1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 #include <math.h>
  76 
  77 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  78 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  79                       char*, int, char*, int, char*, int);
  80 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  81                       char*, int, char*, int, char*, int);
  82 
  83 // Implementation of SharedRuntime
  84 
  85 #ifndef PRODUCT
  86 // For statistics
  87 int SharedRuntime::_ic_miss_ctr = 0;
  88 int SharedRuntime::_wrong_method_ctr = 0;
  89 int SharedRuntime::_resolve_static_ctr = 0;
  90 int SharedRuntime::_resolve_virtual_ctr = 0;
  91 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  92 int SharedRuntime::_implicit_null_throws = 0;
  93 int SharedRuntime::_implicit_div0_throws = 0;
  94 int SharedRuntime::_throw_null_ctr = 0;
  95 
  96 int SharedRuntime::_nof_normal_calls = 0;
  97 int SharedRuntime::_nof_optimized_calls = 0;
  98 int SharedRuntime::_nof_inlined_calls = 0;
  99 int SharedRuntime::_nof_megamorphic_calls = 0;
 100 int SharedRuntime::_nof_static_calls = 0;
 101 int SharedRuntime::_nof_inlined_static_calls = 0;
 102 int SharedRuntime::_nof_interface_calls = 0;
 103 int SharedRuntime::_nof_optimized_interface_calls = 0;
 104 int SharedRuntime::_nof_inlined_interface_calls = 0;
 105 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 106 int SharedRuntime::_nof_removable_exceptions = 0;
 107 
 108 int SharedRuntime::_new_instance_ctr=0;
 109 int SharedRuntime::_new_array_ctr=0;
 110 int SharedRuntime::_multi1_ctr=0;
 111 int SharedRuntime::_multi2_ctr=0;
 112 int SharedRuntime::_multi3_ctr=0;
 113 int SharedRuntime::_multi4_ctr=0;
 114 int SharedRuntime::_multi5_ctr=0;
 115 int SharedRuntime::_mon_enter_stub_ctr=0;
 116 int SharedRuntime::_mon_exit_stub_ctr=0;
 117 int SharedRuntime::_mon_enter_ctr=0;
 118 int SharedRuntime::_mon_exit_ctr=0;
 119 int SharedRuntime::_partial_subtype_ctr=0;
 120 int SharedRuntime::_jbyte_array_copy_ctr=0;
 121 int SharedRuntime::_jshort_array_copy_ctr=0;
 122 int SharedRuntime::_jint_array_copy_ctr=0;
 123 int SharedRuntime::_jlong_array_copy_ctr=0;
 124 int SharedRuntime::_oop_array_copy_ctr=0;
 125 int SharedRuntime::_checkcast_array_copy_ctr=0;
 126 int SharedRuntime::_unsafe_array_copy_ctr=0;
 127 int SharedRuntime::_generic_array_copy_ctr=0;
 128 int SharedRuntime::_slow_array_copy_ctr=0;
 129 int SharedRuntime::_find_handler_ctr=0;
 130 int SharedRuntime::_rethrow_ctr=0;
 131 
 132 int     SharedRuntime::_ICmiss_index                    = 0;
 133 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 134 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 135 
 136 void SharedRuntime::trace_ic_miss(address at) {
 137   for (int i = 0; i < _ICmiss_index; i++) {
 138     if (_ICmiss_at[i] == at) {
 139       _ICmiss_count[i]++;
 140       return;
 141     }
 142   }
 143   int index = _ICmiss_index++;
 144   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 145   _ICmiss_at[index] = at;
 146   _ICmiss_count[index] = 1;
 147 }
 148 
 149 void SharedRuntime::print_ic_miss_histogram() {
 150   if (ICMissHistogram) {
 151     tty->print_cr ("IC Miss Histogram:");
 152     int tot_misses = 0;
 153     for (int i = 0; i < _ICmiss_index; i++) {
 154       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 155       tot_misses += _ICmiss_count[i];
 156     }
 157     tty->print_cr ("Total IC misses: %7d", tot_misses);
 158   }
 159 }
 160 #endif // PRODUCT
 161 
 162 #ifndef SERIALGC
 163 
 164 // G1 write-barrier pre: executed before a pointer store.
 165 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 166   if (orig == NULL) {
 167     assert(false, "should be optimized out");
 168     return;
 169   }
 170   assert(orig->is_oop(true /* ignore mark word */), "Error");
 171   // store the original value that was in the field reference
 172   thread->satb_mark_queue().enqueue(orig);
 173 JRT_END
 174 
 175 // G1 write-barrier post: executed after a pointer store.
 176 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 177   thread->dirty_card_queue().enqueue(card_addr);
 178 JRT_END
 179 
 180 #endif // !SERIALGC
 181 
 182 
 183 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 184   return x * y;
 185 JRT_END
 186 
 187 
 188 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 189   if (x == min_jlong && y == CONST64(-1)) {
 190     return x;
 191   } else {
 192     return x / y;
 193   }
 194 JRT_END
 195 
 196 
 197 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 198   if (x == min_jlong && y == CONST64(-1)) {
 199     return 0;
 200   } else {
 201     return x % y;
 202   }
 203 JRT_END
 204 
 205 
 206 const juint  float_sign_mask  = 0x7FFFFFFF;
 207 const juint  float_infinity   = 0x7F800000;
 208 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 209 const julong double_infinity  = CONST64(0x7FF0000000000000);
 210 
 211 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 212 #ifdef _WIN64
 213   // 64-bit Windows on amd64 returns the wrong values for
 214   // infinity operands.
 215   union { jfloat f; juint i; } xbits, ybits;
 216   xbits.f = x;
 217   ybits.f = y;
 218   // x Mod Infinity == x unless x is infinity
 219   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 220        ((ybits.i & float_sign_mask) == float_infinity) ) {
 221     return x;
 222   }
 223 #endif
 224   return ((jfloat)fmod((double)x,(double)y));
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 229 #ifdef _WIN64
 230   union { jdouble d; julong l; } xbits, ybits;
 231   xbits.d = x;
 232   ybits.d = y;
 233   // x Mod Infinity == x unless x is infinity
 234   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 235        ((ybits.l & double_sign_mask) == double_infinity) ) {
 236     return x;
 237   }
 238 #endif
 239   return ((jdouble)fmod((double)x,(double)y));
 240 JRT_END
 241 
 242 #ifdef __SOFTFP__
 243 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 244   return x + y;
 245 JRT_END
 246 
 247 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 248   return x - y;
 249 JRT_END
 250 
 251 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 252   return x * y;
 253 JRT_END
 254 
 255 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 256   return x / y;
 257 JRT_END
 258 
 259 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 260   return x + y;
 261 JRT_END
 262 
 263 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 264   return x - y;
 265 JRT_END
 266 
 267 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 268   return x * y;
 269 JRT_END
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 272   return x / y;
 273 JRT_END
 274 
 275 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 276   return (jfloat)x;
 277 JRT_END
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 280   return (jdouble)x;
 281 JRT_END
 282 
 283 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 284   return (jdouble)x;
 285 JRT_END
 286 
 287 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 288   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 289 JRT_END
 290 
 291 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 292   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 293 JRT_END
 294 
 295 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 296   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 297 JRT_END
 298 
 299 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 301 JRT_END
 302 
 303 // Functions to return the opposite of the aeabi functions for nan.
 304 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 305   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 306 JRT_END
 307 
 308 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 309   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 310 JRT_END
 311 
 312 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 313   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 314 JRT_END
 315 
 316 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 317   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 318 JRT_END
 319 
 320 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 321   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 322 JRT_END
 323 
 324 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 325   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 326 JRT_END
 327 
 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 329   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 330 JRT_END
 331 
 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 333   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 334 JRT_END
 335 
 336 // Intrinsics make gcc generate code for these.
 337 float  SharedRuntime::fneg(float f)   {
 338   return -f;
 339 }
 340 
 341 double SharedRuntime::dneg(double f)  {
 342   return -f;
 343 }
 344 
 345 #endif // __SOFTFP__
 346 
 347 #if defined(__SOFTFP__) || defined(E500V2)
 348 // Intrinsics make gcc generate code for these.
 349 double SharedRuntime::dabs(double f)  {
 350   return (f <= (double)0.0) ? (double)0.0 - f : f;
 351 }
 352 
 353 #endif
 354 
 355 #if defined(__SOFTFP__) || defined(PPC)
 356 double SharedRuntime::dsqrt(double f) {
 357   return sqrt(f);
 358 }
 359 #endif
 360 
 361 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 362   if (g_isnan(x))
 363     return 0;
 364   if (x >= (jfloat) max_jint)
 365     return max_jint;
 366   if (x <= (jfloat) min_jint)
 367     return min_jint;
 368   return (jint) x;
 369 JRT_END
 370 
 371 
 372 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 373   if (g_isnan(x))
 374     return 0;
 375   if (x >= (jfloat) max_jlong)
 376     return max_jlong;
 377   if (x <= (jfloat) min_jlong)
 378     return min_jlong;
 379   return (jlong) x;
 380 JRT_END
 381 
 382 
 383 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 384   if (g_isnan(x))
 385     return 0;
 386   if (x >= (jdouble) max_jint)
 387     return max_jint;
 388   if (x <= (jdouble) min_jint)
 389     return min_jint;
 390   return (jint) x;
 391 JRT_END
 392 
 393 
 394 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 395   if (g_isnan(x))
 396     return 0;
 397   if (x >= (jdouble) max_jlong)
 398     return max_jlong;
 399   if (x <= (jdouble) min_jlong)
 400     return min_jlong;
 401   return (jlong) x;
 402 JRT_END
 403 
 404 
 405 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 406   return (jfloat)x;
 407 JRT_END
 408 
 409 
 410 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 411   return (jfloat)x;
 412 JRT_END
 413 
 414 
 415 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 416   return (jdouble)x;
 417 JRT_END
 418 
 419 // Exception handling accross interpreter/compiler boundaries
 420 //
 421 // exception_handler_for_return_address(...) returns the continuation address.
 422 // The continuation address is the entry point of the exception handler of the
 423 // previous frame depending on the return address.
 424 
 425 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 426   assert(frame::verify_return_pc(return_address), "must be a return pc");
 427 
 428   // Reset MethodHandle flag.
 429   thread->set_is_method_handle_return(false);
 430 
 431   // the fastest case first
 432   CodeBlob* blob = CodeCache::find_blob(return_address);
 433   if (blob != NULL && blob->is_nmethod()) {
 434     nmethod* code = (nmethod*)blob;
 435     assert(code != NULL, "nmethod must be present");
 436     // Check if the return address is a MethodHandle call site.
