1 /*
   2  * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_objectMonitor.cpp.incl"
  27 
  28 #if defined(__GNUC__) && !defined(IA64)
  29   // Need to inhibit inlining for older versions of GCC to avoid build-time failures
  30   #define ATTR __attribute__((noinline))
  31 #else
  32   #define ATTR
  33 #endif
  34 
  35 
  36 #ifdef DTRACE_ENABLED
  37 
  38 // Only bother with this argument setup if dtrace is available
  39 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  40 
  41 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
  42   jlong, uintptr_t, char*, int);
  43 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
  44   jlong, uintptr_t, char*, int);
  45 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
  46   jlong, uintptr_t, char*, int);
  47 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
  48   jlong, uintptr_t, char*, int);
  49 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
  50   jlong, uintptr_t, char*, int);
  51 
  52 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
  53   char* bytes = NULL;                                                      \
  54   int len = 0;                                                             \
  55   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  56   symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name();  \
  57   if (klassname != NULL) {                                                 \
  58     bytes = (char*)klassname->bytes();                                     \
  59     len = klassname->utf8_length();                                        \
  60   }
  61 
  62 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis)       \
  63   {                                                                        \
  64     if (DTraceMonitorProbes) {                                            \
  65       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
  66       HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid,                       \
  67                        (monitor), bytes, len, (millis));                   \
  68     }                                                                      \
  69   }
  70 
  71 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread)             \
  72   {                                                                        \
  73     if (DTraceMonitorProbes) {                                            \
  74       DTRACE_MONITOR_PROBE_COMMON(klassOop, thread);                       \
  75       HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid,                    \
  76                        (uintptr_t)(monitor), bytes, len);                  \
  77     }                                                                      \
  78   }
  79 
  80 #else //  ndef DTRACE_ENABLED
  81 
  82 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon)    {;}
  83 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon)          {;}
  84 
  85 #endif // ndef DTRACE_ENABLED
  86 
  87 // Tunables ...
  88 // The knob* variables are effectively final.  Once set they should
  89 // never be modified hence.  Consider using __read_mostly with GCC.
  90 
  91 int ObjectMonitor::Knob_Verbose    = 0 ;
  92 int ObjectMonitor::Knob_SpinLimit  = 5000 ;    // derived by an external tool -
  93 static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
  94 static int Knob_HandOff            = 0 ;
  95 static int Knob_ReportSettings     = 0 ;
  96 
  97 static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
  98 static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
  99 static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
 100 static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
 101 static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
 102 static int Knob_SpinEarly          = 1 ;
 103 static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
 104 static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
 105 static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
 106 static int Knob_Bonus              = 100 ;     // spin success bonus
 107 static int Knob_BonusB             = 100 ;     // spin success bonus
 108 static int Knob_Penalty            = 200 ;     // spin failure penalty
 109 static int Knob_Poverty            = 1000 ;
 110 static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
 111 static int Knob_FixedSpin          = 0 ;
 112 static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
 113 static int Knob_UsePause           = 1 ;
 114 static int Knob_ExitPolicy         = 0 ;
 115 static int Knob_PreSpin            = 10 ;      // 20-100 likely better
 116 static int Knob_ResetEvent         = 0 ;
 117 static int BackOffMask             = 0 ;
 118 
 119 static int Knob_FastHSSEC          = 0 ;
 120 static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
 121 static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
 122 static volatile int InitDone       = 0 ;
 123 
 124 #define TrySpin TrySpin_VaryDuration
 125 
 126 // -----------------------------------------------------------------------------
 127 // Theory of operations -- Monitors lists, thread residency, etc:
 128 //
 129 // * A thread acquires ownership of a monitor by successfully
 130 //   CAS()ing the _owner field from null to non-null.
 131 //
 132 // * Invariant: A thread appears on at most one monitor list --
 133 //   cxq, EntryList or WaitSet -- at any one time.
 134 //
 135 // * Contending threads "push" themselves onto the cxq with CAS
 136 //   and then spin/park.
 137 //
 138 // * After a contending thread eventually acquires the lock it must
 139 //   dequeue itself from either the EntryList or the cxq.
 140 //
 141 // * The exiting thread identifies and unparks an "heir presumptive"
 142 //   tentative successor thread on the EntryList.  Critically, the
 143 //   exiting thread doesn't unlink the successor thread from the EntryList.
 144 //   After having been unparked, the wakee will recontend for ownership of
 145 //   the monitor.   The successor (wakee) will either acquire the lock or
 146 //   re-park itself.
 147 //
 148 //   Succession is provided for by a policy of competitive handoff.
 149 //   The exiting thread does _not_ grant or pass ownership to the
 150 //   successor thread.  (This is also referred to as "handoff" succession").
 151 //   Instead the exiting thread releases ownership and possibly wakes
 152 //   a successor, so the successor can (re)compete for ownership of the lock.
 153 //   If the EntryList is empty but the cxq is populated the exiting
 154 //   thread will drain the cxq into the EntryList.  It does so by
 155 //   by detaching the cxq (installing null with CAS) and folding
 156 //   the threads from the cxq into the EntryList.  The EntryList is
 157 //   doubly linked, while the cxq is singly linked because of the
 158 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 159 //
 160 // * Concurrency invariants:
 161 //
 162 //   -- only the monitor owner may access or mutate the EntryList.
 163 //      The mutex property of the monitor itself protects the EntryList
 164 //      from concurrent interference.
 165 //   -- Only the monitor owner may detach the cxq.
 166 //
 167 // * The monitor entry list operations avoid locks, but strictly speaking
 168 //   they're not lock-free.  Enter is lock-free, exit is not.
 169 //   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
 170 //
 171 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 172 //   detaching thread.  This mechanism is immune from the ABA corruption.
 173 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 174 //
 175 // * Taken together, the cxq and the EntryList constitute or form a
 176 //   single logical queue of threads stalled trying to acquire the lock.
 177 //   We use two distinct lists to improve the odds of a constant-time
 178 //   dequeue operation after acquisition (in the ::enter() epilog) and
 179 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 180 //   A key desideratum is to minimize queue & monitor metadata manipulation
 181 //   that occurs while holding the monitor lock -- that is, we want to
 182 //   minimize monitor lock holds times.  Note that even a small amount of
 183 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 184 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 185 //   locks and monitor metadata.
 186 //
 187 //   Cxq points to the the set of Recently Arrived Threads attempting entry.
 188 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 189 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 190 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 191 //
 192 //   The EntryList is ordered by the prevailing queue discipline and
 193 //   can be organized in any convenient fashion, such as a doubly-linked list or
 194 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 195 //   to operate in constant-time.  If we need a priority queue then something akin
 196 //   to Solaris' sleepq would work nicely.  Viz.,
 197 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 198 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 199 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 200 //   EntryList accordingly.
 201 //
 202 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 203 //   somewhat similar to an elevator-scan.
 204 //
 205 // * The monitor synchronization subsystem avoids the use of native
 206 //   synchronization primitives except for the narrow platform-specific
 207 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 208 //   the semantics of park-unpark.  Put another way, this monitor implementation
 209 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 210 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 211 //   underlying OS manages the READY<->RUN transitions.
 212 //
 213 // * Waiting threads reside on the WaitSet list -- wait() puts
 214 //   the caller onto the WaitSet.
 215 //
 216 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 217 //   either the EntryList or cxq.  Subsequent exit() operations will
 218 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 219 //   it's likely the notifyee would simply impale itself on the lock held
 220 //   by the notifier.
 221 //
 222 // * An interesting alternative is to encode cxq as (List,LockByte) where
 223 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 224 //   variable, like _recursions, in the scheme.  The threads or Events that form
 225 //   the list would have to be aligned in 256-byte addresses.  A thread would
 226 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 227 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 228 //   Note that is is *not* word-tearing, but it does presume that full-word
 229 //   CAS operations are coherent with intermix with STB operations.  That's true
 230 //   on most common processors.
 231 //
 232 // * See also http://blogs.sun.com/dave
 233 
 234 
 235 // -----------------------------------------------------------------------------
 236 // Enter support
 237 
 238 bool ObjectMonitor::try_enter(Thread* THREAD) {
 239   if (THREAD != _owner) {
 240     if (THREAD->is_lock_owned ((address)_owner)) {
 241        assert(_recursions == 0, "internal state error");
 242        _owner = THREAD ;
 243        _recursions = 1 ;
 244        OwnerIsThread = 1 ;
 245        return true;
 246     }
 247     if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 248       return false;
 249     }
 250     return true;
 251   } else {
 252     _recursions++;
 253     return true;
 254   }
 255 }
 256 
 257 void ATTR ObjectMonitor::enter(TRAPS) {
 258   // The following code is ordered to check the most common cases first
 259   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 260   Thread * const Self = THREAD ;
 261   void * cur ;
 262 
 263   cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
 264   if (cur == NULL) {
 265      // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
 266      assert (_recursions == 0   , "invariant") ;
 267      assert (_owner      == Self, "invariant") ;
 268      // CONSIDER: set or assert OwnerIsThread == 1
 269      return ;
 270   }
 271 
 272   if (cur == Self) {
 273      // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 274      _recursions ++ ;
 275      return ;
 276   }
 277 
 278   if (Self->is_lock_owned ((address)cur)) {
 279     assert (_recursions == 0, "internal state error");
 280     _recursions = 1 ;
 281     // Commute owner from a thread-specific on-stack BasicLockObject address to
 282     // a full-fledged "Thread *".
 283     _owner = Self ;
 284     OwnerIsThread = 1 ;
 285     return ;
 286   }
 287 
 288   // We've encountered genuine contention.
 289   assert (Self->_Stalled == 0, "invariant") ;
 290   Self->_Stalled = intptr_t(this) ;
 291 
 292   // Try one round of spinning *before* enqueueing Self
 293   // and before going through the awkward and expensive state
 294   // transitions.  The following spin is strictly optional ...
 295   // Note that if we acquire the monitor from an initial spin
 296   // we forgo posting JVMTI events and firing DTRACE probes.
 297   if (Knob_SpinEarly && TrySpin (Self) > 0) {
 298      assert (_owner == Self      , "invariant") ;
 299      assert (_recursions == 0    , "invariant") ;
 300      assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 301      Self->_Stalled = 0 ;
 302      return ;
 303   }
 304 
 305   assert (_owner != Self          , "invariant") ;
 306   assert (_succ  != Self          , "invariant") ;
 307   assert (Self->is_Java_thread()  , "invariant") ;
 308   JavaThread * jt = (JavaThread *) Self ;
 309   assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
 310   assert (jt->thread_state() != _thread_blocked   , "invariant") ;
 311   assert (this->object() != NULL  , "invariant") ;
 312   assert (_count >= 0, "invariant") ;
 313 
 314   // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
 315   // Ensure the object-monitor relationship remains stable while there's contention.
 316   Atomic::inc_ptr(&_count);
 317 
 318   { // Change java thread status to indicate blocked on monitor enter.
 319     JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
 320 
 321     DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
 322     if (JvmtiExport::should_post_monitor_contended_enter()) {
 323       JvmtiExport::post_monitor_contended_enter(jt, this);
 324     }
 325 
 326     OSThreadContendState osts(Self->osthread());
 327     ThreadBlockInVM tbivm(jt);
 328 
 329     Self->set_current_pending_monitor(this);
 330 
 331     // TODO-FIXME: change the following for(;;) loop to straight-line code.
