1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/icBuffer.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "gc_interface/collectedHeap.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.inline.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/symbolOop.hpp"
  38 #include "runtime/compilationPolicy.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/osThread.hpp"
  44 #include "runtime/safepoint.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubCodeGenerator.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "runtime/sweeper.hpp"
  49 #include "runtime/synchronizer.hpp"
  50 #include "services/runtimeService.hpp"
  51 #include "utilities/events.hpp"
  52 #ifdef TARGET_ARCH_x86
  53 # include "nativeInst_x86.hpp"
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "nativeInst_sparc.hpp"
  58 # include "vmreg_sparc.inline.hpp"
  59 #endif
  60 #ifdef TARGET_ARCH_zero
  61 # include "nativeInst_zero.hpp"
  62 # include "vmreg_zero.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_FAMILY_linux
  65 # include "thread_linux.inline.hpp"
  66 #endif
  67 #ifdef TARGET_OS_FAMILY_solaris
  68 # include "thread_solaris.inline.hpp"
  69 #endif
  70 #ifdef TARGET_OS_FAMILY_windows
  71 # include "thread_windows.inline.hpp"
  72 #endif
  73 #ifndef SERIALGC
  74 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  75 #include "gc_implementation/shared/concurrentGCThread.hpp"
  76 #endif
  77 #ifdef COMPILER1
  78 #include "c1/c1_globals.hpp"
  79 #endif
  80 
  81 // --------------------------------------------------------------------------------------------------
  82 // Implementation of Safepoint begin/end
  83 
  84 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  85 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  86 volatile int SafepointSynchronize::_safepoint_counter = 0;
  87 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  88 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  89 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  90 static bool timeout_error_printed = false;
  91 
  92 // Roll all threads forward to a safepoint and suspend them all
  93 void SafepointSynchronize::begin() {
  94 
  95   Thread* myThread = Thread::current();
  96   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  97 
  98   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  99     _safepoint_begin_time = os::javaTimeNanos();
 100     _ts_of_current_safepoint = tty->time_stamp().seconds();
 101   }
 102 
 103 #ifndef SERIALGC
 104   if (UseConcMarkSweepGC) {
 105     // In the future we should investigate whether CMS can use the
 106     // more-general mechanism below.  DLD (01/05).
 107     ConcurrentMarkSweepThread::synchronize(false);
 108   } else if (UseG1GC) {
 109     ConcurrentGCThread::safepoint_synchronize();
 110   }
 111 #endif // SERIALGC
 112 
 113   // By getting the Threads_lock, we assure that no threads are about to start or
 114   // exit. It is released again in SafepointSynchronize::end().
 115   Threads_lock->lock();
 116 
 117   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 118 
 119   int nof_threads = Threads::number_of_threads();
 120 
 121   if (TraceSafepoint) {
 122     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 123   }
 124 
 125   RuntimeService::record_safepoint_begin();
 126 
 127   {
 128   MutexLocker mu(Safepoint_lock);
 129 
 130   // Set number of threads to wait for, before we initiate the callbacks
 131   _waiting_to_block = nof_threads;
 132   TryingToBlock     = 0 ;
 133   int still_running = nof_threads;
 134 
 135   // Save the starting time, so that it can be compared to see if this has taken
 136   // too long to complete.
 137   jlong safepoint_limit_time;
 138   timeout_error_printed = false;
 139 
 140   // PrintSafepointStatisticsTimeout can be specified separately. When
 141   // specified, PrintSafepointStatistics will be set to true in
 142   // deferred_initialize_stat method. The initialization has to be done
 143   // early enough to avoid any races. See bug 6880029 for details.
 144   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 145     deferred_initialize_stat();
 146   }
 147 
 148   // Begin the process of bringing the system to a safepoint.
 149   // Java threads can be in several different states and are
 150   // stopped by different mechanisms:
 151   //
 152   //  1. Running interpreted
 153   //     The interpeter dispatch table is changed to force it to
 154   //     check for a safepoint condition between bytecodes.
 155   //  2. Running in native code
 156   //     When returning from the native code, a Java thread must check
 157   //     the safepoint _state to see if we must block.  If the
 158   //     VM thread sees a Java thread in native, it does
 159   //     not wait for this thread to block.  The order of the memory
 160   //     writes and reads of both the safepoint state and the Java
 161   //     threads state is critical.  In order to guarantee that the
 162   //     memory writes are serialized with respect to each other,
 163   //     the VM thread issues a memory barrier instruction
 164   //     (on MP systems).  In order to avoid the overhead of issuing
 165   //     a memory barrier for each Java thread making native calls, each Java
 166   //     thread performs a write to a single memory page after changing
 167   //     the thread state.  The VM thread performs a sequence of
 168   //     mprotect OS calls which forces all previous writes from all
 169   //     Java threads to be serialized.  This is done in the
 170   //     os::serialize_thread_states() call.  This has proven to be
 171   //     much more efficient than executing a membar instruction
 172   //     on every call to native code.
 173   //  3. Running compiled Code
 174   //     Compiled code reads a global (Safepoint Polling) page that
 175   //     is set to fault if we are trying to get to a safepoint.
 176   //  4. Blocked
 177   //     A thread which is blocked will not be allowed to return from the
 178   //     block condition until the safepoint operation is complete.
