CC;
 307   fsc[1] = Type::MEMORY;
 308   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 309 
 310   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 311   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 312   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 313   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 314                                            false, 0, oopDesc::mark_offset_in_bytes());
 315   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 316                                            false, 0, oopDesc::klass_offset_in_bytes());
 317   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 318 
 319   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 320   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 321 
 322   mreg2type[Op_Node] = Type::BOTTOM;
 323   mreg2type[Op_Set ] = 0;
 324   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 325   mreg2type[Op_RegI] = TypeInt::INT;
 326   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 327   mreg2type[Op_RegF] = Type::FLOAT;
 328   mreg2type[Op_RegD] = Type::DOUBLE;
 329   mreg2type[Op_RegL] = TypeLong::LONG;
 330   mreg2type[Op_RegFlags] = TypeInt::CC;
 331 
 332   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 333 
 334   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 335 
 336 #ifdef _LP64
 337   if (UseCompressedOops) {
 338     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 339   } else
 340 #endif
 341   {
 342     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 343     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 344   }
 345   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 346   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 347   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 348   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 349   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 350   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 351   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 352 
 353   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 354   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 355   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 356   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 357   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 358   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 359   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 360   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 361   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 362   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 363   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 364   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 365 
 366   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 367   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 368 
 369   const Type **fi2c = TypeTuple::fields(2);
 370   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
 371   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 372   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 373 
 374   const Type **intpair = TypeTuple::fields(2);
 375   intpair[0] = TypeInt::INT;
 376   intpair[1] = TypeInt::INT;
 377   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 378 
 379   const Type **longpair = TypeTuple::fields(2);
 380   longpair[0] = TypeLong::LONG;
 381   longpair[1] = TypeLong::LONG;
 382   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 383 
 384   _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
 385   _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
 386   _const_basic_type[T_CHAR]    = TypeInt::CHAR;
 387   _const_basic_type[T_BYTE]    = TypeInt::BYTE;
 388   _const_basic_type[T_SHORT]   = TypeInt::SHORT;
 389   _const_basic_type[T_INT]     = TypeInt::INT;
 390   _const_basic_type[T_LONG]    = TypeLong::LONG;
 391   _const_basic_type[T_FLOAT]   = Type::FLOAT;
 392   _const_basic_type[T_DOUBLE]  = Type::DOUBLE;
 393   _const_basic_type[T_OBJECT]  = TypeInstPtr::BOTTOM;
 394   _const_basic_type[T_ARRAY]   = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 395   _const_basic_type[T_VOID]    = TypePtr::NULL_PTR;   // reflection represents void this way
 396   _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 397   _const_basic_type[T_CONFLICT]= Type::BOTTOM;        // why not?
 398 
 399   _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
 400   _zero_type[T_BOOLEAN] = TypeInt::ZERO;     // false == 0
 401   _zero_type[T_CHAR]    = TypeInt::ZERO;     // '\0' == 0
 402   _zero_type[T_BYTE]    = TypeInt::ZERO;     // 0x00 == 0
 403   _zero_type[T_SHORT]   = TypeInt::ZERO;     // 0x0000 == 0
 404   _zero_type[T_INT]     = TypeInt::ZERO;
 405   _zero_type[T_LONG]    = TypeLong::ZERO;
 406   _zero_type[T_FLOAT]   = TypeF::ZERO;
 407   _zero_type[T_DOUBLE]  = TypeD::ZERO;
 408   _zero_type[T_OBJECT]  = TypePtr::NULL_PTR;
 409   _zero_type[T_ARRAY]   = TypePtr::NULL_PTR; // null array is null oop
 410   _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
 411   _zero_type[T_VOID]    = Type::TOP;         // the only void value is no value at all
 412 
 413   // get_zero_type() should not happen for T_CONFLICT
 414   _zero_type[T_CONFLICT]= NULL;
 415 
 416   // Restore working type arena.
 417   current->set_type_arena(save);
 418   current->set_type_dict(NULL);
 419 }
 420 
 421 //------------------------------Initialize-------------------------------------
 422 void Type::Initialize(Compile* current) {
 423   assert(current->type_arena() != NULL, "must have created type arena");
 424 
 425   if (_shared_type_dict == NULL) {
 426     Initialize_shared(current);
 427   }
 428 
 429   Arena* type_arena = current->type_arena();
 430 
 431   // Create the hash-cons'ing dictionary with top-level storage allocation
 432   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 433   current->set_type_dict(tdic);
 434 
 435   // Transfer the shared types.
 436   DictI i(_shared_type_dict);
 437   for( ; i.test(); ++i ) {
 438     Type* t = (Type*)i._value;
 439     tdic->Insert(t,t);  // New Type, insert into Type table
 440   }
 441 
 442 #ifdef ASSERT
 443   verify_lastype();
 444 #endif
 445 }
 446 
 447 //------------------------------hashcons---------------------------------------
 448 // Do the hash-cons trick.  If the Type already exists in the type table,
 449 // delete the current Type and return the existing Type.  Otherwise stick the
 450 // current Type in the Type table.
 451 const Type *Type::hashcons(void) {
 452   debug_only(base());           // Check the assertion in Type::base().
 453   // Look up the Type in the Type dictionary
 454   Dict *tdic = type_dict();
 455   Type* old = (Type*)(tdic->Insert(this, this, false));
 456   if( old ) {                   // Pre-existing Type?
 457     if( old != this )           // Yes, this guy is not the pre-existing?
 458       delete this;              // Yes, Nuke this guy
 459     assert( old->_dual, "" );
 460     return old;                 // Return pre-existing
 461   }
 462 
 463   // Every type has a dual (to make my lattice symmetric).
 464   // Since we just discovered a new Type, compute its dual right now.
 465   assert( !_dual, "" );         // No dual yet
 466   _dual = xdual();              // Compute the dual
 467   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 468     _dual = this;
 469     return this;
 470   }
 471   assert( !_dual->_dual, "" );  // No reverse dual yet
 472   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 473   // New Type, insert into Type table
 474   tdic->Insert((void*)_dual,(void*)_dual);
 475   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 476 #ifdef ASSERT
 477   Type *dual_dual = (Type*)_dual->xdual();
 478   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 479   delete dual_dual;
 480 #endif
 481   return this;                  // Return new Type
 482 }
 483 
 484 //------------------------------eq---------------------------------------------
 485 // Structural equality check for Type representations
 486 bool Type::eq( const Type * ) const {
 487   return true;                  // Nothing else can go wrong
 488 }
 489 
 490 //------------------------------hash-------------------------------------------
 491 // Type-specific hashing function.
 492 int Type::hash(void) const {
 493   return _base;
 494 }
 495 
 496 //------------------------------is_finite--------------------------------------
 497 // Has a finite value
 498 bool Type::is_finite() const {
 499   return false;
 500 }
 501 
 502 //------------------------------is_nan-----------------------------------------
 503 // Is not a number (NaN)
 504 bool Type::is_nan()    const {
 505   return false;
 506 }
 507 
 508 //----------------------interface_vs_oop---------------------------------------
 509 #ifdef ASSERT
 510 bool Type::interface_vs_oop(const Type *t) const {
 511   bool result = false;
 512 
 513   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 514   const TypePtr*    t_ptr =    t->make_ptr();
 515   if( this_ptr == NULL || t_ptr == NULL )
 516     return result;
 517 
 518   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 519   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 520   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 521     bool this_interface = this_inst->klass()->is_interface();
 522     bool    t_interface =    t_inst->klass()->is_interface();
 523     result = this_interface ^ t_interface;
 524   }
 525 
 526   return result;
 527 }
 528 #endif
 529 
 530 //------------------------------meet-------------------------------------------
 531 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 532 // commutative and the lattice is symmetric.
 533 const Type *Type::meet( const Type *t ) const {
 534   if (isa_narrowoop() && t->isa_narrowoop()) {
 535     const Type* result = make_ptr()->meet(t->make_ptr());
 536     return result->make_narrowoop();
 537   }
 538 
 539   const Type *mt = xmeet(t);
 540   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 541 #ifdef ASSERT
 542   assert( mt == t->xmeet(this), "meet not commutative" );
 543   const Type* dual_join = mt->_dual;
 544   const Type *t2t    = dual_join->xmeet(t->_dual);
 545   const Type *t2this = dual_join->xmeet(   _dual);
 546 
 547   // Interface meet Oop is Not Symmetric:
 548   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 549   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 550 
 551   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != _dual) ) {
 552     tty->print_cr("=== Meet Not Symmetric ===");
 553     tty->print("t   =                   ");         t->dump(); tty->cr();
 554     tty->print("this=                   ");            dump(); tty->cr();
 555     tty->print("mt=(t meet this)=       ");        mt->dump(); tty->cr();
 556 
 557     tty->print("t_dual=                 ");  t->_dual->dump(); tty->cr();
 558     tty->print("this_dual=              ");     _dual->dump(); tty->cr();
 559     tty->print("mt_dual=                "); mt->_dual->dump(); tty->cr();
 560 
 561     tty->print("mt_dual meet t_dual=    "); t2t      ->dump(); tty->cr();
 562     tty->print("mt_dual meet this_dual= "); t2this   ->dump(); tty->cr();
 563 
 564     fatal("meet not symmetric" );
 565   }
 566 #endif
 567   return mt;
 568 }
 569 
 570 //------------------------------xmeet------------------------------------------
 571 // Compute the MEET of two types.  It returns a new Type object.
 572 const Type *Type::xmeet( const Type *t ) const {
 573   // Perform a fast test for common case; meeting the same types together.
 574   if( this == t ) return this;  // Meeting same type-rep?
 575 
 576   // Meeting TOP with anything?
 577   if( _base == Top ) return t;
 578 
 579   // Meeting BOTTOM with anything?
 580   if( _base == Bottom ) return BOTTOM;
 581 
 582   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 583   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 584   switch (t->base()) {  // Switch on original type
 585 
 586   // Cut in half the number of cases I must handle.  Only need cases for when
 587   // the given enum "t->type" is less than or equal to the local enum "type".
 588   case FloatCon:
 589   case DoubleCon:
 590   case Int:
 591   case Long:
 592     return t->xmeet(this);
 593 
 594   case OopPtr:
 595     return t->xmeet(this);
 596 
 597   case InstPtr:
 598     return t->xmeet(this);
 599 
 600   case KlassPtr:
 601     return t->xmeet(this);
 602 
 603   case AryPtr:
 604     return t->xmeet(this);
 605 
 606   case NarrowOop:
 607     return t->xmeet(this);
 608 
 609   case Bad:                     // Type check
 610   default:                      // Bogus type not in lattice
 611     typerr(t);
 612     return Type::BOTTOM;
 613 
 614   case Bottom:                  // Ye Olde Default
 615     return t;
 616 
 617   case FloatTop:
 618     if( _base == FloatTop ) return this;
 619   case FloatBot:                // Float
 620     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 621     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 622     typerr(t);
 623     return Type::BOTTOM;
 624 
 625   case DoubleTop:
 626     if( _base == DoubleTop ) return this;
 627   case DoubleBot:               // Double
 628     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 629     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 630     typerr(t);
 631     return Type::BOTTOM;
 632 
 633   // These next few cases must match exactly or it is a compile-time error.
 634   case Control:                 // Control of code
 635   case Abio:                    // State of world outside of program
 636   case Memory:
 637     if( _base == t->_base )  return this;
 638     typerr(t);
 639     return Type::BOTTOM;
 640 
 641   case Top:                     // Top of the lattice
 642     return this;
 643   }
 644 
 645   // The type is unchanged
 646   return this;
 647 }
 648 
 649 //-----------------------------filter------------------------------------------
 650 const Type *Type::filter( const Type *kills ) const {
 651   const Type* ft = join(kills);
 652   if (ft->empty())
 653     return Type::TOP;           // Canonical empty value
 654   return ft;
 655 }
 656 
 657 //------------------------------xdual------------------------------------------
 658 // Compute dual right now.
 659 const Type::TYPES Type::dual_type[Type::lastype] = {
 660   Bad,          // Bad
 661   Control,      // Control
 662   Bottom,       // Top
 663   Bad,          // Int - handled in v-call
 664   Bad,          // Long - handled in v-call
 665   Half,         // Half
 666   Bad,          // NarrowOop - handled in v-call
 667 
 668   Bad,          // Tuple - handled in v-call
 669   Bad,          // Array - handled in v-call
 670 
 671   Bad,          // AnyPtr - handled in v-call
 672   Bad,          // RawPtr - handled in v-call
 673   Bad,          // OopPtr - handled in v-call
 674   Bad,          // InstPtr - handled in v-call
 675   Bad,          // AryPtr - handled in v-call
 676   Bad,          // KlassPtr - handled in v-call
 677 
 678   Bad,          // Function - handled in v-call
 679   Abio,         // Abio
 680   Return_Address,// Return_Address
 681   Memory,       // Memory
 682   FloatBot,     // FloatTop
 683   FloatCon,     // FloatCon
 684   FloatTop,     // FloatBot
 685   DoubleBot,    // DoubleTop
 686   DoubleCon,    // DoubleCon
 687   DoubleTop,    // DoubleBot
 688   Top           // Bottom
 689 };
 690 
 691 const Type *Type::xdual() const {
 692   // Note: the base() accessor asserts the sanity of _base.
 693   assert(dual_type[base()] != Bad, "implement with v-call");
 694   return new Type(dual_type[_base]);
 695 }
 696 
 697 //------------------------------has_memory-------------------------------------
 698 bool Type::has_memory() const {
 699   Type::TYPES tx = base();
 700   if (tx == Memory) return true;
 701   if (tx == Tuple) {
 702     const TypeTuple *t = is_tuple();
 703     for (uint i=0; i < t->cnt(); i++) {
 704       tx = t->field_at(i)->base();
 705       if (tx == Memory)  return true;
 706     }
 707   }
 708   return false;
 709 }
 710 
 711 #ifndef PRODUCT
 712 //------------------------------dump2------------------------------------------
 713 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 714   st->print(msg[_base]);
 715 }
 716 
 717 //------------------------------dump-------------------------------------------
 718 void Type::dump_on(outputStream *st) const {
 719   ResourceMark rm;
 720   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 721   dump2(d,1, st);
 722   if (is_ptr_to_narrowoop()) {
 723     st->print(" [narrow]");
 724   }
 725 }
 726 
 727 //------------------------------data-------------------------------------------
 728 const char * const Type::msg[Type::lastype] = {
 729   "bad","control","top","int:","long:","half", "narrowoop:",
 730   "tuple:", "aryptr",
 731   "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
 732   "func", "abIO", "return_address", "memory",
 733   "float_top", "ftcon:", "float",
 734   "double_top", "dblcon:", "double",
 735   "bottom"
 736 };
 737 #endif
 738 
 739 //------------------------------singleton--------------------------------------
 740 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 741 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 742 bool Type::singleton(void) const {
 743   return _base == Top || _base == Half;
 744 }
 745 
 746 //------------------------------empty------------------------------------------
 747 // TRUE if Type is a type with no values, FALSE otherwise.
 748 bool Type::empty(void) const {
 749   switch (_base) {
 750   case DoubleTop:
 751   case FloatTop:
 752   case Top:
 753     return true;
 754 
 755   case Half:
 756   case Abio:
 757   case Return_Address:
 758   case Memory:
 759   case Bottom:
 760   case FloatBot:
 761   case DoubleBot:
 762     return false;  // never a singleton, therefore never empty
 763   }
 764 
 765   ShouldNotReachHere();
 766   return false;
 767 }
 768 
 769 //------------------------------dump_stats-------------------------------------
 770 // Dump collected statistics to stderr
 771 #ifndef PRODUCT
 772 void Type::dump_stats() {
 773   tty->print("Types made: %d\n", type_dict()->Size());
 774 }
 775 #endif
 776 
 777 //------------------------------typerr-----------------------------------------
 778 void Type::typerr( const Type *t ) const {
 779 #ifndef PRODUCT
 780   tty->print("\nError mixing types: ");
 781   dump();
 782   tty->print(" and ");
 783   t->dump();
 784   tty->print("\n");
 785 #endif
 786   ShouldNotReachHere();
 787 }
 788 
 789 //------------------------------isa_oop_ptr------------------------------------
 790 // Return true if type is an oop pointer type.  False for raw pointers.