 332     for (;;) {
 333       jt->set_suspend_equivalent();
 334       // cleared by handle_special_suspend_equivalent_condition()
 335       // or java_suspend_self()
 336 
 337       EnterI (THREAD) ;
 338 
 339       if (!ExitSuspendEquivalent(jt)) break ;
 340 
 341       //
 342       // We have acquired the contended monitor, but while we were
 343       // waiting another thread suspended us. We don't want to enter
 344       // the monitor while suspended because that would surprise the
 345       // thread that suspended us.
 346       //
 347           _recursions = 0 ;
 348       _succ = NULL ;
 349       exit (Self) ;
 350 
 351       jt->java_suspend_self();
 352     }
 353     Self->set_current_pending_monitor(NULL);
 354   }
 355 
 356   Atomic::dec_ptr(&_count);
 357   assert (_count >= 0, "invariant") ;
 358   Self->_Stalled = 0 ;
 359 
 360   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 361   assert (_recursions == 0     , "invariant") ;
 362   assert (_owner == Self       , "invariant") ;
 363   assert (_succ  != Self       , "invariant") ;
 364   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 365 
 366   // The thread -- now the owner -- is back in vm mode.
 367   // Report the glorious news via TI,DTrace and jvmstat.
 368   // The probe effect is non-trivial.  All the reportage occurs
 369   // while we hold the monitor, increasing the length of the critical
 370   // section.  Amdahl's parallel speedup law comes vividly into play.
 371   //
 372   // Another option might be to aggregate the events (thread local or
 373   // per-monitor aggregation) and defer reporting until a more opportune
 374   // time -- such as next time some thread encounters contention but has
 375   // yet to acquire the lock.  While spinning that thread could
 376   // spinning we could increment JVMStat counters, etc.
 377 
 378   DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
 379   if (JvmtiExport::should_post_monitor_contended_entered()) {
 380     JvmtiExport::post_monitor_contended_entered(jt, this);
 381   }
 382   if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
 383      ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
 384   }
 385 }
 386 
 387 
 388 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 389 // Callers must compensate as needed.
 390 
 391 int ObjectMonitor::TryLock (Thread * Self) {
 392    for (;;) {
 393       void * own = _owner ;
 394       if (own != NULL) return 0 ;
 395       if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
 396          // Either guarantee _recursions == 0 or set _recursions = 0.
 397          assert (_recursions == 0, "invariant") ;
 398          assert (_owner == Self, "invariant") ;
 399          // CONSIDER: set or assert that OwnerIsThread == 1
 400          return 1 ;
 401       }
 402       // The lock had been free momentarily, but we lost the race to the lock.
 403       // Interference -- the CAS failed.
 404       // We can either return -1 or retry.
 405       // Retry doesn't make as much sense because the lock was just acquired.
 406       if (true) return -1 ;
 407    }
 408 }
 409 
 410 void ATTR ObjectMonitor::EnterI (TRAPS) {
 411     Thread * Self = THREAD ;
 412     assert (Self->is_Java_thread(), "invariant") ;
 413     assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
 414 
 415     // Try the lock - TATAS
 416     if (TryLock (Self) > 0) {
 417         assert (_succ != Self              , "invariant") ;
 418         assert (_owner == Self             , "invariant") ;
 419         assert (_Responsible != Self       , "invariant") ;
 420         return ;
 421     }
 422 
 423     DeferredInitialize () ;
 424 
 425     // We try one round of spinning *before* enqueueing Self.
 426     //
 427     // If the _owner is ready but OFFPROC we could use a YieldTo()
 428     // operation to donate the remainder of this thread's quantum
 429     // to the owner.  This has subtle but beneficial affinity
 430     // effects.
 431 
 432     if (TrySpin (Self) > 0) {
 433         assert (_owner == Self        , "invariant") ;
 434         assert (_succ != Self         , "invariant") ;
 435         assert (_Responsible != Self  , "invariant") ;
 436         return ;
 437     }
 438 
 439     // The Spin failed -- Enqueue and park the thread ...
 440     assert (_succ  != Self            , "invariant") ;
 441     assert (_owner != Self            , "invariant") ;
 442     assert (_Responsible != Self      , "invariant") ;
 443 
 444     // Enqueue "Self" on ObjectMonitor's _cxq.
 445     //
 446     // Node acts as a proxy for Self.
 447     // As an aside, if were to ever rewrite the synchronization code mostly
 448     // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 449     // Java objects.  This would avoid awkward lifecycle and liveness issues,
 450     // as well as eliminate a subset of ABA issues.
 451     // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 452     //
 453 
 454     ObjectWaiter node(Self) ;
 455     Self->_ParkEvent->reset() ;
 456     node._prev   = (ObjectWaiter *) 0xBAD ;
 457     node.TState  = ObjectWaiter::TS_CXQ ;
 458 
 459     // Push "Self" onto the front of the _cxq.
 460     // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
 461     // Note that spinning tends to reduce the rate at which threads
 462     // enqueue and dequeue on EntryList|cxq.
 463     ObjectWaiter * nxt ;
 464     for (;;) {
 465         node._next = nxt = _cxq ;
 466         if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
 467 
 468         // Interference - the CAS failed because _cxq changed.  Just retry.
 469         // As an optional optimization we retry the lock.
 470         if (TryLock (Self) > 0) {
 471             assert (_succ != Self         , "invariant") ;
 472             assert (_owner == Self        , "invariant") ;
 473             assert (_Responsible != Self  , "invariant") ;
 474             return ;
 475         }
 476     }
 477 
 478     // Check for cxq|EntryList edge transition to non-null.  This indicates
 479     // the onset of contention.  While contention persists exiting threads
 480     // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 481     // operations revert to the faster 1-0 mode.  This enter operation may interleave
 482     // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 483     // arrange for one of the contending thread to use a timed park() operations
 484     // to detect and recover from the race.  (Stranding is form of progress failure
 485     // where the monitor is unlocked but all the contending threads remain parked).
 486     // That is, at least one of the contended threads will periodically poll _owner.
 487     // One of the contending threads will become the designated "Responsible" thread.
 488     // The Responsible thread uses a timed park instead of a normal indefinite park
 489     // operation -- it periodically wakes and checks for and recovers from potential
 490     // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 491     // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 492     // be responsible for a monitor.
 493     //
 494     // Currently, one of the contended threads takes on the added role of "Responsible".
 495     // A viable alternative would be to use a dedicated "stranding checker" thread
 496     // that periodically iterated over all the threads (or active monitors) and unparked
 497     // successors where there was risk of stranding.  This would help eliminate the
 498     // timer scalability issues we see on some platforms as we'd only have one thread
 499     // -- the checker -- parked on a timer.
 500 
 501     if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
 502         // Try to assume the role of responsible thread for the monitor.
 503         // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
 504         Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 505     }
 506 
 507     // The lock have been released while this thread was occupied queueing
 508     // itself onto _cxq.  To close the race and avoid "stranding" and
 509     // progress-liveness failure we must resample-retry _owner before parking.
 510     // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 511     // In this case the ST-MEMBAR is accomplished with CAS().
 512     //
 513     // TODO: Defer all thread state transitions until park-time.
 514     // Since state transitions are heavy and inefficient we'd like
 515     // to defer the state transitions until absolutely necessary,
 516     // and in doing so avoid some transitions ...
 517 
 518     TEVENT (Inflated enter - Contention) ;
 519     int nWakeups = 0 ;
 520     int RecheckInterval = 1 ;
 521 
 522     for (;;) {
 523 
 524         if (TryLock (Self) > 0) break ;
 525         assert (_owner != Self, "invariant") ;
 526 
 527         if ((SyncFlags & 2) && _Responsible == NULL) {
 528            Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
 529         }
 530 
 531         // park self
 532         if (_Responsible == Self || (SyncFlags & 1)) {
 533             TEVENT (Inflated enter - park TIMED) ;
 534             Self->_ParkEvent->park ((jlong) RecheckInterval) ;
 535             // Increase the RecheckInterval, but clamp the value.
 536             RecheckInterval *= 8 ;
 537             if (RecheckInterval > 1000) RecheckInterval = 1000 ;
 538         } else {
 539             TEVENT (Inflated enter - park UNTIMED) ;
 540             Self->_ParkEvent->park() ;
 541         }
 542 
 543         if (TryLock(Self) > 0) break ;
 544 
 545         // The lock is still contested.
 546         // Keep a tally of the # of futile wakeups.
 547         // Note that the counter is not protected by a lock or updated by atomics.
 548         // That is by design - we trade "lossy" counters which are exposed to
 549         // races during updates for a lower probe effect.
 550         TEVENT (Inflated enter - Futile wakeup) ;
 551         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 552            ObjectMonitor::_sync_FutileWakeups->inc() ;
 553         }
 554         ++ nWakeups ;
 555 
 556         // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
 557         // We can defer clearing _succ until after the spin completes
 558         // TrySpin() must tolerate being called with _succ == Self.
 559         // Try yet another round of adaptive spinning.
 560         if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
 561 
 562         // We can find that we were unpark()ed and redesignated _succ while
 563         // we were spinning.  That's harmless.  If we iterate and call park(),
 564         // park() will consume the event and return immediately and we'll
 565         // just spin again.  This pattern can repeat, leaving _succ to simply
 566         // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
 567         // Alternately, we can sample fired() here, and if set, forgo spinning
 568         // in the next iteration.
 569 
 570         if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
 571            Self->_ParkEvent->reset() ;
 572            OrderAccess::fence() ;
 573         }
 574         if (_succ == Self) _succ = NULL ;
 575 
 576         // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 577         OrderAccess::fence() ;
 578     }
 579 
 580     // Egress :
 581     // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
 582     // Normally we'll find Self on the EntryList .
 583     // From the perspective of the lock owner (this thread), the
 584     // EntryList is stable and cxq is prepend-only.
 585     // The head of cxq is volatile but the interior is stable.
 586     // In addition, Self.TState is stable.
 587 
 588     assert (_owner == Self      , "invariant") ;
 589     assert (object() != NULL    , "invariant") ;
 590     // I'd like to write:
 591     //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 592     // but as we're at a safepoint that's not safe.
 593 
 594     UnlinkAfterAcquire (Self, &node) ;
 595     if (_succ == Self) _succ = NULL ;
 596 
 597     assert (_succ != Self, "invariant") ;
 598     if (_Responsible == Self) {
 599         _Responsible = NULL ;
 600         // Dekker pivot-point.
 601         // Consider OrderAccess::storeload() here
 602 
 603         // We may leave threads on cxq|EntryList without a designated
 604         // "Responsible" thread.  This is benign.  When this thread subsequently
 605         // exits the monitor it can "see" such preexisting "old" threads --
 606         // threads that arrived on the cxq|EntryList before the fence, above --
 607         // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 608         // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 609         // non-null and elect a new "Responsible" timer thread.
 610         //
 611         // This thread executes:
 612         //    ST Responsible=null; MEMBAR    (in enter epilog - here)
 613         //    LD cxq|EntryList               (in subsequent exit)
 614         //
 615         // Entering threads in the slow/contended path execute:
 616         //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 617         //    The (ST cxq; MEMBAR) is accomplished with CAS().
 618         //
 619         // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 620         // exit operation from floating above the ST Responsible=null.
 621         //
 622         // In *practice* however, EnterI() is always followed by some atomic
 623         // operation such as the decrement of _count in ::enter().  Those atomics
 624         // obviate the need for the explicit MEMBAR, above.
 625     }
 626 
 627     // We've acquired ownership with CAS().
 628     // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 629     // But since the CAS() this thread may have also stored into _succ,
 630     // EntryList, cxq or Responsible.  These meta-data updates must be
 631     // visible __before this thread subsequently drops the lock.