 179   //  5. In VM or Transitioning between states
 180   //     If a Java thread is currently running in the VM or transitioning
 181   //     between states, the safepointing code will wait for the thread to
 182   //     block itself when it attempts transitions to a new state.
 183   //
 184   _state            = _synchronizing;
 185   OrderAccess::fence();
 186 
 187   // Flush all thread states to memory
 188   if (!UseMembar) {
 189     os::serialize_thread_states();
 190   }
 191 
 192   // Make interpreter safepoint aware
 193   Interpreter::notice_safepoints();
 194 
 195   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 196     // Make polling safepoint aware
 197     guarantee (PageArmed == 0, "invariant") ;
 198     PageArmed = 1 ;
 199     os::make_polling_page_unreadable();
 200   }
 201 
 202   // Consider using active_processor_count() ... but that call is expensive.
 203   int ncpus = os::processor_count() ;
 204 
 205 #ifdef ASSERT
 206   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 207     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 208   }
 209 #endif // ASSERT
 210 
 211   if (SafepointTimeout)
 212     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 213 
 214   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 215   unsigned int iterations = 0;
 216   int steps = 0 ;
 217   while(still_running > 0) {
 218     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 219       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 220       ThreadSafepointState *cur_state = cur->safepoint_state();
 221       if (cur_state->is_running()) {
 222         cur_state->examine_state_of_thread();
 223         if (!cur_state->is_running()) {
 224            still_running--;
 225            // consider adjusting steps downward:
 226            //   steps = 0
 227            //   steps -= NNN
 228            //   steps >>= 1
 229            //   steps = MIN(steps, 2000-100)
 230            //   if (iterations != 0) steps -= NNN
 231         }
 232         if (TraceSafepoint && Verbose) cur_state->print();
 233       }
 234     }
 235 
 236     if (PrintSafepointStatistics && iterations == 0) {
 237       begin_statistics(nof_threads, still_running);
 238     }
 239 
 240     if (still_running > 0) {
 241       // Check for if it takes to long
 242       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 243         print_safepoint_timeout(_spinning_timeout);
 244       }
 245 
 246       // Spin to avoid context switching.
 247       // There's a tension between allowing the mutators to run (and rendezvous)
 248       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 249       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 250       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 251       // Blocking or yielding incur their own penalties in the form of context switching
 252       // and the resultant loss of $ residency.
 253       //
 254       // Further complicating matters is that yield() does not work as naively expected
 255       // on many platforms -- yield() does not guarantee that any other ready threads
 256       // will run.   As such we revert yield_all() after some number of iterations.
 257       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 258       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 259       // can actually increase the time it takes the VM thread to detect that a system-wide
 260       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 261       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 262       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 263       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 264       // will eventually wake up and detect that all mutators are safe, at which point
 265       // we'll again make progress.
 266       //
 267       // Beware too that that the VMThread typically runs at elevated priority.
 268       // Its default priority is higher than the default mutator priority.
 269       // Obviously, this complicates spinning.
 270       //
 271       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 272       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 273       //
 274       // See the comments in synchronizer.cpp for additional remarks on spinning.
 275       //
 276       // In the future we might:
 277       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 278       //    This is tricky as the path used by a thread exiting the JVM (say on
 279       //    on JNI call-out) simply stores into its state field.  The burden
 280       //    is placed on the VM thread, which must poll (spin).
 281       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 282       //    we might aggressively scan the stacks of threads that are already safe.
 283       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 284       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 285       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 286       // 5. Check system saturation.  If the system is not fully saturated then
 287       //    simply spin and avoid sleep/yield.
 288       // 6. As still-running mutators rendezvous they could unpark the sleeping
 289       //    VMthread.  This works well for still-running mutators that become
 290       //    safe.  The VMthread must still poll for mutators that call-out.
 291       // 7. Drive the policy on time-since-begin instead of iterations.
 292       // 8. Consider making the spin duration a function of the # of CPUs:
 293       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 294       //    Alternately, instead of counting iterations of the outer loop
 295       //    we could count the # of threads visited in the inner loop, above.
 296       // 9. On windows consider using the return value from SwitchThreadTo()
 297       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 298 
 299       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 300          guarantee (PageArmed == 0, "invariant") ;
 301          PageArmed = 1 ;
 302          os::make_polling_page_unreadable();
 303       }
 304 
 305       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 306       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 307       ++steps ;
 308       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 309         SpinPause() ;     // MP-Polite spin
 310       } else
 311       if (steps < DeferThrSuspendLoopCount) {
 312         os::NakedYield() ;
 313       } else {
 314         os::yield_all(steps) ;
 315         // Alternately, the VM thread could transiently depress its scheduling priority or
 316         // transiently increase the priority of the tardy mutator(s).