 437     thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 438     // native nmethods don't have exception handlers
 439     assert(!code->is_native_method(), "no exception handler");
 440     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 441     if (code->is_deopt_pc(return_address)) {
 442       return SharedRuntime::deopt_blob()->unpack_with_exception();
 443     } else {
 444       return code->exception_begin();
 445     }
 446   }
 447 
 448   // Entry code
 449   if (StubRoutines::returns_to_call_stub(return_address)) {
 450     return StubRoutines::catch_exception_entry();
 451   }
 452   // Interpreted code
 453   if (Interpreter::contains(return_address)) {
 454     return Interpreter::rethrow_exception_entry();
 455   }
 456 
 457   // Compiled code
 458   if (CodeCache::contains(return_address)) {
 459     CodeBlob* blob = CodeCache::find_blob(return_address);
 460     if (blob->is_nmethod()) {
 461       nmethod* code = (nmethod*)blob;
 462       assert(code != NULL, "nmethod must be present");
 463       // Check if the return address is a MethodHandle call site.
 464       thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 465       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 466       return code->exception_begin();
 467     }
 468     if (blob->is_runtime_stub()) {
 469       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 470     }
 471   }
 472   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 473 #ifndef PRODUCT
 474   { ResourceMark rm;
 475     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 476     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 477     tty->print_cr("b) other problem");
 478   }
 479 #endif // PRODUCT
 480   ShouldNotReachHere();
 481   return NULL;
 482 }
 483 
 484 
 485 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 486   return raw_exception_handler_for_return_address(thread, return_address);
 487 JRT_END
 488 
 489 
 490 address SharedRuntime::get_poll_stub(address pc) {
 491   address stub;
 492   // Look up the code blob
 493   CodeBlob *cb = CodeCache::find_blob(pc);
 494 
 495   // Should be an nmethod
 496   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 497 
 498   // Look up the relocation information
 499   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 500     "safepoint polling: type must be poll" );
 501 
 502   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 503     "Only polling locations are used for safepoint");
 504 
 505   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 506   if (at_poll_return) {
 507     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 508            "polling page return stub not created yet");
 509     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 510   } else {
 511     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 512            "polling page safepoint stub not created yet");
 513     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 514   }
 515 #ifndef PRODUCT
 516   if( TraceSafepoint ) {
 517     char buf[256];
 518     jio_snprintf(buf, sizeof(buf),
 519                  "... found polling page %s exception at pc = "
 520                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 521                  at_poll_return ? "return" : "loop",
 522                  (intptr_t)pc, (intptr_t)stub);
 523     tty->print_raw_cr(buf);
 524   }
 525 #endif // PRODUCT
 526   return stub;
 527 }
 528 
 529 
 530 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 531   assert(caller.is_interpreted_frame(), "");
 532   int args_size = ArgumentSizeComputer(sig).size() + 1;
 533   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 534   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 535   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 536   return result;
 537 }
 538 
 539 
 540 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 541   if (JvmtiExport::can_post_on_exceptions()) {
 542     vframeStream vfst(thread, true);
 543     methodHandle method = methodHandle(thread, vfst.method());
 544     address bcp = method()->bcp_from(vfst.bci());
 545     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 546   }
 547   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 548 }
 549 
 550 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 551   Handle h_exception = Exceptions::new_exception(thread, name, message);
 552   throw_and_post_jvmti_exception(thread, h_exception);
 553 }
 554 
 555 // The interpreter code to call this tracing function is only
 556 // called/generated when TraceRedefineClasses has the right bits
 557 // set. Since obsolete methods are never compiled, we don't have
 558 // to modify the compilers to generate calls to this function.
 559 //
 560 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 561     JavaThread* thread, methodOopDesc* method))
 562   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 563 
 564   if (method->is_obsolete()) {
 565     // We are calling an obsolete method, but this is not necessarily
 566     // an error. Our method could have been redefined just after we
 567     // fetched the methodOop from the constant pool.
 568 
 569     // RC_TRACE macro has an embedded ResourceMark
 570     RC_TRACE_WITH_THREAD(0x00001000, thread,
 571                          ("calling obsolete method '%s'",
 572                           method->name_and_sig_as_C_string()));
 573     if (RC_TRACE_ENABLED(0x00002000)) {
 574       // this option is provided to debug calls to obsolete methods
 575       guarantee(false, "faulting at call to an obsolete method.");
 576     }
 577   }
 578   return 0;
 579 JRT_END
 580 
 581 // ret_pc points into caller; we are returning caller's exception handler
 582 // for given exception
 583 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 584                                                     bool force_unwind, bool top_frame_only) {
 585   assert(nm != NULL, "must exist");
 586   ResourceMark rm;
 587 
 588   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 589   // determine handler bci, if any
 590   EXCEPTION_MARK;
 591 
 592   int handler_bci = -1;
 593   int scope_depth = 0;
 594   if (!force_unwind) {
 595     int bci = sd->bci();
 596     do {
 597       bool skip_scope_increment = false;
 598       // exception handler lookup
 599       KlassHandle ek (THREAD, exception->klass());
 600       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 601       if (HAS_PENDING_EXCEPTION) {
 602         // We threw an exception while trying to find the exception handler.
 603         // Transfer the new exception to the exception handle which will
 604         // be set into thread local storage, and do another lookup for an
 605         // exception handler for this exception, this time starting at the
 606         // BCI of the exception handler which caused the exception to be
 607         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 608         // argument to ensure that the correct exception is thrown (4870175).
 609         exception = Handle(THREAD, PENDING_EXCEPTION);
 610         CLEAR_PENDING_EXCEPTION;
 611         if (handler_bci >= 0) {
 612           bci = handler_bci;
 613           handler_bci = -1;
 614           skip_scope_increment = true;
 615         }
 616       }
 617       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 618         sd = sd->sender();
 619         if (sd != NULL) {
 620           bci = sd->bci();
 621         }
 622         ++scope_depth;
 623       }
 624     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 625   }
 626 
 627   // found handling method => lookup exception handler
 628   int catch_pco = ret_pc - nm->code_begin();
 629 
 630   ExceptionHandlerTable table(nm);
 631   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 632   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 633     // Allow abbreviated catch tables.  The idea is to allow a method
 634     // to materialize its exceptions without committing to the exact
 635     // routing of exceptions.  In particular this is needed for adding
 636     // a synthethic handler to unlock monitors when inlining
 637     // synchonized methods since the unlock path isn't represented in
 638     // the bytecodes.
 639     t = table.entry_for(catch_pco, -1, 0);
 640   }
 641 
 642 #ifdef COMPILER1
 643   if (t == NULL && nm->is_compiled_by_c1()) {
 644     assert(nm->unwind_handler_begin() != NULL, "");
 645     return nm->unwind_handler_begin();
 646   }
 647 #endif
 648 
 649   if (t == NULL) {
 650     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 651     tty->print_cr("   Exception:");
 652     exception->print();
 653     tty->cr();
 654     tty->print_cr(" Compiled exception table :");
 655     table.print();
 656     nm->print_code();
 657     guarantee(false, "missing exception handler");
 658     return NULL;
 659   }
 660 
 661   return nm->code_begin() + t->pco();
 662 }
 663 
 664 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 665   // These errors occur only at call sites
 666   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 667 JRT_END
 668 
 669 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 670   // These errors occur only at call sites
 671   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 672 JRT_END
 673 
 674 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 675   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 676 JRT_END
 677 
 678 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 679   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 680 JRT_END
 681 
 682 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 683   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 684   // cache sites (when the callee activation is not yet set up) so we are at a call site
 685   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 686 JRT_END
 687 
 688 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 689   // We avoid using the normal exception construction in this case because
 690   // it performs an upcall to Java, and we're already out of stack space.
 691   klassOop k = SystemDictionary::StackOverflowError_klass();
 692   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 693   Handle exception (thread, exception_oop);
 694   if (StackTraceInThrowable) {
 695     java_lang_Throwable::fill_in_stack_trace(exception);
 696   }
 697   throw_and_post_jvmti_exception(thread, exception);
 698 JRT_END
 699 
 700 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 701                                                            address pc,
 702                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 703 {
 704   address target_pc = NULL;
 705 
 706   if (Interpreter::contains(pc)) {
 707 #ifdef CC_INTERP
 708     // C++ interpreter doesn't throw implicit exceptions
 709     ShouldNotReachHere();
 710 #else
 711     switch (exception_kind) {
 712       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 713       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 714       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 715       default:                      ShouldNotReachHere();
 716     }
 717 #endif // !CC_INTERP
 718   } else {
 719     switch (exception_kind) {
 720       case STACK_OVERFLOW: {
 721         // Stack overflow only occurs upon frame setup; the callee is
 722         // going to be unwound. Dispatch to a shared runtime stub
 723         // which will cause the StackOverflowError to be fabricated
 724         // and processed.
 725         // For stack overflow in deoptimization blob, cleanup thread.
 726         if (thread->deopt_mark() != NULL) {
 727           Deoptimization::cleanup_deopt_info(thread, NULL);
 728         }
 729         return StubRoutines::throw_StackOverflowError_entry();
 730       }
 731 
 732       case IMPLICIT_NULL: {
 733         if (VtableStubs::contains(pc)) {
 734           // We haven't yet entered the callee frame. Fabricate an
 735           // exception and begin dispatching it in the caller. Since
 736           // the caller was at a call site, it's safe to destroy all
 737           // caller-saved registers, as these entry points do.
 738           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 739 
 740           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 741           if (vt_stub == NULL) return NULL;
 742 
 743           if (vt_stub->is_abstract_method_error(pc)) {
 744             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 745             return StubRoutines::throw_AbstractMethodError_entry();
 746           } else {
 747             return StubRoutines::throw_NullPointerException_at_call_entry();
 748           }
 749         } else {
 750           CodeBlob* cb = CodeCache::find_blob(pc);
 751 
 752           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 753           if (cb == NULL) return NULL;
 754 
 755           // Exception happened in CodeCache. Must be either:
 756           // 1. Inline-cache check in C2I handler blob,
 757           // 2. Inline-cache check in nmethod, or
 758           // 3. Implict null exception in nmethod
 759 
 760           if (!cb->is_nmethod()) {
 761             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 762                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 763             // There is no handler here, so we will simply unwind.
 764             return StubRoutines::throw_NullPointerException_at_call_entry();
 765           }
 766 
 767           // Otherwise, it's an nmethod.  Consult its exception handlers.