 791 static char isa_oop_ptr_tbl[Type::lastype] = {
 792   0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
 793   0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
 794   0/*func*/,0,0/*return_address*/,0,
 795   /*floats*/0,0,0, /*doubles*/0,0,0,
 796   0
 797 };
 798 bool Type::isa_oop_ptr() const {
 799   return isa_oop_ptr_tbl[_base] != 0;
 800 }
 801 
 802 //------------------------------dump_stats-------------------------------------
 803 // // Check that arrays match type enum
 804 #ifndef PRODUCT
 805 void Type::verify_lastype() {
 806   // Check that arrays match enumeration
 807   assert( Type::dual_type  [Type::lastype - 1] == Type::Top, "did not update array");
 808   assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
 809   // assert( PhiNode::tbl     [Type::lastype - 1] == NULL,    "did not update array");
 810   assert( Matcher::base2reg[Type::lastype - 1] == 0,      "did not update array");
 811   assert( isa_oop_ptr_tbl  [Type::lastype - 1] == (char)0,  "did not update array");
 812 }
 813 #endif
 814 
 815 //=============================================================================
 816 // Convenience common pre-built types.
 817 const TypeF *TypeF::ZERO;       // Floating point zero
 818 const TypeF *TypeF::ONE;        // Floating point one
 819 
 820 //------------------------------make-------------------------------------------
 821 // Create a float constant
 822 const TypeF *TypeF::make(float f) {
 823   return (TypeF*)(new TypeF(f))->hashcons();
 824 }
 825 
 826 //------------------------------meet-------------------------------------------
 827 // Compute the MEET of two types.  It returns a new Type object.
 828 const Type *TypeF::xmeet( const Type *t ) const {
 829   // Perform a fast test for common case; meeting the same types together.
 830   if( this == t ) return this;  // Meeting same type-rep?
 831 
 832   // Current "this->_base" is FloatCon
 833   switch (t->base()) {          // Switch on original type
 834   case AnyPtr:                  // Mixing with oops happens when javac
 835   case RawPtr:                  // reuses local variables
 836   case OopPtr:
 837   case InstPtr:
 838   case KlassPtr:
 839   case AryPtr:
 840   case NarrowOop:
 841   case Int:
 842   case Long:
 843   case DoubleTop:
 844   case DoubleCon:
 845   case DoubleBot:
 846   case Bottom:                  // Ye Olde Default
 847     return Type::BOTTOM;
 848 
 849   case FloatBot:
 850     return t;
 851 
 852   default:                      // All else is a mistake
 853     typerr(t);
 854 
 855   case FloatCon:                // Float-constant vs Float-constant?
 856     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 857                                 // must compare bitwise as positive zero, negative zero and NaN have
 858                                 // all the same representation in C++
 859       return FLOAT;             // Return generic float
 860                                 // Equal constants
 861   case Top:
 862   case FloatTop:
 863     break;                      // Return the float constant
 864   }
 865   return this;                  // Return the float constant
 866 }
 867 
 868 //------------------------------xdual------------------------------------------
 869 // Dual: symmetric
 870 const Type *TypeF::xdual() const {
 871   return this;
 872 }
 873 
 874 //------------------------------eq---------------------------------------------
 875 // Structural equality check for Type representations
 876 bool TypeF::eq( const Type *t ) const {
 877   if( g_isnan(_f) ||
 878       g_isnan(t->getf()) ) {
 879     // One or both are NANs.  If both are NANs return true, else false.
 880     return (g_isnan(_f) && g_isnan(t->getf()));
 881   }
 882   if (_f == t->getf()) {
 883     // (NaN is impossible at this point, since it is not equal even to itself)
 884     if (_f == 0.0) {
 885       // difference between positive and negative zero
 886       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 887     }
 888     return true;
 889   }
 890   return false;
 891 }
 892 
 893 //------------------------------hash-------------------------------------------
 894 // Type-specific hashing function.
 895 int TypeF::hash(void) const {
 896   return *(int*)(&_f);
 897 }
 898 
 899 //------------------------------is_finite--------------------------------------
 900 // Has a finite value
 901 bool TypeF::is_finite() const {
 902   return g_isfinite(getf()) != 0;
 903 }
 904 
 905 //------------------------------is_nan-----------------------------------------
 906 // Is not a number (NaN)
 907 bool TypeF::is_nan()    const {
 908   return g_isnan(getf()) != 0;
 909 }
 910 
 911 //------------------------------dump2------------------------------------------
 912 // Dump float constant Type
 913 #ifndef PRODUCT
 914 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
 915   Type::dump2(d,depth, st);
 916   st->print("%f", _f);
 917 }
 918 #endif
 919 
 920 //------------------------------singleton--------------------------------------
 921 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 922 // constants (Ldi nodes).  Singletons are integer, float or double constants
 923 // or a single symbol.
 924 bool TypeF::singleton(void) const {
 925   return true;                  // Always a singleton
 926 }
 927 
 928 bool TypeF::empty(void) const {
 929   return false;                 // always exactly a singleton
 930 }
 931 
 932 //=============================================================================
 933 // Convenience common pre-built types.
 934 const TypeD *TypeD::ZERO;       // Floating point zero
 935 const TypeD *TypeD::ONE;        // Floating point one
 936 
 937 //------------------------------make-------------------------------------------
 938 const TypeD *TypeD::make(double d) {
 939   return (TypeD*)(new TypeD(d))->hashcons();
 940 }
 941 
 942 //------------------------------meet-------------------------------------------
 943 // Compute the MEET of two types.  It returns a new Type object.
 944 const Type *TypeD::xmeet( const Type *t ) const {
 945   // Perform a fast test for common case; meeting the same types together.
 946   if( this == t ) return this;  // Meeting same type-rep?
 947 
 948   // Current "this->_base" is DoubleCon
 949   switch (t->base()) {          // Switch on original type
 950   case AnyPtr:                  // Mixing with oops happens when javac
 951   case RawPtr:                  // reuses local variables
 952   case OopPtr:
 953   case InstPtr:
 954   case KlassPtr:
 955   case AryPtr:
 956   case NarrowOop:
 957   case Int:
 958   case Long:
 959   case FloatTop:
 960   case FloatCon:
 961   case FloatBot:
 962   case Bottom:                  // Ye Olde Default
 963     return Type::BOTTOM;
 964 
 965   case DoubleBot:
 966     return t;
 967 
 968   default:                      // All else is a mistake
 969     typerr(t);
 970 
 971   case DoubleCon:               // Double-constant vs Double-constant?
 972     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
 973       return DOUBLE;            // Return generic double
 974   case Top:
 975   case DoubleTop:
 976     break;
 977   }
 978   return this;                  // Return the double constant
 979 }
 980 
 981 //------------------------------xdual------------------------------------------
 982 // Dual: symmetric
 983 const Type *TypeD::xdual() const {
 984   return this;
 985 }
 986 
 987 //------------------------------eq---------------------------------------------
 988 // Structural equality check for Type representations
 989 bool TypeD::eq( const Type *t ) const {
 990   if( g_isnan(_d) ||
 991       g_isnan(t->getd()) ) {
 992     // One or both are NANs.  If both are NANs return true, else false.
 993     return (g_isnan(_d) && g_isnan(t->getd()));
 994   }
 995   if (_d == t->getd()) {
 996     // (NaN is impossible at this point, since it is not equal even to itself)
 997     if (_d == 0.0) {
 998       // difference between positive and negative zero
 999       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1000     }
1001     return true;
1002   }
1003   return false;
1004 }
1005 
1006 //------------------------------hash-------------------------------------------
1007 // Type-specific hashing function.
1008 int TypeD::hash(void) const {
1009   return *(int*)(&_d);
1010 }
1011 
1012 //------------------------------is_finite--------------------------------------
1013 // Has a finite value
1014 bool TypeD::is_finite() const {
1015   return g_isfinite(getd()) != 0;
1016 }
1017 
1018 //------------------------------is_nan-----------------------------------------
1019 // Is not a number (NaN)
1020 bool TypeD::is_nan()    const {
1021   return g_isnan(getd()) != 0;
1022 }
1023 
1024 //------------------------------dump2------------------------------------------
1025 // Dump double constant Type
1026 #ifndef PRODUCT
1027 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1028   Type::dump2(d,depth,st);
1029   st->print("%f", _d);
1030 }
1031 #endif
1032 
1033 //------------------------------singleton--------------------------------------
1034 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1035 // constants (Ldi nodes).  Singletons are integer, float or double constants
1036 // or a single symbol.
1037 bool TypeD::singleton(void) const {
1038   return true;                  // Always a singleton
1039 }
1040 
1041 bool TypeD::empty(void) const {
1042   return false;                 // always exactly a singleton
1043 }
1044 
1045 //=============================================================================
1046 // Convience common pre-built types.
1047 const TypeInt *TypeInt::MINUS_1;// -1
1048 const TypeInt *TypeInt::ZERO;   // 0
1049 const TypeInt *TypeInt::ONE;    // 1
1050 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1051 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1052 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1053 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1054 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1055 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1056 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1057 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1058 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1059 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1060 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1061 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1062 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1063 const TypeInt *TypeInt::INT;    // 32-bit integers
1064 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1065 
1066 //------------------------------TypeInt----------------------------------------
1067 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1068 }
1069 
1070 //------------------------------make-------------------------------------------
1071 const TypeInt *TypeInt::make( jint lo ) {
1072   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1073 }
1074 
1075 static int normalize_int_widen( jint lo, jint hi, int w ) {
1076   // Certain normalizations keep us sane when comparing types.
1077   // The 'SMALLINT' covers constants and also CC and its relatives.
1078   if (lo <= hi) {
1079     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1080     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1081   } else {
1082     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1083     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1084   }
1085   return w;
1086 }
1087 
1088 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1089   w = normalize_int_widen(lo, hi, w);
1090   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1091 }
1092 
1093 //------------------------------meet-------------------------------------------
1094 // Compute the MEET of two types.  It returns a new Type representation object
1095 // with reference count equal to the number of Types pointing at it.
1096 // Caller should wrap a Types around it.
1097 const Type *TypeInt::xmeet( const Type *t ) const {
1098   // Perform a fast test for common case; meeting the same types together.
1099   if( this == t ) return this;  // Meeting same type?
1100 
1101   // Currently "this->_base" is a TypeInt
1102   switch (t->base()) {          // Switch on original type
1103   case AnyPtr:                  // Mixing with oops happens when javac
1104   case RawPtr:                  // reuses local variables
1105   case OopPtr:
1106   case InstPtr:
1107   case KlassPtr:
1108   case AryPtr:
1109   case NarrowOop:
1110   case Long:
1111   case FloatTop:
1112   case FloatCon:
1113   case FloatBot:
1114   case DoubleTop:
1115   case DoubleCon:
1116   case DoubleBot:
1117   case Bottom:                  // Ye Olde Default
1118     return Type::BOTTOM;
1119   default:                      // All else is a mistake
1120     typerr(t);
1121   case Top:                     // No change
1122     return this;
1123   case Int:                     // Int vs Int?
1124     break;
1125   }
1126 
1127   // Expand covered set
1128   const TypeInt *r = t->is_int();
1129   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1130 }
1131 
1132 //------------------------------xdual------------------------------------------
1133 // Dual: reverse hi & lo; flip widen
1134 const Type *TypeInt::xdual() const {
1135   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1136   return new TypeInt(_hi,_lo,w);
1137 }
1138 
1139 //------------------------------widen------------------------------------------
1140 // Only happens for optimistic top-down optimizations.
1141 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1142   // Coming from TOP or such; no widening
1143   if( old->base() != Int ) return this;
1144   const TypeInt *ot = old->is_int();
1145 
1146   // If new guy is equal to old guy, no widening
1147   if( _lo == ot->_lo && _hi == ot->_hi )
1148     return old;
1149 
1150   // If new guy contains old, then we widened
1151   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1152     // New contains old
1153     // If new guy is already wider than old, no widening
1154     if( _widen > ot->_widen ) return this;
1155     // If old guy was a constant, do not bother
1156     if (ot->_lo == ot->_hi)  return this;
1157     // Now widen new guy.
1158     // Check for widening too far
1159     if (_widen == WidenMax) {
1160       int max = max_jint;
1161       int min = min_jint;
1162       if (limit->isa_int()) {
1163         max = limit->is_int()->_hi;
1164         min = limit->is_int()->_lo;
1165       }
1166       if (min < _lo && _hi < max) {
1167         // If neither endpoint is extremal yet, push out the endpoint
1168         // which is closer to its respective limit.
1169         if (_lo >= 0 ||                 // easy common case
1170             (juint)(_lo - min) >= (juint)(max - _hi)) {
1171           // Try to widen to an unsigned range type of 31 bits:
1172           return make(_lo, max, WidenMax);
1173         } else {
1174           return make(min, _hi, WidenMax);
1175         }
1176       }
1177       return TypeInt::INT;
1178     }
1179     // Returned widened new guy
1180     return make(_lo,_hi,_widen+1);
1181   }
1182 
1183   // If old guy contains new, then we probably widened too far & dropped to
1184   // bottom.  Return the wider fellow.
1185   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1186     return old;
1187 
1188   //fatal("Integer value range is not subset");
1189   //return this;
1190   return TypeInt::INT;
1191 }
1192 
1193 //------------------------------narrow---------------------------------------
1194 // Only happens for pessimistic optimizations.
1195 const Type *TypeInt::narrow( const Type *old ) const {
1196   if (_lo >= _hi)  return this;   // already narrow enough
1197   if (old == NULL)  return this;
1198   const TypeInt* ot = old->isa_int();
1199   if (ot == NULL)  return this;
1200   jint olo = ot->_lo;
1201   jint ohi = ot->_hi;
1202 
1203   // If new guy is equal to old guy, no narrowing
1204   if (_lo == olo && _hi == ohi)  return old;
1205 
1206   // If old guy was maximum range, allow the narrowing
1207   if (olo == min_jint && ohi == max_jint)  return this;
1208 
1209   if (_lo < olo || _hi > ohi)
1210     return this;                // doesn't narrow; pretty wierd
1211 
1212   // The new type narrows the old type, so look for a "death march".
1213   // See comments on PhaseTransform::saturate.
1214   juint nrange = _hi - _lo;
1215   juint orange = ohi - olo;
1216   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1217     // Use the new type only if the range shrinks a lot.
1218     // We do not want the optimizer computing 2^31 point by point.
1219     return old;
1220   }
1221 
1222   return this;
1223 }
1224 
1225 //-----------------------------filter------------------------------------------
1226 const Type *TypeInt::filter( const Type *kills ) const {
1227   const TypeInt* ft = join(kills)->isa_int();
1228   if (ft == NULL || ft->empty())
1229     return Type::TOP;           // Canonical empty value
1230   if (ft->_widen < this->_widen) {
1231     // Do not allow the value of kill->_widen to affect the outcome.
1232     // The widen bits must be allowed to run freely through the graph.
1233     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1234   }
1235   return ft;
1236 }
1237 
1238 //------------------------------eq---------------------------------------------
1239 // Structural equality check for Type representations
1240 bool TypeInt::eq( const Type *t ) const {
1241   const TypeInt *r = t->is_int(); // Handy access
1242   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1243 }
1244 
1245 //------------------------------hash-------------------------------------------
1246 // Type-specific hashing function.
1247 int TypeInt::hash(void) const {
1248   return _lo+_hi+_widen+(int)Type::Int;
1249 }
1250 
1251 //------------------------------is_finite--------------------------------------
1252 // Has a finite value
1253 bool TypeInt::is_finite() const {
1254   return true;
1255 }
1256 
1257 //------------------------------dump2------------------------------------------
1258 // Dump TypeInt
1259 #ifndef PRODUCT
1260 static const char* intname(char* buf, jint n) {
1261   if (n == min_jint)
1262     return "min";
1263   else if (n < min_jint + 10000)
1264     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1265   else if (n == max_jint)
1266     return "max";
1267   else if (n > max_jint - 10000)
1268     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1269   else
1270     sprintf(buf, INT32_FORMAT, n);
1271   return buf;
1272 }
1273 
1274 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1275   char buf[40], buf2[40];
1276   if (_lo == min_jint && _hi == max_jint)
1277     st->print("int");
1278   else if (is_con())
1279     st->print("int:%s", intname(buf, get_con()));
1280   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1281     st->print("bool");
1282   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1283     st->print("byte");
1284   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1285     st->print("char");
1286   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1287     st->print("short");
1288   else if (_hi == max_jint)
1289     st->print("int:>=%s", intname(buf, _lo));
1290   else if (_lo == min_jint)
1291     st->print("int:<=%s", intname(buf, _hi));
1292   else
1293     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1294 
1295   if (_widen != 0 && this != TypeInt::INT)
1296     st->print(":%.*s", _widen, "wwww");
1297 }
1298 #endif
1299 
1300 //------------------------------singleton--------------------------------------
1301 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1302 // constants.
1303 bool TypeInt::singleton(void) const {
1304   return _lo >= _hi;
1305 }
1306 
1307 bool TypeInt::empty(void) const {
1308   return _lo > _hi;
1309 }
1310 
1311 //=============================================================================
1312 // Convenience common pre-built types.