 632     // Consider what could occur if we didn't enforce this constraint --
 633     // STs to monitor meta-data and user-data could reorder with (become
 634     // visible after) the ST in exit that drops ownership of the lock.
 635     // Some other thread could then acquire the lock, but observe inconsistent
 636     // or old monitor meta-data and heap data.  That violates the JMM.
 637     // To that end, the 1-0 exit() operation must have at least STST|LDST
 638     // "release" barrier semantics.  Specifically, there must be at least a
 639     // STST|LDST barrier in exit() before the ST of null into _owner that drops
 640     // the lock.   The barrier ensures that changes to monitor meta-data and data
 641     // protected by the lock will be visible before we release the lock, and
 642     // therefore before some other thread (CPU) has a chance to acquire the lock.
 643     // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 644     //
 645     // Critically, any prior STs to _succ or EntryList must be visible before
 646     // the ST of null into _owner in the *subsequent* (following) corresponding
 647     // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 648     // execute a serializing instruction.
 649 
 650     if (SyncFlags & 8) {
 651        OrderAccess::fence() ;
 652     }
 653     return ;
 654 }
 655 
 656 // ReenterI() is a specialized inline form of the latter half of the
 657 // contended slow-path from EnterI().  We use ReenterI() only for
 658 // monitor reentry in wait().
 659 //
 660 // In the future we should reconcile EnterI() and ReenterI(), adding
 661 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
 662 // loop accordingly.
 663 
 664 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
 665     assert (Self != NULL                , "invariant") ;
 666     assert (SelfNode != NULL            , "invariant") ;
 667     assert (SelfNode->_thread == Self   , "invariant") ;
 668     assert (_waiters > 0                , "invariant") ;
 669     assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
 670     assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
 671     JavaThread * jt = (JavaThread *) Self ;
 672 
 673     int nWakeups = 0 ;
 674     for (;;) {
 675         ObjectWaiter::TStates v = SelfNode->TState ;
 676         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
 677         assert    (_owner != Self, "invariant") ;
 678 
 679         if (TryLock (Self) > 0) break ;
 680         if (TrySpin (Self) > 0) break ;
 681 
 682         TEVENT (Wait Reentry - parking) ;
 683 
 684         // State transition wrappers around park() ...
 685         // ReenterI() wisely defers state transitions until
 686         // it's clear we must park the thread.
 687         {
 688            OSThreadContendState osts(Self->osthread());
 689            ThreadBlockInVM tbivm(jt);
 690 
 691            // cleared by handle_special_suspend_equivalent_condition()
 692            // or java_suspend_self()
 693            jt->set_suspend_equivalent();
 694            if (SyncFlags & 1) {
 695               Self->_ParkEvent->park ((jlong)1000) ;
 696            } else {
 697               Self->_ParkEvent->park () ;
 698            }
 699 
 700            // were we externally suspended while we were waiting?
 701            for (;;) {
 702               if (!ExitSuspendEquivalent (jt)) break ;
 703               if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
 704               jt->java_suspend_self();
 705               jt->set_suspend_equivalent();
 706            }
 707         }
 708 
 709         // Try again, but just so we distinguish between futile wakeups and
 710         // successful wakeups.  The following test isn't algorithmically
 711         // necessary, but it helps us maintain sensible statistics.
 712         if (TryLock(Self) > 0) break ;
 713 
 714         // The lock is still contested.
 715         // Keep a tally of the # of futile wakeups.
 716         // Note that the counter is not protected by a lock or updated by atomics.
 717         // That is by design - we trade "lossy" counters which are exposed to
 718         // races during updates for a lower probe effect.
 719         TEVENT (Wait Reentry - futile wakeup) ;
 720         ++ nWakeups ;
 721 
 722         // Assuming this is not a spurious wakeup we'll normally
 723         // find that _succ == Self.
 724         if (_succ == Self) _succ = NULL ;
 725 
 726         // Invariant: after clearing _succ a contending thread
 727         // *must* retry  _owner before parking.
 728         OrderAccess::fence() ;
 729 
 730         if (ObjectMonitor::_sync_FutileWakeups != NULL) {
 731           ObjectMonitor::_sync_FutileWakeups->inc() ;
 732         }
 733     }
 734 
 735     // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
 736     // Normally we'll find Self on the EntryList.
 737     // Unlinking from the EntryList is constant-time and atomic-free.
 738     // From the perspective of the lock owner (this thread), the
 739     // EntryList is stable and cxq is prepend-only.
 740     // The head of cxq is volatile but the interior is stable.
 741     // In addition, Self.TState is stable.
 742 
 743     assert (_owner == Self, "invariant") ;
 744     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
 745     UnlinkAfterAcquire (Self, SelfNode) ;
 746     if (_succ == Self) _succ = NULL ;
 747     assert (_succ != Self, "invariant") ;
 748     SelfNode->TState = ObjectWaiter::TS_RUN ;
 749     OrderAccess::fence() ;      // see comments at the end of EnterI()
 750 }
 751 
 752 // after the thread acquires the lock in ::enter().  Equally, we could defer
 753 // unlinking the thread until ::exit()-time.
 754 
 755 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
 756 {
 757     assert (_owner == Self, "invariant") ;
 758     assert (SelfNode->_thread == Self, "invariant") ;
 759 
 760     if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
 761         // Normal case: remove Self from the DLL EntryList .
 762         // This is a constant-time operation.
 763         ObjectWaiter * nxt = SelfNode->_next ;
 764         ObjectWaiter * prv = SelfNode->_prev ;
 765         if (nxt != NULL) nxt->_prev = prv ;
 766         if (prv != NULL) prv->_next = nxt ;
 767         if (SelfNode == _EntryList ) _EntryList = nxt ;
 768         assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 769         assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
 770         TEVENT (Unlink from EntryList) ;
 771     } else {
 772         guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 773         // Inopportune interleaving -- Self is still on the cxq.
 774         // This usually means the enqueue of self raced an exiting thread.
 775         // Normally we'll find Self near the front of the cxq, so
 776         // dequeueing is typically fast.  If needbe we can accelerate
 777         // this with some MCS/CHL-like bidirectional list hints and advisory
 778         // back-links so dequeueing from the interior will normally operate
 779         // in constant-time.
 780         // Dequeue Self from either the head (with CAS) or from the interior
 781         // with a linear-time scan and normal non-atomic memory operations.
 782         // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
 783         // and then unlink Self from EntryList.  We have to drain eventually,
 784         // so it might as well be now.
 785 
 786         ObjectWaiter * v = _cxq ;
 787         assert (v != NULL, "invariant") ;
 788         if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
 789             // The CAS above can fail from interference IFF a "RAT" arrived.
 790             // In that case Self must be in the interior and can no longer be
 791             // at the head of cxq.
 792             if (v == SelfNode) {
 793                 assert (_cxq != v, "invariant") ;
 794                 v = _cxq ;          // CAS above failed - start scan at head of list
 795             }
 796             ObjectWaiter * p ;
 797             ObjectWaiter * q = NULL ;
 798             for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
 799                 q = p ;
 800                 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
 801             }
 802             assert (v != SelfNode,  "invariant") ;
 803             assert (p == SelfNode,  "Node not found on cxq") ;
 804             assert (p != _cxq,      "invariant") ;
 805             assert (q != NULL,      "invariant") ;
 806             assert (q->_next == p,  "invariant") ;
 807             q->_next = p->_next ;
 808         }
 809         TEVENT (Unlink from cxq) ;
 810     }
 811 
 812     // Diagnostic hygiene ...
 813     SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
 814     SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
 815     SelfNode->TState = ObjectWaiter::TS_RUN ;
 816 }
 817 
 818 // -----------------------------------------------------------------------------
 819 // Exit support
 820 //
 821 // exit()
 822 // ~~~~~~
 823 // Note that the collector can't reclaim the objectMonitor or deflate
 824 // the object out from underneath the thread calling ::exit() as the
 825 // thread calling ::exit() never transitions to a stable state.
 826 // This inhibits GC, which in turn inhibits asynchronous (and
 827 // inopportune) reclamation of "this".
 828 //
 829 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
 830 // There's one exception to the claim above, however.  EnterI() can call
 831 // exit() to drop a lock if the acquirer has been externally suspended.
 832 // In that case exit() is called with _thread_state as _thread_blocked,
 833 // but the monitor's _count field is > 0, which inhibits reclamation.
 834 //
 835 // 1-0 exit
 836 // ~~~~~~~~
 837 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
 838 // the fast-path operators have been optimized so the common ::exit()
 839 // operation is 1-0.  See i486.ad fast_unlock(), for instance.
 840 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
 841 // greatly improves latency -- MEMBAR and CAS having considerable local
 842 // latency on modern processors -- but at the cost of "stranding".  Absent the
 843 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
 844 // ::enter() path, resulting in the entering thread being stranding
 845 // and a progress-liveness failure.   Stranding is extremely rare.
 846 // We use timers (timed park operations) & periodic polling to detect
 847 // and recover from stranding.  Potentially stranded threads periodically
 848 // wake up and poll the lock.  See the usage of the _Responsible variable.
 849 //
 850 // The CAS() in enter provides for safety and exclusion, while the CAS or
 851 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
 852 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
 853 // We detect and recover from stranding with timers.
 854 //
 855 // If a thread transiently strands it'll park until (a) another
 856 // thread acquires the lock and then drops the lock, at which time the
 857 // exiting thread will notice and unpark the stranded thread, or, (b)
 858 // the timer expires.  If the lock is high traffic then the stranding latency
 859 // will be low due to (a).  If the lock is low traffic then the odds of
 860 // stranding are lower, although the worst-case stranding latency
 861 // is longer.  Critically, we don't want to put excessive load in the
 862 // platform's timer subsystem.  We want to minimize both the timer injection
 863 // rate (timers created/sec) as well as the number of timers active at
 864 // any one time.  (more precisely, we want to minimize timer-seconds, which is
 865 // the integral of the # of active timers at any instant over time).
 866 // Both impinge on OS scalability.  Given that, at most one thread parked on
 867 // a monitor will use a timer.
 868 
 869 void ATTR ObjectMonitor::exit(TRAPS) {
 870    Thread * Self = THREAD ;
 871    if (THREAD != _owner) {
 872      if (THREAD->is_lock_owned((address) _owner)) {
 873        // Transmute _owner from a BasicLock pointer to a Thread address.
 874        // We don't need to hold _mutex for this transition.
 875        // Non-null to Non-null is safe as long as all readers can
 876        // tolerate either flavor.
 877        assert (_recursions == 0, "invariant") ;
 878        _owner = THREAD ;
 879        _recursions = 0 ;
 880        OwnerIsThread = 1 ;
 881      } else {
 882        // NOTE: we need to handle unbalanced monitor enter/exit
 883        // in native code by throwing an exception.
 884        // TODO: Throw an IllegalMonitorStateException ?
 885        TEVENT (Exit - Throw IMSX) ;
 886        assert(false, "Non-balanced monitor enter/exit!");
 887        if (false) {
 888           THROW(vmSymbols::java_lang_IllegalMonitorStateException());
 889        }
 890        return;
 891      }
 892    }
 893 
 894    if (_recursions != 0) {
 895      _recursions--;        // this is simple recursive enter
 896      TEVENT (Inflated exit - recursive) ;
 897      return ;
 898    }
 899 
 900    // Invariant: after setting Responsible=null an thread must execute
 901    // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
 902    if ((SyncFlags & 4) == 0) {
 903       _Responsible = NULL ;
 904    }
 905 
 906    for (;;) {
 907       assert (THREAD == _owner, "invariant") ;
 908 
 909 
 910       if (Knob_ExitPolicy == 0) {
 911          // release semantics: prior loads and stores from within the critical section
 912          // must not float (reorder) past the following store that drops the lock.