 768           nmethod* nm = (nmethod*)cb;
 769           if (nm->inlinecache_check_contains(pc)) {
 770             // exception happened inside inline-cache check code
 771             // => the nmethod is not yet active (i.e., the frame
 772             // is not set up yet) => use return address pushed by
 773             // caller => don't push another return address
 774             return StubRoutines::throw_NullPointerException_at_call_entry();
 775           }
 776 
 777 #ifndef PRODUCT
 778           _implicit_null_throws++;
 779 #endif
 780           target_pc = nm->continuation_for_implicit_exception(pc);
 781           // If there's an unexpected fault, target_pc might be NULL,
 782           // in which case we want to fall through into the normal
 783           // error handling code.
 784         }
 785 
 786         break; // fall through
 787       }
 788 
 789 
 790       case IMPLICIT_DIVIDE_BY_ZERO: {
 791         nmethod* nm = CodeCache::find_nmethod(pc);
 792         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 793 #ifndef PRODUCT
 794         _implicit_div0_throws++;
 795 #endif
 796         target_pc = nm->continuation_for_implicit_exception(pc);
 797         // If there's an unexpected fault, target_pc might be NULL,
 798         // in which case we want to fall through into the normal
 799         // error handling code.
 800         break; // fall through
 801       }
 802 
 803       default: ShouldNotReachHere();
 804     }
 805 
 806     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 807 
 808     // for AbortVMOnException flag
 809     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 810     if (exception_kind == IMPLICIT_NULL) {
 811       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 812     } else {
 813       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 814     }
 815     return target_pc;
 816   }
 817 
 818   ShouldNotReachHere();
 819   return NULL;
 820 }
 821 
 822 
 823 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 824 {
 825   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 826 }
 827 JNI_END
 828 
 829 
 830 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 831   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 832 }
 833 
 834 
 835 #ifndef PRODUCT
 836 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 837   const frame f = thread->last_frame();
 838   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 839 #ifndef PRODUCT
 840   methodHandle mh(THREAD, f.interpreter_frame_method());
 841   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 842 #endif // !PRODUCT
 843   return preserve_this_value;
 844 JRT_END
 845 #endif // !PRODUCT
 846 
 847 
 848 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 849   os::yield_all(attempts);
 850 JRT_END
 851 
 852 
 853 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 854   assert(obj->is_oop(), "must be a valid oop");
 855   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 856   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 857 JRT_END
 858 
 859 
 860 jlong SharedRuntime::get_java_tid(Thread* thread) {
 861   if (thread != NULL) {
 862     if (thread->is_Java_thread()) {
 863       oop obj = ((JavaThread*)thread)->threadObj();
 864       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 865     }
 866   }
 867   return 0;
 868 }
 869 
 870 /**
 871  * This function ought to be a void function, but cannot be because
 872  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 873  * 6254741.  Once that is fixed we can remove the dummy return value.
 874  */
 875 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 876   return dtrace_object_alloc_base(Thread::current(), o);
 877 }
 878 
 879 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 880   assert(DTraceAllocProbes, "wrong call");
 881   Klass* klass = o->blueprint();
 882   int size = o->size();
 883   symbolOop name = klass->name();
 884   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 885                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 886   return 0;
 887 }
 888 
 889 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 890     JavaThread* thread, methodOopDesc* method))
 891   assert(DTraceMethodProbes, "wrong call");
 892   symbolOop kname = method->klass_name();
 893   symbolOop name = method->name();
 894   symbolOop sig = method->signature();
 895   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 896       kname->bytes(), kname->utf8_length(),
 897       name->bytes(), name->utf8_length(),
 898       sig->bytes(), sig->utf8_length());
 899   return 0;
 900 JRT_END
 901 
 902 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 903     JavaThread* thread, methodOopDesc* method))
 904   assert(DTraceMethodProbes, "wrong call");
 905   symbolOop kname = method->klass_name();
 906   symbolOop name = method->name();
 907   symbolOop sig = method->signature();
 908   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 909       kname->bytes(), kname->utf8_length(),
 910       name->bytes(), name->utf8_length(),
 911       sig->bytes(), sig->utf8_length());
 912   return 0;
 913 JRT_END
 914 
 915 
 916 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 917 // for a call current in progress, i.e., arguments has been pushed on stack
 918 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 919 // vtable updates, etc.  Caller frame must be compiled.
 920 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 921   ResourceMark rm(THREAD);
 922 
 923   // last java frame on stack (which includes native call frames)
 924   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 925 
 926   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 927 }
 928 
 929 
 930 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 931 // for a call current in progress, i.e., arguments has been pushed on stack
 932 // but callee has not been invoked yet.  Caller frame must be compiled.
 933 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 934                                               vframeStream& vfst,
 935                                               Bytecodes::Code& bc,
 936                                               CallInfo& callinfo, TRAPS) {
 937   Handle receiver;
 938   Handle nullHandle;  //create a handy null handle for exception returns
 939 
 940   assert(!vfst.at_end(), "Java frame must exist");
 941 
 942   // Find caller and bci from vframe
 943   methodHandle caller (THREAD, vfst.method());
 944   int          bci    = vfst.bci();
 945 
 946   // Find bytecode
 947   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 948   bc = bytecode->java_code();
 949   int bytecode_index = bytecode->index();
 950 
 951   // Find receiver for non-static call
 952   if (bc != Bytecodes::_invokestatic) {
 953     // This register map must be update since we need to find the receiver for
 954     // compiled frames. The receiver might be in a register.
 955     RegisterMap reg_map2(thread);
 956     frame stubFrame   = thread->last_frame();
 957     // Caller-frame is a compiled frame
 958     frame callerFrame = stubFrame.sender(&reg_map2);
 959 
 960     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 961     if (callee.is_null()) {
 962       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 963     }
 964     // Retrieve from a compiled argument list
 965     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 966 
 967     if (receiver.is_null()) {
 968       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 969     }
 970   }
 971 
 972   // Resolve method. This is parameterized by bytecode.
 973   constantPoolHandle constants (THREAD, caller->constants());
 974   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 975   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 976 
 977 #ifdef ASSERT
 978   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 979   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 980     assert(receiver.not_null(), "should have thrown exception");
 981     KlassHandle receiver_klass (THREAD, receiver->klass());
 982     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 983                             // klass is already loaded
 984     KlassHandle static_receiver_klass (THREAD, rk);
 985     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 986     if (receiver_klass->oop_is_instance()) {
 987       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 988         tty->print_cr("ERROR: Klass not yet initialized!!");
 989         receiver_klass.print();
 990       }
 991       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 992     }
 993   }
 994 #endif
 995 
 996   return receiver;
 997 }
 998 
 999 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1000   ResourceMark rm(THREAD);
1001   // We need first to check if any Java activations (compiled, interpreted)
1002   // exist on the stack since last JavaCall.  If not, we need
1003   // to get the target method from the JavaCall wrapper.
1004   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1005   methodHandle callee_method;
1006   if (vfst.at_end()) {
1007     // No Java frames were found on stack since we did the JavaCall.
1008     // Hence the stack can only contain an entry_frame.  We need to
1009     // find the target method from the stub frame.
1010     RegisterMap reg_map(thread, false);
1011     frame fr = thread->last_frame();
1012     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1013     fr = fr.sender(&reg_map);
1014     assert(fr.is_entry_frame(), "must be");
1015     // fr is now pointing to the entry frame.
1016     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1017     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1018   } else {
1019     Bytecodes::Code bc;
1020     CallInfo callinfo;
1021     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1022     callee_method = callinfo.selected_method();
1023   }
1024   assert(callee_method()->is_method(), "must be");
1025   return callee_method;
1026 }
1027 
1028 // Resolves a call.
1029 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1030                                            bool is_virtual,
1031                                            bool is_optimized, TRAPS) {
1032   methodHandle callee_method;
1033   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1034   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1035     int retry_count = 0;
1036     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1037            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1038       // If has a pending exception then there is no need to re-try to
1039       // resolve this method.
1040       // If the method has been redefined, we need to try again.
1041       // Hack: we have no way to update the vtables of arrays, so don't
1042       // require that java.lang.Object has been updated.
1043 
1044       // It is very unlikely that method is redefined more than 100 times
1045       // in the middle of resolve. If it is looping here more than 100 times
1046       // means then there could be a bug here.
1047       guarantee((retry_count++ < 100),
1048                 "Could not resolve to latest version of redefined method");
1049       // method is redefined in the middle of resolve so re-try.
1050       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1051     }
1052   }
1053   return callee_method;
1054 }
1055 
1056 // Resolves a call.  The compilers generate code for calls that go here
1057 // and are patched with the real destination of the call.
1058 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1059                                            bool is_virtual,
1060                                            bool is_optimized, TRAPS) {
1061 
1062   ResourceMark rm(thread);
1063   RegisterMap cbl_map(thread, false);
1064   frame caller_frame = thread->last_frame().sender(&cbl_map);
1065 
1066   CodeBlob* caller_cb = caller_frame.cb();
1067   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1068   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1069   // make sure caller is not getting deoptimized
1070   // and removed before we are done with it.
1071   // CLEANUP - with lazy deopt shouldn't need this lock
1072   nmethodLocker caller_lock(caller_nm);
1073 
1074 
1075   // determine call info & receiver
1076   // note: a) receiver is NULL for static calls
1077   //       b) an exception is thrown if receiver is NULL for non-static calls
1078   CallInfo call_info;
1079   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1080   Handle receiver = find_callee_info(thread, invoke_code,
1081                                      call_info, CHECK_(methodHandle()));
1082   methodHandle callee_method = call_info.selected_method();
1083 
1084   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1085          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1086 
1087 #ifndef PRODUCT
1088   // tracing/debugging/statistics
1089   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1090                 (is_virtual) ? (&_resolve_virtual_ctr) :
1091                                (&_resolve_static_ctr);
1092   Atomic::inc(addr);
1093 
1094   if (TraceCallFixup) {
1095     ResourceMark rm(thread);
1096     tty->print("resolving %s%s (%s) call to",
1097       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1098       Bytecodes::name(invoke_code));
1099     callee_method->print_short_name(tty);
1100     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1101   }
1102 #endif
1103 
1104   // JSR 292
1105   // If the resolved method is a MethodHandle invoke target the call
1106   // site must be a MethodHandle call site.
1107   if (callee_method->is_method_handle_invoke()) {
1108     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1109   }
1110 
1111   // Compute entry points. This might require generation of C2I converter
1112   // frames, so we cannot be holding any locks here. Furthermore, the
1113   // computation of the entry points is independent of patching the call.  We
1114   // always return the entry-point, but we only patch the stub if the call has
1115   // not been deoptimized.  Return values: For a virtual call this is an
1116   // (cached_oop, destination address) pair. For a static call/optimized
1117   // virtual this is just a destination address.