1313 const TypeLong *TypeLong::MINUS_1;// -1
1314 const TypeLong *TypeLong::ZERO; // 0
1315 const TypeLong *TypeLong::ONE;  // 1
1316 const TypeLong *TypeLong::POS;  // >=0
1317 const TypeLong *TypeLong::LONG; // 64-bit integers
1318 const TypeLong *TypeLong::INT;  // 32-bit subrange
1319 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1320 
1321 //------------------------------TypeLong---------------------------------------
1322 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1323 }
1324 
1325 //------------------------------make-------------------------------------------
1326 const TypeLong *TypeLong::make( jlong lo ) {
1327   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1328 }
1329 
1330 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1331   // Certain normalizations keep us sane when comparing types.
1332   // The 'SMALLINT' covers constants.
1333   if (lo <= hi) {
1334     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1335     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1336   } else {
1337     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1338     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1339   }
1340   return w;
1341 }
1342 
1343 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1344   w = normalize_long_widen(lo, hi, w);
1345   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1346 }
1347 
1348 
1349 //------------------------------meet-------------------------------------------
1350 // Compute the MEET of two types.  It returns a new Type representation object
1351 // with reference count equal to the number of Types pointing at it.
1352 // Caller should wrap a Types around it.
1353 const Type *TypeLong::xmeet( const Type *t ) const {
1354   // Perform a fast test for common case; meeting the same types together.
1355   if( this == t ) return this;  // Meeting same type?
1356 
1357   // Currently "this->_base" is a TypeLong
1358   switch (t->base()) {          // Switch on original type
1359   case AnyPtr:                  // Mixing with oops happens when javac
1360   case RawPtr:                  // reuses local variables
1361   case OopPtr:
1362   case InstPtr:
1363   case KlassPtr:
1364   case AryPtr:
1365   case NarrowOop:
1366   case Int:
1367   case FloatTop:
1368   case FloatCon:
1369   case FloatBot:
1370   case DoubleTop:
1371   case DoubleCon:
1372   case DoubleBot:
1373   case Bottom:                  // Ye Olde Default
1374     return Type::BOTTOM;
1375   default:                      // All else is a mistake
1376     typerr(t);
1377   case Top:                     // No change
1378     return this;
1379   case Long:                    // Long vs Long?
1380     break;
1381   }
1382 
1383   // Expand covered set
1384   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1385   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1386 }
1387 
1388 //------------------------------xdual------------------------------------------
1389 // Dual: reverse hi & lo; flip widen
1390 const Type *TypeLong::xdual() const {
1391   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1392   return new TypeLong(_hi,_lo,w);
1393 }
1394 
1395 //------------------------------widen------------------------------------------
1396 // Only happens for optimistic top-down optimizations.
1397 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1398   // Coming from TOP or such; no widening
1399   if( old->base() != Long ) return this;
1400   const TypeLong *ot = old->is_long();
1401 
1402   // If new guy is equal to old guy, no widening
1403   if( _lo == ot->_lo && _hi == ot->_hi )
1404     return old;
1405 
1406   // If new guy contains old, then we widened
1407   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1408     // New contains old
1409     // If new guy is already wider than old, no widening
1410     if( _widen > ot->_widen ) return this;
1411     // If old guy was a constant, do not bother
1412     if (ot->_lo == ot->_hi)  return this;
1413     // Now widen new guy.
1414     // Check for widening too far
1415     if (_widen == WidenMax) {
1416       jlong max = max_jlong;
1417       jlong min = min_jlong;
1418       if (limit->isa_long()) {
1419         max = limit->is_long()->_hi;
1420         min = limit->is_long()->_lo;
1421       }
1422       if (min < _lo && _hi < max) {
1423         // If neither endpoint is extremal yet, push out the endpoint
1424         // which is closer to its respective limit.
1425         if (_lo >= 0 ||                 // easy common case
1426             (julong)(_lo - min) >= (julong)(max - _hi)) {
1427           // Try to widen to an unsigned range type of 32/63 bits:
1428           if (max >= max_juint && _hi < max_juint)
1429             return make(_lo, max_juint, WidenMax);
1430           else
1431             return make(_lo, max, WidenMax);
1432         } else {
1433           return make(min, _hi, WidenMax);
1434         }
1435       }
1436       return TypeLong::LONG;
1437     }
1438     // Returned widened new guy
1439     return make(_lo,_hi,_widen+1);
1440   }
1441 
1442   // If old guy contains new, then we probably widened too far & dropped to
1443   // bottom.  Return the wider fellow.
1444   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1445     return old;
1446 
1447   //  fatal("Long value range is not subset");
1448   // return this;
1449   return TypeLong::LONG;
1450 }
1451 
1452 //------------------------------narrow----------------------------------------
1453 // Only happens for pessimistic optimizations.
1454 const Type *TypeLong::narrow( const Type *old ) const {
1455   if (_lo >= _hi)  return this;   // already narrow enough
1456   if (old == NULL)  return this;
1457   const TypeLong* ot = old->isa_long();
1458   if (ot == NULL)  return this;
1459   jlong olo = ot->_lo;
1460   jlong ohi = ot->_hi;
1461 
1462   // If new guy is equal to old guy, no narrowing
1463   if (_lo == olo && _hi == ohi)  return old;
1464 
1465   // If old guy was maximum range, allow the narrowing
1466   if (olo == min_jlong && ohi == max_jlong)  return this;
1467 
1468   if (_lo < olo || _hi > ohi)
1469     return this;                // doesn't narrow; pretty wierd
1470 
1471   // The new type narrows the old type, so look for a "death march".
1472   // See comments on PhaseTransform::saturate.
1473   julong nrange = _hi - _lo;
1474   julong orange = ohi - olo;
1475   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1476     // Use the new type only if the range shrinks a lot.
1477     // We do not want the optimizer computing 2^31 point by point.
1478     return old;
1479   }
1480 
1481   return this;
1482 }
1483 
1484 //-----------------------------filter------------------------------------------
1485 const Type *TypeLong::filter( const Type *kills ) const {
1486   const TypeLong* ft = join(kills)->isa_long();
1487   if (ft == NULL || ft->empty())
1488     return Type::TOP;           // Canonical empty value
1489   if (ft->_widen < this->_widen) {
1490     // Do not allow the value of kill->_widen to affect the outcome.
1491     // The widen bits must be allowed to run freely through the graph.
1492     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1493   }
1494   return ft;
1495 }
1496 
1497 //------------------------------eq---------------------------------------------
1498 // Structural equality check for Type representations
1499 bool TypeLong::eq( const Type *t ) const {
1500   const TypeLong *r = t->is_long(); // Handy access
1501   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1502 }
1503 
1504 //------------------------------hash-------------------------------------------
1505 // Type-specific hashing function.
1506 int TypeLong::hash(void) const {
1507   return (int)(_lo+_hi+_widen+(int)Type::Long);
1508 }
1509 
1510 //------------------------------is_finite--------------------------------------
1511 // Has a finite value
1512 bool TypeLong::is_finite() const {
1513   return true;
1514 }
1515 
1516 //------------------------------dump2------------------------------------------
1517 // Dump TypeLong
1518 #ifndef PRODUCT
1519 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1520   if (n > x) {
1521     if (n >= x + 10000)  return NULL;
1522     sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
1523   } else if (n < x) {
1524     if (n <= x - 10000)  return NULL;
1525     sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
1526   } else {
1527     return xname;
1528   }
1529   return buf;
1530 }
1531 
1532 static const char* longname(char* buf, jlong n) {
1533   const char* str;
1534   if (n == min_jlong)
1535     return "min";
1536   else if (n < min_jlong + 10000)
1537     sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
1538   else if (n == max_jlong)
1539     return "max";
1540   else if (n > max_jlong - 10000)
1541     sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
1542   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1543     return str;
1544   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1545     return str;
1546   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1547     return str;
1548   else
1549     sprintf(buf, INT64_FORMAT, n);
1550   return buf;
1551 }
1552 
1553 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1554   char buf[80], buf2[80];
1555   if (_lo == min_jlong && _hi == max_jlong)
1556     st->print("long");
1557   else if (is_con())
1558     st->print("long:%s", longname(buf, get_con()));
1559   else if (_hi == max_jlong)
1560     st->print("long:>=%s", longname(buf, _lo));
1561   else if (_lo == min_jlong)
1562     st->print("long:<=%s", longname(buf, _hi));
1563   else
1564     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1565 
1566   if (_widen != 0 && this != TypeLong::LONG)
1567     st->print(":%.*s", _widen, "wwww");
1568 }
1569 #endif
1570 
1571 //------------------------------singleton--------------------------------------
1572 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1573 // constants
1574 bool TypeLong::singleton(void) const {
1575   return _lo >= _hi;
1576 }
1577 
1578 bool TypeLong::empty(void) const {
1579   return _lo > _hi;
1580 }
1581 
1582 //=============================================================================
1583 // Convenience common pre-built types.
1584 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1585 const TypeTuple *TypeTuple::IFFALSE;
1586 const TypeTuple *TypeTuple::IFTRUE;
1587 const TypeTuple *TypeTuple::IFNEITHER;
1588 const TypeTuple *TypeTuple::LOOPBODY;
1589 const TypeTuple *TypeTuple::MEMBAR;
1590 const TypeTuple *TypeTuple::STORECONDITIONAL;
1591 const TypeTuple *TypeTuple::START_I2C;
1592 const TypeTuple *TypeTuple::INT_PAIR;
1593 const TypeTuple *TypeTuple::LONG_PAIR;
1594 
1595 
1596 //------------------------------make-------------------------------------------
1597 // Make a TypeTuple from the range of a method signature
1598 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1599   ciType* return_type = sig->return_type();
1600   uint total_fields = TypeFunc::Parms + return_type->size();
1601   const Type **field_array = fields(total_fields);
1602   switch (return_type->basic_type()) {
1603   case T_LONG:
1604     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1605     field_array[TypeFunc::Parms+1] = Type::HALF;
1606     break;
1607   case T_DOUBLE:
1608     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1609     field_array[TypeFunc::Parms+1] = Type::HALF;
1610     break;
1611   case T_OBJECT:
1612   case T_ARRAY:
1613   case T_BOOLEAN:
1614   case T_CHAR:
1615   case T_FLOAT:
1616   case T_BYTE:
1617   case T_SHORT:
1618   case T_INT:
1619     field_array[TypeFunc::Parms] = get_const_type(return_type);
1620     break;
1621   case T_VOID:
1622     break;
1623   default:
1624     ShouldNotReachHere();
1625   }
1626   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1627 }
1628 
1629 // Make a TypeTuple from the domain of a method signature
1630 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1631   uint total_fields = TypeFunc::Parms + sig->size();
1632 
1633   uint pos = TypeFunc::Parms;
1634   const Type **field_array;
1635   if (recv != NULL) {
1636     total_fields++;
1637     field_array = fields(total_fields);
1638     // Use get_const_type here because it respects UseUniqueSubclasses:
1639     field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
1640   } else {
1641     field_array = fields(total_fields);
1642   }
1643 
1644   int i = 0;
1645   while (pos < total_fields) {
1646     ciType* type = sig->type_at(i);
1647 
1648     switch (type->basic_type()) {
1649     case T_LONG:
1650       field_array[pos++] = TypeLong::LONG;
1651       field_array[pos++] = Type::HALF;
1652       break;
1653     case T_DOUBLE:
1654       field_array[pos++] = Type::DOUBLE;
1655       field_array[pos++] = Type::HALF;
1656       break;
1657     case T_OBJECT:
1658     case T_ARRAY:
1659     case T_BOOLEAN:
1660     case T_CHAR:
1661     case T_FLOAT:
1662     case T_BYTE:
1663     case T_SHORT:
1664     case T_INT:
1665       field_array[pos++] = get_const_type(type);
1666       break;
1667     default:
1668       ShouldNotReachHere();
1669     }
1670     i++;
1671   }
1672   return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
1673 }
1674 
1675 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1676   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1677 }
1678 
1679 //------------------------------fields-----------------------------------------
1680 // Subroutine call type with space allocated for argument types
1681 const Type **TypeTuple::fields( uint arg_cnt ) {
1682   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1683   flds[TypeFunc::Control  ] = Type::CONTROL;
1684   flds[TypeFunc::I_O      ] = Type::ABIO;
1685   flds[TypeFunc::Memory   ] = Type::MEMORY;
1686   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1687   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1688 
1689   return flds;
1690 }
1691 
1692 //------------------------------meet-------------------------------------------
1693 // Compute the MEET of two types.  It returns a new Type object.
1694 const Type *TypeTuple::xmeet( const Type *t ) const {
1695   // Perform a fast test for common case; meeting the same types together.
1696   if( this == t ) return this;  // Meeting same type-rep?
1697 
1698   // Current "this->_base" is Tuple
1699   switch (t->base()) {          // switch on original type
1700 
1701   case Bottom:                  // Ye Olde Default
1702     return t;
1703 
1704   default:                      // All else is a mistake
1705     typerr(t);
1706 
1707   case Tuple: {                 // Meeting 2 signatures?
1708     const TypeTuple *x = t->is_tuple();
1709     assert( _cnt == x->_cnt, "" );
1710     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1711     for( uint i=0; i<_cnt; i++ )
1712       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1713     return TypeTuple::make(_cnt,fields);
1714   }
1715   case Top:
1716     break;
1717   }
1718   return this;                  // Return the double constant
1719 }
1720 
1721 //------------------------------xdual------------------------------------------
1722 // Dual: compute field-by-field dual
1723 const Type *TypeTuple::xdual() const {
1724   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1725   for( uint i=0; i<_cnt; i++ )
1726     fields[i] = _fields[i]->dual();
1727   return new TypeTuple(_cnt,fields);
1728 }
1729 
1730 //------------------------------eq---------------------------------------------
1731 // Structural equality check for Type representations
1732 bool TypeTuple::eq( const Type *t ) const {
1733   const TypeTuple *s = (const TypeTuple *)t;
1734   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1735   for (uint i = 0; i < _cnt; i++)
1736     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1737       return false;             // Missed
1738   return true;
1739 }
1740 
1741 //------------------------------hash-------------------------------------------
1742 // Type-specific hashing function.
1743 int TypeTuple::hash(void) const {
1744   intptr_t sum = _cnt;
1745   for( uint i=0; i<_cnt; i++ )
1746     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1747   return sum;
1748 }
1749 
1750 //------------------------------dump2------------------------------------------
1751 // Dump signature Type
1752 #ifndef PRODUCT
1753 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1754   st->print("{");
1755   if( !depth || d[this] ) {     // Check for recursive print
1756     st->print("...}");
1757     return;
1758   }
1759   d.Insert((void*)this, (void*)this);   // Stop recursion
1760   if( _cnt ) {
1761     uint i;
1762     for( i=0; i<_cnt-1; i++ ) {
1763       st->print("%d:", i);
1764       _fields[i]->dump2(d, depth-1, st);
1765       st->print(", ");
1766     }
1767     st->print("%d:", i);
1768     _fields[i]->dump2(d, depth-1, st);
1769   }
1770   st->print("}");
1771 }
1772 #endif
1773 
1774 //------------------------------singleton--------------------------------------
1775 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1776 // constants (Ldi nodes).  Singletons are integer, float or double constants
1777 // or a single symbol.
1778 bool TypeTuple::singleton(void) const {
1779   return false;                 // Never a singleton
1780 }
1781 
1782 bool TypeTuple::empty(void) const {
1783   for( uint i=0; i<_cnt; i++ ) {
1784     if (_fields[i]->empty())  return true;
1785   }
1786   return false;
1787 }
1788 
1789 //=============================================================================
1790 // Convenience common pre-built types.
1791 
1792 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1793   // Certain normalizations keep us sane when comparing types.
1794   // We do not want arrayOop variables to differ only by the wideness
1795   // of their index types.  Pick minimum wideness, since that is the
1796   // forced wideness of small ranges anyway.
1797   if (size->_widen != Type::WidenMin)
1798     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1799   else
1800     return size;
1801 }
1802 
1803 //------------------------------make-------------------------------------------
1804 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
1805   if (UseCompressedOops && elem->isa_oopptr()) {
1806     elem = elem->make_narrowoop();
1807   }
1808   size = normalize_array_size(size);
1809   return (TypeAry*)(new TypeAry(elem,size))->hashcons();
1810 }
1811 
1812 //------------------------------meet-------------------------------------------
1813 // Compute the MEET of two types.  It returns a new Type object.
1814 const Type *TypeAry::xmeet( const Type *t ) const {
1815   // Perform a fast test for common case; meeting the same types together.
1816   if( this == t ) return this;  // Meeting same type-rep?
1817 
1818   // Current "this->_base" is Ary
1819   switch (t->base()) {          // switch on original type
1820 
1821   case Bottom:                  // Ye Olde Default
1822     return t;
1823 
1824   default:                      // All else is a mistake
1825     typerr(t);
1826 
1827   case Array: {                 // Meeting 2 arrays?