 913          // On SPARC that requires MEMBAR #loadstore|#storestore.
 914          // But of course in TSO #loadstore|#storestore is not required.
 915          // I'd like to write one of the following:
 916          // A.  OrderAccess::release() ; _owner = NULL
 917          // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
 918          // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
 919          // store into a _dummy variable.  That store is not needed, but can result
 920          // in massive wasteful coherency traffic on classic SMP systems.
 921          // Instead, I use release_store(), which is implemented as just a simple
 922          // ST on x64, x86 and SPARC.
 923          OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 924          OrderAccess::storeload() ;                         // See if we need to wake a successor
 925          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 926             TEVENT (Inflated exit - simple egress) ;
 927             return ;
 928          }
 929          TEVENT (Inflated exit - complex egress) ;
 930 
 931          // Normally the exiting thread is responsible for ensuring succession,
 932          // but if other successors are ready or other entering threads are spinning
 933          // then this thread can simply store NULL into _owner and exit without
 934          // waking a successor.  The existence of spinners or ready successors
 935          // guarantees proper succession (liveness).  Responsibility passes to the
 936          // ready or running successors.  The exiting thread delegates the duty.
 937          // More precisely, if a successor already exists this thread is absolved
 938          // of the responsibility of waking (unparking) one.
 939          //
 940          // The _succ variable is critical to reducing futile wakeup frequency.
 941          // _succ identifies the "heir presumptive" thread that has been made
 942          // ready (unparked) but that has not yet run.  We need only one such
 943          // successor thread to guarantee progress.
 944          // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
 945          // section 3.3 "Futile Wakeup Throttling" for details.
 946          //
 947          // Note that spinners in Enter() also set _succ non-null.
 948          // In the current implementation spinners opportunistically set
 949          // _succ so that exiting threads might avoid waking a successor.
 950          // Another less appealing alternative would be for the exiting thread
 951          // to drop the lock and then spin briefly to see if a spinner managed
 952          // to acquire the lock.  If so, the exiting thread could exit
 953          // immediately without waking a successor, otherwise the exiting
 954          // thread would need to dequeue and wake a successor.
 955          // (Note that we'd need to make the post-drop spin short, but no
 956          // shorter than the worst-case round-trip cache-line migration time.
 957          // The dropped lock needs to become visible to the spinner, and then
 958          // the acquisition of the lock by the spinner must become visible to
 959          // the exiting thread).
 960          //
 961 
 962          // It appears that an heir-presumptive (successor) must be made ready.
 963          // Only the current lock owner can manipulate the EntryList or
 964          // drain _cxq, so we need to reacquire the lock.  If we fail
 965          // to reacquire the lock the responsibility for ensuring succession
 966          // falls to the new owner.
 967          //
 968          if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 969             return ;
 970          }
 971          TEVENT (Exit - Reacquired) ;
 972       } else {
 973          if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
 974             OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
 975             OrderAccess::storeload() ;
 976             // Ratify the previously observed values.
 977             if (_cxq == NULL || _succ != NULL) {
 978                 TEVENT (Inflated exit - simple egress) ;
 979                 return ;
 980             }
 981 
 982             // inopportune interleaving -- the exiting thread (this thread)
 983             // in the fast-exit path raced an entering thread in the slow-enter
 984             // path.
 985             // We have two choices:
 986             // A.  Try to reacquire the lock.
 987             //     If the CAS() fails return immediately, otherwise
 988             //     we either restart/rerun the exit operation, or simply
 989             //     fall-through into the code below which wakes a successor.
 990             // B.  If the elements forming the EntryList|cxq are TSM
 991             //     we could simply unpark() the lead thread and return
 992             //     without having set _succ.
 993             if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
 994                TEVENT (Inflated exit - reacquired succeeded) ;
 995                return ;
 996             }
 997             TEVENT (Inflated exit - reacquired failed) ;
 998          } else {
 999             TEVENT (Inflated exit - complex egress) ;
1000          }
1001       }
1002 
1003       guarantee (_owner == THREAD, "invariant") ;
1004 
1005       ObjectWaiter * w = NULL ;
1006       int QMode = Knob_QMode ;
1007 
1008       if (QMode == 2 && _cxq != NULL) {
1009           // QMode == 2 : cxq has precedence over EntryList.
1010           // Try to directly wake a successor from the cxq.
1011           // If successful, the successor will need to unlink itself from cxq.
1012           w = _cxq ;
1013           assert (w != NULL, "invariant") ;
1014           assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1015           ExitEpilog (Self, w) ;
1016           return ;
1017       }
1018 
1019       if (QMode == 3 && _cxq != NULL) {
1020           // Aggressively drain cxq into EntryList at the first opportunity.
1021           // This policy ensure that recently-run threads live at the head of EntryList.
1022           // Drain _cxq into EntryList - bulk transfer.
1023           // First, detach _cxq.
1024           // The following loop is tantamount to: w = swap (&cxq, NULL)
1025           w = _cxq ;
1026           for (;;) {
1027              assert (w != NULL, "Invariant") ;
1028              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1029              if (u == w) break ;
1030              w = u ;
1031           }
1032           assert (w != NULL              , "invariant") ;
1033 
1034           ObjectWaiter * q = NULL ;
1035           ObjectWaiter * p ;
1036           for (p = w ; p != NULL ; p = p->_next) {
1037               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1038               p->TState = ObjectWaiter::TS_ENTER ;
1039               p->_prev = q ;
1040               q = p ;
1041           }
1042 
1043           // Append the RATs to the EntryList
1044           // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
1045           ObjectWaiter * Tail ;
1046           for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
1047           if (Tail == NULL) {
1048               _EntryList = w ;
1049           } else {
1050               Tail->_next = w ;
1051               w->_prev = Tail ;
1052           }
1053 
1054           // Fall thru into code that tries to wake a successor from EntryList
1055       }
1056 
1057       if (QMode == 4 && _cxq != NULL) {
1058           // Aggressively drain cxq into EntryList at the first opportunity.
1059           // This policy ensure that recently-run threads live at the head of EntryList.
1060 
1061           // Drain _cxq into EntryList - bulk transfer.
1062           // First, detach _cxq.
1063           // The following loop is tantamount to: w = swap (&cxq, NULL)
1064           w = _cxq ;
1065           for (;;) {
1066              assert (w != NULL, "Invariant") ;
1067              ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1068              if (u == w) break ;
1069              w = u ;
1070           }
1071           assert (w != NULL              , "invariant") ;
1072 
1073           ObjectWaiter * q = NULL ;
1074           ObjectWaiter * p ;
1075           for (p = w ; p != NULL ; p = p->_next) {
1076               guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1077               p->TState = ObjectWaiter::TS_ENTER ;
1078               p->_prev = q ;
1079               q = p ;
1080           }
1081 
1082           // Prepend the RATs to the EntryList
1083           if (_EntryList != NULL) {
1084               q->_next = _EntryList ;
1085               _EntryList->_prev = q ;
1086           }
1087           _EntryList = w ;
1088 
1089           // Fall thru into code that tries to wake a successor from EntryList
1090       }
1091 
1092       w = _EntryList  ;
1093       if (w != NULL) {
1094           // I'd like to write: guarantee (w->_thread != Self).
1095           // But in practice an exiting thread may find itself on the EntryList.
1096           // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1097           // then calls exit().  Exit release the lock by setting O._owner to NULL.
1098           // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
1099           // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1100           // release the lock "O".  T2 resumes immediately after the ST of null into
1101           // _owner, above.  T2 notices that the EntryList is populated, so it
1102           // reacquires the lock and then finds itself on the EntryList.
1103           // Given all that, we have to tolerate the circumstance where "w" is
1104           // associated with Self.
1105           assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1106           ExitEpilog (Self, w) ;
1107           return ;
1108       }
1109 
1110       // If we find that both _cxq and EntryList are null then just
1111       // re-run the exit protocol from the top.
1112       w = _cxq ;
1113       if (w == NULL) continue ;
1114 
1115       // Drain _cxq into EntryList - bulk transfer.
1116       // First, detach _cxq.
1117       // The following loop is tantamount to: w = swap (&cxq, NULL)
1118       for (;;) {
1119           assert (w != NULL, "Invariant") ;
1120           ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
1121           if (u == w) break ;
1122           w = u ;
1123       }
1124       TEVENT (Inflated exit - drain cxq into EntryList) ;
1125 
1126       assert (w != NULL              , "invariant") ;
1127       assert (_EntryList  == NULL    , "invariant") ;
1128 
1129       // Convert the LIFO SLL anchored by _cxq into a DLL.
1130       // The list reorganization step operates in O(LENGTH(w)) time.
1131       // It's critical that this step operate quickly as
1132       // "Self" still holds the outer-lock, restricting parallelism
1133       // and effectively lengthening the critical section.
1134       // Invariant: s chases t chases u.
1135       // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1136       // we have faster access to the tail.
1137 
1138       if (QMode == 1) {
1139          // QMode == 1 : drain cxq to EntryList, reversing order
1140          // We also reverse the order of the list.
1141          ObjectWaiter * s = NULL ;
1142          ObjectWaiter * t = w ;
1143          ObjectWaiter * u = NULL ;
1144          while (t != NULL) {
1145              guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
1146              t->TState = ObjectWaiter::TS_ENTER ;
1147              u = t->_next ;
1148              t->_prev = u ;
1149              t->_next = s ;
1150              s = t;
1151              t = u ;
1152          }
1153          _EntryList  = s ;
1154          assert (s != NULL, "invariant") ;
1155       } else {
1156          // QMode == 0 or QMode == 2
1157          _EntryList = w ;
1158          ObjectWaiter * q = NULL ;
1159          ObjectWaiter * p ;
1160          for (p = w ; p != NULL ; p = p->_next) {
1161              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
1162              p->TState = ObjectWaiter::TS_ENTER ;
1163              p->_prev = q ;
1164              q = p ;
1165          }
1166       }
1167 
1168       // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1169       // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1170 
1171       // See if we can abdicate to a spinner instead of waking a thread.
1172       // A primary goal of the implementation is to reduce the
1173       // context-switch rate.
1174       if (_succ != NULL) continue;
1175 
1176       w = _EntryList  ;
1177       if (w != NULL) {
1178           guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1179           ExitEpilog (Self, w) ;
1180           return ;
1181       }
1182    }
1183 }
1184 
1185 // ExitSuspendEquivalent:
1186 // A faster alternate to handle_special_suspend_equivalent_condition()
1187 //
1188 // handle_special_suspend_equivalent_condition() unconditionally
1189 // acquires the SR_lock.  On some platforms uncontended MutexLocker()
1190 // operations have high latency.  Note that in ::enter() we call HSSEC
1191 // while holding the monitor, so we effectively lengthen the critical sections.
1192 //
1193 // There are a number of possible solutions:
1194 //
1195 // A.  To ameliorate the problem we might also defer state transitions
1196 //     to as late as possible -- just prior to parking.
1197 //     Given that, we'd call HSSEC after having returned from park(),
1198 //     but before attempting to acquire the monitor.  This is only a
1199 //     partial solution.  It avoids calling HSSEC while holding the
1200 //     monitor (good), but it still increases successor reacquisition latency --
1201 //     the interval between unparking a successor and the time the successor
1202 //     resumes and retries the lock.  See ReenterI(), which defers state transitions.
1203 //     If we use this technique we can also avoid EnterI()-exit() loop
1204 //     in ::enter() where we iteratively drop the lock and then attempt
1205 //     to reacquire it after suspending.