1118 
1119   StaticCallInfo static_call_info;
1120   CompiledICInfo virtual_call_info;
1121 
1122   // Make sure the callee nmethod does not get deoptimized and removed before
1123   // we are done patching the code.
1124   nmethod* callee_nm = callee_method->code();
1125   nmethodLocker nl_callee(callee_nm);
1126 #ifdef ASSERT
1127   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1128 #endif
1129 
1130   if (is_virtual) {
1131     assert(receiver.not_null(), "sanity check");
1132     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1133     KlassHandle h_klass(THREAD, receiver->klass());
1134     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1135                      is_optimized, static_bound, virtual_call_info,
1136                      CHECK_(methodHandle()));
1137   } else {
1138     // static call
1139     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1140   }
1141 
1142   // grab lock, check for deoptimization and potentially patch caller
1143   {
1144     MutexLocker ml_patch(CompiledIC_lock);
1145 
1146     // Now that we are ready to patch if the methodOop was redefined then
1147     // don't update call site and let the caller retry.
1148 
1149     if (!callee_method->is_old()) {
1150 #ifdef ASSERT
1151       // We must not try to patch to jump to an already unloaded method.
1152       if (dest_entry_point != 0) {
1153         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1154                "should not unload nmethod while locked");
1155       }
1156 #endif
1157       if (is_virtual) {
1158         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1159         if (inline_cache->is_clean()) {
1160           inline_cache->set_to_monomorphic(virtual_call_info);
1161         }
1162       } else {
1163         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1164         if (ssc->is_clean()) ssc->set(static_call_info);
1165       }
1166     }
1167 
1168   } // unlock CompiledIC_lock
1169 
1170   return callee_method;
1171 }
1172 
1173 
1174 // Inline caches exist only in compiled code
1175 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1176 #ifdef ASSERT
1177   RegisterMap reg_map(thread, false);
1178   frame stub_frame = thread->last_frame();
1179   assert(stub_frame.is_runtime_frame(), "sanity check");
1180   frame caller_frame = stub_frame.sender(&reg_map);
1181   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1182 #endif /* ASSERT */
1183 
1184   methodHandle callee_method;
1185   JRT_BLOCK
1186     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1187     // Return methodOop through TLS
1188     thread->set_vm_result(callee_method());
1189   JRT_BLOCK_END
1190   // return compiled code entry point after potential safepoints
1191   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1192   return callee_method->verified_code_entry();
1193 JRT_END
1194 
1195 
1196 // Handle call site that has been made non-entrant
1197 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1198   // 6243940 We might end up in here if the callee is deoptimized
1199   // as we race to call it.  We don't want to take a safepoint if
1200   // the caller was interpreted because the caller frame will look
1201   // interpreted to the stack walkers and arguments are now
1202   // "compiled" so it is much better to make this transition
1203   // invisible to the stack walking code. The i2c path will
1204   // place the callee method in the callee_target. It is stashed
1205   // there because if we try and find the callee by normal means a
1206   // safepoint is possible and have trouble gc'ing the compiled args.
1207   RegisterMap reg_map(thread, false);
1208   frame stub_frame = thread->last_frame();
1209   assert(stub_frame.is_runtime_frame(), "sanity check");
1210   frame caller_frame = stub_frame.sender(&reg_map);
1211 
1212   // MethodHandle invokes don't have a CompiledIC and should always
1213   // simply redispatch to the callee_target.
1214   address   sender_pc = caller_frame.pc();
1215   CodeBlob* sender_cb = caller_frame.cb();
1216   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1217   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1218   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1219     // If the callee_target is set, then we have come here via an i2c
1220     // adapter.
1221     methodOop callee = thread->callee_target();
1222     if (callee != NULL) {
1223       assert(callee->is_method(), "sanity");
1224       is_mh_invoke_via_adapter = true;
1225     }
1226   }
1227 
1228   if (caller_frame.is_interpreted_frame() ||
1229       caller_frame.is_entry_frame()       ||
1230       is_mh_invoke_via_adapter) {
1231     methodOop callee = thread->callee_target();
1232     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1233     thread->set_vm_result(callee);
1234     thread->set_callee_target(NULL);
1235     return callee->get_c2i_entry();
1236   }
1237 
1238   // Must be compiled to compiled path which is safe to stackwalk
1239   methodHandle callee_method;
1240   JRT_BLOCK
1241     // Force resolving of caller (if we called from compiled frame)
1242     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1243     thread->set_vm_result(callee_method());
1244   JRT_BLOCK_END
1245   // return compiled code entry point after potential safepoints
1246   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1247   return callee_method->verified_code_entry();
1248 JRT_END
1249 
1250 
1251 // resolve a static call and patch code
1252 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1253   methodHandle callee_method;
1254   JRT_BLOCK
1255     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1256     thread->set_vm_result(callee_method());
1257   JRT_BLOCK_END
1258   // return compiled code entry point after potential safepoints
1259   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1260   return callee_method->verified_code_entry();
1261 JRT_END
1262 
1263 
1264 // resolve virtual call and update inline cache to monomorphic
1265 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1266   methodHandle callee_method;
1267   JRT_BLOCK
1268     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1269     thread->set_vm_result(callee_method());
1270   JRT_BLOCK_END
1271   // return compiled code entry point after potential safepoints
1272   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1273   return callee_method->verified_code_entry();
1274 JRT_END
1275 
1276 
1277 // Resolve a virtual call that can be statically bound (e.g., always
1278 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1279 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1280   methodHandle callee_method;
1281   JRT_BLOCK
1282     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1283     thread->set_vm_result(callee_method());
1284   JRT_BLOCK_END
1285   // return compiled code entry point after potential safepoints
1286   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1287   return callee_method->verified_code_entry();
1288 JRT_END
1289 
1290 
1291 
1292 
1293 
1294 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1295   ResourceMark rm(thread);
1296   CallInfo call_info;
1297   Bytecodes::Code bc;
1298 
1299   // receiver is NULL for static calls. An exception is thrown for NULL
1300   // receivers for non-static calls
1301   Handle receiver = find_callee_info(thread, bc, call_info,
1302                                      CHECK_(methodHandle()));
1303   // Compiler1 can produce virtual call sites that can actually be statically bound
1304   // If we fell thru to below we would think that the site was going megamorphic
1305   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1306   // we'd try and do a vtable dispatch however methods that can be statically bound
1307   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1308   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1309   // plain ic_miss) and the site will be converted to an optimized virtual call site
1310   // never to miss again. I don't believe C2 will produce code like this but if it
1311   // did this would still be the correct thing to do for it too, hence no ifdef.
1312   //
1313   if (call_info.resolved_method()->can_be_statically_bound()) {
1314     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1315     if (TraceCallFixup) {
1316       RegisterMap reg_map(thread, false);
1317       frame caller_frame = thread->last_frame().sender(&reg_map);
1318       ResourceMark rm(thread);
1319       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1320       callee_method->print_short_name(tty);
1321       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1322       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1323     }
1324     return callee_method;
1325   }
1326 
1327   methodHandle callee_method = call_info.selected_method();
1328 
1329   bool should_be_mono = false;
1330 
1331 #ifndef PRODUCT
1332   Atomic::inc(&_ic_miss_ctr);
1333 
1334   // Statistics & Tracing
1335   if (TraceCallFixup) {
1336     ResourceMark rm(thread);
1337     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1338     callee_method->print_short_name(tty);
1339     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1340   }
1341 
1342   if (ICMissHistogram) {
1343     MutexLocker m(VMStatistic_lock);
1344     RegisterMap reg_map(thread, false);
1345     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1346     // produce statistics under the lock
1347     trace_ic_miss(f.pc());
1348   }
1349 #endif
1350 
1351   // install an event collector so that when a vtable stub is created the
1352   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1353   // event can't be posted when the stub is created as locks are held
1354   // - instead the event will be deferred until the event collector goes
1355   // out of scope.
1356   JvmtiDynamicCodeEventCollector event_collector;
1357 
1358   // Update inline cache to megamorphic. Skip update if caller has been
1359   // made non-entrant or we are called from interpreted.
1360   { MutexLocker ml_patch (CompiledIC_lock);
1361     RegisterMap reg_map(thread, false);
1362     frame caller_frame = thread->last_frame().sender(&reg_map);
1363     CodeBlob* cb = caller_frame.cb();
1364     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1365       // Not a non-entrant nmethod, so find inline_cache
1366       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1367       bool should_be_mono = false;
1368       if (inline_cache->is_optimized()) {
1369         if (TraceCallFixup) {
1370           ResourceMark rm(thread);
1371           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1372           callee_method->print_short_name(tty);
1373           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1374         }
1375         should_be_mono = true;
1376       } else {
1377         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1378         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1379 
1380           if (receiver()->klass() == ic_oop->holder_klass()) {
1381             // This isn't a real miss. We must have seen that compiled code
1382             // is now available and we want the call site converted to a
1383             // monomorphic compiled call site.
1384             // We can't assert for callee_method->code() != NULL because it
1385             // could have been deoptimized in the meantime
1386             if (TraceCallFixup) {
1387               ResourceMark rm(thread);
1388               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1389               callee_method->print_short_name(tty);
1390               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1391             }
1392             should_be_mono = true;
1393           }
1394         }
1395       }
1396 
1397       if (should_be_mono) {
1398 
1399         // We have a path that was monomorphic but was going interpreted
1400         // and now we have (or had) a compiled entry. We correct the IC
1401         // by using a new icBuffer.
1402         CompiledICInfo info;
1403         KlassHandle receiver_klass(THREAD, receiver()->klass());
1404         inline_cache->compute_monomorphic_entry(callee_method,
1405                                                 receiver_klass,
1406                                                 inline_cache->is_optimized(),
1407                                                 false,
1408                                                 info, CHECK_(methodHandle()));
1409         inline_cache->set_to_monomorphic(info);
1410       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1411         // Change to megamorphic
1412         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1413       } else {
1414         // Either clean or megamorphic
1415       }
1416     }
1417   } // Release CompiledIC_lock
1418 
1419   return callee_method;
1420 }
1421 
1422 //
1423 // Resets a call-site in compiled code so it will get resolved again.
1424 // This routines handles both virtual call sites, optimized virtual call
1425 // sites, and static call sites. Typically used to change a call sites
1426 // destination from compiled to interpreted.
1427 //
1428 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1429   ResourceMark rm(thread);
1430   RegisterMap reg_map(thread, false);
1431   frame stub_frame = thread->last_frame();
1432   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1433   frame caller = stub_frame.sender(&reg_map);
1434 
1435   // Do nothing if the frame isn't a live compiled frame.