1828     const TypeAry *a = t->is_ary();
1829     return TypeAry::make(_elem->meet(a->_elem),
1830                          _size->xmeet(a->_size)->is_int());
1831   }
1832   case Top:
1833     break;
1834   }
1835   return this;                  // Return the double constant
1836 }
1837 
1838 //------------------------------xdual------------------------------------------
1839 // Dual: compute field-by-field dual
1840 const Type *TypeAry::xdual() const {
1841   const TypeInt* size_dual = _size->dual()->is_int();
1842   size_dual = normalize_array_size(size_dual);
1843   return new TypeAry( _elem->dual(), size_dual);
1844 }
1845 
1846 //------------------------------eq---------------------------------------------
1847 // Structural equality check for Type representations
1848 bool TypeAry::eq( const Type *t ) const {
1849   const TypeAry *a = (const TypeAry*)t;
1850   return _elem == a->_elem &&
1851     _size == a->_size;
1852 }
1853 
1854 //------------------------------hash-------------------------------------------
1855 // Type-specific hashing function.
1856 int TypeAry::hash(void) const {
1857   return (intptr_t)_elem + (intptr_t)_size;
1858 }
1859 
1860 //----------------------interface_vs_oop---------------------------------------
1861 #ifdef ASSERT
1862 bool TypeAry::interface_vs_oop(const Type *t) const {
1863   const TypeAry* t_ary = t->is_ary();
1864   if (t_ary) {
1865     return _elem->interface_vs_oop(t_ary->_elem);
1866   }
1867   return false;
1868 }
1869 #endif
1870 
1871 //------------------------------dump2------------------------------------------
1872 #ifndef PRODUCT
1873 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1874   _elem->dump2(d, depth, st);
1875   st->print("[");
1876   _size->dump2(d, depth, st);
1877   st->print("]");
1878 }
1879 #endif
1880 
1881 //------------------------------singleton--------------------------------------
1882 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1883 // constants (Ldi nodes).  Singletons are integer, float or double constants
1884 // or a single symbol.
1885 bool TypeAry::singleton(void) const {
1886   return false;                 // Never a singleton
1887 }
1888 
1889 bool TypeAry::empty(void) const {
1890   return _elem->empty() || _size->empty();
1891 }
1892 
1893 //--------------------------ary_must_be_exact----------------------------------
1894 bool TypeAry::ary_must_be_exact() const {
1895   if (!UseExactTypes)       return false;
1896   // This logic looks at the element type of an array, and returns true
1897   // if the element type is either a primitive or a final instance class.
1898   // In such cases, an array built on this ary must have no subclasses.
1899   if (_elem == BOTTOM)      return false;  // general array not exact
1900   if (_elem == TOP   )      return false;  // inverted general array not exact
1901   const TypeOopPtr*  toop = NULL;
1902   if (UseCompressedOops && _elem->isa_narrowoop()) {
1903     toop = _elem->make_ptr()->isa_oopptr();
1904   } else {
1905     toop = _elem->isa_oopptr();
1906   }
1907   if (!toop)                return true;   // a primitive type, like int
1908   ciKlass* tklass = toop->klass();
1909   if (tklass == NULL)       return false;  // unloaded class
1910   if (!tklass->is_loaded()) return false;  // unloaded class
1911   const TypeInstPtr* tinst;
1912   if (_elem->isa_narrowoop())
1913     tinst = _elem->make_ptr()->isa_instptr();
1914   else
1915     tinst = _elem->isa_instptr();
1916   if (tinst)
1917     return tklass->as_instance_klass()->is_final();
1918   const TypeAryPtr*  tap;
1919   if (_elem->isa_narrowoop())
1920     tap = _elem->make_ptr()->isa_aryptr();
1921   else
1922     tap = _elem->isa_aryptr();
1923   if (tap)
1924     return tap->ary()->ary_must_be_exact();
1925   return false;
1926 }
1927 
1928 //=============================================================================
1929 // Convenience common pre-built types.
1930 const TypePtr *TypePtr::NULL_PTR;
1931 const TypePtr *TypePtr::NOTNULL;
1932 const TypePtr *TypePtr::BOTTOM;
1933 
1934 //------------------------------meet-------------------------------------------
1935 // Meet over the PTR enum
1936 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
1937   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
1938   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
1939   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
1940   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
1941   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
1942   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
1943   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
1944 };
1945 
1946 //------------------------------make-------------------------------------------
1947 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
1948   return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
1949 }
1950 
1951 //------------------------------cast_to_ptr_type-------------------------------
1952 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
1953   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
1954   if( ptr == _ptr ) return this;
1955   return make(_base, ptr, _offset);
1956 }
1957 
1958 //------------------------------get_con----------------------------------------
1959 intptr_t TypePtr::get_con() const {
1960   assert( _ptr == Null, "" );
1961   return _offset;
1962 }
1963 
1964 //------------------------------meet-------------------------------------------
1965 // Compute the MEET of two types.  It returns a new Type object.
1966 const Type *TypePtr::xmeet( const Type *t ) const {
1967   // Perform a fast test for common case; meeting the same types together.
1968   if( this == t ) return this;  // Meeting same type-rep?
1969 
1970   // Current "this->_base" is AnyPtr
1971   switch (t->base()) {          // switch on original type
1972   case Int:                     // Mixing ints & oops happens when javac
1973   case Long:                    // reuses local variables
1974   case FloatTop:
1975   case FloatCon:
1976   case FloatBot:
1977   case DoubleTop:
1978   case DoubleCon:
1979   case DoubleBot:
1980   case NarrowOop:
1981   case Bottom:                  // Ye Olde Default
1982     return Type::BOTTOM;
1983   case Top:
1984     return this;
1985 
1986   case AnyPtr: {                // Meeting to AnyPtrs
1987     const TypePtr *tp = t->is_ptr();
1988     return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
1989   }
1990   case RawPtr:                  // For these, flip the call around to cut down
1991   case OopPtr:
1992   case InstPtr:                 // on the cases I have to handle.
1993   case KlassPtr:
1994   case AryPtr:
1995     return t->xmeet(this);      // Call in reverse direction
1996   default:                      // All else is a mistake
1997     typerr(t);
1998 
1999   }
2000   return this;
2001 }
2002 
2003 //------------------------------meet_offset------------------------------------
2004 int TypePtr::meet_offset( int offset ) const {
2005   // Either is 'TOP' offset?  Return the other offset!
2006   if( _offset == OffsetTop ) return offset;
2007   if( offset == OffsetTop ) return _offset;
2008   // If either is different, return 'BOTTOM' offset
2009   if( _offset != offset ) return OffsetBot;
2010   return _offset;
2011 }
2012 
2013 //------------------------------dual_offset------------------------------------
2014 int TypePtr::dual_offset( ) const {
2015   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2016   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2017   return _offset;               // Map everything else into self
2018 }
2019 
2020 //------------------------------xdual------------------------------------------
2021 // Dual: compute field-by-field dual
2022 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2023   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2024 };
2025 const Type *TypePtr::xdual() const {
2026   return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
2027 }
2028 
2029 //------------------------------xadd_offset------------------------------------
2030 int TypePtr::xadd_offset( intptr_t offset ) const {
2031   // Adding to 'TOP' offset?  Return 'TOP'!
2032   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2033   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2034   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2035   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2036   offset += (intptr_t)_offset;
2037   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2038 
2039   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2040   // It is possible to construct a negative offset during PhaseCCP
2041 
2042   return (int)offset;        // Sum valid offsets
2043 }
2044 
2045 //------------------------------add_offset-------------------------------------
2046 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2047   return make( AnyPtr, _ptr, xadd_offset(offset) );
2048 }
2049 
2050 //------------------------------eq---------------------------------------------
2051 // Structural equality check for Type representations
2052 bool TypePtr::eq( const Type *t ) const {
2053   const TypePtr *a = (const TypePtr*)t;
2054   return _ptr == a->ptr() && _offset == a->offset();
2055 }
2056 
2057 //------------------------------hash-------------------------------------------
2058 // Type-specific hashing function.
2059 int TypePtr::hash(void) const {
2060   return _ptr + _offset;
2061 }
2062 
2063 //------------------------------dump2------------------------------------------
2064 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2065   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2066 };
2067 
2068 #ifndef PRODUCT
2069 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2070   if( _ptr == Null ) st->print("NULL");
2071   else st->print("%s *", ptr_msg[_ptr]);
2072   if( _offset == OffsetTop ) st->print("+top");
2073   else if( _offset == OffsetBot ) st->print("+bot");
2074   else if( _offset ) st->print("+%d", _offset);
2075 }
2076 #endif
2077 
2078 //------------------------------singleton--------------------------------------
2079 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2080 // constants
2081 bool TypePtr::singleton(void) const {
2082   // TopPTR, Null, AnyNull, Constant are all singletons
2083   return (_offset != OffsetBot) && !below_centerline(_ptr);
2084 }
2085 
2086 bool TypePtr::empty(void) const {
2087   return (_offset == OffsetTop) || above_centerline(_ptr);
2088 }
2089 
2090 //=============================================================================
2091 // Convenience common pre-built types.
2092 const TypeRawPtr *TypeRawPtr::BOTTOM;
2093 const TypeRawPtr *TypeRawPtr::NOTNULL;
2094 
2095 //------------------------------make-------------------------------------------
2096 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2097   assert( ptr != Constant, "what is the constant?" );
2098   assert( ptr != Null, "Use TypePtr for NULL" );
2099   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2100 }
2101 
2102 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2103   assert( bits, "Use TypePtr for NULL" );
2104   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2105 }
2106 
2107 //------------------------------cast_to_ptr_type-------------------------------
2108 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2109   assert( ptr != Constant, "what is the constant?" );
2110   assert( ptr != Null, "Use TypePtr for NULL" );
2111   assert( _bits==0, "Why cast a constant address?");
2112   if( ptr == _ptr ) return this;
2113   return make(ptr);
2114 }
2115 
2116 //------------------------------get_con----------------------------------------
2117 intptr_t TypeRawPtr::get_con() const {
2118   assert( _ptr == Null || _ptr == Constant, "" );
2119   return (intptr_t)_bits;
2120 }
2121 
2122 //------------------------------meet-------------------------------------------
2123 // Compute the MEET of two types.  It returns a new Type object.
2124 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2125   // Perform a fast test for common case; meeting the same types together.
2126   if( this == t ) return this;  // Meeting same type-rep?
2127 
2128   // Current "this->_base" is RawPtr
2129   switch( t->base() ) {         // switch on original type
2130   case Bottom:                  // Ye Olde Default
2131     return t;
2132   case Top:
2133     return this;
2134   case AnyPtr:                  // Meeting to AnyPtrs
2135     break;
2136   case RawPtr: {                // might be top, bot, any/not or constant
2137     enum PTR tptr = t->is_ptr()->ptr();
2138     enum PTR ptr = meet_ptr( tptr );
2139     if( ptr == Constant ) {     // Cannot be equal constants, so...
2140       if( tptr == Constant && _ptr != Constant)  return t;
2141       if( _ptr == Constant && tptr != Constant)  return this;
2142       ptr = NotNull;            // Fall down in lattice
2143     }
2144     return make( ptr );
2145   }
2146 
2147   case OopPtr:
2148   case InstPtr:
2149   case KlassPtr:
2150   case AryPtr:
2151     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2152   default:                      // All else is a mistake
2153     typerr(t);
2154   }
2155 
2156   // Found an AnyPtr type vs self-RawPtr type
2157   const TypePtr *tp = t->is_ptr();
2158   switch (tp->ptr()) {
2159   case TypePtr::TopPTR:  return this;
2160   case TypePtr::BotPTR:  return t;
2161   case TypePtr::Null:
2162     if( _ptr == TypePtr::TopPTR ) return t;
2163     return TypeRawPtr::BOTTOM;
2164   case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
2165   case TypePtr::AnyNull:
2166     if( _ptr == TypePtr::Constant) return this;
2167     return make( meet_ptr(TypePtr::AnyNull) );
2168   default: ShouldNotReachHere();
2169   }
2170   return this;
2171 }
2172 
2173 //------------------------------xdual------------------------------------------
2174 // Dual: compute field-by-field dual
2175 const Type *TypeRawPtr::xdual() const {
2176   return new TypeRawPtr( dual_ptr(), _bits );
2177 }
2178 
2179 //------------------------------add_offset-------------------------------------
2180 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2181   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2182   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2183   if( offset == 0 ) return this; // No change
2184   switch (_ptr) {
2185   case TypePtr::TopPTR:
2186   case TypePtr::BotPTR:
2187   case TypePtr::NotNull:
2188     return this;
2189   case TypePtr::Null:
2190   case TypePtr::Constant:
2191     return make( _bits+offset );
2192   default:  ShouldNotReachHere();
2193   }
2194   return NULL;                  // Lint noise
2195 }
2196 
2197 //------------------------------eq---------------------------------------------
2198 // Structural equality check for Type representations
2199 bool TypeRawPtr::eq( const Type *t ) const {
2200   const TypeRawPtr *a = (const TypeRawPtr*)t;
2201   return _bits == a->_bits && TypePtr::eq(t);
2202 }
2203 
2204 //------------------------------hash-------------------------------------------
2205 // Type-specific hashing function.
2206 int TypeRawPtr::hash(void) const {
2207   return (intptr_t)_bits + TypePtr::hash();
2208 }
2209 
2210 //------------------------------dump2------------------------------------------
2211 #ifndef PRODUCT
2212 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2213   if( _ptr == Constant )
2214     st->print(INTPTR_FORMAT, _bits);
2215   else
2216     st->print("rawptr:%s", ptr_msg[_ptr]);
2217 }
2218 #endif
2219 
2220 //=============================================================================
2221 // Convenience common pre-built type.
2222 const TypeOopPtr *TypeOopPtr::BOTTOM;
2223 
2224 //------------------------------TypeOopPtr-------------------------------------
2225 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
2226   : TypePtr(t, ptr, offset),
2227     _const_oop(o), _klass(k),
2228     _klass_is_exact(xk),
2229     _is_ptr_to_narrowoop(false),
2230     _instance_id(instance_id) {
2231 #ifdef _LP64
2232   if (UseCompressedOops && _offset != 0) {
2233     if (klass() == NULL) {
2234       assert(this->isa_aryptr(), "only arrays without klass");
2235       _is_ptr_to_narrowoop = true;
2236     } else if (_offset == oopDesc::klass_offset_in_bytes()) {
2237       _is_ptr_to_narrowoop = true;
2238     } else if (this->isa_aryptr()) {
2239       _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
2240                              _offset != arrayOopDesc::length_offset_in_bytes());
2241     } else if (klass() == ciEnv::current()->Class_klass() &&
2242                (_offset == java_lang_Class::klass_offset_in_bytes() ||
2243                 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2244       // Special hidden fields from the Class.
2245       assert(this->isa_instptr(), "must be an instance ptr.");
2246       _is_ptr_to_narrowoop = true;
2247     } else if (klass()->is_instance_klass()) {
2248       ciInstanceKlass* ik = klass()->as_instance_klass();
2249       ciField* field = NULL;
2250       if (this->isa_klassptr()) {
2251         // Perm objects don't use compressed references, except for
2252         // static fields which are currently compressed.
2253         field = ik->get_field_by_offset(_offset, true);
2254         if (field != NULL) {
2255           BasicType basic_elem_type = field->layout_type();
2256           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2257                                   basic_elem_type == T_ARRAY);
2258         }
2259       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2260         // unsafe access
2261         _is_ptr_to_narrowoop = true;
2262       } else { // exclude unsafe ops
2263         assert(this->isa_instptr(), "must be an instance ptr.");
2264         // Field which contains a compressed oop references.
2265         field = ik->get_field_by_offset(_offset, false);
2266         if (field != NULL) {
2267           BasicType basic_elem_type = field->layout_type();
2268           _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
2269                                   basic_elem_type == T_ARRAY);
2270         } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2271           // Compile::find_alias_type() cast exactness on all types to verify
2272           // that it does not affect alias type.
2273           _is_ptr_to_narrowoop = true;
2274         } else {
2275           // Type for the copy start in LibraryCallKit::inline_native_clone().
2276           assert(!klass_is_exact(), "only non-exact klass");
2277           _is_ptr_to_narrowoop = true;
2278         }
2279       }
2280     }
2281   }
2282 #endif
2283 }
2284 
2285 //------------------------------make-------------------------------------------
2286 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
2287                                    int offset, int instance_id) {
2288   assert(ptr != Constant, "no constant generic pointers");
2289   ciKlass*  k = ciKlassKlass::make();
2290   bool      xk = false;
2291   ciObject* o = NULL;
2292   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id))->hashcons();
2293 }
2294 
2295 
2296 //------------------------------cast_to_ptr_type-------------------------------
2297 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2298   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2299   if( ptr == _ptr ) return this;
2300   return make(ptr, _offset, _instance_id);
2301 }
2302 
2303 //-----------------------------cast_to_instance_id----------------------------
2304 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2305   // There are no instances of a general oop.