1206 //
1207 // B.  In the future we might fold all the suspend bits into a
1208 //     composite per-thread suspend flag and then update it with CAS().
1209 //     Alternately, a Dekker-like mechanism with multiple variables
1210 //     would suffice:
1211 //       ST Self->_suspend_equivalent = false
1212 //       MEMBAR
1213 //       LD Self_>_suspend_flags
1214 //
1215 
1216 
1217 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
1218    int Mode = Knob_FastHSSEC ;
1219    if (Mode && !jSelf->is_external_suspend()) {
1220       assert (jSelf->is_suspend_equivalent(), "invariant") ;
1221       jSelf->clear_suspend_equivalent() ;
1222       if (2 == Mode) OrderAccess::storeload() ;
1223       if (!jSelf->is_external_suspend()) return false ;
1224       // We raced a suspension -- fall thru into the slow path
1225       TEVENT (ExitSuspendEquivalent - raced) ;
1226       jSelf->set_suspend_equivalent() ;
1227    }
1228    return jSelf->handle_special_suspend_equivalent_condition() ;
1229 }
1230 
1231 
1232 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
1233    assert (_owner == Self, "invariant") ;
1234 
1235    // Exit protocol:
1236    // 1. ST _succ = wakee
1237    // 2. membar #loadstore|#storestore;
1238    // 2. ST _owner = NULL
1239    // 3. unpark(wakee)
1240 
1241    _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
1242    ParkEvent * Trigger = Wakee->_event ;
1243 
1244    // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1245    // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1246    // out-of-scope (non-extant).
1247    Wakee  = NULL ;
1248 
1249    // Drop the lock
1250    OrderAccess::release_store_ptr (&_owner, NULL) ;
1251    OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
1252 
1253    if (SafepointSynchronize::do_call_back()) {
1254       TEVENT (unpark before SAFEPOINT) ;
1255    }
1256 
1257    DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
1258    Trigger->unpark() ;
1259 
1260    // Maintain stats and report events to JVMTI
1261    if (ObjectMonitor::_sync_Parks != NULL) {
1262       ObjectMonitor::_sync_Parks->inc() ;
1263    }
1264 }
1265 
1266 
1267 // -----------------------------------------------------------------------------
1268 // Class Loader deadlock handling.
1269 //
1270 // complete_exit exits a lock returning recursion count
1271 // complete_exit/reenter operate as a wait without waiting
1272 // complete_exit requires an inflated monitor
1273 // The _owner field is not always the Thread addr even with an
1274 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1275 // thread due to contention.
1276 intptr_t ObjectMonitor::complete_exit(TRAPS) {
1277    Thread * const Self = THREAD;
1278    assert(Self->is_Java_thread(), "Must be Java thread!");
1279    JavaThread *jt = (JavaThread *)THREAD;
1280 
1281    DeferredInitialize();
1282 
1283    if (THREAD != _owner) {
1284     if (THREAD->is_lock_owned ((address)_owner)) {
1285        assert(_recursions == 0, "internal state error");
1286        _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
1287        _recursions = 0 ;
1288        OwnerIsThread = 1 ;
1289     }
1290    }
1291 
1292    guarantee(Self == _owner, "complete_exit not owner");
1293    intptr_t save = _recursions; // record the old recursion count
1294    _recursions = 0;        // set the recursion level to be 0
1295    exit (Self) ;           // exit the monitor
1296    guarantee (_owner != Self, "invariant");
1297    return save;
1298 }
1299 
1300 // reenter() enters a lock and sets recursion count
1301 // complete_exit/reenter operate as a wait without waiting
1302 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
1303    Thread * const Self = THREAD;
1304    assert(Self->is_Java_thread(), "Must be Java thread!");
1305    JavaThread *jt = (JavaThread *)THREAD;
1306 
1307    guarantee(_owner != Self, "reenter already owner");
1308    enter (THREAD);       // enter the monitor
1309    guarantee (_recursions == 0, "reenter recursion");
1310    _recursions = recursions;
1311    return;
1312 }
1313 
1314 
1315 // -----------------------------------------------------------------------------
1316 // A macro is used below because there may already be a pending
1317 // exception which should not abort the execution of the routines
1318 // which use this (which is why we don't put this into check_slow and
1319 // call it with a CHECK argument).
1320 
1321 #define CHECK_OWNER()                                                             \
1322   do {                                                                            \
1323     if (THREAD != _owner) {                                                       \
1324       if (THREAD->is_lock_owned((address) _owner)) {                              \
1325         _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
1326         _recursions = 0;                                                          \
1327         OwnerIsThread = 1 ;                                                       \
1328       } else {                                                                    \
1329         TEVENT (Throw IMSX) ;                                                     \
1330         THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
1331       }                                                                           \
1332     }                                                                             \
1333   } while (false)
1334 
1335 // check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
1336 // TODO-FIXME: remove check_slow() -- it's likely dead.
1337 
1338 void ObjectMonitor::check_slow(TRAPS) {
1339   TEVENT (check_slow - throw IMSX) ;
1340   assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
1341   THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
1342 }
1343 
1344 static int Adjust (volatile int * adr, int dx) {
1345   int v ;
1346   for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
1347   return v ;
1348 }
1349 // -----------------------------------------------------------------------------
1350 // Wait/Notify/NotifyAll
1351 //
1352 // Note: a subset of changes to ObjectMonitor::wait()
1353 // will need to be replicated in complete_exit above
1354 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1355    Thread * const Self = THREAD ;
1356    assert(Self->is_Java_thread(), "Must be Java thread!");
1357    JavaThread *jt = (JavaThread *)THREAD;
1358 
1359    DeferredInitialize () ;
1360 
1361    // Throw IMSX or IEX.
1362    CHECK_OWNER();
1363 
1364    // check for a pending interrupt
1365    if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1366      // post monitor waited event.  Note that this is past-tense, we are done waiting.
1367      if (JvmtiExport::should_post_monitor_waited()) {
1368         // Note: 'false' parameter is passed here because the
1369         // wait was not timed out due to thread interrupt.
1370         JvmtiExport::post_monitor_waited(jt, this, false);
1371      }
1372      TEVENT (Wait - Throw IEX) ;
1373      THROW(vmSymbols::java_lang_InterruptedException());
1374      return ;
1375    }
1376    TEVENT (Wait) ;
1377 
1378    assert (Self->_Stalled == 0, "invariant") ;
1379    Self->_Stalled = intptr_t(this) ;
1380    jt->set_current_waiting_monitor(this);
1381 
1382    // create a node to be put into the queue
1383    // Critically, after we reset() the event but prior to park(), we must check
1384    // for a pending interrupt.
1385    ObjectWaiter node(Self);
1386    node.TState = ObjectWaiter::TS_WAIT ;
1387    Self->_ParkEvent->reset() ;
1388    OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1389 
1390    // Enter the waiting queue, which is a circular doubly linked list in this case
1391    // but it could be a priority queue or any data structure.
1392    // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1393    // by the the owner of the monitor *except* in the case where park()
1394    // returns because of a timeout of interrupt.  Contention is exceptionally rare
1395    // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1396 
1397    Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
1398    AddWaiter (&node) ;
1399    Thread::SpinRelease (&_WaitSetLock) ;
1400 
1401    if ((SyncFlags & 4) == 0) {
1402       _Responsible = NULL ;
1403    }
1404    intptr_t save = _recursions; // record the old recursion count
1405    _waiters++;                  // increment the number of waiters
1406    _recursions = 0;             // set the recursion level to be 1
1407    exit (Self) ;                    // exit the monitor
1408    guarantee (_owner != Self, "invariant") ;
1409 
1410    // As soon as the ObjectMonitor's ownership is dropped in the exit()
1411    // call above, another thread can enter() the ObjectMonitor, do the
1412    // notify(), and exit() the ObjectMonitor. If the other thread's
1413    // exit() call chooses this thread as the successor and the unpark()
1414    // call happens to occur while this thread is posting a
1415    // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
1416    // handler using RawMonitors and consuming the unpark().
1417    //
1418    // To avoid the problem, we re-post the event. This does no harm
1419    // even if the original unpark() was not consumed because we are the
1420    // chosen successor for this monitor.
1421    if (node._notified != 0 && _succ == Self) {
1422       node._event->unpark();
1423    }
1424 
1425    // The thread is on the WaitSet list - now park() it.
1426    // On MP systems it's conceivable that a brief spin before we park
1427    // could be profitable.
1428    //
1429    // TODO-FIXME: change the following logic to a loop of the form
1430    //   while (!timeout && !interrupted && _notified == 0) park()
1431 
1432    int ret = OS_OK ;
1433    int WasNotified = 0 ;
1434    { // State transition wrappers
1435      OSThread* osthread = Self->osthread();
1436      OSThreadWaitState osts(osthread, true);
1437      {
1438        ThreadBlockInVM tbivm(jt);
1439        // Thread is in thread_blocked state and oop access is unsafe.
1440        jt->set_suspend_equivalent();
1441 
1442        if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
1443            // Intentionally empty
1444        } else
1445        if (node._notified == 0) {
1446          if (millis <= 0) {
1447             Self->_ParkEvent->park () ;
1448          } else {
1449             ret = Self->_ParkEvent->park (millis) ;
1450          }
1451        }
1452 
1453        // were we externally suspended while we were waiting?
1454        if (ExitSuspendEquivalent (jt)) {
1455           // TODO-FIXME: add -- if succ == Self then succ = null.
1456           jt->java_suspend_self();
1457        }
1458 
1459      } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
1460 
1461 
1462      // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1463      // from the WaitSet to the EntryList.
1464      // See if we need to remove Node from the WaitSet.
1465      // We use double-checked locking to avoid grabbing _WaitSetLock
1466      // if the thread is not on the wait queue.
1467      //
1468      // Note that we don't need a fence before the fetch of TState.
1469      // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1470      // written by the is thread. (perhaps the fetch might even be satisfied
1471      // by a look-aside into the processor's own store buffer, although given
1472      // the length of the code path between the prior ST and this load that's
1473      // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1474      // then we'll acquire the lock and then re-fetch a fresh TState value.
1475      // That is, we fail toward safety.
1476 
1477      if (node.TState == ObjectWaiter::TS_WAIT) {
1478          Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
1479          if (node.TState == ObjectWaiter::TS_WAIT) {
1480             DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
1481             assert(node._notified == 0, "invariant");
1482             node.TState = ObjectWaiter::TS_RUN ;
1483          }
1484          Thread::SpinRelease (&_WaitSetLock) ;
1485      }
1486 
1487      // The thread is now either on off-list (TS_RUN),
1488      // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1489      // The Node's TState variable is stable from the perspective of this thread.
1490      // No other threads will asynchronously modify TState.
1491      guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
1492      OrderAccess::loadload() ;
1493      if (_succ == Self) _succ = NULL ;
1494      WasNotified = node._notified ;
1495 
1496      // Reentry phase -- reacquire the monitor.
1497      // re-enter contended monitor after object.wait().
1498      // retain OBJECT_WAIT state until re-enter successfully completes
1499      // Thread state is thread_in_vm and oop access is again safe,
1500      // although the raw address of the object may have changed.
1501      // (Don't cache naked oops over safepoints, of course).
1502 
1503      // post monitor waited event. Note that this is past-tense, we are done waiting.