1436   // nmethod could be deoptimized by the time we get here
1437   // so no update to the caller is needed.
1438 
1439   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1440 
1441     address pc = caller.pc();
1442     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1443 
1444     // Default call_addr is the location of the "basic" call.
1445     // Determine the address of the call we a reresolving. With
1446     // Inline Caches we will always find a recognizable call.
1447     // With Inline Caches disabled we may or may not find a
1448     // recognizable call. We will always find a call for static
1449     // calls and for optimized virtual calls. For vanilla virtual
1450     // calls it depends on the state of the UseInlineCaches switch.
1451     //
1452     // With Inline Caches disabled we can get here for a virtual call
1453     // for two reasons:
1454     //   1 - calling an abstract method. The vtable for abstract methods
1455     //       will run us thru handle_wrong_method and we will eventually
1456     //       end up in the interpreter to throw the ame.
1457     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1458     //       call and between the time we fetch the entry address and
1459     //       we jump to it the target gets deoptimized. Similar to 1
1460     //       we will wind up in the interprter (thru a c2i with c2).
1461     //
1462     address call_addr = NULL;
1463     {
1464       // Get call instruction under lock because another thread may be
1465       // busy patching it.
1466       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1467       // Location of call instruction
1468       if (NativeCall::is_call_before(pc)) {
1469         NativeCall *ncall = nativeCall_before(pc);
1470         call_addr = ncall->instruction_address();
1471       }
1472     }
1473 
1474     // Check for static or virtual call
1475     bool is_static_call = false;
1476     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1477     // Make sure nmethod doesn't get deoptimized and removed until
1478     // this is done with it.
1479     // CLEANUP - with lazy deopt shouldn't need this lock
1480     nmethodLocker nmlock(caller_nm);
1481 
1482     if (call_addr != NULL) {
1483       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1484       int ret = iter.next(); // Get item
1485       if (ret) {
1486         assert(iter.addr() == call_addr, "must find call");
1487         if (iter.type() == relocInfo::static_call_type) {
1488           is_static_call = true;
1489         } else {
1490           assert(iter.type() == relocInfo::virtual_call_type ||
1491                  iter.type() == relocInfo::opt_virtual_call_type
1492                 , "unexpected relocInfo. type");
1493         }
1494       } else {
1495         assert(!UseInlineCaches, "relocation info. must exist for this address");
1496       }
1497 
1498       // Cleaning the inline cache will force a new resolve. This is more robust
1499       // than directly setting it to the new destination, since resolving of calls
1500       // is always done through the same code path. (experience shows that it
1501       // leads to very hard to track down bugs, if an inline cache gets updated
1502       // to a wrong method). It should not be performance critical, since the
1503       // resolve is only done once.
1504 
1505       MutexLocker ml(CompiledIC_lock);
1506       //
1507       // We do not patch the call site if the nmethod has been made non-entrant
1508       // as it is a waste of time
1509       //
1510       if (caller_nm->is_in_use()) {
1511         if (is_static_call) {
1512           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1513           ssc->set_to_clean();
1514         } else {
1515           // compiled, dispatched call (which used to call an interpreted method)
1516           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1517           inline_cache->set_to_clean();
1518         }
1519       }
1520     }
1521 
1522   }
1523 
1524   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1525 
1526 
1527 #ifndef PRODUCT
1528   Atomic::inc(&_wrong_method_ctr);
1529 
1530   if (TraceCallFixup) {
1531     ResourceMark rm(thread);
1532     tty->print("handle_wrong_method reresolving call to");
1533     callee_method->print_short_name(tty);
1534     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1535   }
1536 #endif
1537 
1538   return callee_method;
1539 }
1540 
1541 // ---------------------------------------------------------------------------
1542 // We are calling the interpreter via a c2i. Normally this would mean that
1543 // we were called by a compiled method. However we could have lost a race
1544 // where we went int -> i2c -> c2i and so the caller could in fact be
1545 // interpreted. If the caller is compiled we attempt to patch the caller
1546 // so he no longer calls into the interpreter.
1547 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1548   methodOop moop(method);
1549 
1550   address entry_point = moop->from_compiled_entry();
1551 
1552   // It's possible that deoptimization can occur at a call site which hasn't
1553   // been resolved yet, in which case this function will be called from
1554   // an nmethod that has been patched for deopt and we can ignore the
1555   // request for a fixup.
1556   // Also it is possible that we lost a race in that from_compiled_entry
1557   // is now back to the i2c in that case we don't need to patch and if
1558   // we did we'd leap into space because the callsite needs to use
1559   // "to interpreter" stub in order to load up the methodOop. Don't
1560   // ask me how I know this...
1561 
1562   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1563   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1564     return;
1565   }
1566 
1567   // The check above makes sure this is a nmethod.
1568   nmethod* nm = cb->as_nmethod_or_null();
1569   assert(nm, "must be");
1570 
1571   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1572   // to implement MethodHandle actions.
1573   if (nm->is_method_handle_return(caller_pc)) {
1574     return;
1575   }
1576 
1577   // There is a benign race here. We could be attempting to patch to a compiled
1578   // entry point at the same time the callee is being deoptimized. If that is
1579   // the case then entry_point may in fact point to a c2i and we'd patch the
1580   // call site with the same old data. clear_code will set code() to NULL
1581   // at the end of it. If we happen to see that NULL then we can skip trying
1582   // to patch. If we hit the window where the callee has a c2i in the
1583   // from_compiled_entry and the NULL isn't present yet then we lose the race
1584   // and patch the code with the same old data. Asi es la vida.
1585 
1586   if (moop->code() == NULL) return;
1587 
1588   if (nm->is_in_use()) {
1589 
1590     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1591     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1592     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1593       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1594       //
1595       // bug 6281185. We might get here after resolving a call site to a vanilla
1596       // virtual call. Because the resolvee uses the verified entry it may then
1597       // see compiled code and attempt to patch the site by calling us. This would
1598       // then incorrectly convert the call site to optimized and its downhill from
1599       // there. If you're lucky you'll get the assert in the bugid, if not you've
1600       // just made a call site that could be megamorphic into a monomorphic site
1601       // for the rest of its life! Just another racing bug in the life of
1602       // fixup_callers_callsite ...
1603       //
1604       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1605       iter.next();
1606       assert(iter.has_current(), "must have a reloc at java call site");
1607       relocInfo::relocType typ = iter.reloc()->type();
1608       if ( typ != relocInfo::static_call_type &&
1609            typ != relocInfo::opt_virtual_call_type &&
1610            typ != relocInfo::static_stub_type) {
1611         return;
1612       }
1613       address destination = call->destination();
1614       if (destination != entry_point) {
1615         CodeBlob* callee = CodeCache::find_blob(destination);
1616         // callee == cb seems weird. It means calling interpreter thru stub.
1617         if (callee == cb || callee->is_adapter_blob()) {
1618           // static call or optimized virtual
1619           if (TraceCallFixup) {
1620             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1621             moop->print_short_name(tty);
1622             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1623           }
1624           call->set_destination_mt_safe(entry_point);
1625         } else {
1626           if (TraceCallFixup) {
1627             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1628             moop->print_short_name(tty);
1629             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1630           }
1631           // assert is too strong could also be resolve destinations.
1632           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1633         }
1634       } else {
1635           if (TraceCallFixup) {
1636             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1637             moop->print_short_name(tty);
1638             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1639           }
1640       }
1641     }
1642   }
1643 
1644 IRT_END
1645 
1646 
1647 // same as JVM_Arraycopy, but called directly from compiled code
1648 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1649                                                 oopDesc* dest, jint dest_pos,
1650                                                 jint length,
1651                                                 JavaThread* thread)) {
1652 #ifndef PRODUCT
1653   _slow_array_copy_ctr++;
1654 #endif
1655   // Check if we have null pointers
1656   if (src == NULL || dest == NULL) {
1657     THROW(vmSymbols::java_lang_NullPointerException());
1658   }
1659   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1660   // even though the copy_array API also performs dynamic checks to ensure
1661   // that src and dest are truly arrays (and are conformable).
1662   // The copy_array mechanism is awkward and could be removed, but
1663   // the compilers don't call this function except as a last resort,
1664   // so it probably doesn't matter.
1665   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1666                                         (arrayOopDesc*)dest, dest_pos,
1667                                         length, thread);
1668 }
1669 JRT_END
1670 
1671 char* SharedRuntime::generate_class_cast_message(
1672     JavaThread* thread, const char* objName) {
1673 
1674   // Get target class name from the checkcast instruction
1675   vframeStream vfst(thread, true);
1676   assert(!vfst.at_end(), "Java frame must exist");
1677   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1678     vfst.method()->bcp_from(vfst.bci()));
1679   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1680     cc->index(), thread));
1681   return generate_class_cast_message(objName, targetKlass->external_name());
1682 }
1683 
1684 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1685                                                         oopDesc* required,
1686                                                         oopDesc* actual) {
1687   if (TraceMethodHandles) {
1688     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1689                   thread, required, actual);
1690   }
1691   assert(EnableMethodHandles, "");
1692   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1693   char* message = NULL;
1694   if (singleKlass != NULL) {
1695     const char* objName = "argument or return value";
1696     if (actual != NULL) {
1697       // be flexible about the junk passed in:
1698       klassOop ak = (actual->is_klass()
1699                      ? (klassOop)actual
1700                      : actual->klass());
1701       objName = Klass::cast(ak)->external_name();
1702     }
1703     Klass* targetKlass = Klass::cast(required->is_klass()
1704                                      ? (klassOop)required
1705                                      : java_lang_Class::as_klassOop(required));
1706     message = generate_class_cast_message(objName, targetKlass->external_name());
1707   } else {
1708     // %%% need to get the MethodType string, without messing around too much
1709     // Get a signature from the invoke instruction
1710     const char* mhName = "method handle";
1711     const char* targetType = "the required signature";
1712     vframeStream vfst(thread, true);
1713     if (!vfst.at_end()) {
1714       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1715       methodHandle target;
1716       {
1717         EXCEPTION_MARK;
1718         target = call->static_target(THREAD);
1719         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1720       }
1721       if (target.not_null()
1722           && target->is_method_handle_invoke()
1723           && required == target->method_handle_type()) {
1724         targetType = target->signature()->as_C_string();
1725       }
1726     }
1727     klassOop kignore; int fignore;
1728     methodOop actual_method = MethodHandles::decode_method(actual,
1729                                                           kignore, fignore);
1730     if (actual_method != NULL) {
1731       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1732         mhName = "$";
1733       else
1734         mhName = actual_method->signature()->as_C_string();
1735       if (mhName[0] == '$')
1736         mhName = actual_method->signature()->as_C_string();
1737     }
1738     message = generate_class_cast_message(mhName, targetType,
1739                                           " cannot be called as ");
1740   }
1741   if (TraceMethodHandles) {
1742     tty->print_cr("WrongMethodType => message=%s", message);
1743   }
1744   return message;
1745 }
1746 
1747 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1748                                                             oopDesc* required) {
1749   if (required == NULL)  return NULL;
1750   if (required->klass() == SystemDictionary::Class_klass())
1751     return required;
1752   if (required->is_klass())
1753     return Klass::cast(klassOop(required))->java_mirror();
1754   return NULL;
1755 }
1756 
1757 
1758 char* SharedRuntime::generate_class_cast_message(
1759     const char* objName, const char* targetKlassName, const char* desc) {
1760   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1761 
1762   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1763   if (NULL == message) {
1764     // Shouldn't happen, but don't cause even more problems if it does
1765     message = const_cast<char*>(objName);
1766   } else {
1767     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1768   }
1769   return message;
1770 }
1771 
1772 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1773   (void) JavaThread::current()->reguard_stack();
1774 JRT_END
1775 
1776 
1777 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1778 #ifndef PRODUCT
1779 int SharedRuntime::_monitor_enter_ctr=0;
1780 #endif
1781 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1782   oop obj(_obj);
1783 #ifndef PRODUCT
1784   _monitor_enter_ctr++;             // monitor enter slow
1785 #endif
1786   if (PrintBiasedLockingStatistics) {
1787     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1788   }
1789   Handle h_obj(THREAD, obj);
1790   if (UseBiasedLocking) {
1791     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1792     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1793   } else {
1794     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1795   }
1796   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1797 JRT_END
1798 
1799 #ifndef PRODUCT
1800 int SharedRuntime::_monitor_exit_ctr=0;
1801 #endif
1802 // Handles the uncommon cases of monitor unlocking in compiled code
1803 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1804    oop obj(_obj);
1805 #ifndef PRODUCT
1806   _monitor_exit_ctr++;              // monitor exit slow
1807 #endif
1808   Thread* THREAD = JavaThread::current();
1809   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1810   // testing was unable to ever fire the assert that guarded it so I have removed it.