2306   // Return self unchanged.
2307   return this;
2308 }
2309 
2310 //-----------------------------cast_to_exactness-------------------------------
2311 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2312   // There is no such thing as an exact general oop.
2313   // Return self unchanged.
2314   return this;
2315 }
2316 
2317 
2318 //------------------------------as_klass_type----------------------------------
2319 // Return the klass type corresponding to this instance or array type.
2320 // It is the type that is loaded from an object of this type.
2321 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2322   ciKlass* k = klass();
2323   bool    xk = klass_is_exact();
2324   if (k == NULL || !k->is_java_klass())
2325     return TypeKlassPtr::OBJECT;
2326   else
2327     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2328 }
2329 
2330 
2331 //------------------------------meet-------------------------------------------
2332 // Compute the MEET of two types.  It returns a new Type object.
2333 const Type *TypeOopPtr::xmeet( const Type *t ) const {
2334   // Perform a fast test for common case; meeting the same types together.
2335   if( this == t ) return this;  // Meeting same type-rep?
2336 
2337   // Current "this->_base" is OopPtr
2338   switch (t->base()) {          // switch on original type
2339 
2340   case Int:                     // Mixing ints & oops happens when javac
2341   case Long:                    // reuses local variables
2342   case FloatTop:
2343   case FloatCon:
2344   case FloatBot:
2345   case DoubleTop:
2346   case DoubleCon:
2347   case DoubleBot:
2348   case NarrowOop:
2349   case Bottom:                  // Ye Olde Default
2350     return Type::BOTTOM;
2351   case Top:
2352     return this;
2353 
2354   default:                      // All else is a mistake
2355     typerr(t);
2356 
2357   case RawPtr:
2358     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2359 
2360   case AnyPtr: {
2361     // Found an AnyPtr type vs self-OopPtr type
2362     const TypePtr *tp = t->is_ptr();
2363     int offset = meet_offset(tp->offset());
2364     PTR ptr = meet_ptr(tp->ptr());
2365     switch (tp->ptr()) {
2366     case Null:
2367       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset);
2368       // else fall through:
2369     case TopPTR:
2370     case AnyNull: {
2371       int instance_id = meet_instance_id(InstanceTop);
2372       return make(ptr, offset, instance_id);
2373     }
2374     case BotPTR:
2375     case NotNull:
2376       return TypePtr::make(AnyPtr, ptr, offset);
2377     default: typerr(t);
2378     }
2379   }
2380 
2381   case OopPtr: {                 // Meeting to other OopPtrs
2382     const TypeOopPtr *tp = t->is_oopptr();
2383     int instance_id = meet_instance_id(tp->instance_id());
2384     return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id );
2385   }
2386 
2387   case InstPtr:                  // For these, flip the call around to cut down
2388   case KlassPtr:                 // on the cases I have to handle.
2389   case AryPtr:
2390     return t->xmeet(this);      // Call in reverse direction
2391 
2392   } // End of switch
2393   return this;                  // Return the double constant
2394 }
2395 
2396 
2397 //------------------------------xdual------------------------------------------
2398 // Dual of a pure heap pointer.  No relevant klass or oop information.
2399 const Type *TypeOopPtr::xdual() const {
2400   assert(klass() == ciKlassKlass::make(), "no klasses here");
2401   assert(const_oop() == NULL,             "no constants here");
2402   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
2403 }
2404 
2405 //--------------------------make_from_klass_common-----------------------------
2406 // Computes the element-type given a klass.
2407 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2408   assert(klass->is_java_klass(), "must be java language klass");
2409   if (klass->is_instance_klass()) {
2410     Compile* C = Compile::current();
2411     Dependencies* deps = C->dependencies();
2412     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2413     // Element is an instance
2414     bool klass_is_exact = false;
2415     if (klass->is_loaded()) {
2416       // Try to set klass_is_exact.
2417       ciInstanceKlass* ik = klass->as_instance_klass();
2418       klass_is_exact = ik->is_final();
2419       if (!klass_is_exact && klass_change
2420           && deps != NULL && UseUniqueSubclasses) {
2421         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2422         if (sub != NULL) {
2423           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2424           klass = ik = sub;
2425           klass_is_exact = sub->is_final();
2426         }
2427       }
2428       if (!klass_is_exact && try_for_exact
2429           && deps != NULL && UseExactTypes) {
2430         if (!ik->is_interface() && !ik->has_subklass()) {
2431           // Add a dependence; if concrete subclass added we need to recompile
2432           deps->assert_leaf_type(ik);
2433           klass_is_exact = true;
2434         }
2435       }
2436     }
2437     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2438   } else if (klass->is_obj_array_klass()) {
2439     // Element is an object array. Recursively call ourself.
2440     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2441     bool xk = etype->klass_is_exact();
2442     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2443     // We used to pass NotNull in here, asserting that the sub-arrays
2444     // are all not-null.  This is not true in generally, as code can
2445     // slam NULLs down in the subarrays.
2446     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2447     return arr;
2448   } else if (klass->is_type_array_klass()) {
2449     // Element is an typeArray
2450     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2451     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2452     // We used to pass NotNull in here, asserting that the array pointer
2453     // is not-null. That was not true in general.
2454     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2455     return arr;
2456   } else {
2457     ShouldNotReachHere();
2458     return NULL;
2459   }
2460 }
2461 
2462 //------------------------------make_from_constant-----------------------------
2463 // Make a java pointer from an oop constant
2464 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
2465   if (o->is_method_data() || o->is_method() || o->is_cpcache()) {
2466     // Treat much like a typeArray of bytes, like below, but fake the type...
2467     const Type* etype = (Type*)get_const_basic_type(T_BYTE);
2468     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2469     ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
2470     assert(o->can_be_constant(), "method data oops should be tenured");
2471     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2472     return arr;
2473   } else {
2474     assert(o->is_java_object(), "must be java language object");
2475     assert(!o->is_null_object(), "null object not yet handled here.");
2476     ciKlass *klass = o->klass();
2477     if (klass->is_instance_klass()) {
2478       // Element is an instance
2479       if (require_constant) {
2480         if (!o->can_be_constant())  return NULL;
2481       } else if (!o->should_be_constant()) {
2482         return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
2483       }
2484       return TypeInstPtr::make(o);
2485     } else if (klass->is_obj_array_klass()) {
2486       // Element is an object array. Recursively call ourself.
2487       const Type *etype =
2488         TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
2489       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2490       // We used to pass NotNull in here, asserting that the sub-arrays
2491       // are all not-null.  This is not true in generally, as code can
2492       // slam NULLs down in the subarrays.
2493       if (require_constant) {
2494         if (!o->can_be_constant())  return NULL;
2495       } else if (!o->should_be_constant()) {
2496         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2497       }
2498       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2499       return arr;
2500     } else if (klass->is_type_array_klass()) {
2501       // Element is an typeArray
2502       const Type* etype =
2503         (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
2504       const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
2505       // We used to pass NotNull in here, asserting that the array pointer
2506       // is not-null. That was not true in general.
2507       if (require_constant) {
2508         if (!o->can_be_constant())  return NULL;
2509       } else if (!o->should_be_constant()) {
2510         return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
2511       }
2512       const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
2513       return arr;
2514     }
2515   }
2516 
2517   ShouldNotReachHere();
2518   return NULL;
2519 }
2520 
2521 //------------------------------get_con----------------------------------------
2522 intptr_t TypeOopPtr::get_con() const {
2523   assert( _ptr == Null || _ptr == Constant, "" );
2524   assert( _offset >= 0, "" );
2525 
2526   if (_offset != 0) {
2527     // After being ported to the compiler interface, the compiler no longer
2528     // directly manipulates the addresses of oops.  Rather, it only has a pointer
2529     // to a handle at compile time.  This handle is embedded in the generated
2530     // code and dereferenced at the time the nmethod is made.  Until that time,
2531     // it is not reasonable to do arithmetic with the addresses of oops (we don't
2532     // have access to the addresses!).  This does not seem to currently happen,
2533     // but this assertion here is to help prevent its occurence.
2534     tty->print_cr("Found oop constant with non-zero offset");
2535     ShouldNotReachHere();
2536   }
2537 
2538   return (intptr_t)const_oop()->constant_encoding();
2539 }
2540 
2541 
2542 //-----------------------------filter------------------------------------------
2543 // Do not allow interface-vs.-noninterface joins to collapse to top.
2544 const Type *TypeOopPtr::filter( const Type *kills ) const {
2545 
2546   const Type* ft = join(kills);
2547   const TypeInstPtr* ftip = ft->isa_instptr();
2548   const TypeInstPtr* ktip = kills->isa_instptr();
2549   const TypeKlassPtr* ftkp = ft->isa_klassptr();
2550   const TypeKlassPtr* ktkp = kills->isa_klassptr();
2551 
2552   if (ft->empty()) {
2553     // Check for evil case of 'this' being a class and 'kills' expecting an
2554     // interface.  This can happen because the bytecodes do not contain
2555     // enough type info to distinguish a Java-level interface variable
2556     // from a Java-level object variable.  If we meet 2 classes which
2557     // both implement interface I, but their meet is at 'j/l/O' which
2558     // doesn't implement I, we have no way to tell if the result should
2559     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
2560     // into a Phi which "knows" it's an Interface type we'll have to
2561     // uplift the type.
2562     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
2563       return kills;             // Uplift to interface
2564     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
2565       return kills;             // Uplift to interface
2566 
2567     return Type::TOP;           // Canonical empty value
2568   }
2569 
2570   // If we have an interface-typed Phi or cast and we narrow to a class type,
2571   // the join should report back the class.  However, if we have a J/L/Object
2572   // class-typed Phi and an interface flows in, it's possible that the meet &
2573   // join report an interface back out.  This isn't possible but happens
2574   // because the type system doesn't interact well with interfaces.
2575   if (ftip != NULL && ktip != NULL &&
2576       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
2577       ktip->is_loaded() && !ktip->klass()->is_interface()) {
2578     // Happens in a CTW of rt.jar, 320-341, no extra flags
2579     assert(!ftip->klass_is_exact(), "interface could not be exact");
2580     return ktip->cast_to_ptr_type(ftip->ptr());
2581   }
2582   // Interface klass type could be exact in opposite to interface type,
2583   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
2584   if (ftkp != NULL && ktkp != NULL &&
2585       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
2586       !ftkp->klass_is_exact() && // Keep exact interface klass
2587       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
2588     return ktkp->cast_to_ptr_type(ftkp->ptr());
2589   }
2590 
2591   return ft;
2592 }
2593 
2594 //------------------------------eq---------------------------------------------
2595 // Structural equality check for Type representations
2596 bool TypeOopPtr::eq( const Type *t ) const {
2597   const TypeOopPtr *a = (const TypeOopPtr*)t;
2598   if (_klass_is_exact != a->_klass_is_exact ||
2599       _instance_id != a->_instance_id)  return false;
2600   ciObject* one = const_oop();
2601   ciObject* two = a->const_oop();
2602   if (one == NULL || two == NULL) {
2603     return (one == two) && TypePtr::eq(t);
2604   } else {
2605     return one->equals(two) && TypePtr::eq(t);
2606   }
2607 }
2608 
2609 //------------------------------hash-------------------------------------------
2610 // Type-specific hashing function.
2611 int TypeOopPtr::hash(void) const {
2612   return
2613     (const_oop() ? const_oop()->hash() : 0) +
2614     _klass_is_exact +
2615     _instance_id +
2616     TypePtr::hash();
2617 }
2618 
2619 //------------------------------dump2------------------------------------------
2620 #ifndef PRODUCT
2621 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2622   st->print("oopptr:%s", ptr_msg[_ptr]);
2623   if( _klass_is_exact ) st->print(":exact");
2624   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
2625   switch( _offset ) {
2626   case OffsetTop: st->print("+top"); break;
2627   case OffsetBot: st->print("+any"); break;
2628   case         0: break;
2629   default:        st->print("+%d",_offset); break;
2630   }
2631   if (_instance_id == InstanceTop)
2632     st->print(",iid=top");
2633   else if (_instance_id != InstanceBot)
2634     st->print(",iid=%d",_instance_id);
2635 }
2636 #endif
2637 
2638 //------------------------------singleton--------------------------------------
2639 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2640 // constants
2641 bool TypeOopPtr::singleton(void) const {
2642   // detune optimizer to not generate constant oop + constant offset as a constant!
2643   // TopPTR, Null, AnyNull, Constant are all singletons
2644   return (_offset == 0) && !below_centerline(_ptr);
2645 }
2646 
2647 //------------------------------add_offset-------------------------------------
2648 const TypePtr *TypeOopPtr::add_offset( intptr_t offset ) const {
2649   return make( _ptr, xadd_offset(offset), _instance_id);
2650 }
2651 
2652 //------------------------------meet_instance_id--------------------------------
2653 int TypeOopPtr::meet_instance_id( int instance_id ) const {
2654   // Either is 'TOP' instance?  Return the other instance!
2655   if( _instance_id == InstanceTop ) return  instance_id;
2656   if(  instance_id == InstanceTop ) return _instance_id;
2657   // If either is different, return 'BOTTOM' instance
2658   if( _instance_id != instance_id ) return InstanceBot;
2659   return _instance_id;
2660 }
2661 
2662 //------------------------------dual_instance_id--------------------------------
2663 int TypeOopPtr::dual_instance_id( ) const {
2664   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
2665   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
2666   return _instance_id;              // Map everything else into self
2667 }
2668 
2669 
2670 //=============================================================================
2671 // Convenience common pre-built types.
2672 const TypeInstPtr *TypeInstPtr::NOTNULL;
2673 const TypeInstPtr *TypeInstPtr::BOTTOM;
2674 const TypeInstPtr *TypeInstPtr::MIRROR;
2675 const TypeInstPtr *TypeInstPtr::MARK;
2676 const TypeInstPtr *TypeInstPtr::KLASS;
2677 
2678 //------------------------------TypeInstPtr-------------------------------------
2679 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
2680  : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
2681    assert(k != NULL &&
2682           (k->is_loaded() || o == NULL),
2683           "cannot have constants with non-loaded klass");
2684 };
2685 
2686 //------------------------------make-------------------------------------------
2687 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
2688                                      ciKlass* k,
2689                                      bool xk,
2690                                      ciObject* o,
2691                                      int offset,
2692                                      int instance_id) {
2693   assert( !k->is_loaded() || k->is_instance_klass() ||
2694           k->is_method_klass(), "Must be for instance or method");
2695   // Either const_oop() is NULL or else ptr is Constant
2696   assert( (!o && ptr != Constant) || (o && ptr == Constant),
2697           "constant pointers must have a value supplied" );
2698   // Ptr is never Null
2699   assert( ptr != Null, "NULL pointers are not typed" );
2700 
2701   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
2702   if (!UseExactTypes)  xk = false;
2703   if (ptr == Constant) {
2704     // Note:  This case includes meta-object constants, such as methods.
2705     xk = true;
2706   } else if (k->is_loaded()) {
2707     ciInstanceKlass* ik = k->as_instance_klass();
2708     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
2709     if (xk && ik->is_interface())  xk = false;  // no exact interface
2710   }
2711 
2712   // Now hash this baby
2713   TypeInstPtr *result =
2714     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
2715 
2716   return result;
2717 }
2718 
2719 
2720 //------------------------------cast_to_ptr_type-------------------------------
2721 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
2722   if( ptr == _ptr ) return this;
2723   // Reconstruct _sig info here since not a problem with later lazy
2724   // construction, _sig will show up on demand.
2725   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
2726 }
2727 
2728 
2729 //-----------------------------cast_to_exactness-------------------------------
2730 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
2731   if( klass_is_exact == _klass_is_exact ) return this;
2732   if (!UseExactTypes)  return this;
2733   if (!_klass->is_loaded())  return this;
2734   ciInstanceKlass* ik = _klass->as_instance_klass();
2735   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
2736   if( ik->is_interface() )              return this;  // cannot set xk
2737   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
2738 }
2739 
2740 //-----------------------------cast_to_instance_id----------------------------
2741 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
2742   if( instance_id == _instance_id ) return this;
2743   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
2744 }
2745 
2746 //------------------------------xmeet_unloaded---------------------------------
2747 // Compute the MEET of two InstPtrs when at least one is unloaded.