1504      if (JvmtiExport::should_post_monitor_waited()) {
1505        JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
1506      }
1507      OrderAccess::fence() ;
1508 
1509      assert (Self->_Stalled != 0, "invariant") ;
1510      Self->_Stalled = 0 ;
1511 
1512      assert (_owner != Self, "invariant") ;
1513      ObjectWaiter::TStates v = node.TState ;
1514      if (v == ObjectWaiter::TS_RUN) {
1515          enter (Self) ;
1516      } else {
1517          guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
1518          ReenterI (Self, &node) ;
1519          node.wait_reenter_end(this);
1520      }
1521 
1522      // Self has reacquired the lock.
1523      // Lifecycle - the node representing Self must not appear on any queues.
1524      // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1525      // want residual elements associated with this thread left on any lists.
1526      guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
1527      assert    (_owner == Self, "invariant") ;
1528      assert    (_succ != Self , "invariant") ;
1529    } // OSThreadWaitState()
1530 
1531    jt->set_current_waiting_monitor(NULL);
1532 
1533    guarantee (_recursions == 0, "invariant") ;
1534    _recursions = save;     // restore the old recursion count
1535    _waiters--;             // decrement the number of waiters
1536 
1537    // Verify a few postconditions
1538    assert (_owner == Self       , "invariant") ;
1539    assert (_succ  != Self       , "invariant") ;
1540    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
1541 
1542    if (SyncFlags & 32) {
1543       OrderAccess::fence() ;
1544    }
1545 
1546    // check if the notification happened
1547    if (!WasNotified) {
1548      // no, it could be timeout or Thread.interrupt() or both
1549      // check for interrupt event, otherwise it is timeout
1550      if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
1551        TEVENT (Wait - throw IEX from epilog) ;
1552        THROW(vmSymbols::java_lang_InterruptedException());
1553      }
1554    }
1555 
1556    // NOTE: Spurious wake up will be consider as timeout.
1557    // Monitor notify has precedence over thread interrupt.
1558 }
1559 
1560 
1561 // Consider:
1562 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1563 // then instead of transferring a thread from the WaitSet to the EntryList
1564 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1565 
1566 void ObjectMonitor::notify(TRAPS) {
1567   CHECK_OWNER();
1568   if (_WaitSet == NULL) {
1569      TEVENT (Empty-Notify) ;
1570      return ;
1571   }
1572   DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
1573 
1574   int Policy = Knob_MoveNotifyee ;
1575 
1576   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
1577   ObjectWaiter * iterator = DequeueWaiter() ;
1578   if (iterator != NULL) {
1579      TEVENT (Notify1 - Transfer) ;
1580      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1581      guarantee (iterator->_notified == 0, "invariant") ;
1582      if (Policy != 4) {
1583         iterator->TState = ObjectWaiter::TS_ENTER ;
1584      }
1585      iterator->_notified = 1 ;
1586 
1587      ObjectWaiter * List = _EntryList ;
1588      if (List != NULL) {
1589         assert (List->_prev == NULL, "invariant") ;
1590         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1591         assert (List != iterator, "invariant") ;
1592      }
1593 
1594      if (Policy == 0) {       // prepend to EntryList
1595          if (List == NULL) {
1596              iterator->_next = iterator->_prev = NULL ;
1597              _EntryList = iterator ;
1598          } else {
1599              List->_prev = iterator ;
1600              iterator->_next = List ;
1601              iterator->_prev = NULL ;
1602              _EntryList = iterator ;
1603         }
1604      } else
1605      if (Policy == 1) {      // append to EntryList
1606          if (List == NULL) {
1607              iterator->_next = iterator->_prev = NULL ;
1608              _EntryList = iterator ;
1609          } else {
1610             // CONSIDER:  finding the tail currently requires a linear-time walk of
1611             // the EntryList.  We can make tail access constant-time by converting to
1612             // a CDLL instead of using our current DLL.
1613             ObjectWaiter * Tail ;
1614             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1615             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1616             Tail->_next = iterator ;
1617             iterator->_prev = Tail ;
1618             iterator->_next = NULL ;
1619         }
1620      } else
1621      if (Policy == 2) {      // prepend to cxq
1622          // prepend to cxq
1623          if (List == NULL) {
1624              iterator->_next = iterator->_prev = NULL ;
1625              _EntryList = iterator ;
1626          } else {
1627             iterator->TState = ObjectWaiter::TS_CXQ ;
1628             for (;;) {
1629                 ObjectWaiter * Front = _cxq ;
1630                 iterator->_next = Front ;
1631                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1632                     break ;
1633                 }
1634             }
1635          }
1636      } else
1637      if (Policy == 3) {      // append to cxq
1638         iterator->TState = ObjectWaiter::TS_CXQ ;
1639         for (;;) {
1640             ObjectWaiter * Tail ;
1641             Tail = _cxq ;
1642             if (Tail == NULL) {
1643                 iterator->_next = NULL ;
1644                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1645                    break ;
1646                 }
1647             } else {
1648                 while (Tail->_next != NULL) Tail = Tail->_next ;
1649                 Tail->_next = iterator ;
1650                 iterator->_prev = Tail ;
1651                 iterator->_next = NULL ;
1652                 break ;
1653             }
1654         }
1655      } else {
1656         ParkEvent * ev = iterator->_event ;
1657         iterator->TState = ObjectWaiter::TS_RUN ;
1658         OrderAccess::fence() ;
1659         ev->unpark() ;
1660      }
1661 
1662      if (Policy < 4) {
1663        iterator->wait_reenter_begin(this);
1664      }
1665 
1666      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1667      // move the add-to-EntryList operation, above, outside the critical section
1668      // protected by _WaitSetLock.  In practice that's not useful.  With the
1669      // exception of  wait() timeouts and interrupts the monitor owner
1670      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1671      // on _WaitSetLock so it's not profitable to reduce the length of the
1672      // critical section.
1673   }
1674 
1675   Thread::SpinRelease (&_WaitSetLock) ;
1676 
1677   if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
1678      ObjectMonitor::_sync_Notifications->inc() ;
1679   }
1680 }
1681 
1682 
1683 void ObjectMonitor::notifyAll(TRAPS) {
1684   CHECK_OWNER();
1685   ObjectWaiter* iterator;
1686   if (_WaitSet == NULL) {
1687       TEVENT (Empty-NotifyAll) ;
1688       return ;
1689   }
1690   DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
1691 
1692   int Policy = Knob_MoveNotifyee ;
1693   int Tally = 0 ;
1694   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
1695 
1696   for (;;) {
1697      iterator = DequeueWaiter () ;
1698      if (iterator == NULL) break ;
1699      TEVENT (NotifyAll - Transfer1) ;
1700      ++Tally ;
1701 
1702      // Disposition - what might we do with iterator ?
1703      // a.  add it directly to the EntryList - either tail or head.
1704      // b.  push it onto the front of the _cxq.
1705      // For now we use (a).
1706 
1707      guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
1708      guarantee (iterator->_notified == 0, "invariant") ;
1709      iterator->_notified = 1 ;
1710      if (Policy != 4) {
1711         iterator->TState = ObjectWaiter::TS_ENTER ;
1712      }
1713 
1714      ObjectWaiter * List = _EntryList ;
1715      if (List != NULL) {
1716         assert (List->_prev == NULL, "invariant") ;
1717         assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
1718         assert (List != iterator, "invariant") ;
1719      }
1720 
1721      if (Policy == 0) {       // prepend to EntryList
1722          if (List == NULL) {
1723              iterator->_next = iterator->_prev = NULL ;
1724              _EntryList = iterator ;
1725          } else {
1726              List->_prev = iterator ;
1727              iterator->_next = List ;
1728              iterator->_prev = NULL ;
1729              _EntryList = iterator ;
1730         }
1731      } else
1732      if (Policy == 1) {      // append to EntryList
1733          if (List == NULL) {
1734              iterator->_next = iterator->_prev = NULL ;
1735              _EntryList = iterator ;
1736          } else {
1737             // CONSIDER:  finding the tail currently requires a linear-time walk of
1738             // the EntryList.  We can make tail access constant-time by converting to
1739             // a CDLL instead of using our current DLL.
1740             ObjectWaiter * Tail ;
1741             for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
1742             assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
1743             Tail->_next = iterator ;
1744             iterator->_prev = Tail ;
1745             iterator->_next = NULL ;
1746         }
1747      } else
1748      if (Policy == 2) {      // prepend to cxq
1749          // prepend to cxq
1750          iterator->TState = ObjectWaiter::TS_CXQ ;
1751          for (;;) {
1752              ObjectWaiter * Front = _cxq ;
1753              iterator->_next = Front ;
1754              if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
1755                  break ;
1756              }
1757          }
1758      } else
1759      if (Policy == 3) {      // append to cxq
1760         iterator->TState = ObjectWaiter::TS_CXQ ;
1761         for (;;) {
1762             ObjectWaiter * Tail ;
1763             Tail = _cxq ;
1764             if (Tail == NULL) {
1765                 iterator->_next = NULL ;
1766                 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
1767                    break ;
1768                 }
1769             } else {
1770                 while (Tail->_next != NULL) Tail = Tail->_next ;
1771                 Tail->_next = iterator ;
1772                 iterator->_prev = Tail ;
1773                 iterator->_next = NULL ;
1774                 break ;
1775             }
1776         }
1777      } else {
1778         ParkEvent * ev = iterator->_event ;
1779         iterator->TState = ObjectWaiter::TS_RUN ;
1780         OrderAccess::fence() ;
1781         ev->unpark() ;
1782      }
1783 
1784      if (Policy < 4) {
1785        iterator->wait_reenter_begin(this);
1786      }
1787 
1788      // _WaitSetLock protects the wait queue, not the EntryList.  We could
1789      // move the add-to-EntryList operation, above, outside the critical section
1790      // protected by _WaitSetLock.  In practice that's not useful.  With the
1791      // exception of  wait() timeouts and interrupts the monitor owner
1792      // is the only thread that grabs _WaitSetLock.  There's almost no contention
1793      // on _WaitSetLock so it's not profitable to reduce the length of the
1794      // critical section.
1795   }
1796 
1797   Thread::SpinRelease (&_WaitSetLock) ;
1798 
1799   if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
1800      ObjectMonitor::_sync_Notifications->inc(Tally) ;
1801   }
1802 }
1803 
1804 // -----------------------------------------------------------------------------
1805 // Adaptive Spinning Support
1806 //
1807 // Adaptive spin-then-block - rational spinning
1808 //
1809 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1810 // algorithm.  On high order SMP systems it would be better to start with
1811 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1812 // a contending thread could enqueue itself on the cxq and then spin locally
1813 // on a thread-specific variable such as its ParkEvent._Event flag.
1814 // That's left as an exercise for the reader.  Note that global spinning is
1815 // not problematic on Niagara, as the L2$ serves the interconnect and has both
1816 // low latency and massive bandwidth.
1817 //
1818 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1819 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1820 // (duration) or we can fix the count at approximately the duration of
1821 // a context switch and vary the frequency.   Of course we could also
1822 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1823 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
1824 //
1825 // This implementation varies the duration "D", where D varies with
1826 // the success rate of recent spin attempts. (D is capped at approximately
1827 // length of a round-trip context switch).  The success rate for recent
1828 // spin attempts is a good predictor of the success rate of future spin
1829 // attempts.  The mechanism adapts automatically to varying critical
1830 // section length (lock modality), system load and degree of parallelism.
1831 // D is maintained per-monitor in _SpinDuration and is initialized
1832 // optimistically.  Spin frequency is fixed at 100%.
1833 //
1834 // Note that _SpinDuration is volatile, but we update it without locks
1835 // or atomics.  The code is designed so that _SpinDuration stays within
1836 // a reasonable range even in the presence of races.  The arithmetic
1837 // operations on _SpinDuration are closed over the domain of legal values,
1838 // so at worst a race will install and older but still legal value.