1811   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1812 #undef MIGHT_HAVE_PENDING
1813 #ifdef MIGHT_HAVE_PENDING
1814   // Save and restore any pending_exception around the exception mark.
1815   // While the slow_exit must not throw an exception, we could come into
1816   // this routine with one set.
1817   oop pending_excep = NULL;
1818   const char* pending_file;
1819   int pending_line;
1820   if (HAS_PENDING_EXCEPTION) {
1821     pending_excep = PENDING_EXCEPTION;
1822     pending_file  = THREAD->exception_file();
1823     pending_line  = THREAD->exception_line();
1824     CLEAR_PENDING_EXCEPTION;
1825   }
1826 #endif /* MIGHT_HAVE_PENDING */
1827 
1828   {
1829     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1830     EXCEPTION_MARK;
1831     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1832   }
1833 
1834 #ifdef MIGHT_HAVE_PENDING
1835   if (pending_excep != NULL) {
1836     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1837   }
1838 #endif /* MIGHT_HAVE_PENDING */
1839 JRT_END
1840 
1841 #ifndef PRODUCT
1842 
1843 void SharedRuntime::print_statistics() {
1844   ttyLocker ttyl;
1845   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1846 
1847   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1848   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1849   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1850 
1851   SharedRuntime::print_ic_miss_histogram();
1852 
1853   if (CountRemovableExceptions) {
1854     if (_nof_removable_exceptions > 0) {
1855       Unimplemented(); // this counter is not yet incremented
1856       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1857     }
1858   }
1859 
1860   // Dump the JRT_ENTRY counters
1861   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1862   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1863   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1864   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1865   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1866   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1867   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1868 
1869   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1870   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1871   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1872   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1873   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1874 
1875   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1876   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1877   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1878   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1879   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1880   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1881   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1882   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1883   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1884   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1885   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1886   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1887   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1888   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1889   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1890   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1891 
1892   AdapterHandlerLibrary::print_statistics();
1893 
1894   if (xtty != NULL)  xtty->tail("statistics");
1895 }
1896 
1897 inline double percent(int x, int y) {
1898   return 100.0 * x / MAX2(y, 1);
1899 }
1900 
1901 class MethodArityHistogram {
1902  public:
1903   enum { MAX_ARITY = 256 };
1904  private:
1905   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1906   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1907   static int _max_arity;                      // max. arity seen
1908   static int _max_size;                       // max. arg size seen
1909 
1910   static void add_method_to_histogram(nmethod* nm) {
1911     methodOop m = nm->method();
1912     ArgumentCount args(m->signature());
1913     int arity   = args.size() + (m->is_static() ? 0 : 1);
1914     int argsize = m->size_of_parameters();
1915     arity   = MIN2(arity, MAX_ARITY-1);
1916     argsize = MIN2(argsize, MAX_ARITY-1);
1917     int count = nm->method()->compiled_invocation_count();
1918     _arity_histogram[arity]  += count;
1919     _size_histogram[argsize] += count;
1920     _max_arity = MAX2(_max_arity, arity);
1921     _max_size  = MAX2(_max_size, argsize);
1922   }
1923 
1924   void print_histogram_helper(int n, int* histo, const char* name) {
1925     const int N = MIN2(5, n);
1926     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1927     double sum = 0;
1928     double weighted_sum = 0;
1929     int i;
1930     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1931     double rest = sum;
1932     double percent = sum / 100;
1933     for (i = 0; i <= N; i++) {
1934       rest -= histo[i];
1935       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1936     }
1937     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1938     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1939   }
1940 
1941   void print_histogram() {
1942     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1943     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1944     tty->print_cr("\nSame for parameter size (in words):");
1945     print_histogram_helper(_max_size, _size_histogram, "size");
1946     tty->cr();
1947   }
1948 
1949  public:
1950   MethodArityHistogram() {
1951     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1952     _max_arity = _max_size = 0;
1953     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1954     CodeCache::nmethods_do(add_method_to_histogram);
1955     print_histogram();
1956   }
1957 };
1958 
1959 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1960 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1961 int MethodArityHistogram::_max_arity;
1962 int MethodArityHistogram::_max_size;
1963 
1964 void SharedRuntime::print_call_statistics(int comp_total) {
1965   tty->print_cr("Calls from compiled code:");
1966   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1967   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1968   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1969   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1970   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1971   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1972   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1973   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1974   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1975   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1976   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1977   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1978   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1979   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1980   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1981   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1982   tty->cr();
1983   tty->print_cr("Note 1: counter updates are not MT-safe.");
1984   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1985   tty->print_cr("        %% in nested categories are relative to their category");
1986   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1987   tty->cr();
1988 
1989   MethodArityHistogram h;
1990 }
1991 #endif
1992 
1993 
1994 // A simple wrapper class around the calling convention information
1995 // that allows sharing of adapters for the same calling convention.
1996 class AdapterFingerPrint : public CHeapObj {
1997  private:
1998   union {
1999     int  _compact[3];
2000     int* _fingerprint;
2001   } _value;
2002   int _length; // A negative length indicates the fingerprint is in the compact form,
2003                // Otherwise _value._fingerprint is the array.
2004 
2005   // Remap BasicTypes that are handled equivalently by the adapters.
2006   // These are correct for the current system but someday it might be
2007   // necessary to make this mapping platform dependent.
2008   static BasicType adapter_encoding(BasicType in) {
2009     assert((~0xf & in) == 0, "must fit in 4 bits");
2010     switch(in) {
2011       case T_BOOLEAN:
2012       case T_BYTE:
2013       case T_SHORT:
2014       case T_CHAR:
2015         // There are all promoted to T_INT in the calling convention
2016         return T_INT;
2017 
2018       case T_OBJECT:
2019       case T_ARRAY:
2020 #ifdef _LP64
2021         return T_LONG;
2022 #else
2023         return T_INT;
2024 #endif
2025 
2026       case T_INT:
2027       case T_LONG:
2028       case T_FLOAT:
2029       case T_DOUBLE:
2030       case T_VOID:
2031         return in;
2032 
2033       default:
2034         ShouldNotReachHere();
2035         return T_CONFLICT;
2036     }
2037   }
2038 
2039  public:
2040   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2041     // The fingerprint is based on the BasicType signature encoded
2042     // into an array of ints with four entries per int.
2043     int* ptr;
2044     int len = (total_args_passed + 3) >> 2;
2045     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2046       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2047       // Storing the signature encoded as signed chars hits about 98%
2048       // of the time.