 317       }
 318 
 319       iterations ++ ;
 320     }
 321     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 322   }
 323   assert(still_running == 0, "sanity check");
 324 
 325   if (PrintSafepointStatistics) {
 326     update_statistics_on_spin_end();
 327   }
 328 
 329   // wait until all threads are stopped
 330   while (_waiting_to_block > 0) {
 331     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 332     if (!SafepointTimeout || timeout_error_printed) {
 333       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 334     } else {
 335       // Compute remaining time
 336       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 337 
 338       // If there is no remaining time, then there is an error
 339       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 340         print_safepoint_timeout(_blocking_timeout);
 341       }
 342     }
 343   }
 344   assert(_waiting_to_block == 0, "sanity check");
 345 
 346 #ifndef PRODUCT
 347   if (SafepointTimeout) {
 348     jlong current_time = os::javaTimeNanos();
 349     if (safepoint_limit_time < current_time) {
 350       tty->print_cr("# SafepointSynchronize: Finished after "
 351                     INT64_FORMAT_W(6) " ms",
 352                     ((current_time - safepoint_limit_time) / MICROUNITS +
 353                      SafepointTimeoutDelay));
 354     }
 355   }
 356 #endif
 357 
 358   assert((_safepoint_counter & 0x1) == 0, "must be even");
 359   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 360   _safepoint_counter ++;
 361 
 362   // Record state
 363   _state = _synchronized;
 364 
 365   OrderAccess::fence();
 366 
 367   if (TraceSafepoint) {
 368     VM_Operation *op = VMThread::vm_operation();
 369     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 370   }
 371 
 372   RuntimeService::record_safepoint_synchronized();
 373   if (PrintSafepointStatistics) {
 374     update_statistics_on_sync_end(os::javaTimeNanos());
 375   }
 376 
 377   // Call stuff that needs to be run when a safepoint is just about to be completed
 378   do_cleanup_tasks();
 379 
 380   if (PrintSafepointStatistics) {
 381     // Record how much time spend on the above cleanup tasks
 382     update_statistics_on_cleanup_end(os::javaTimeNanos());
 383   }
 384   }
 385 }
 386 
 387 // Wake up all threads, so they are ready to resume execution after the safepoint
 388 // operation has been carried out
 389 void SafepointSynchronize::end() {
 390 
 391   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 392   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 393   _safepoint_counter ++;
 394   // memory fence isn't required here since an odd _safepoint_counter
 395   // value can do no harm and a fence is issued below anyway.
 396 
 397   DEBUG_ONLY(Thread* myThread = Thread::current();)
 398   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 399 
 400   if (PrintSafepointStatistics) {
 401     end_statistics(os::javaTimeNanos());
 402   }
 403 
 404 #ifdef ASSERT
 405   // A pending_exception cannot be installed during a safepoint.  The threads
 406   // may install an async exception after they come back from a safepoint into
 407   // pending_exception after they unblock.  But that should happen later.
 408   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 409     assert (!(cur->has_pending_exception() &&
 410               cur->safepoint_state()->is_at_poll_safepoint()),
 411             "safepoint installed a pending exception");
 412   }
 413 #endif // ASSERT
 414 
 415   if (PageArmed) {
 416     // Make polling safepoint aware
 417     os::make_polling_page_readable();
 418     PageArmed = 0 ;
 419   }
 420 
 421   // Remove safepoint check from interpreter
 422   Interpreter::ignore_safepoints();
 423 
 424   {
 425     MutexLocker mu(Safepoint_lock);
 426 
 427     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 428 
 429     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 430     // when they get restarted.
 431     _state = _not_synchronized;
 432     OrderAccess::fence();
 433 
 434     if (TraceSafepoint) {
 435        tty->print_cr("Leaving safepoint region");
 436     }
 437 
 438     // Start suspended threads
 439     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 440       // A problem occurring on Solaris is when attempting to restart threads
 441       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 442       // to the next one (since it has been running the longest).  We then have
 443       // to wait for a cpu to become available before we can continue restarting
 444       // threads.
 445       // FIXME: This causes the performance of the VM to degrade when active and with
 446       // large numbers of threads.  Apparently this is due to the synchronous nature
 447       // of suspending threads.
 448       //
 449       // TODO-FIXME: the comments above are vestigial and no longer apply.
 450       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 451       if (VMThreadHintNoPreempt) {
 452         os::hint_no_preempt();
 453       }
 454       ThreadSafepointState* cur_state = current->safepoint_state();
 455       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 456       cur_state->restart();
 457       assert(cur_state->is_running(), "safepoint state has not been reset");
 458     }
 459 
 460     RuntimeService::record_safepoint_end();
 461 
 462     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 463     // blocked in signal_thread_blocked
 464     Threads_lock->unlock();
 465 
 466   }
 467 #ifndef SERIALGC
 468   // If there are any concurrent GC threads resume them.
 469   if (UseConcMarkSweepGC) {
 470     ConcurrentMarkSweepThread::desynchronize(false);
 471   } else if (UseG1GC) {
 472     ConcurrentGCThread::safepoint_desynchronize();
 473   }
 474 #endif // SERIALGC
 475   // record this time so VMThread can keep track how much time has elasped
 476   // since last safepoint.