1839 // At the very worst this introduces some apparent non-determinism.
1840 // We might spin when we shouldn't or vice-versa, but since the spin
1841 // count are relatively short, even in the worst case, the effect is harmless.
1842 //
1843 // Care must be taken that a low "D" value does not become an
1844 // an absorbing state.  Transient spinning failures -- when spinning
1845 // is overall profitable -- should not cause the system to converge
1846 // on low "D" values.  We want spinning to be stable and predictable
1847 // and fairly responsive to change and at the same time we don't want
1848 // it to oscillate, become metastable, be "too" non-deterministic,
1849 // or converge on or enter undesirable stable absorbing states.
1850 //
1851 // We implement a feedback-based control system -- using past behavior
1852 // to predict future behavior.  We face two issues: (a) if the
1853 // input signal is random then the spin predictor won't provide optimal
1854 // results, and (b) if the signal frequency is too high then the control
1855 // system, which has some natural response lag, will "chase" the signal.
1856 // (b) can arise from multimodal lock hold times.  Transient preemption
1857 // can also result in apparent bimodal lock hold times.
1858 // Although sub-optimal, neither condition is particularly harmful, as
1859 // in the worst-case we'll spin when we shouldn't or vice-versa.
1860 // The maximum spin duration is rather short so the failure modes aren't bad.
1861 // To be conservative, I've tuned the gain in system to bias toward
1862 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1863 // "rings" or oscillates between spinning and not spinning.  This happens
1864 // when spinning is just on the cusp of profitability, however, so the
1865 // situation is not dire.  The state is benign -- there's no need to add
1866 // hysteresis control to damp the transition rate between spinning and
1867 // not spinning.
1868 //
1869 
1870 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
1871 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
1872 
1873 // Spinning: Fixed frequency (100%), vary duration
1874 
1875 
1876 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
1877 
1878     // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1879     int ctr = Knob_FixedSpin ;
1880     if (ctr != 0) {
1881         while (--ctr >= 0) {
1882             if (TryLock (Self) > 0) return 1 ;
1883             SpinPause () ;
1884         }
1885         return 0 ;
1886     }
1887 
1888     for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
1889       if (TryLock(Self) > 0) {
1890         // Increase _SpinDuration ...
1891         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1892         // Raising _SpurDuration to the poverty line is key.
1893         int x = _SpinDuration ;
1894         if (x < Knob_SpinLimit) {
1895            if (x < Knob_Poverty) x = Knob_Poverty ;
1896            _SpinDuration = x + Knob_BonusB ;
1897         }
1898         return 1 ;
1899       }
1900       SpinPause () ;
1901     }
1902 
1903     // Admission control - verify preconditions for spinning
1904     //
1905     // We always spin a little bit, just to prevent _SpinDuration == 0 from
1906     // becoming an absorbing state.  Put another way, we spin briefly to
1907     // sample, just in case the system load, parallelism, contention, or lock
1908     // modality changed.
1909     //
1910     // Consider the following alternative:
1911     // Periodically set _SpinDuration = _SpinLimit and try a long/full
1912     // spin attempt.  "Periodically" might mean after a tally of
1913     // the # of failed spin attempts (or iterations) reaches some threshold.
1914     // This takes us into the realm of 1-out-of-N spinning, where we
1915     // hold the duration constant but vary the frequency.
1916 
1917     ctr = _SpinDuration  ;
1918     if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
1919     if (ctr <= 0) return 0 ;
1920 
1921     if (Knob_SuccRestrict && _succ != NULL) return 0 ;
1922     if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
1923        TEVENT (Spin abort - notrunnable [TOP]);
1924        return 0 ;
1925     }
1926 
1927     int MaxSpin = Knob_MaxSpinners ;
1928     if (MaxSpin >= 0) {
1929        if (_Spinner > MaxSpin) {
1930           TEVENT (Spin abort -- too many spinners) ;
1931           return 0 ;
1932        }
1933        // Slighty racy, but benign ...
1934        Adjust (&_Spinner, 1) ;
1935     }
1936 
1937     // We're good to spin ... spin ingress.
1938     // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1939     // when preparing to LD...CAS _owner, etc and the CAS is likely
1940     // to succeed.
1941     int hits    = 0 ;
1942     int msk     = 0 ;
1943     int caspty  = Knob_CASPenalty ;
1944     int oxpty   = Knob_OXPenalty ;
1945     int sss     = Knob_SpinSetSucc ;
1946     if (sss && _succ == NULL ) _succ = Self ;
1947     Thread * prv = NULL ;
1948 
1949     // There are three ways to exit the following loop:
1950     // 1.  A successful spin where this thread has acquired the lock.
1951     // 2.  Spin failure with prejudice
1952     // 3.  Spin failure without prejudice
1953 
1954     while (--ctr >= 0) {
1955 
1956       // Periodic polling -- Check for pending GC
1957       // Threads may spin while they're unsafe.
1958       // We don't want spinning threads to delay the JVM from reaching
1959       // a stop-the-world safepoint or to steal cycles from GC.
1960       // If we detect a pending safepoint we abort in order that
1961       // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1962       // this thread, if safe, doesn't steal cycles from GC.
1963       // This is in keeping with the "no loitering in runtime" rule.
1964       // We periodically check to see if there's a safepoint pending.
1965       if ((ctr & 0xFF) == 0) {
1966          if (SafepointSynchronize::do_call_back()) {
1967             TEVENT (Spin: safepoint) ;
1968             goto Abort ;           // abrupt spin egress
1969          }
1970          if (Knob_UsePause & 1) SpinPause () ;
1971 
1972          int (*scb)(intptr_t,int) = SpinCallbackFunction ;
1973          if (hits > 50 && scb != NULL) {
1974             int abend = (*scb)(SpinCallbackArgument, 0) ;
1975          }
1976       }
1977 
1978       if (Knob_UsePause & 2) SpinPause() ;
1979 
1980       // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
1981       // This is useful on classic SMP systems, but is of less utility on
1982       // N1-style CMT platforms.
1983       //
1984       // Trade-off: lock acquisition latency vs coherency bandwidth.
1985       // Lock hold times are typically short.  A histogram
1986       // of successful spin attempts shows that we usually acquire
1987       // the lock early in the spin.  That suggests we want to
1988       // sample _owner frequently in the early phase of the spin,
1989       // but then back-off and sample less frequently as the spin
1990       // progresses.  The back-off makes a good citizen on SMP big
1991       // SMP systems.  Oversampling _owner can consume excessive
1992       // coherency bandwidth.  Relatedly, if we _oversample _owner we
1993       // can inadvertently interfere with the the ST m->owner=null.
1994       // executed by the lock owner.
1995       if (ctr & msk) continue ;
1996       ++hits ;
1997       if ((hits & 0xF) == 0) {
1998         // The 0xF, above, corresponds to the exponent.
1999         // Consider: (msk+1)|msk
2000         msk = ((msk << 2)|3) & BackOffMask ;
2001       }
2002 
2003       // Probe _owner with TATAS
2004       // If this thread observes the monitor transition or flicker
2005       // from locked to unlocked to locked, then the odds that this
2006       // thread will acquire the lock in this spin attempt go down
2007       // considerably.  The same argument applies if the CAS fails
2008       // or if we observe _owner change from one non-null value to
2009       // another non-null value.   In such cases we might abort
2010       // the spin without prejudice or apply a "penalty" to the
2011       // spin count-down variable "ctr", reducing it by 100, say.
2012 
2013       Thread * ox = (Thread *) _owner ;
2014       if (ox == NULL) {
2015          ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
2016          if (ox == NULL) {
2017             // The CAS succeeded -- this thread acquired ownership
2018             // Take care of some bookkeeping to exit spin state.
2019             if (sss && _succ == Self) {
2020                _succ = NULL ;
2021             }
2022             if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
2023 
2024             // Increase _SpinDuration :
2025             // The spin was successful (profitable) so we tend toward
2026             // longer spin attempts in the future.
2027             // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
2028             // If we acquired the lock early in the spin cycle it
2029             // makes sense to increase _SpinDuration proportionally.
2030             // Note that we don't clamp SpinDuration precisely at SpinLimit.
2031             int x = _SpinDuration ;
2032             if (x < Knob_SpinLimit) {
2033                 if (x < Knob_Poverty) x = Knob_Poverty ;
2034                 _SpinDuration = x + Knob_Bonus ;
2035             }
2036             return 1 ;
2037          }
2038 
2039          // The CAS failed ... we can take any of the following actions:
2040          // * penalize: ctr -= Knob_CASPenalty
2041          // * exit spin with prejudice -- goto Abort;
2042          // * exit spin without prejudice.
2043          // * Since CAS is high-latency, retry again immediately.
2044          prv = ox ;
2045          TEVENT (Spin: cas failed) ;
2046          if (caspty == -2) break ;
2047          if (caspty == -1) goto Abort ;
2048          ctr -= caspty ;
2049          continue ;
2050       }
2051 
2052       // Did lock ownership change hands ?
2053       if (ox != prv && prv != NULL ) {
2054           TEVENT (spin: Owner changed)
2055           if (oxpty == -2) break ;
2056           if (oxpty == -1) goto Abort ;
2057           ctr -= oxpty ;
2058       }
2059       prv = ox ;
2060 
2061       // Abort the spin if the owner is not executing.
2062       // The owner must be executing in order to drop the lock.
2063       // Spinning while the owner is OFFPROC is idiocy.
2064       // Consider: ctr -= RunnablePenalty ;
2065       if (Knob_OState && NotRunnable (Self, ox)) {
2066          TEVENT (Spin abort - notrunnable);
2067          goto Abort ;
2068       }
2069       if (sss && _succ == NULL ) _succ = Self ;
2070    }
2071 
2072    // Spin failed with prejudice -- reduce _SpinDuration.
2073    // TODO: Use an AIMD-like policy to adjust _SpinDuration.
2074    // AIMD is globally stable.
2075    TEVENT (Spin failure) ;
2076    {
2077      int x = _SpinDuration ;
2078      if (x > 0) {
2079         // Consider an AIMD scheme like: x -= (x >> 3) + 100
2080         // This is globally sample and tends to damp the response.
2081         x -= Knob_Penalty ;
2082         if (x < 0) x = 0 ;
2083         _SpinDuration = x ;
2084      }
2085    }
2086 
2087  Abort:
2088    if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
2089    if (sss && _succ == Self) {
2090       _succ = NULL ;
2091       // Invariant: after setting succ=null a contending thread
2092       // must recheck-retry _owner before parking.  This usually happens
2093       // in the normal usage of TrySpin(), but it's safest
2094       // to make TrySpin() as foolproof as possible.
2095       OrderAccess::fence() ;
2096       if (TryLock(Self) > 0) return 1 ;
2097    }
2098    return 0 ;
2099 }
2100 
2101 // NotRunnable() -- informed spinning
2102 //
2103 // Don't bother spinning if the owner is not eligible to drop the lock.
2104 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
2105 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2106 // The thread must be runnable in order to drop the lock in timely fashion.
2107 // If the _owner is not runnable then spinning will not likely be
2108 // successful (profitable).
2109 //
2110 // Beware -- the thread referenced by _owner could have died
2111 // so a simply fetch from _owner->_thread_state might trap.
2112 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2113 // Because of the lifecycle issues the schedctl and _thread_state values
2114 // observed by NotRunnable() might be garbage.  NotRunnable must
2115 // tolerate this and consider the observed _thread_state value
2116 // as advisory.
2117 //
2118 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2119 // a thread pointer.  We differentiate the two cases with OwnerIsThread.