2748 // Assume classes are different since called after check for same name/class-loader
2749 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
2750     int off = meet_offset(tinst->offset());
2751     PTR ptr = meet_ptr(tinst->ptr());
2752     int instance_id = meet_instance_id(tinst->instance_id());
2753 
2754     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
2755     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
2756     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
2757       //
2758       // Meet unloaded class with java/lang/Object
2759       //
2760       // Meet
2761       //          |                     Unloaded Class
2762       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
2763       //  ===================================================================
2764       //   TOP    | ..........................Unloaded......................|
2765       //  AnyNull |  U-AN    |................Unloaded......................|
2766       // Constant | ... O-NN .................................. |   O-BOT   |
2767       //  NotNull | ... O-NN .................................. |   O-BOT   |
2768       //  BOTTOM  | ........................Object-BOTTOM ..................|
2769       //
2770       assert(loaded->ptr() != TypePtr::Null, "insanity check");
2771       //
2772       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
2773       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass(), false, NULL, off, instance_id ); }
2774       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
2775       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
2776         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
2777         else                                      { return TypeInstPtr::NOTNULL; }
2778       }
2779       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
2780 
2781       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
2782     }
2783 
2784     // Both are unloaded, not the same class, not Object
2785     // Or meet unloaded with a different loaded class, not java/lang/Object
2786     if( ptr != TypePtr::BotPTR ) {
2787       return TypeInstPtr::NOTNULL;
2788     }
2789     return TypeInstPtr::BOTTOM;
2790 }
2791 
2792 
2793 //------------------------------meet-------------------------------------------
2794 // Compute the MEET of two types.  It returns a new Type object.
2795 const Type *TypeInstPtr::xmeet( const Type *t ) const {
2796   // Perform a fast test for common case; meeting the same types together.
2797   if( this == t ) return this;  // Meeting same type-rep?
2798 
2799   // Current "this->_base" is Pointer
2800   switch (t->base()) {          // switch on original type
2801 
2802   case Int:                     // Mixing ints & oops happens when javac
2803   case Long:                    // reuses local variables
2804   case FloatTop:
2805   case FloatCon:
2806   case FloatBot:
2807   case DoubleTop:
2808   case DoubleCon:
2809   case DoubleBot:
2810   case NarrowOop:
2811   case Bottom:                  // Ye Olde Default
2812     return Type::BOTTOM;
2813   case Top:
2814     return this;
2815 
2816   default:                      // All else is a mistake
2817     typerr(t);
2818 
2819   case RawPtr: return TypePtr::BOTTOM;
2820 
2821   case AryPtr: {                // All arrays inherit from Object class
2822     const TypeAryPtr *tp = t->is_aryptr();
2823     int offset = meet_offset(tp->offset());
2824     PTR ptr = meet_ptr(tp->ptr());
2825     int instance_id = meet_instance_id(tp->instance_id());
2826     switch (ptr) {
2827     case TopPTR:
2828     case AnyNull:                // Fall 'down' to dual of object klass
2829       if (klass()->equals(ciEnv::current()->Object_klass())) {
2830         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2831       } else {
2832         // cannot subclass, so the meet has to fall badly below the centerline
2833         ptr = NotNull;
2834         instance_id = InstanceBot;
2835         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
2836       }
2837     case Constant:
2838     case NotNull:
2839     case BotPTR:                // Fall down to object klass
2840       // LCA is object_klass, but if we subclass from the top we can do better
2841       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
2842         // If 'this' (InstPtr) is above the centerline and it is Object class
2843         // then we can subclass in the Java class hierarchy.
2844         if (klass()->equals(ciEnv::current()->Object_klass())) {
2845           // that is, tp's array type is a subtype of my klass
2846           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
2847                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
2848         }
2849       }
2850       // The other case cannot happen, since I cannot be a subtype of an array.
2851       // The meet falls down to Object class below centerline.
2852       if( ptr == Constant )
2853          ptr = NotNull;
2854       instance_id = InstanceBot;
2855       return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
2856     default: typerr(t);
2857     }
2858   }
2859 
2860   case OopPtr: {                // Meeting to OopPtrs
2861     // Found a OopPtr type vs self-InstPtr type
2862     const TypeOopPtr *tp = t->is_oopptr();
2863     int offset = meet_offset(tp->offset());
2864     PTR ptr = meet_ptr(tp->ptr());
2865     switch (tp->ptr()) {
2866     case TopPTR:
2867     case AnyNull: {
2868       int instance_id = meet_instance_id(InstanceTop);
2869       return make(ptr, klass(), klass_is_exact(),
2870                   (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2871     }
2872     case NotNull:
2873     case BotPTR: {
2874       int instance_id = meet_instance_id(tp->instance_id());
2875       return TypeOopPtr::make(ptr, offset, instance_id);
2876     }
2877     default: typerr(t);
2878     }
2879   }
2880 
2881   case AnyPtr: {                // Meeting to AnyPtrs
2882     // Found an AnyPtr type vs self-InstPtr type
2883     const TypePtr *tp = t->is_ptr();
2884     int offset = meet_offset(tp->offset());
2885     PTR ptr = meet_ptr(tp->ptr());
2886     switch (tp->ptr()) {
2887     case Null:
2888       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
2889       // else fall through to AnyNull
2890     case TopPTR:
2891     case AnyNull: {
2892       int instance_id = meet_instance_id(InstanceTop);
2893       return make( ptr, klass(), klass_is_exact(),
2894                    (ptr == Constant ? const_oop() : NULL), offset, instance_id);
2895     }
2896     case NotNull:
2897     case BotPTR:
2898       return TypePtr::make( AnyPtr, ptr, offset );
2899     default: typerr(t);
2900     }
2901   }
2902 
2903   /*
2904                  A-top         }
2905                /   |   \       }  Tops
2906            B-top A-any C-top   }
2907               | /  |  \ |      }  Any-nulls
2908            B-any   |   C-any   }
2909               |    |    |
2910            B-con A-con C-con   } constants; not comparable across classes
2911               |    |    |
2912            B-not   |   C-not   }
2913               | \  |  / |      }  not-nulls
2914            B-bot A-not C-bot   }
2915                \   |   /       }  Bottoms
2916                  A-bot         }
2917   */
2918 
2919   case InstPtr: {                // Meeting 2 Oops?
2920     // Found an InstPtr sub-type vs self-InstPtr type
2921     const TypeInstPtr *tinst = t->is_instptr();
2922     int off = meet_offset( tinst->offset() );
2923     PTR ptr = meet_ptr( tinst->ptr() );
2924     int instance_id = meet_instance_id(tinst->instance_id());
2925 
2926     // Check for easy case; klasses are equal (and perhaps not loaded!)
2927     // If we have constants, then we created oops so classes are loaded
2928     // and we can handle the constants further down.  This case handles
2929     // both-not-loaded or both-loaded classes
2930     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
2931       return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
2932     }
2933 
2934     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
2935     ciKlass* tinst_klass = tinst->klass();
2936     ciKlass* this_klass  = this->klass();
2937     bool tinst_xk = tinst->klass_is_exact();
2938     bool this_xk  = this->klass_is_exact();
2939     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
2940       // One of these classes has not been loaded
2941       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
2942 #ifndef PRODUCT
2943       if( PrintOpto && Verbose ) {
2944         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
2945         tty->print("  this == "); this->dump(); tty->cr();
2946         tty->print(" tinst == "); tinst->dump(); tty->cr();
2947       }
2948 #endif
2949       return unloaded_meet;
2950     }
2951 
2952     // Handle mixing oops and interfaces first.
2953     if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
2954       ciKlass *tmp = tinst_klass; // Swap interface around
2955       tinst_klass = this_klass;
2956       this_klass = tmp;
2957       bool tmp2 = tinst_xk;
2958       tinst_xk = this_xk;
2959       this_xk = tmp2;
2960     }
2961     if (tinst_klass->is_interface() &&
2962         !(this_klass->is_interface() ||
2963           // Treat java/lang/Object as an honorary interface,
2964           // because we need a bottom for the interface hierarchy.
2965           this_klass == ciEnv::current()->Object_klass())) {
2966       // Oop meets interface!
2967 
2968       // See if the oop subtypes (implements) interface.
2969       ciKlass *k;
2970       bool xk;
2971       if( this_klass->is_subtype_of( tinst_klass ) ) {
2972         // Oop indeed subtypes.  Now keep oop or interface depending
2973         // on whether we are both above the centerline or either is
2974         // below the centerline.  If we are on the centerline
2975         // (e.g., Constant vs. AnyNull interface), use the constant.
2976         k  = below_centerline(ptr) ? tinst_klass : this_klass;
2977         // If we are keeping this_klass, keep its exactness too.
2978         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
2979       } else {                  // Does not implement, fall to Object
2980         // Oop does not implement interface, so mixing falls to Object
2981         // just like the verifier does (if both are above the
2982         // centerline fall to interface)
2983         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
2984         xk = above_centerline(ptr) ? tinst_xk : false;
2985         // Watch out for Constant vs. AnyNull interface.
2986         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
2987         instance_id = InstanceBot;
2988       }
2989       ciObject* o = NULL;  // the Constant value, if any
2990       if (ptr == Constant) {
2991         // Find out which constant.
2992         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
2993       }
2994       return make( ptr, k, xk, o, off, instance_id );
2995     }
2996 
2997     // Either oop vs oop or interface vs interface or interface vs Object
2998 
2999     // !!! Here's how the symmetry requirement breaks down into invariants:
3000     // If we split one up & one down AND they subtype, take the down man.
3001     // If we split one up & one down AND they do NOT subtype, "fall hard".
3002     // If both are up and they subtype, take the subtype class.
3003     // If both are up and they do NOT subtype, "fall hard".
3004     // If both are down and they subtype, take the supertype class.
3005     // If both are down and they do NOT subtype, "fall hard".
3006     // Constants treated as down.
3007 
3008     // Now, reorder the above list; observe that both-down+subtype is also
3009     // "fall hard"; "fall hard" becomes the default case:
3010     // If we split one up & one down AND they subtype, take the down man.
3011     // If both are up and they subtype, take the subtype class.
3012 
3013     // If both are down and they subtype, "fall hard".
3014     // If both are down and they do NOT subtype, "fall hard".
3015     // If both are up and they do NOT subtype, "fall hard".
3016     // If we split one up & one down AND they do NOT subtype, "fall hard".
3017 
3018     // If a proper subtype is exact, and we return it, we return it exactly.
3019     // If a proper supertype is exact, there can be no subtyping relationship!
3020     // If both types are equal to the subtype, exactness is and-ed below the
3021     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3022 
3023     // Check for subtyping:
3024     ciKlass *subtype = NULL;
3025     bool subtype_exact = false;
3026     if( tinst_klass->equals(this_klass) ) {
3027       subtype = this_klass;
3028       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3029     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3030       subtype = this_klass;     // Pick subtyping class
3031       subtype_exact = this_xk;
3032     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3033       subtype = tinst_klass;    // Pick subtyping class
3034       subtype_exact = tinst_xk;
3035     }
3036 
3037     if( subtype ) {
3038       if( above_centerline(ptr) ) { // both are up?
3039         this_klass = tinst_klass = subtype;
3040         this_xk = tinst_xk = subtype_exact;
3041       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3042         this_klass = tinst_klass; // tinst is down; keep down man
3043         this_xk = tinst_xk;
3044       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3045         tinst_klass = this_klass; // this is down; keep down man
3046         tinst_xk = this_xk;
3047       } else {
3048         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3049       }
3050     }
3051 
3052     // Check for classes now being equal
3053     if (tinst_klass->equals(this_klass)) {
3054       // If the klasses are equal, the constants may still differ.  Fall to
3055       // NotNull if they do (neither constant is NULL; that is a special case
3056       // handled elsewhere).
3057       ciObject* o = NULL;             // Assume not constant when done
3058       ciObject* this_oop  = const_oop();
3059       ciObject* tinst_oop = tinst->const_oop();
3060       if( ptr == Constant ) {
3061         if (this_oop != NULL && tinst_oop != NULL &&
3062             this_oop->equals(tinst_oop) )
3063           o = this_oop;
3064         else if (above_centerline(this ->_ptr))
3065           o = tinst_oop;
3066         else if (above_centerline(tinst ->_ptr))
3067           o = this_oop;
3068         else
3069           ptr = NotNull;
3070       }
3071       return make( ptr, this_klass, this_xk, o, off, instance_id );
3072     } // Else classes are not equal
3073 
3074     // Since klasses are different, we require a LCA in the Java
3075     // class hierarchy - which means we have to fall to at least NotNull.
3076     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3077       ptr = NotNull;
3078     instance_id = InstanceBot;
3079 
3080     // Now we find the LCA of Java classes
3081     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3082     return make( ptr, k, false, NULL, off, instance_id );
3083   } // End of case InstPtr
3084 
3085   case KlassPtr:
3086     return TypeInstPtr::BOTTOM;
3087 
3088   } // End of switch
3089   return this;                  // Return the double constant
3090 }
3091 
3092 
3093 //------------------------java_mirror_type--------------------------------------
3094 ciType* TypeInstPtr::java_mirror_type() const {
3095   // must be a singleton type
3096   if( const_oop() == NULL )  return NULL;
3097 
3098   // must be of type java.lang.Class
3099   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3100 
3101   return const_oop()->as_instance()->java_mirror_type();
3102 }
3103 
3104 
3105 //------------------------------xdual------------------------------------------
3106 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3107 // inheritance mechanism.
3108 const Type *TypeInstPtr::xdual() const {
3109   return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id()  );
3110 }
3111 
3112 //------------------------------eq---------------------------------------------
3113 // Structural equality check for Type representations
3114 bool TypeInstPtr::eq( const Type *t ) const {
3115   const TypeInstPtr *p = t->is_instptr();
3116   return
3117     klass()->equals(p->klass()) &&
3118     TypeOopPtr::eq(p);          // Check sub-type stuff
3119 }
3120 
3121 //------------------------------hash-------------------------------------------
3122 // Type-specific hashing function.
3123 int TypeInstPtr::hash(void) const {
3124   int hash = klass()->hash() + TypeOopPtr::hash();
3125   return hash;
3126 }
3127 
3128 //------------------------------dump2------------------------------------------
3129 // Dump oop Type
3130 #ifndef PRODUCT
3131 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3132   // Print the name of the klass.
3133   klass()->print_name_on(st);
3134 
3135   switch( _ptr ) {
3136   case Constant:
3137     // TO DO: Make CI print the hex address of the underlying oop.
3138     if (WizardMode || Verbose) {
3139       const_oop()->print_oop(st);
3140     }
3141   case BotPTR:
3142     if (!WizardMode && !Verbose) {
3143       if( _klass_is_exact ) st->print(":exact");
3144       break;
3145     }
3146   case TopPTR:
3147   case AnyNull:
3148   case NotNull:
3149     st->print(":%s", ptr_msg[_ptr]);
3150     if( _klass_is_exact ) st->print(":exact");
3151     break;
3152   }
3153 
3154   if( _offset ) {               // Dump offset, if any
3155     if( _offset == OffsetBot )      st->print("+any");
3156     else if( _offset == OffsetTop ) st->print("+unknown");
3157     else st->print("+%d", _offset);
3158   }
3159 
3160   st->print(" *");
3161   if (_instance_id == InstanceTop)
3162     st->print(",iid=top");
3163   else if (_instance_id != InstanceBot)
3164     st->print(",iid=%d",_instance_id);
3165 }
3166 #endif
3167 
3168 //------------------------------add_offset-------------------------------------
3169 const TypePtr *TypeInstPtr::add_offset( intptr_t offset ) const {
3170   return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
3171 }
3172 
3173 //=============================================================================
3174 // Convenience common pre-built types.
3175 const TypeAryPtr *TypeAryPtr::RANGE;
3176 const TypeAryPtr *TypeAryPtr::OOPS;
3177 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3178 const TypeAryPtr *TypeAryPtr::BYTES;
3179 const TypeAryPtr *TypeAryPtr::SHORTS;
3180 const TypeAryPtr *TypeAryPtr::CHARS;
3181 const TypeAryPtr *TypeAryPtr::INTS;
3182 const TypeAryPtr *TypeAryPtr::LONGS;
3183 const TypeAryPtr *TypeAryPtr::FLOATS;
3184 const TypeAryPtr *TypeAryPtr::DOUBLES;
3185 
3186 //------------------------------make-------------------------------------------
3187 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3188   assert(!(k == NULL && ary->_elem->isa_int()),
3189          "integral arrays must be pre-equipped with a class");
3190   if (!xk)  xk = ary->ary_must_be_exact();
3191   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3192   if (!UseExactTypes)  xk = (ptr == Constant);
3193   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
3194 }
3195 
3196 //------------------------------make-------------------------------------------
3197 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
3198   assert(!(k == NULL && ary->_elem->isa_int()),
3199          "integral arrays must be pre-equipped with a class");
3200   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3201   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3202   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3203   if (!UseExactTypes)  xk = (ptr == Constant);
3204   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
3205 }
3206 
3207 //------------------------------cast_to_ptr_type-------------------------------
3208 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3209   if( ptr == _ptr ) return this;
3210   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
3211 }
3212 
3213 
3214 //-----------------------------cast_to_exactness-------------------------------
3215 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3216   if( klass_is_exact == _klass_is_exact ) return this;
3217   if (!UseExactTypes)  return this;
3218   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3219   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
3220 }
3221 
3222 //-----------------------------cast_to_instance_id----------------------------
3223 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3224   if( instance_id == _instance_id ) return this;
3225   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
3226 }
3227 
3228 //-----------------------------narrow_size_type-------------------------------
3229 // Local cache for arrayOopDesc::max_array_length(etype),
3230 // which is kind of slow (and cached elsewhere by other users).