2049       _length = -len;
2050       ptr = _value._compact;
2051     } else {
2052       _length = len;
2053       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2054       ptr = _value._fingerprint;
2055     }
2056 
2057     // Now pack the BasicTypes with 4 per int
2058     int sig_index = 0;
2059     for (int index = 0; index < len; index++) {
2060       int value = 0;
2061       for (int byte = 0; byte < 4; byte++) {
2062         if (sig_index < total_args_passed) {
2063           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2064         }
2065       }
2066       ptr[index] = value;
2067     }
2068   }
2069 
2070   ~AdapterFingerPrint() {
2071     if (_length > 0) {
2072       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2073     }
2074   }
2075 
2076   int value(int index) {
2077     if (_length < 0) {
2078       return _value._compact[index];
2079     }
2080     return _value._fingerprint[index];
2081   }
2082   int length() {
2083     if (_length < 0) return -_length;
2084     return _length;
2085   }
2086 
2087   bool is_compact() {
2088     return _length <= 0;
2089   }
2090 
2091   unsigned int compute_hash() {
2092     int hash = 0;
2093     for (int i = 0; i < length(); i++) {
2094       int v = value(i);
2095       hash = (hash << 8) ^ v ^ (hash >> 5);
2096     }
2097     return (unsigned int)hash;
2098   }
2099 
2100   const char* as_string() {
2101     stringStream st;
2102     for (int i = 0; i < length(); i++) {
2103       st.print(PTR_FORMAT, value(i));
2104     }
2105     return st.as_string();
2106   }
2107 
2108   bool equals(AdapterFingerPrint* other) {
2109     if (other->_length != _length) {
2110       return false;
2111     }
2112     if (_length < 0) {
2113       return _value._compact[0] == other->_value._compact[0] &&
2114              _value._compact[1] == other->_value._compact[1] &&
2115              _value._compact[2] == other->_value._compact[2];
2116     } else {
2117       for (int i = 0; i < _length; i++) {
2118         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2119           return false;
2120         }
2121       }
2122     }
2123     return true;
2124   }
2125 };
2126 
2127 
2128 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2129 class AdapterHandlerTable : public BasicHashtable {
2130   friend class AdapterHandlerTableIterator;
2131 
2132  private:
2133 
2134 #ifndef PRODUCT
2135   static int _lookups; // number of calls to lookup
2136   static int _buckets; // number of buckets checked
2137   static int _equals;  // number of buckets checked with matching hash
2138   static int _hits;    // number of successful lookups
2139   static int _compact; // number of equals calls with compact signature
2140 #endif
2141 
2142   AdapterHandlerEntry* bucket(int i) {
2143     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2144   }
2145 
2146  public:
2147   AdapterHandlerTable()
2148     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2149 
2150   // Create a new entry suitable for insertion in the table
2151   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2152     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2153     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2154     return entry;
2155   }
2156 
2157   // Insert an entry into the table
2158   void add(AdapterHandlerEntry* entry) {
2159     int index = hash_to_index(entry->hash());
2160     add_entry(index, entry);
2161   }
2162 
2163   void free_entry(AdapterHandlerEntry* entry) {
2164     entry->deallocate();
2165     BasicHashtable::free_entry(entry);
2166   }
2167 
2168   // Find a entry with the same fingerprint if it exists
2169   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2170     NOT_PRODUCT(_lookups++);
2171     AdapterFingerPrint fp(total_args_passed, sig_bt);
2172     unsigned int hash = fp.compute_hash();
2173     int index = hash_to_index(hash);
2174     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2175       NOT_PRODUCT(_buckets++);
2176       if (e->hash() == hash) {
2177         NOT_PRODUCT(_equals++);
2178         if (fp.equals(e->fingerprint())) {
2179 #ifndef PRODUCT
2180           if (fp.is_compact()) _compact++;
2181           _hits++;
2182 #endif
2183           return e;
2184         }
2185       }
2186     }
2187     return NULL;
2188   }
2189 
2190 #ifndef PRODUCT
2191   void print_statistics() {
2192     ResourceMark rm;
2193     int longest = 0;
2194     int empty = 0;
2195     int total = 0;
2196     int nonempty = 0;
2197     for (int index = 0; index < table_size(); index++) {
2198       int count = 0;
2199       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2200         count++;
2201       }
2202       if (count != 0) nonempty++;
2203       if (count == 0) empty++;
2204       if (count > longest) longest = count;
2205       total += count;
2206     }
2207     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2208                   empty, longest, total, total / (double)nonempty);
2209     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2210                   _lookups, _buckets, _equals, _hits, _compact);
2211   }
2212 #endif
2213 };
2214 
2215 
2216 #ifndef PRODUCT
2217 
2218 int AdapterHandlerTable::_lookups;
2219 int AdapterHandlerTable::_buckets;
2220 int AdapterHandlerTable::_equals;
2221 int AdapterHandlerTable::_hits;
2222 int AdapterHandlerTable::_compact;
2223 
2224 #endif
2225 
2226 class AdapterHandlerTableIterator : public StackObj {
2227  private:
2228   AdapterHandlerTable* _table;
2229   int _index;
2230   AdapterHandlerEntry* _current;
2231 
2232   void scan() {
2233     while (_index < _table->table_size()) {
2234       AdapterHandlerEntry* a = _table->bucket(_index);
2235       _index++;
2236       if (a != NULL) {
2237         _current = a;
2238         return;
2239       }
2240     }
2241   }
2242 
2243  public:
2244   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2245     scan();
2246   }
2247   bool has_next() {
2248     return _current != NULL;
2249   }
2250   AdapterHandlerEntry* next() {
2251     if (_current != NULL) {
2252       AdapterHandlerEntry* result = _current;
2253       _current = _current->next();
2254       if (_current == NULL) scan();
2255       return result;
2256     } else {
2257       return NULL;
2258     }
2259   }
2260 };
2261 
2262 
2263 // ---------------------------------------------------------------------------
2264 // Implementation of AdapterHandlerLibrary
2265 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2266 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2267 const int AdapterHandlerLibrary_size = 16*K;
2268 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2269 
2270 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2271   // Should be called only when AdapterHandlerLibrary_lock is active.
2272   if (_buffer == NULL) // Initialize lazily
2273       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2274   return _buffer;
2275 }
2276 
2277 void AdapterHandlerLibrary::initialize() {
2278   if (_adapters != NULL) return;
2279   _adapters = new AdapterHandlerTable();
2280 
2281   // Create a special handler for abstract methods.  Abstract methods
2282   // are never compiled so an i2c entry is somewhat meaningless, but
2283   // fill it in with something appropriate just in case.  Pass handle
2284   // wrong method for the c2i transitions.
2285   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2286   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2287                                                               StubRoutines::throw_AbstractMethodError_entry(),
2288                                                               wrong_method, wrong_method);
2289 }
2290 
2291 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2292                                                       address i2c_entry,
2293                                                       address c2i_entry,
2294                                                       address c2i_unverified_entry) {
2295   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2296 }
2297 
2298 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2299   // Use customized signature handler.  Need to lock around updates to
2300   // the AdapterHandlerTable (it is not safe for concurrent readers
2301   // and a single writer: this could be fixed if it becomes a
2302   // problem).
2303 
2304   // Get the address of the ic_miss handlers before we grab the
2305   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2306   // was caused by the initialization of the stubs happening
2307   // while we held the lock and then notifying jvmti while
2308   // holding it. This just forces the initialization to be a little
2309   // earlier.
2310   address ic_miss = SharedRuntime::get_ic_miss_stub();
2311   assert(ic_miss != NULL, "must have handler");
2312 
2313   ResourceMark rm;
2314 
2315   NOT_PRODUCT(int insts_size);
2316   AdapterBlob* B = NULL;
2317   AdapterHandlerEntry* entry = NULL;
2318   AdapterFingerPrint* fingerprint = NULL;
2319   {
2320     MutexLocker mu(AdapterHandlerLibrary_lock);
2321     // make sure data structure is initialized
2322     initialize();
2323 
2324     if (method->is_abstract()) {
2325       return _abstract_method_handler;
2326     }
2327 
2328     // Fill in the signature array, for the calling-convention call.
2329     int total_args_passed = method->size_of_parameters(); // All args on stack
2330 
2331     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2332     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2333     int i = 0;
2334     if (!method->is_static())  // Pass in receiver first
2335       sig_bt[i++] = T_OBJECT;
2336     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2337       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2338       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2339         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2340     }
2341     assert(i == total_args_passed, "");
2342 
2343     // Lookup method signature's fingerprint
2344     entry = _adapters->lookup(total_args_passed, sig_bt);
2345 
2346 #ifdef ASSERT
2347     AdapterHandlerEntry* shared_entry = NULL;
2348     if (VerifyAdapterSharing && entry != NULL) {
2349       shared_entry = entry;
2350       entry = NULL;
2351     }
2352 #endif
2353 
2354     if (entry != NULL) {
2355       return entry;
2356     }
2357 
2358     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2359     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2360 
2361     // Make a C heap allocated version of the fingerprint to store in the adapter
2362     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2363 
2364     // Create I2C & C2I handlers
2365 
2366     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2367     if (buf != NULL) {
2368       CodeBuffer buffer(buf);
2369       short buffer_locs[20];
2370       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2371                                              sizeof(buffer_locs)/sizeof(relocInfo));
2372       MacroAssembler _masm(&buffer);
2373 
2374       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2375                                                      total_args_passed,
2376                                                      comp_args_on_stack,
2377                                                      sig_bt,
2378                                                      regs,
2379                                                      fingerprint);
2380 
2381 #ifdef ASSERT
2382       if (VerifyAdapterSharing) {
2383         if (shared_entry != NULL) {
2384           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2385                  "code must match");
2386           // Release the one just created and return the original
2387           _adapters->free_entry(entry);
2388           return shared_entry;
2389         } else  {
2390           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2391         }
2392       }
2393 #endif
2394 
2395       B = AdapterBlob::create(&buffer);
2396       NOT_PRODUCT(insts_size = buffer.insts_size());
2397     }
2398     if (B == NULL) {
2399       // CodeCache is full, disable compilation
2400       // Ought to log this but compile log is only per compile thread
2401       // and we're some non descript Java thread.
2402       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2403       CompileBroker::handle_full_code_cache();
2404       return NULL; // Out of CodeCache space
2405     }
2406     entry->relocate(B->content_begin());
2407 #ifndef PRODUCT
2408     // debugging suppport
2409     if (PrintAdapterHandlers) {
2410       tty->cr();
2411       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2412                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2413                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2414       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2415       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2416     }
2417 #endif
2418 
2419     _adapters->add(entry);
2420   }
2421   // Outside of the lock
2422   if (B != NULL) {
2423     char blob_id[256];
2424     jio_snprintf(blob_id,
2425                  sizeof(blob_id),
2426                  "%s(%s)@" PTR_FORMAT,
2427                  B->name(),
2428                  fingerprint->as_string(),
2429                  B->content_begin());
2430     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2431 
2432     if (JvmtiExport::should_post_dynamic_code_generated()) {
2433       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2434     }
2435   }
2436   return entry;
2437 }
2438 
2439 void AdapterHandlerEntry::relocate(address new_base) {
2440     ptrdiff_t delta = new_base - _i2c_entry;
2441     _i2c_entry += delta;
2442     _c2i_entry += delta;
2443     _c2i_unverified_entry += delta;
2444 }
2445 
2446 
2447 void AdapterHandlerEntry::deallocate() {
2448   delete _fingerprint;
2449 #ifdef ASSERT
2450   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2451   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2452 #endif
2453 }
2454 
2455 
2456 #ifdef ASSERT
2457 // Capture the code before relocation so that it can be compared
2458 // against other versions.  If the code is captured after relocation
2459 // then relative instructions won't be equivalent.
2460 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2461   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2462   _code_length = length;
2463   memcpy(_saved_code, buffer, length);
2464   _total_args_passed = total_args_passed;
2465   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2466   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2467 }
2468 
2469 
2470 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2471   if (length != _code_length) {
2472     return false;
2473   }
2474   for (int i = 0; i < length; i++) {
2475     if (buffer[i] != _saved_code[i]) {
2476       return false;
2477     }
2478   }
2479   return true;
2480 }
2481 #endif
2482 
2483 
2484 // Create a native wrapper for this native method.  The wrapper converts the
2485 // java compiled calling convention to the native convention, handlizes
2486 // arguments, and transitions to native.  On return from the native we transition
2487 // back to java blocking if a safepoint is in progress.