 477   _end_of_last_safepoint = os::javaTimeMillis();
 478 }
 479 
 480 bool SafepointSynchronize::is_cleanup_needed() {
 481   // Need a safepoint if some inline cache buffers is non-empty
 482   if (!InlineCacheBuffer::is_empty()) return true;
 483   return false;
 484 }
 485 
 486 
 487 
 488 // Various cleaning tasks that should be done periodically at safepoints
 489 void SafepointSynchronize::do_cleanup_tasks() {
 490   {
 491     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 492     ObjectSynchronizer::deflate_idle_monitors();
 493   }
 494 
 495   {
 496     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 497     InlineCacheBuffer::update_inline_caches();
 498   }
 499   {
 500     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 501     CompilationPolicy::policy()->do_safepoint_work();
 502   }
 503 
 504   TraceTime t4("sweeping nmethods", TraceSafepointCleanupTime);
 505   NMethodSweeper::scan_stacks();
 506 }
 507 
 508 
 509 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 510   switch(state) {
 511   case _thread_in_native:
 512     // native threads are safe if they have no java stack or have walkable stack
 513     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 514 
 515    // blocked threads should have already have walkable stack
 516   case _thread_blocked:
 517     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 518     return true;
 519 
 520   default:
 521     return false;
 522   }
 523 }
 524 
 525 
 526 // -------------------------------------------------------------------------------------------------------
 527 // Implementation of Safepoint callback point
 528 
 529 void SafepointSynchronize::block(JavaThread *thread) {
 530   assert(thread != NULL, "thread must be set");
 531   assert(thread->is_Java_thread(), "not a Java thread");
 532 
 533   // Threads shouldn't block if they are in the middle of printing, but...
 534   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 535 
 536   // Only bail from the block() call if the thread is gone from the
 537   // thread list; starting to exit should still block.
 538   if (thread->is_terminated()) {
 539      // block current thread if we come here from native code when VM is gone
 540      thread->block_if_vm_exited();
 541 
 542      // otherwise do nothing
 543      return;
 544   }
 545 
 546   JavaThreadState state = thread->thread_state();
 547   thread->frame_anchor()->make_walkable(thread);
 548 
 549   // Check that we have a valid thread_state at this point
 550   switch(state) {
 551     case _thread_in_vm_trans:
 552     case _thread_in_Java:        // From compiled code
 553 
 554       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 555       // we pretend we are still in the VM.
 556       thread->set_thread_state(_thread_in_vm);
 557 
 558       if (is_synchronizing()) {
 559          Atomic::inc (&TryingToBlock) ;
 560       }
 561 
 562       // We will always be holding the Safepoint_lock when we are examine the state
 563       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 564       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 565       Safepoint_lock->lock_without_safepoint_check();
 566       if (is_synchronizing()) {
 567         // Decrement the number of threads to wait for and signal vm thread
 568         assert(_waiting_to_block > 0, "sanity check");
 569         _waiting_to_block--;
 570         thread->safepoint_state()->set_has_called_back(true);
 571 
 572         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 573         if (_waiting_to_block == 0) {
 574           Safepoint_lock->notify_all();
 575         }
 576       }
 577 
 578       // We transition the thread to state _thread_blocked here, but
 579       // we can't do our usual check for external suspension and then
 580       // self-suspend after the lock_without_safepoint_check() call
 581       // below because we are often called during transitions while
 582       // we hold different locks. That would leave us suspended while
 583       // holding a resource which results in deadlocks.
 584       thread->set_thread_state(_thread_blocked);
 585       Safepoint_lock->unlock();
 586 
 587       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 588       // the entire safepoint, the threads will all line up here during the safepoint.
 589       Threads_lock->lock_without_safepoint_check();
 590       // restore original state. This is important if the thread comes from compiled code, so it
 591       // will continue to execute with the _thread_in_Java state.
 592       thread->set_thread_state(state);
 593       Threads_lock->unlock();
 594       break;
 595 
 596     case _thread_in_native_trans:
 597     case _thread_blocked_trans:
 598     case _thread_new_trans:
 599       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 600         thread->print_thread_state();
 601         fatal("Deadlock in safepoint code.  "
 602               "Should have called back to the VM before blocking.");
 603       }
 604 
 605       // We transition the thread to state _thread_blocked here, but
 606       // we can't do our usual check for external suspension and then
 607       // self-suspend after the lock_without_safepoint_check() call
 608       // below because we are often called during transitions while
 609       // we hold different locks. That would leave us suspended while
 610       // holding a resource which results in deadlocks.
 611       thread->set_thread_state(_thread_blocked);
 612 
 613       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 614       // the safepoint code might still be waiting for it to block. We need to change the state here,
 615       // so it can see that it is at a safepoint.
 616 
 617       // Block until the safepoint operation is completed.
 618       Threads_lock->lock_without_safepoint_check();
 619 
 620       // Restore state
 621       thread->set_thread_state(state);
 622 
 623       Threads_lock->unlock();
 624       break;
 625 
 626     default:
 627      fatal(err_msg("Illegal threadstate encountered: %d", state));
 628   }
 629 
 630   // Check for pending. async. exceptions or suspends - except if the
 631   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 632   // is called last since it grabs a lock and we only want to do that when
 633   // we must.
 634   //
 635   // Note: we never deliver an async exception at a polling point as the
 636   // compiler may not have an exception handler for it. The polling
 637   // code will notice the async and deoptimize and the exception will
 638   // be delivered. (Polling at a return point is ok though). Sure is
 639   // a lot of bother for a deprecated feature...