3231 static jint max_array_length_cache[T_CONFLICT+1];
3232 static jint max_array_length(BasicType etype) {
3233   jint& cache = max_array_length_cache[etype];
3234   jint res = cache;
3235   if (res == 0) {
3236     switch (etype) {
3237     case T_NARROWOOP:
3238       etype = T_OBJECT;
3239       break;
3240     case T_CONFLICT:
3241     case T_ILLEGAL:
3242     case T_VOID:
3243       etype = T_BYTE;           // will produce conservatively high value
3244     }
3245     cache = res = arrayOopDesc::max_array_length(etype);
3246   }
3247   return res;
3248 }
3249 
3250 // Narrow the given size type to the index range for the given array base type.
3251 // Return NULL if the resulting int type becomes empty.
3252 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3253   jint hi = size->_hi;
3254   jint lo = size->_lo;
3255   jint min_lo = 0;
3256   jint max_hi = max_array_length(elem()->basic_type());
3257   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3258   bool chg = false;
3259   if (lo < min_lo) { lo = min_lo; chg = true; }
3260   if (hi > max_hi) { hi = max_hi; chg = true; }
3261   // Negative length arrays will produce weird intermediate dead fast-path code
3262   if (lo > hi)
3263     return TypeInt::ZERO;
3264   if (!chg)
3265     return size;
3266   return TypeInt::make(lo, hi, Type::WidenMin);
3267 }
3268 
3269 //-------------------------------cast_to_size----------------------------------
3270 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3271   assert(new_size != NULL, "");
3272   new_size = narrow_size_type(new_size);
3273   if (new_size == size())  return this;
3274   const TypeAry* new_ary = TypeAry::make(elem(), new_size);
3275   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
3276 }
3277 
3278 
3279 //------------------------------eq---------------------------------------------
3280 // Structural equality check for Type representations
3281 bool TypeAryPtr::eq( const Type *t ) const {
3282   const TypeAryPtr *p = t->is_aryptr();
3283   return
3284     _ary == p->_ary &&  // Check array
3285     TypeOopPtr::eq(p);  // Check sub-parts
3286 }
3287 
3288 //------------------------------hash-------------------------------------------
3289 // Type-specific hashing function.
3290 int TypeAryPtr::hash(void) const {
3291   return (intptr_t)_ary + TypeOopPtr::hash();
3292 }
3293 
3294 //------------------------------meet-------------------------------------------
3295 // Compute the MEET of two types.  It returns a new Type object.
3296 const Type *TypeAryPtr::xmeet( const Type *t ) const {
3297   // Perform a fast test for common case; meeting the same types together.
3298   if( this == t ) return this;  // Meeting same type-rep?
3299   // Current "this->_base" is Pointer
3300   switch (t->base()) {          // switch on original type
3301 
3302   // Mixing ints & oops happens when javac reuses local variables
3303   case Int:
3304   case Long:
3305   case FloatTop:
3306   case FloatCon:
3307   case FloatBot:
3308   case DoubleTop:
3309   case DoubleCon:
3310   case DoubleBot:
3311   case NarrowOop:
3312   case Bottom:                  // Ye Olde Default
3313     return Type::BOTTOM;
3314   case Top:
3315     return this;
3316 
3317   default:                      // All else is a mistake
3318     typerr(t);
3319 
3320   case OopPtr: {                // Meeting to OopPtrs
3321     // Found a OopPtr type vs self-AryPtr type
3322     const TypeOopPtr *tp = t->is_oopptr();
3323     int offset = meet_offset(tp->offset());
3324     PTR ptr = meet_ptr(tp->ptr());
3325     switch (tp->ptr()) {
3326     case TopPTR:
3327     case AnyNull: {
3328       int instance_id = meet_instance_id(InstanceTop);
3329       return make(ptr, (ptr == Constant ? const_oop() : NULL),
3330                   _ary, _klass, _klass_is_exact, offset, instance_id);
3331     }
3332     case BotPTR:
3333     case NotNull: {
3334       int instance_id = meet_instance_id(tp->instance_id());
3335       return TypeOopPtr::make(ptr, offset, instance_id);
3336     }
3337     default: ShouldNotReachHere();
3338     }
3339   }
3340 
3341   case AnyPtr: {                // Meeting two AnyPtrs
3342     // Found an AnyPtr type vs self-AryPtr type
3343     const TypePtr *tp = t->is_ptr();
3344     int offset = meet_offset(tp->offset());
3345     PTR ptr = meet_ptr(tp->ptr());
3346     switch (tp->ptr()) {
3347     case TopPTR:
3348       return this;
3349     case BotPTR:
3350     case NotNull:
3351       return TypePtr::make(AnyPtr, ptr, offset);
3352     case Null:
3353       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
3354       // else fall through to AnyNull
3355     case AnyNull: {
3356       int instance_id = meet_instance_id(InstanceTop);
3357       return make( ptr, (ptr == Constant ? const_oop() : NULL),
3358                   _ary, _klass, _klass_is_exact, offset, instance_id);
3359     }
3360     default: ShouldNotReachHere();
3361     }
3362   }
3363 
3364   case RawPtr: return TypePtr::BOTTOM;
3365 
3366   case AryPtr: {                // Meeting 2 references?
3367     const TypeAryPtr *tap = t->is_aryptr();
3368     int off = meet_offset(tap->offset());
3369     const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
3370     PTR ptr = meet_ptr(tap->ptr());
3371     int instance_id = meet_instance_id(tap->instance_id());
3372     ciKlass* lazy_klass = NULL;
3373     if (tary->_elem->isa_int()) {
3374       // Integral array element types have irrelevant lattice relations.
3375       // It is the klass that determines array layout, not the element type.
3376       if (_klass == NULL)
3377         lazy_klass = tap->_klass;
3378       else if (tap->_klass == NULL || tap->_klass == _klass) {
3379         lazy_klass = _klass;
3380       } else {
3381         // Something like byte[int+] meets char[int+].
3382         // This must fall to bottom, not (int[-128..65535])[int+].
3383         instance_id = InstanceBot;
3384         tary = TypeAry::make(Type::BOTTOM, tary->_size);
3385       }
3386     }
3387     bool xk = false;
3388     switch (tap->ptr()) {
3389     case AnyNull:
3390     case TopPTR:
3391       // Compute new klass on demand, do not use tap->_klass
3392       xk = (tap->_klass_is_exact | this->_klass_is_exact);
3393       return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
3394     case Constant: {
3395       ciObject* o = const_oop();
3396       if( _ptr == Constant ) {
3397         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
3398           xk = (klass() == tap->klass());
3399           ptr = NotNull;
3400           o = NULL;
3401           instance_id = InstanceBot;
3402         } else {
3403           xk = true;
3404         }
3405       } else if( above_centerline(_ptr) ) {
3406         o = tap->const_oop();
3407         xk = true;
3408       } else {
3409         // Only precise for identical arrays
3410         xk = this->_klass_is_exact && (klass() == tap->klass());
3411       }
3412       return TypeAryPtr::make( ptr, o, tary, lazy_klass, xk, off, instance_id );
3413     }
3414     case NotNull:
3415     case BotPTR:
3416       // Compute new klass on demand, do not use tap->_klass
3417       if (above_centerline(this->_ptr))
3418             xk = tap->_klass_is_exact;
3419       else if (above_centerline(tap->_ptr))
3420             xk = this->_klass_is_exact;
3421       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
3422               (klass() == tap->klass()); // Only precise for identical arrays
3423       return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
3424     default: ShouldNotReachHere();
3425     }
3426   }
3427 
3428   // All arrays inherit from Object class
3429   case InstPtr: {
3430     const TypeInstPtr *tp = t->is_instptr();
3431     int offset = meet_offset(tp->offset());
3432     PTR ptr = meet_ptr(tp->ptr());
3433     int instance_id = meet_instance_id(tp->instance_id());
3434     switch (ptr) {
3435     case TopPTR:
3436     case AnyNull:                // Fall 'down' to dual of object klass
3437       if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3438         return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
3439       } else {
3440         // cannot subclass, so the meet has to fall badly below the centerline
3441         ptr = NotNull;
3442         instance_id = InstanceBot;
3443         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3444       }
3445     case Constant:
3446     case NotNull:
3447     case BotPTR:                // Fall down to object klass
3448       // LCA is object_klass, but if we subclass from the top we can do better
3449       if (above_centerline(tp->ptr())) {
3450         // If 'tp'  is above the centerline and it is Object class
3451         // then we can subclass in the Java class hierarchy.
3452         if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
3453           // that is, my array type is a subtype of 'tp' klass
3454           return make( ptr, (ptr == Constant ? const_oop() : NULL),
3455                        _ary, _klass, _klass_is_exact, offset, instance_id );
3456         }
3457       }
3458       // The other case cannot happen, since t cannot be a subtype of an array.
3459       // The meet falls down to Object class below centerline.
3460       if( ptr == Constant )
3461          ptr = NotNull;
3462       instance_id = InstanceBot;
3463       return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
3464     default: typerr(t);
3465     }
3466   }
3467 
3468   case KlassPtr:
3469     return TypeInstPtr::BOTTOM;
3470 
3471   }
3472   return this;                  // Lint noise
3473 }
3474 
3475 //------------------------------xdual------------------------------------------
3476 // Dual: compute field-by-field dual
3477 const Type *TypeAryPtr::xdual() const {
3478   return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
3479 }
3480 
3481 //----------------------interface_vs_oop---------------------------------------
3482 #ifdef ASSERT
3483 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
3484   const TypeAryPtr* t_aryptr = t->isa_aryptr();
3485   if (t_aryptr) {
3486     return _ary->interface_vs_oop(t_aryptr->_ary);
3487   }
3488   return false;
3489 }
3490 #endif
3491 
3492 //------------------------------dump2------------------------------------------
3493 #ifndef PRODUCT
3494 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3495   _ary->dump2(d,depth,st);
3496   switch( _ptr ) {
3497   case Constant:
3498     const_oop()->print(st);
3499     break;
3500   case BotPTR:
3501     if (!WizardMode && !Verbose) {
3502       if( _klass_is_exact ) st->print(":exact");
3503       break;
3504     }
3505   case TopPTR:
3506   case AnyNull:
3507   case NotNull:
3508     st->print(":%s", ptr_msg[_ptr]);
3509     if( _klass_is_exact ) st->print(":exact");
3510     break;
3511   }
3512 
3513   if( _offset != 0 ) {
3514     int header_size = objArrayOopDesc::header_size() * wordSize;
3515     if( _offset == OffsetTop )       st->print("+undefined");
3516     else if( _offset == OffsetBot )  st->print("+any");
3517     else if( _offset < header_size ) st->print("+%d", _offset);
3518     else {
3519       BasicType basic_elem_type = elem()->basic_type();
3520       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
3521       int elem_size = type2aelembytes(basic_elem_type);
3522       st->print("[%d]", (_offset - array_base)/elem_size);
3523     }
3524   }
3525   st->print(" *");
3526   if (_instance_id == InstanceTop)
3527     st->print(",iid=top");
3528   else if (_instance_id != InstanceBot)
3529     st->print(",iid=%d",_instance_id);
3530 }
3531 #endif
3532 
3533 bool TypeAryPtr::empty(void) const {
3534   if (_ary->empty())       return true;
3535   return TypeOopPtr::empty();
3536 }
3537 
3538 //------------------------------add_offset-------------------------------------
3539 const TypePtr *TypeAryPtr::add_offset( intptr_t offset ) const {
3540   return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
3541 }
3542 
3543 
3544 //=============================================================================
3545 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
3546 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
3547 
3548 
3549 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
3550   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
3551 }
3552 
3553 //------------------------------hash-------------------------------------------
3554 // Type-specific hashing function.
3555 int TypeNarrowOop::hash(void) const {
3556   return _ptrtype->hash() + 7;
3557 }
3558 
3559 
3560 bool TypeNarrowOop::eq( const Type *t ) const {
3561   const TypeNarrowOop* tc = t->isa_narrowoop();
3562   if (tc != NULL) {
3563     if (_ptrtype->base() != tc->_ptrtype->base()) {
3564       return false;
3565     }
3566     return tc->_ptrtype->eq(_ptrtype);
3567   }
3568   return false;
3569 }
3570 
3571 bool TypeNarrowOop::singleton(void) const {    // TRUE if type is a singleton
3572   return _ptrtype->singleton();
3573 }
3574 
3575 bool TypeNarrowOop::empty(void) const {
3576   return _ptrtype->empty();
3577 }
3578 
3579 //------------------------------xmeet------------------------------------------
3580 // Compute the MEET of two types.  It returns a new Type object.
3581 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
3582   // Perform a fast test for common case; meeting the same types together.
3583   if( this == t ) return this;  // Meeting same type-rep?
3584 
3585 
3586   // Current "this->_base" is OopPtr
3587   switch (t->base()) {          // switch on original type
3588 
3589   case Int:                     // Mixing ints & oops happens when javac
3590   case Long:                    // reuses local variables
3591   case FloatTop:
3592   case FloatCon:
3593   case FloatBot:
3594   case DoubleTop:
3595   case DoubleCon:
3596   case DoubleBot:
3597   case AnyPtr:
3598   case RawPtr:
3599   case OopPtr:
3600   case InstPtr:
3601   case KlassPtr:
3602   case AryPtr:
3603 
3604   case Bottom:                  // Ye Olde Default
3605     return Type::BOTTOM;
3606   case Top:
3607     return this;
3608 
3609   case NarrowOop: {
3610     const Type* result = _ptrtype->xmeet(t->make_ptr());
3611     if (result->isa_ptr()) {
3612       return TypeNarrowOop::make(result->is_ptr());
3613     }
3614     return result;
3615   }
3616 
3617   default:                      // All else is a mistake
3618     typerr(t);
3619 
3620   } // End of switch
3621 
3622   return this;
3623 }
3624 
3625 const Type *TypeNarrowOop::xdual() const {    // Compute dual right now.
3626   const TypePtr* odual = _ptrtype->dual()->is_ptr();
3627   return new TypeNarrowOop(odual);
3628 }
3629 
3630 const Type *TypeNarrowOop::filter( const Type *kills ) const {
3631   if (kills->isa_narrowoop()) {
3632     const Type* ft =_ptrtype->filter(kills->is_narrowoop()->_ptrtype);
3633     if (ft->empty())
3634       return Type::TOP;           // Canonical empty value
3635     if (ft->isa_ptr()) {
3636       return make(ft->isa_ptr());
3637     }
3638     return ft;
3639   } else if (kills->isa_ptr()) {
3640     const Type* ft = _ptrtype->join(kills);
3641     if (ft->empty())
3642       return Type::TOP;           // Canonical empty value
3643     return ft;
3644   } else {
3645     return Type::TOP;
3646   }
3647 }
3648 
3649 
3650 intptr_t TypeNarrowOop::get_con() const {
3651   return _ptrtype->get_con();
3652 }
3653 
3654 #ifndef PRODUCT
3655 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
3656   st->print("narrowoop: ");
3657   _ptrtype->dump2(d, depth, st);
3658 }
3659 #endif
3660 
3661 
3662 //=============================================================================
3663 // Convenience common pre-built types.
3664 
3665 // Not-null object klass or below
3666 const TypeKlassPtr *TypeKlassPtr::OBJECT;
3667 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
3668 
3669 //------------------------------TypeKlasPtr------------------------------------
3670 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
3671   : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
3672 }
3673 
3674 //------------------------------make-------------------------------------------
3675 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
3676 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
3677   assert( k != NULL, "Expect a non-NULL klass");
3678   assert(k->is_instance_klass() || k->is_array_klass() ||
3679          k->is_method_klass(), "Incorrect type of klass oop");
3680   TypeKlassPtr *r =
3681     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
3682 
3683   return r;
3684 }
3685 
3686 //------------------------------eq---------------------------------------------
3687 // Structural equality check for Type representations
3688 bool TypeKlassPtr::eq( const Type *t ) const {
3689   const TypeKlassPtr *p = t->is_klassptr();
3690   return
3691     klass()->equals(p->klass()) &&
3692     TypeOopPtr::eq(p);
3693 }
3694 
3695 //------------------------------hash-------------------------------------------
3696 // Type-specific hashing function.