2120 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2121 // with the LSB of _owner.  Another option would be to probablistically probe
2122 // the putative _owner->TypeTag value.
2123 //
2124 // Checking _thread_state isn't perfect.  Even if the thread is
2125 // in_java it might be blocked on a page-fault or have been preempted
2126 // and sitting on a ready/dispatch queue.  _thread state in conjunction
2127 // with schedctl.sc_state gives us a good picture of what the
2128 // thread is doing, however.
2129 //
2130 // TODO: check schedctl.sc_state.
2131 // We'll need to use SafeFetch32() to read from the schedctl block.
2132 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
2133 //
2134 // The return value from NotRunnable() is *advisory* -- the
2135 // result is based on sampling and is not necessarily coherent.
2136 // The caller must tolerate false-negative and false-positive errors.
2137 // Spinning, in general, is probabilistic anyway.
2138 
2139 
2140 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
2141     // Check either OwnerIsThread or ox->TypeTag == 2BAD.
2142     if (!OwnerIsThread) return 0 ;
2143 
2144     if (ox == NULL) return 0 ;
2145 
2146     // Avoid transitive spinning ...
2147     // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2148     // Immediately after T1 acquires L it's possible that T2, also
2149     // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2150     // This occurs transiently after T1 acquired L but before
2151     // T1 managed to clear T1.Stalled.  T2 does not need to abort
2152     // its spin in this circumstance.
2153     intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
2154 
2155     if (BlockedOn == 1) return 1 ;
2156     if (BlockedOn != 0) {
2157       return BlockedOn != intptr_t(this) && _owner == ox ;
2158     }
2159 
2160     assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
2161     int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
2162     // consider also: jst != _thread_in_Java -- but that's overspecific.
2163     return jst == _thread_blocked || jst == _thread_in_native ;
2164 }
2165 
2166 
2167 // -----------------------------------------------------------------------------
2168 // WaitSet management ...
2169 
2170 ObjectWaiter::ObjectWaiter(Thread* thread) {
2171   _next     = NULL;
2172   _prev     = NULL;
2173   _notified = 0;
2174   TState    = TS_RUN ;
2175   _thread   = thread;
2176   _event    = thread->_ParkEvent ;
2177   _active   = false;
2178   assert (_event != NULL, "invariant") ;
2179 }
2180 
2181 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
2182   JavaThread *jt = (JavaThread *)this->_thread;
2183   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
2184 }
2185 
2186 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
2187   JavaThread *jt = (JavaThread *)this->_thread;
2188   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
2189 }
2190 
2191 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2192   assert(node != NULL, "should not dequeue NULL node");
2193   assert(node->_prev == NULL, "node already in list");
2194   assert(node->_next == NULL, "node already in list");
2195   // put node at end of queue (circular doubly linked list)
2196   if (_WaitSet == NULL) {
2197     _WaitSet = node;
2198     node->_prev = node;
2199     node->_next = node;
2200   } else {
2201     ObjectWaiter* head = _WaitSet ;
2202     ObjectWaiter* tail = head->_prev;
2203     assert(tail->_next == head, "invariant check");
2204     tail->_next = node;
2205     head->_prev = node;
2206     node->_next = head;
2207     node->_prev = tail;
2208   }
2209 }
2210 
2211 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2212   // dequeue the very first waiter
2213   ObjectWaiter* waiter = _WaitSet;
2214   if (waiter) {
2215     DequeueSpecificWaiter(waiter);
2216   }
2217   return waiter;
2218 }
2219 
2220 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2221   assert(node != NULL, "should not dequeue NULL node");
2222   assert(node->_prev != NULL, "node already removed from list");
2223   assert(node->_next != NULL, "node already removed from list");
2224   // when the waiter has woken up because of interrupt,
2225   // timeout or other spurious wake-up, dequeue the
2226   // waiter from waiting list
2227   ObjectWaiter* next = node->_next;
2228   if (next == node) {
2229     assert(node->_prev == node, "invariant check");
2230     _WaitSet = NULL;
2231   } else {
2232     ObjectWaiter* prev = node->_prev;
2233     assert(prev->_next == node, "invariant check");
2234     assert(next->_prev == node, "invariant check");
2235     next->_prev = prev;
2236     prev->_next = next;
2237     if (_WaitSet == node) {
2238       _WaitSet = next;
2239     }
2240   }
2241   node->_next = NULL;
2242   node->_prev = NULL;
2243 }
2244 
2245 // -----------------------------------------------------------------------------
2246 // PerfData support
2247 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL ;
2248 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL ;
2249 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL ;
2250 PerfCounter * ObjectMonitor::_sync_EmptyNotifications          = NULL ;
2251 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL ;
2252 PerfCounter * ObjectMonitor::_sync_PrivateA                    = NULL ;
2253 PerfCounter * ObjectMonitor::_sync_PrivateB                    = NULL ;
2254 PerfCounter * ObjectMonitor::_sync_SlowExit                    = NULL ;
2255 PerfCounter * ObjectMonitor::_sync_SlowEnter                   = NULL ;
2256 PerfCounter * ObjectMonitor::_sync_SlowNotify                  = NULL ;
2257 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll               = NULL ;
2258 PerfCounter * ObjectMonitor::_sync_FailedSpins                 = NULL ;
2259 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins             = NULL ;
2260 PerfCounter * ObjectMonitor::_sync_MonInCirculation            = NULL ;
2261 PerfCounter * ObjectMonitor::_sync_MonScavenged                = NULL ;
2262 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL ;
2263 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL ;
2264 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL ;
2265 
2266 // One-shot global initialization for the sync subsystem.
2267 // We could also defer initialization and initialize on-demand
2268 // the first time we call inflate().  Initialization would
2269 // be protected - like so many things - by the MonitorCache_lock.
2270 
2271 void ObjectMonitor::Initialize () {
2272   static int InitializationCompleted = 0 ;
2273   assert (InitializationCompleted == 0, "invariant") ;
2274   InitializationCompleted = 1 ;
2275   if (UsePerfData) {
2276       EXCEPTION_MARK ;
2277       #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
2278       #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
2279       NEWPERFCOUNTER(_sync_Inflations) ;
2280       NEWPERFCOUNTER(_sync_Deflations) ;
2281       NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
2282       NEWPERFCOUNTER(_sync_FutileWakeups) ;
2283       NEWPERFCOUNTER(_sync_Parks) ;
2284       NEWPERFCOUNTER(_sync_EmptyNotifications) ;
2285       NEWPERFCOUNTER(_sync_Notifications) ;
2286       NEWPERFCOUNTER(_sync_SlowEnter) ;
2287       NEWPERFCOUNTER(_sync_SlowExit) ;
2288       NEWPERFCOUNTER(_sync_SlowNotify) ;
2289       NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
2290       NEWPERFCOUNTER(_sync_FailedSpins) ;
2291       NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
2292       NEWPERFCOUNTER(_sync_PrivateA) ;
2293       NEWPERFCOUNTER(_sync_PrivateB) ;
2294       NEWPERFCOUNTER(_sync_MonInCirculation) ;
2295       NEWPERFCOUNTER(_sync_MonScavenged) ;
2296       NEWPERFVARIABLE(_sync_MonExtant) ;
2297       #undef NEWPERFCOUNTER
2298   }
2299 }
2300 
2301 
2302 // Compile-time asserts
2303 // When possible, it's better to catch errors deterministically at
2304 // compile-time than at runtime.  The down-side to using compile-time
2305 // asserts is that error message -- often something about negative array
2306 // indices -- is opaque.
2307 
2308 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
2309 
2310 void ObjectMonitor::ctAsserts() {
2311   CTASSERT(offset_of (ObjectMonitor, _header) == 0);
2312 }
2313 
2314 
2315 static char * kvGet (char * kvList, const char * Key) {
2316     if (kvList == NULL) return NULL ;
2317     size_t n = strlen (Key) ;
2318     char * Search ;
2319     for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
2320         if (strncmp (Search, Key, n) == 0) {
2321             if (Search[n] == '=') return Search + n + 1 ;
2322             if (Search[n] == 0)   return (char *) "1" ;
2323         }
2324     }
2325     return NULL ;
2326 }
2327 
2328 static int kvGetInt (char * kvList, const char * Key, int Default) {
2329     char * v = kvGet (kvList, Key) ;
2330     int rslt = v ? ::strtol (v, NULL, 0) : Default ;
2331     if (Knob_ReportSettings && v != NULL) {
2332         ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
2333         ::fflush (stdout) ;
2334     }
2335     return rslt ;
2336 }
2337 
2338 void ObjectMonitor::DeferredInitialize () {
2339   if (InitDone > 0) return ;
2340   if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
2341       while (InitDone != 1) ;
2342       return ;
2343   }
2344 
2345   // One-shot global initialization ...
2346   // The initialization is idempotent, so we don't need locks.
2347   // In the future consider doing this via os::init_2().
2348   // SyncKnobs consist of <Key>=<Value> pairs in the style
2349   // of environment variables.  Start by converting ':' to NUL.
2350 
2351   if (SyncKnobs == NULL) SyncKnobs = "" ;
2352 
2353   size_t sz = strlen (SyncKnobs) ;
2354   char * knobs = (char *) malloc (sz + 2) ;
2355   if (knobs == NULL) {
2356      vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
2357      guarantee (0, "invariant") ;
2358   }
2359   strcpy (knobs, SyncKnobs) ;
2360   knobs[sz+1] = 0 ;
2361   for (char * p = knobs ; *p ; p++) {
2362      if (*p == ':') *p = 0 ;
2363   }
2364 
2365   #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
2366   SETKNOB(ReportSettings) ;
2367   SETKNOB(Verbose) ;
2368   SETKNOB(FixedSpin) ;
2369   SETKNOB(SpinLimit) ;
2370   SETKNOB(SpinBase) ;
2371   SETKNOB(SpinBackOff);
2372   SETKNOB(CASPenalty) ;
2373   SETKNOB(OXPenalty) ;
2374   SETKNOB(LogSpins) ;
2375   SETKNOB(SpinSetSucc) ;
2376   SETKNOB(SuccEnabled) ;
2377   SETKNOB(SuccRestrict) ;
2378   SETKNOB(Penalty) ;
2379   SETKNOB(Bonus) ;
2380   SETKNOB(BonusB) ;
2381   SETKNOB(Poverty) ;
2382   SETKNOB(SpinAfterFutile) ;
2383   SETKNOB(UsePause) ;
2384   SETKNOB(SpinEarly) ;
2385   SETKNOB(OState) ;
2386   SETKNOB(MaxSpinners) ;
2387   SETKNOB(PreSpin) ;
2388   SETKNOB(ExitPolicy) ;
2389   SETKNOB(QMode);
2390   SETKNOB(ResetEvent) ;
2391   SETKNOB(MoveNotifyee) ;
2392   SETKNOB(FastHSSEC) ;
2393   #undef SETKNOB
2394 
2395   if (os::is_MP()) {
2396      BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
2397      if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
2398      // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
2399   } else {
2400      Knob_SpinLimit = 0 ;
2401      Knob_SpinBase  = 0 ;
2402      Knob_PreSpin   = 0 ;
2403      Knob_FixedSpin = -1 ;
2404   }
2405 
2406   if (Knob_LogSpins == 0) {
2407      ObjectMonitor::_sync_FailedSpins = NULL ;
2408   }
2409 
2410   free (knobs) ;
2411   OrderAccess::fence() ;
2412   InitDone = 1 ;
2413 }
2414 
2415 #ifndef PRODUCT
2416 void ObjectMonitor::verify() {
2417 }
2418 
2419 void ObjectMonitor::print() {
2420 }
2421 #endif