 640   //
 641   // We don't deliver an async exception if the thread state is
 642   // _thread_in_native_trans so JNI functions won't be called with
 643   // a surprising pending exception. If the thread state is going back to java,
 644   // async exception is checked in check_special_condition_for_native_trans().
 645 
 646   if (state != _thread_blocked_trans &&
 647       state != _thread_in_vm_trans &&
 648       thread->has_special_runtime_exit_condition()) {
 649     thread->handle_special_runtime_exit_condition(
 650       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 651   }
 652 }
 653 
 654 // ------------------------------------------------------------------------------------------------------
 655 // Exception handlers
 656 
 657 #ifndef PRODUCT
 658 #ifdef _LP64
 659 #define PTR_PAD ""
 660 #else
 661 #define PTR_PAD "        "
 662 #endif
 663 
 664 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 665   bool is_oop = newptr ? ((oop)newptr)->is_oop() : false;
 666   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 667                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 668                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 669 }
 670 
 671 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 672   bool is_oop = newptr ? ((oop)(intptr_t)newptr)->is_oop() : false;
 673   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 674                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 675                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 676 }
 677 
 678 #ifdef SPARC
 679 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 680 #ifdef _LP64
 681   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 682   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 683 #else
 684   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 685   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 686 #endif
 687   tty->print_cr("---SP---|");
 688   for( int i=0; i<16; i++ ) {
 689     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 690   tty->print_cr("--------|");
 691   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 692     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 693   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 694   tty->print_cr("--------|");
 695   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 696   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 697   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 698   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 699   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 700   old_sp += incr; new_sp += incr; was_oops += incr;
 701   // Skip the floats
 702   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 703   tty->print_cr("---FP---|");
 704   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 705   for( int i2=0; i2<16; i2++ ) {
 706     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 707   tty->print_cr("");
 708 }
 709 #endif  // SPARC
 710 #endif  // PRODUCT
 711 
 712 
 713 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 714   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 715   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 716   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 717 
 718   // Uncomment this to get some serious before/after printing of the
 719   // Sparc safepoint-blob frame structure.
 720   /*
 721   intptr_t* sp = thread->last_Java_sp();
 722   intptr_t stack_copy[150];
 723   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 724   bool was_oops[150];
 725   for( int i=0; i<150; i++ )
 726     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 727   */
 728 
 729   if (ShowSafepointMsgs) {
 730     tty->print("handle_polling_page_exception: ");
 731   }
 732 
 733   if (PrintSafepointStatistics) {
 734     inc_page_trap_count();
 735   }
 736 
 737   ThreadSafepointState* state = thread->safepoint_state();
 738 
 739   state->handle_polling_page_exception();
 740   // print_me(sp,stack_copy,was_oops);
 741 }
 742 
 743 
 744 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 745   if (!timeout_error_printed) {
 746     timeout_error_printed = true;
 747     // Print out the thread infor which didn't reach the safepoint for debugging
 748     // purposes (useful when there are lots of threads in the debugger).
 749     tty->print_cr("");
 750     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 751     if (reason ==  _spinning_timeout) {
 752       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 753     } else if (reason == _blocking_timeout) {
 754       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 755     }
 756 
 757     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 758     ThreadSafepointState *cur_state;
 759     ResourceMark rm;
 760     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 761         cur_thread = cur_thread->next()) {
 762       cur_state = cur_thread->safepoint_state();
 763 
 764       if (cur_thread->thread_state() != _thread_blocked &&
 765           ((reason == _spinning_timeout && cur_state->is_running()) ||
 766            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 767         tty->print("# ");
 768         cur_thread->print();
 769         tty->print_cr("");
 770       }
 771     }
 772     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 773   }
 774 
 775   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 776   // ShowMessageBoxOnError.
 777   if (DieOnSafepointTimeout) {
 778     char msg[1024];
 779     VM_Operation *op = VMThread::vm_operation();
 780     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 781             SafepointTimeoutDelay,
 782             op != NULL ? op->name() : "no vm operation");
 783     fatal(msg);
 784   }
 785 }
 786 
 787 
 788 // -------------------------------------------------------------------------------------------------------
 789 // Implementation of ThreadSafepointState
 790 
 791 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 792   _thread = thread;
 793   _type   = _running;
 794   _has_called_back = false;
 795   _at_poll_safepoint = false;
 796 }
 797 
 798 void ThreadSafepointState::create(JavaThread *thread) {
 799   ThreadSafepointState *state = new ThreadSafepointState(thread);
 800   thread->set_safepoint_state(state);
 801 }
 802 
 803 void ThreadSafepointState::destroy(JavaThread *thread) {
 804   if (thread->safepoint_state()) {
 805     delete(thread->safepoint_state());
 806     thread->set_safepoint_state(NULL);
 807   }
 808 }
 809 
 810 void ThreadSafepointState::examine_state_of_thread() {
 811   assert(is_running(), "better be running or just have hit safepoint poll");
 812 
 813   JavaThreadState state = _thread->thread_state();
 814 
 815   // Save the state at the start of safepoint processing.
 816   _orig_thread_state = state;
 817 
 818   // Check for a thread that is suspended. Note that thread resume tries
 819   // to grab the Threads_lock which we own here, so a thread cannot be
 820   // resumed during safepoint synchronization.