2488 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2489   ResourceMark rm;
2490   nmethod* nm = NULL;
2491 
2492   if (PrintCompilation) {
2493     ttyLocker ttyl;
2494     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2495     method->print_short_name(tty);
2496     if (method->is_static()) {
2497       tty->print(" (static)");
2498     }
2499     tty->cr();
2500   }
2501 
2502   assert(method->has_native_function(), "must have something valid to call!");
2503 
2504   {
2505     // perform the work while holding the lock, but perform any printing outside the lock
2506     MutexLocker mu(AdapterHandlerLibrary_lock);
2507     // See if somebody beat us to it
2508     nm = method->code();
2509     if (nm) {
2510       return nm;
2511     }
2512 
2513     ResourceMark rm;
2514 
2515     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2516     if (buf != NULL) {
2517       CodeBuffer buffer(buf);
2518       double locs_buf[20];
2519       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2520       MacroAssembler _masm(&buffer);
2521 
2522       // Fill in the signature array, for the calling-convention call.
2523       int total_args_passed = method->size_of_parameters();
2524 
2525       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2526       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2527       int i=0;
2528       if( !method->is_static() )  // Pass in receiver first
2529         sig_bt[i++] = T_OBJECT;
2530       SignatureStream ss(method->signature());
2531       for( ; !ss.at_return_type(); ss.next()) {
2532         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2533         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2534           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2535       }
2536       assert( i==total_args_passed, "" );
2537       BasicType ret_type = ss.type();
2538 
2539       // Now get the compiled-Java layout as input arguments
2540       int comp_args_on_stack;
2541       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2542 
2543       // Generate the compiled-to-native wrapper code
2544       nm = SharedRuntime::generate_native_wrapper(&_masm,
2545                                                   method,
2546                                                   total_args_passed,
2547                                                   comp_args_on_stack,
2548                                                   sig_bt,regs,
2549                                                   ret_type);
2550     }
2551   }
2552 
2553   // Must unlock before calling set_code
2554 
2555   // Install the generated code.
2556   if (nm != NULL) {
2557     method->set_code(method, nm);
2558     nm->post_compiled_method_load_event();
2559   } else {
2560     // CodeCache is full, disable compilation
2561     CompileBroker::handle_full_code_cache();
2562   }
2563   return nm;
2564 }
2565 
2566 #ifdef HAVE_DTRACE_H
2567 // Create a dtrace nmethod for this method.  The wrapper converts the
2568 // java compiled calling convention to the native convention, makes a dummy call
2569 // (actually nops for the size of the call instruction, which become a trap if
2570 // probe is enabled). The returns to the caller. Since this all looks like a
2571 // leaf no thread transition is needed.
2572 
2573 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2574   ResourceMark rm;
2575   nmethod* nm = NULL;
2576 
2577   if (PrintCompilation) {
2578     ttyLocker ttyl;
2579     tty->print("---   n%s  ");
2580     method->print_short_name(tty);
2581     if (method->is_static()) {
2582       tty->print(" (static)");
2583     }
2584     tty->cr();
2585   }
2586 
2587   {
2588     // perform the work while holding the lock, but perform any printing
2589     // outside the lock
2590     MutexLocker mu(AdapterHandlerLibrary_lock);
2591     // See if somebody beat us to it
2592     nm = method->code();
2593     if (nm) {
2594       return nm;
2595     }
2596 
2597     ResourceMark rm;
2598 
2599     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2600     if (buf != NULL) {
2601       CodeBuffer buffer(buf);
2602       // Need a few relocation entries
2603       double locs_buf[20];
2604       buffer.insts()->initialize_shared_locs(
2605         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2606       MacroAssembler _masm(&buffer);
2607 
2608       // Generate the compiled-to-native wrapper code
2609       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2610     }
2611   }
2612   return nm;
2613 }
2614 
2615 // the dtrace method needs to convert java lang string to utf8 string.
2616 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2617   typeArrayOop jlsValue  = java_lang_String::value(src);
2618   int          jlsOffset = java_lang_String::offset(src);
2619   int          jlsLen    = java_lang_String::length(src);
2620   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2621                                            jlsValue->char_at_addr(jlsOffset);
2622   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2623 }
2624 #endif // ndef HAVE_DTRACE_H
2625 
2626 // -------------------------------------------------------------------------
2627 // Java-Java calling convention
2628 // (what you use when Java calls Java)
2629 
2630 //------------------------------name_for_receiver----------------------------------
2631 // For a given signature, return the VMReg for parameter 0.
2632 VMReg SharedRuntime::name_for_receiver() {
2633   VMRegPair regs;
2634   BasicType sig_bt = T_OBJECT;
2635   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2636   // Return argument 0 register.  In the LP64 build pointers
2637   // take 2 registers, but the VM wants only the 'main' name.
2638   return regs.first();
2639 }
2640 
2641 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2642   // This method is returning a data structure allocating as a
2643   // ResourceObject, so do not put any ResourceMarks in here.
2644   char *s = sig->as_C_string();
2645   int len = (int)strlen(s);
2646   *s++; len--;                  // Skip opening paren
2647   char *t = s+len;
2648   while( *(--t) != ')' ) ;      // Find close paren
2649 
2650   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2651   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2652   int cnt = 0;
2653   if (has_receiver) {
2654     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2655   }
2656 
2657   while( s < t ) {
2658     switch( *s++ ) {            // Switch on signature character
2659     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2660     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2661     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2662     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2663     case 'I': sig_bt[cnt++] = T_INT;     break;
2664     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2665     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2666     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2667     case 'V': sig_bt[cnt++] = T_VOID;    break;
2668     case 'L':                   // Oop
2669       while( *s++ != ';'  ) ;   // Skip signature
2670       sig_bt[cnt++] = T_OBJECT;
2671       break;
2672     case '[': {                 // Array
2673       do {                      // Skip optional size
2674         while( *s >= '0' && *s <= '9' ) s++;
2675       } while( *s++ == '[' );   // Nested arrays?
2676       // Skip element type
2677       if( s[-1] == 'L' )
2678         while( *s++ != ';'  ) ; // Skip signature
2679       sig_bt[cnt++] = T_ARRAY;
2680       break;
2681     }
2682     default : ShouldNotReachHere();
2683     }
2684   }
2685   assert( cnt < 256, "grow table size" );
2686 
2687   int comp_args_on_stack;
2688   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2689 
2690   // the calling convention doesn't count out_preserve_stack_slots so
2691   // we must add that in to get "true" stack offsets.
2692 
2693   if (comp_args_on_stack) {
2694     for (int i = 0; i < cnt; i++) {
2695       VMReg reg1 = regs[i].first();
2696       if( reg1->is_stack()) {
2697         // Yuck
2698         reg1 = reg1->bias(out_preserve_stack_slots());
2699       }
2700       VMReg reg2 = regs[i].second();
2701       if( reg2->is_stack()) {
2702         // Yuck
2703         reg2 = reg2->bias(out_preserve_stack_slots());
2704       }
2705       regs[i].set_pair(reg2, reg1);
2706     }
2707   }
2708 
2709   // results
2710   *arg_size = cnt;
2711   return regs;
2712 }
2713 
2714 // OSR Migration Code
2715 //
2716 // This code is used convert interpreter frames into compiled frames.  It is
2717 // called from very start of a compiled OSR nmethod.  A temp array is
2718 // allocated to hold the interesting bits of the interpreter frame.  All
2719 // active locks are inflated to allow them to move.  The displaced headers and
2720 // active interpeter locals are copied into the temp buffer.  Then we return
2721 // back to the compiled code.  The compiled code then pops the current
2722 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2723 // copies the interpreter locals and displaced headers where it wants.
2724 // Finally it calls back to free the temp buffer.
2725 //
2726 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2727 
2728 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2729 
2730 #ifdef IA64
2731   ShouldNotReachHere(); // NYI
2732 #endif /* IA64 */
2733 
2734   //
2735   // This code is dependent on the memory layout of the interpreter local
2736   // array and the monitors. On all of our platforms the layout is identical
2737   // so this code is shared. If some platform lays the their arrays out
2738   // differently then this code could move to platform specific code or
2739   // the code here could be modified to copy items one at a time using
2740   // frame accessor methods and be platform independent.
2741 
2742   frame fr = thread->last_frame();
2743   assert( fr.is_interpreted_frame(), "" );
2744   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2745 
2746   // Figure out how many monitors are active.
2747   int active_monitor_count = 0;
2748   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2749        kptr < fr.interpreter_frame_monitor_begin();
2750        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2751     if( kptr->obj() != NULL ) active_monitor_count++;
2752   }
2753 
2754   // QQQ we could place number of active monitors in the array so that compiled code
2755   // could double check it.
2756 
2757   methodOop moop = fr.interpreter_frame_method();
2758   int max_locals = moop->max_locals();
2759   // Allocate temp buffer, 1 word per local & 2 per active monitor
2760   int buf_size_words = max_locals + active_monitor_count*2;
2761   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2762 
2763   // Copy the locals.  Order is preserved so that loading of longs works.
2764   // Since there's no GC I can copy the oops blindly.
2765   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2766   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2767                        (HeapWord*)&buf[0],
2768                        max_locals);
2769 
2770   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2771   int i = max_locals;
2772   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2773        kptr2 < fr.interpreter_frame_monitor_begin();
2774        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2775     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2776       BasicLock *lock = kptr2->lock();
2777       // Inflate so the displaced header becomes position-independent
2778       if (lock->displaced_header()->is_unlocked())
2779         ObjectSynchronizer::inflate_helper(kptr2->obj());
2780       // Now the displaced header is free to move
2781       buf[i++] = (intptr_t)lock->displaced_header();
2782       buf[i++] = (intptr_t)kptr2->obj();
2783     }
2784   }
2785   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2786 
2787   return buf;
2788 JRT_END
2789 
2790 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2791   FREE_C_HEAP_ARRAY(intptr_t,buf);
2792 JRT_END
2793 
2794 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2795   AdapterHandlerTableIterator iter(_adapters);
2796   while (iter.has_next()) {
2797     AdapterHandlerEntry* a = iter.next();
2798     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2799   }
2800   return false;
2801 }
2802 
2803 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2804   AdapterHandlerTableIterator iter(_adapters);
2805   while (iter.has_next()) {
2806     AdapterHandlerEntry* a = iter.next();
2807     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2808       st->print("Adapter for signature: ");
2809       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2810                    a->fingerprint()->as_string(),
2811                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2812 
2813       return;
2814     }
2815   }
2816   assert(false, "Should have found handler");
2817 }
2818 
2819 #ifndef PRODUCT
2820 
2821 void AdapterHandlerLibrary::print_statistics() {
2822   _adapters->print_statistics();
2823 }
2824 
2825 #endif /* PRODUCT */