3697 int TypeKlassPtr::hash(void) const {
3698   return klass()->hash() + TypeOopPtr::hash();
3699 }
3700 
3701 
3702 //----------------------compute_klass------------------------------------------
3703 // Compute the defining klass for this class
3704 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
3705   // Compute _klass based on element type.
3706   ciKlass* k_ary = NULL;
3707   const TypeInstPtr *tinst;
3708   const TypeAryPtr *tary;
3709   const Type* el = elem();
3710   if (el->isa_narrowoop()) {
3711     el = el->make_ptr();
3712   }
3713 
3714   // Get element klass
3715   if ((tinst = el->isa_instptr()) != NULL) {
3716     // Compute array klass from element klass
3717     k_ary = ciObjArrayKlass::make(tinst->klass());
3718   } else if ((tary = el->isa_aryptr()) != NULL) {
3719     // Compute array klass from element klass
3720     ciKlass* k_elem = tary->klass();
3721     // If element type is something like bottom[], k_elem will be null.
3722     if (k_elem != NULL)
3723       k_ary = ciObjArrayKlass::make(k_elem);
3724   } else if ((el->base() == Type::Top) ||
3725              (el->base() == Type::Bottom)) {
3726     // element type of Bottom occurs from meet of basic type
3727     // and object; Top occurs when doing join on Bottom.
3728     // Leave k_ary at NULL.
3729   } else {
3730     // Cannot compute array klass directly from basic type,
3731     // since subtypes of TypeInt all have basic type T_INT.
3732 #ifdef ASSERT
3733     if (verify && el->isa_int()) {
3734       // Check simple cases when verifying klass.
3735       BasicType bt = T_ILLEGAL;
3736       if (el == TypeInt::BYTE) {
3737         bt = T_BYTE;
3738       } else if (el == TypeInt::SHORT) {
3739         bt = T_SHORT;
3740       } else if (el == TypeInt::CHAR) {
3741         bt = T_CHAR;
3742       } else if (el == TypeInt::INT) {
3743         bt = T_INT;
3744       } else {
3745         return _klass; // just return specified klass
3746       }
3747       return ciTypeArrayKlass::make(bt);
3748     }
3749 #endif
3750     assert(!el->isa_int(),
3751            "integral arrays must be pre-equipped with a class");
3752     // Compute array klass directly from basic type
3753     k_ary = ciTypeArrayKlass::make(el->basic_type());
3754   }
3755   return k_ary;
3756 }
3757 
3758 //------------------------------klass------------------------------------------
3759 // Return the defining klass for this class
3760 ciKlass* TypeAryPtr::klass() const {
3761   if( _klass ) return _klass;   // Return cached value, if possible
3762 
3763   // Oops, need to compute _klass and cache it
3764   ciKlass* k_ary = compute_klass();
3765 
3766   if( this != TypeAryPtr::OOPS ) {
3767     // The _klass field acts as a cache of the underlying
3768     // ciKlass for this array type.  In order to set the field,
3769     // we need to cast away const-ness.
3770     //
3771     // IMPORTANT NOTE: we *never* set the _klass field for the
3772     // type TypeAryPtr::OOPS.  This Type is shared between all
3773     // active compilations.  However, the ciKlass which represents
3774     // this Type is *not* shared between compilations, so caching
3775     // this value would result in fetching a dangling pointer.
3776     //
3777     // Recomputing the underlying ciKlass for each request is
3778     // a bit less efficient than caching, but calls to
3779     // TypeAryPtr::OOPS->klass() are not common enough to matter.
3780     ((TypeAryPtr*)this)->_klass = k_ary;
3781     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
3782         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
3783       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
3784     }
3785   }
3786   return k_ary;
3787 }
3788 
3789 
3790 //------------------------------add_offset-------------------------------------
3791 // Access internals of klass object
3792 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
3793   return make( _ptr, klass(), xadd_offset(offset) );
3794 }
3795 
3796 //------------------------------cast_to_ptr_type-------------------------------
3797 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
3798   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
3799   if( ptr == _ptr ) return this;
3800   return make(ptr, _klass, _offset);
3801 }
3802 
3803 
3804 //-----------------------------cast_to_exactness-------------------------------
3805 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
3806   if( klass_is_exact == _klass_is_exact ) return this;
3807   if (!UseExactTypes)  return this;
3808   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
3809 }
3810 
3811 
3812 //-----------------------------as_instance_type--------------------------------
3813 // Corresponding type for an instance of the given class.
3814 // It will be NotNull, and exact if and only if the klass type is exact.
3815 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
3816   ciKlass* k = klass();
3817   bool    xk = klass_is_exact();
3818   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
3819   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
3820   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3821   return toop->cast_to_exactness(xk)->is_oopptr();
3822 }
3823 
3824 
3825 //------------------------------xmeet------------------------------------------
3826 // Compute the MEET of two types, return a new Type object.
3827 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
3828   // Perform a fast test for common case; meeting the same types together.
3829   if( this == t ) return this;  // Meeting same type-rep?
3830 
3831   // Current "this->_base" is Pointer
3832   switch (t->base()) {          // switch on original type
3833 
3834   case Int:                     // Mixing ints & oops happens when javac
3835   case Long:                    // reuses local variables
3836   case FloatTop:
3837   case FloatCon:
3838   case FloatBot:
3839   case DoubleTop:
3840   case DoubleCon:
3841   case DoubleBot:
3842   case NarrowOop:
3843   case Bottom:                  // Ye Olde Default
3844     return Type::BOTTOM;
3845   case Top:
3846     return this;
3847 
3848   default:                      // All else is a mistake
3849     typerr(t);
3850 
3851   case RawPtr: return TypePtr::BOTTOM;
3852 
3853   case OopPtr: {                // Meeting to OopPtrs
3854     // Found a OopPtr type vs self-KlassPtr type
3855     const TypePtr *tp = t->is_oopptr();
3856     int offset = meet_offset(tp->offset());
3857     PTR ptr = meet_ptr(tp->ptr());
3858     switch (tp->ptr()) {
3859     case TopPTR:
3860     case AnyNull:
3861       return make(ptr, klass(), offset);
3862     case BotPTR:
3863     case NotNull:
3864       return TypePtr::make(AnyPtr, ptr, offset);
3865     default: typerr(t);
3866     }
3867   }
3868 
3869   case AnyPtr: {                // Meeting to AnyPtrs
3870     // Found an AnyPtr type vs self-KlassPtr type
3871     const TypePtr *tp = t->is_ptr();
3872     int offset = meet_offset(tp->offset());
3873     PTR ptr = meet_ptr(tp->ptr());
3874     switch (tp->ptr()) {
3875     case TopPTR:
3876       return this;
3877     case Null:
3878       if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
3879     case AnyNull:
3880       return make( ptr, klass(), offset );
3881     case BotPTR:
3882     case NotNull:
3883       return TypePtr::make(AnyPtr, ptr, offset);
3884     default: typerr(t);
3885     }
3886   }
3887 
3888   case AryPtr:                  // Meet with AryPtr
3889   case InstPtr:                 // Meet with InstPtr
3890     return TypeInstPtr::BOTTOM;
3891 
3892   //
3893   //             A-top         }
3894   //           /   |   \       }  Tops
3895   //       B-top A-any C-top   }
3896   //          | /  |  \ |      }  Any-nulls
3897   //       B-any   |   C-any   }
3898   //          |    |    |
3899   //       B-con A-con C-con   } constants; not comparable across classes
3900   //          |    |    |
3901   //       B-not   |   C-not   }
3902   //          | \  |  / |      }  not-nulls
3903   //       B-bot A-not C-bot   }
3904   //           \   |   /       }  Bottoms
3905   //             A-bot         }
3906   //
3907 
3908   case KlassPtr: {  // Meet two KlassPtr types
3909     const TypeKlassPtr *tkls = t->is_klassptr();
3910     int  off     = meet_offset(tkls->offset());
3911     PTR  ptr     = meet_ptr(tkls->ptr());
3912 
3913     // Check for easy case; klasses are equal (and perhaps not loaded!)
3914     // If we have constants, then we created oops so classes are loaded
3915     // and we can handle the constants further down.  This case handles
3916     // not-loaded classes
3917     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
3918       return make( ptr, klass(), off );
3919     }
3920 
3921     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3922     ciKlass* tkls_klass = tkls->klass();
3923     ciKlass* this_klass = this->klass();
3924     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
3925     assert( this_klass->is_loaded(), "This class should have been loaded.");
3926 
3927     // If 'this' type is above the centerline and is a superclass of the
3928     // other, we can treat 'this' as having the same type as the other.
3929     if ((above_centerline(this->ptr())) &&
3930         tkls_klass->is_subtype_of(this_klass)) {
3931       this_klass = tkls_klass;
3932     }
3933     // If 'tinst' type is above the centerline and is a superclass of the
3934     // other, we can treat 'tinst' as having the same type as the other.
3935     if ((above_centerline(tkls->ptr())) &&
3936         this_klass->is_subtype_of(tkls_klass)) {
3937       tkls_klass = this_klass;
3938     }
3939 
3940     // Check for classes now being equal
3941     if (tkls_klass->equals(this_klass)) {
3942       // If the klasses are equal, the constants may still differ.  Fall to
3943       // NotNull if they do (neither constant is NULL; that is a special case
3944       // handled elsewhere).
3945       ciObject* o = NULL;             // Assume not constant when done
3946       ciObject* this_oop = const_oop();
3947       ciObject* tkls_oop = tkls->const_oop();
3948       if( ptr == Constant ) {
3949         if (this_oop != NULL && tkls_oop != NULL &&
3950             this_oop->equals(tkls_oop) )
3951           o = this_oop;
3952         else if (above_centerline(this->ptr()))
3953           o = tkls_oop;
3954         else if (above_centerline(tkls->ptr()))
3955           o = this_oop;
3956         else
3957           ptr = NotNull;
3958       }
3959       return make( ptr, this_klass, off );
3960     } // Else classes are not equal
3961 
3962     // Since klasses are different, we require the LCA in the Java
3963     // class hierarchy - which means we have to fall to at least NotNull.
3964     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3965       ptr = NotNull;
3966     // Now we find the LCA of Java classes
3967     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
3968     return   make( ptr, k, off );
3969   } // End of case KlassPtr
3970 
3971   } // End of switch
3972   return this;                  // Return the double constant
3973 }
3974 
3975 //------------------------------xdual------------------------------------------
3976 // Dual: compute field-by-field dual
3977 const Type    *TypeKlassPtr::xdual() const {
3978   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
3979 }
3980 
3981 //------------------------------dump2------------------------------------------
3982 // Dump Klass Type
3983 #ifndef PRODUCT
3984 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
3985   switch( _ptr ) {
3986   case Constant:
3987     st->print("precise ");
3988   case NotNull:
3989     {
3990       const char *name = klass()->name()->as_utf8();
3991       if( name ) {
3992         st->print("klass %s: " INTPTR_FORMAT, name, klass());
3993       } else {
3994         ShouldNotReachHere();
3995       }
3996     }
3997   case BotPTR:
3998     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
3999   case TopPTR:
4000   case AnyNull:
4001     st->print(":%s", ptr_msg[_ptr]);
4002     if( _klass_is_exact ) st->print(":exact");
4003     break;
4004   }
4005 
4006   if( _offset ) {               // Dump offset, if any
4007     if( _offset == OffsetBot )      { st->print("+any"); }
4008     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4009     else                            { st->print("+%d", _offset); }
4010   }
4011 
4012   st->print(" *");
4013 }
4014 #endif
4015 
4016 
4017 
4018 //=============================================================================
4019 // Convenience common pre-built types.
4020 
4021 //------------------------------make-------------------------------------------
4022 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
4023   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
4024 }
4025 
4026 //------------------------------make-------------------------------------------
4027 const TypeFunc *TypeFunc::make(ciMethod* method) {
4028   Compile* C = Compile::current();
4029   const TypeFunc* tf = C->last_tf(method); // check cache
4030   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
4031   const TypeTuple *domain;
4032   if (method->is_static()) {
4033     domain = TypeTuple::make_domain(NULL, method->signature());
4034   } else {
4035     domain = TypeTuple::make_domain(method->holder(), method->signature());
4036   }
4037   const TypeTuple *range  = TypeTuple::make_range(method->signature());
4038   tf = TypeFunc::make(domain, range);
4039   C->set_last_tf(method, tf);  // fill cache
4040   return tf;
4041 }
4042 
4043 //------------------------------meet-------------------------------------------
4044 // Compute the MEET of two types.  It returns a new Type object.
4045 const Type *TypeFunc::xmeet( const Type *t ) const {
4046   // Perform a fast test for common case; meeting the same types together.
4047   if( this == t ) return this;  // Meeting same type-rep?
4048 
4049   // Current "this->_base" is Func
4050   switch (t->base()) {          // switch on original type
4051 
4052   case Bottom:                  // Ye Olde Default
4053     return t;
4054 
4055   default:                      // All else is a mistake
4056     typerr(t);
4057 
4058   case Top:
4059     break;
4060   }
4061   return this;                  // Return the double constant
4062 }
4063 
4064 //------------------------------xdual------------------------------------------
4065 // Dual: compute field-by-field dual
4066 const Type *TypeFunc::xdual() const {
4067   return this;
4068 }
4069 
4070 //------------------------------eq---------------------------------------------
4071 // Structural equality check for Type representations
4072 bool TypeFunc::eq( const Type *t ) const {
4073   const TypeFunc *a = (const TypeFunc*)t;
4074   return _domain == a->_domain &&
4075     _range == a->_range;
4076 }
4077 
4078 //------------------------------hash-------------------------------------------
4079 // Type-specific hashing function.
4080 int TypeFunc::hash(void) const {
4081   return (intptr_t)_domain + (intptr_t)_range;
4082 }
4083 
4084 //------------------------------dump2------------------------------------------
4085 // Dump Function Type
4086 #ifndef PRODUCT
4087 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
4088   if( _range->_cnt <= Parms )
4089     st->print("void");
4090   else {
4091     uint i;
4092     for (i = Parms; i < _range->_cnt-1; i++) {
4093       _range->field_at(i)->dump2(d,depth,st);
4094       st->print("/");
4095     }
4096     _range->field_at(i)->dump2(d,depth,st);
4097   }
4098   st->print(" ");
4099   st->print("( ");
4100   if( !depth || d[this] ) {     // Check for recursive dump
4101     st->print("...)");
4102     return;
4103   }
4104   d.Insert((void*)this,(void*)this);    // Stop recursion
4105   if (Parms < _domain->_cnt)
4106     _domain->field_at(Parms)->dump2(d,depth-1,st);
4107   for (uint i = Parms+1; i < _domain->_cnt; i++) {
4108     st->print(", ");
4109     _domain->field_at(i)->dump2(d,depth-1,st);
4110   }
4111   st->print(" )");
4112 }
4113 
4114 //------------------------------print_flattened--------------------------------
4115 // Print a 'flattened' signature
4116 static const char * const flat_type_msg[Type::lastype] = {
4117   "bad","control","top","int","long","_", "narrowoop",
4118   "tuple:", "array:",
4119   "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
4120   "func", "abIO", "return_address", "mem",
4121   "float_top", "ftcon:", "flt",
4122   "double_top", "dblcon:", "dbl",
4123   "bottom"
4124 };
4125 
4126 void TypeFunc::print_flattened() const {
4127   if( _range->_cnt <= Parms )
4128     tty->print("void");
4129   else {
4130     uint i;
4131     for (i = Parms; i < _range->_cnt-1; i++)
4132       tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
4133     tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
4134   }
4135   tty->print(" ( ");
4136   if (Parms < _domain->_cnt)
4137     tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
4138   for (uint i = Parms+1; i < _domain->_cnt; i++)
4139     tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
4140   tty->print(" )");
4141 }
4142 #endif
4143 
4144 //------------------------------singleton--------------------------------------
4145 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4146 // constants (Ldi nodes).  Singletons are integer, float or double constants
4147 // or a single symbol.
4148 bool TypeFunc::singleton(void) const {
4149   return false;                 // Never a singleton
4150 }
4151 
4152 bool TypeFunc::empty(void) const {
4153   return false;                 // Never empty
4154 }
4155 
4156 
4157 BasicType TypeFunc::return_type() const{
4158   if (range()->cnt() == TypeFunc::Parms) {
4159     return T_VOID;
4160   }
4161   return range()->field_at(TypeFunc::Parms)->basic_type();
4162 }