 821 
 822   // We check to see if this thread is suspended without locking to
 823   // avoid deadlocking with a third thread that is waiting for this
 824   // thread to be suspended. The third thread can notice the safepoint
 825   // that we're trying to start at the beginning of its SR_lock->wait()
 826   // call. If that happens, then the third thread will block on the
 827   // safepoint while still holding the underlying SR_lock. We won't be
 828   // able to get the SR_lock and we'll deadlock.
 829   //
 830   // We don't need to grab the SR_lock here for two reasons:
 831   // 1) The suspend flags are both volatile and are set with an
 832   //    Atomic::cmpxchg() call so we should see the suspended
 833   //    state right away.
 834   // 2) We're being called from the safepoint polling loop; if
 835   //    we don't see the suspended state on this iteration, then
 836   //    we'll come around again.
 837   //
 838   bool is_suspended = _thread->is_ext_suspended();
 839   if (is_suspended) {
 840     roll_forward(_at_safepoint);
 841     return;
 842   }
 843 
 844   // Some JavaThread states have an initial safepoint state of
 845   // running, but are actually at a safepoint. We will happily
 846   // agree and update the safepoint state here.
 847   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 848       roll_forward(_at_safepoint);
 849       return;
 850   }
 851 
 852   if (state == _thread_in_vm) {
 853     roll_forward(_call_back);
 854     return;
 855   }
 856 
 857   // All other thread states will continue to run until they
 858   // transition and self-block in state _blocked
 859   // Safepoint polling in compiled code causes the Java threads to do the same.
 860   // Note: new threads may require a malloc so they must be allowed to finish
 861 
 862   assert(is_running(), "examine_state_of_thread on non-running thread");
 863   return;
 864 }
 865 
 866 // Returns true is thread could not be rolled forward at present position.
 867 void ThreadSafepointState::roll_forward(suspend_type type) {
 868   _type = type;
 869 
 870   switch(_type) {
 871     case _at_safepoint:
 872       SafepointSynchronize::signal_thread_at_safepoint();
 873       break;
 874 
 875     case _call_back:
 876       set_has_called_back(false);
 877       break;
 878 
 879     case _running:
 880     default:
 881       ShouldNotReachHere();
 882   }
 883 }
 884 
 885 void ThreadSafepointState::restart() {
 886   switch(type()) {
 887     case _at_safepoint:
 888     case _call_back:
 889       break;
 890 
 891     case _running:
 892     default:
 893        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 894                       _thread, _type);
 895        _thread->print();
 896       ShouldNotReachHere();
 897   }
 898   _type = _running;
 899   set_has_called_back(false);
 900 }
 901 
 902 
 903 void ThreadSafepointState::print_on(outputStream *st) const {
 904   const char *s;
 905 
 906   switch(_type) {
 907     case _running                : s = "_running";              break;
 908     case _at_safepoint           : s = "_at_safepoint";         break;
 909     case _call_back              : s = "_call_back";            break;
 910     default:
 911       ShouldNotReachHere();
 912   }
 913 
 914   st->print_cr("Thread: " INTPTR_FORMAT
 915               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
 916                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
 917                _at_poll_safepoint);
 918 
 919   _thread->print_thread_state_on(st);
 920 }
 921 
 922 
 923 // ---------------------------------------------------------------------------------------------------------------------
 924 
 925 // Block the thread at the safepoint poll or poll return.
 926 void ThreadSafepointState::handle_polling_page_exception() {
 927 
 928   // Check state.  block() will set thread state to thread_in_vm which will
 929   // cause the safepoint state _type to become _call_back.
 930   assert(type() == ThreadSafepointState::_running,
 931          "polling page exception on thread not running state");
 932 
 933   // Step 1: Find the nmethod from the return address
 934   if (ShowSafepointMsgs && Verbose) {
 935     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
 936   }
 937   address real_return_addr = thread()->saved_exception_pc();
 938 
 939   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
 940   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
 941   nmethod* nm = (nmethod*)cb;
 942 
 943   // Find frame of caller
 944   frame stub_fr = thread()->last_frame();
 945   CodeBlob* stub_cb = stub_fr.cb();
 946   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
 947   RegisterMap map(thread(), true);
 948   frame caller_fr = stub_fr.sender(&map);
 949 
 950   // Should only be poll_return or poll
 951   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
 952 
 953   // This is a poll immediately before a return. The exception handling code
 954   // has already had the effect of causing the return to occur, so the execution
 955   // will continue immediately after the call. In addition, the oopmap at the
 956   // return point does not mark the return value as an oop (if it is), so
 957   // it needs a handle here to be updated.
 958   if( nm->is_at_poll_return(real_return_addr) ) {
 959     // See if return type is an oop.
 960     bool return_oop = nm->method()->is_returning_oop();
 961     Handle return_value;
 962     if (return_oop) {
 963       // The oop result has been saved on the stack together with all
 964       // the other registers. In order to preserve it over GCs we need
 965       // to keep it in a handle.
 966       oop result = caller_fr.saved_oop_result(&map);
 967       assert(result == NULL || result->is_oop(), "must be oop");
 968       return_value = Handle(thread(), result);
 969       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 970     }
 971 
 972     // Block the thread
 973     SafepointSynchronize::block(thread());
 974 
 975     // restore oop result, if any
 976     if (return_oop) {
 977       caller_fr.set_saved_oop_result(&map, return_value());
 978     }
 979   }
 980 
 981   // This is a safepoint poll. Verify the return address and block.
 982   else {
 983     set_at_poll_safepoint(true);
 984 
 985     // verify the blob built the "return address" correctly
 986     assert(real_return_addr == caller_fr.pc(), "must match");
 987 
 988     // Block the thread
 989     SafepointSynchronize::block(thread());
 990     set_at_poll_safepoint(false);
 991 
 992     // If we have a pending async exception deoptimize the frame
 993     // as otherwise we may never deliver it.
 994     if (thread()->has_async_condition()) {
 995       ThreadInVMfromJavaNoAsyncException __tiv(thread());
 996       VM_DeoptimizeFrame deopt(thread(), caller_fr.id());
 997       VMThread::execute(&deopt);
 998     }
 999 
1000     // If an exception has been installed we must check for a pending deoptimization
1001     // Deoptimize frame if exception has been thrown.
1002 
1003     if (thread()->has_pending_exception() ) {
1004       RegisterMap map(thread(), true);
1005       frame caller_fr = stub_fr.sender(&map);
1006       if (caller_fr.is_deoptimized_frame()) {
1007         // The exception patch will destroy registers that are still
1008         // live and will be needed during deoptimization. Defer the
1009         // Async exception should have defered the exception until the
1010         // next safepoint which will be detected when we get into
1011         // the interpreter so if we have an exception now things
1012         // are messed up.
1013 
1014         fatal("Exception installed and deoptimization is pending");
1015       }
1016     }
1017   }
1018 }
1019 
1020 
1021 //
1022 //                     Statistics & Instrumentations
1023 //
1024 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1025 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1026 int    SafepointSynchronize::_cur_stat_index = 0;
1027 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1028 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1029 jlong  SafepointSynchronize::_max_sync_time = 0;
1030 jlong  SafepointSynchronize::_max_vmop_time = 0;
1031 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1032 
1033 static jlong  cleanup_end_time = 0;
1034 static bool   need_to_track_page_armed_status = false;
1035 static bool   init_done = false;
1036 
1037 // Helper method to print the header.
1038 static void print_header() {
1039   tty->print("         vmop                    "
1040              "[threads: total initially_running wait_to_block]    ");
1041   tty->print("[time: spin block sync cleanup vmop] ");
1042 
1043   // no page armed status printed out if it is always armed.
1044   if (need_to_track_page_armed_status) {
1045     tty->print("page_armed ");
1046   }
1047 
1048   tty->print_cr("page_trap_count");
1049 }
1050 
1051 void SafepointSynchronize::deferred_initialize_stat() {
1052   if (init_done) return;
1053 
1054   if (PrintSafepointStatisticsCount <= 0) {
1055     fatal("Wrong PrintSafepointStatisticsCount");
1056   }
1057 
1058   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1059   // be printed right away, in which case, _safepoint_stats will regress to
1060   // a single element array. Otherwise, it is a circular ring buffer with default
1061   // size of PrintSafepointStatisticsCount.
1062   int stats_array_size;
1063   if (PrintSafepointStatisticsTimeout > 0) {
1064     stats_array_size = 1;
1065     PrintSafepointStatistics = true;
1066   } else {
1067     stats_array_size = PrintSafepointStatisticsCount;
1068   }
1069   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1070                                                  * sizeof(SafepointStats));
1071   guarantee(_safepoint_stats != NULL,
1072             "not enough memory for safepoint instrumentation data");
1073 
1074   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1075     need_to_track_page_armed_status = true;
1076   }
1077   init_done = true;
1078 }
1079 
1080 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1081   assert(init_done, "safepoint statistics array hasn't been initialized");
1082   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1083 
1084   spstat->_time_stamp = _ts_of_current_safepoint;
1085 
1086   VM_Operation *op = VMThread::vm_operation();
1087   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1088   if (op != NULL) {
1089     _safepoint_reasons[spstat->_vmop_type]++;
1090   }
1091 
1092   spstat->_nof_total_threads = nof_threads;
1093   spstat->_nof_initial_running_threads = nof_running;
1094   spstat->_nof_threads_hit_page_trap = 0;
1095 
1096   // Records the start time of spinning. The real time spent on spinning
1097   // will be adjusted when spin is done. Same trick is applied for time
1098   // spent on waiting for threads to block.
1099   if (nof_running != 0) {
1100     spstat->_time_to_spin = os::javaTimeNanos();
1101   }  else {
1102     spstat->_time_to_spin = 0;
1103   }
1104 }
1105 
1106 void SafepointSynchronize::update_statistics_on_spin_end() {
1107   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1108 
1109   jlong cur_time = os::javaTimeNanos();
1110 
1111   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1112   if (spstat->_nof_initial_running_threads != 0) {
1113     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1114   }
1115 
1116   if (need_to_track_page_armed_status) {
1117     spstat->_page_armed = (PageArmed == 1);
1118   }
1119 
1120   // Records the start time of waiting for to block. Updated when block is done.
1121   if (_waiting_to_block != 0) {
1122     spstat->_time_to_wait_to_block = cur_time;
1123   } else {
1124     spstat->_time_to_wait_to_block = 0;
1125   }
1126 }
1127 
1128 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1129   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1130 
1131   if (spstat->_nof_threads_wait_to_block != 0) {
1132     spstat->_time_to_wait_to_block = end_time -
1133       spstat->_time_to_wait_to_block;
1134   }
1135 
1136   // Records the end time of sync which will be used to calculate the total
1137   // vm operation time. Again, the real time spending in syncing will be deducted
1138   // from the start of the sync time later when end_statistics is called.
1139   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1140   if (spstat->_time_to_sync > _max_sync_time) {
1141     _max_sync_time = spstat->_time_to_sync;
1142   }
1143 
1144   spstat->_time_to_do_cleanups = end_time;
1145 }
1146 
1147 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1148   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1149 
1150   // Record how long spent in cleanup tasks.
1151   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1152 
1153   cleanup_end_time = end_time;
1154 }
1155 
1156 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1157   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1158 
1159   // Update the vm operation time.
1160   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1161   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1162     _max_vmop_time = spstat->_time_to_exec_vmop;
1163   }
1164   // Only the sync time longer than the specified
1165   // PrintSafepointStatisticsTimeout will be printed out right away.
1166   // By default, it is -1 meaning all samples will be put into the list.
1167   if ( PrintSafepointStatisticsTimeout > 0) {
1168     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1169       print_statistics();
1170     }
1171   } else {
1172     // The safepoint statistics will be printed out when the _safepoin_stats
1173     // array fills up.
1174     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1175       print_statistics();
1176       _cur_stat_index = 0;
1177     } else {
1178       _cur_stat_index++;
1179     }
1180   }
1181 }
1182 
1183 void SafepointSynchronize::print_statistics() {
1184   SafepointStats* sstats = _safepoint_stats;
1185 
1186   for (int index = 0; index <= _cur_stat_index; index++) {
1187     if (index % 30 == 0) {
1188       print_header();
1189     }
1190     sstats = &_safepoint_stats[index];
1191     tty->print("%.3f: ", sstats->_time_stamp);
1192     tty->print("%-26s       ["
1193                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1194                "    ]    ",
1195                sstats->_vmop_type == -1 ? "no vm operation" :
1196                VM_Operation::name(sstats->_vmop_type),
1197                sstats->_nof_total_threads,
1198                sstats->_nof_initial_running_threads,
1199                sstats->_nof_threads_wait_to_block);
1200     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1201     tty->print("  ["
1202                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1203                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1204                INT64_FORMAT_W(6)"    ]  ",
1205                sstats->_time_to_spin / MICROUNITS,
1206                sstats->_time_to_wait_to_block / MICROUNITS,
1207                sstats->_time_to_sync / MICROUNITS,
1208                sstats->_time_to_do_cleanups / MICROUNITS,
1209                sstats->_time_to_exec_vmop / MICROUNITS);
1210 
1211     if (need_to_track_page_armed_status) {
1212       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1213     }
1214     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1215   }
1216 }
1217 
1218 // This method will be called when VM exits. It will first call
1219 // print_statistics to print out the rest of the sampling.  Then
1220 // it tries to summarize the sampling.
1221 void SafepointSynchronize::print_stat_on_exit() {
1222   if (_safepoint_stats == NULL) return;
1223 
1224   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1225 
1226   // During VM exit, end_statistics may not get called and in that
1227   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1228   // don't print it out.
1229   // Approximate the vm op time.
1230   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1231     os::javaTimeNanos() - cleanup_end_time;
1232 
1233   if ( PrintSafepointStatisticsTimeout < 0 ||
1234        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1235     print_statistics();
1236   }
1237   tty->print_cr("");
1238 
1239   // Print out polling page sampling status.
1240   if (!need_to_track_page_armed_status) {
1241     if (UseCompilerSafepoints) {
1242       tty->print_cr("Polling page always armed");
1243     }
1244   } else {
1245     tty->print_cr("Defer polling page loop count = %d\n",
1246                  DeferPollingPageLoopCount);
1247   }
1248 
1249   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1250     if (_safepoint_reasons[index] != 0) {
1251       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1252                     _safepoint_reasons[index]);
1253     }
1254   }
1255 
1256   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1257                 _coalesced_vmop_count);
1258   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1259                 _max_sync_time / MICROUNITS);
1260   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1261                 INT64_FORMAT_W(5)" ms",
1262                 _max_vmop_time / MICROUNITS);
1263 }
1264 
1265 // ------------------------------------------------------------------------------------------------
1266 // Non-product code
1267 
1268 #ifndef PRODUCT
1269 
1270 void SafepointSynchronize::print_state() {
1271   if (_state == _not_synchronized) {
1272     tty->print_cr("not synchronized");
1273   } else if (_state == _synchronizing || _state == _synchronized) {
1274     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1275                   "synchronized");
1276 
1277     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1278        cur->safepoint_state()->print();
1279     }
1280   }
1281 }
1282 
1283 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1284   if (ShowSafepointMsgs) {
1285     va_list ap;
1286     va_start(ap, format);
1287     tty->vprint_cr(format, ap);
1288     va_end(ap);
1289   }
1290 }
1291 
1292 #endif // !PRODUCT