1 /*
   2  * Copyright (c) 2003, 2005, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_memoryPool.cpp.incl"
  27 
  28 MemoryPool::MemoryPool(const char* name,
  29                        PoolType type,
  30                        size_t init_size,
  31                        size_t max_size,
  32                        bool support_usage_threshold,
  33                        bool support_gc_threshold) {
  34   _name = name;
  35   _initial_size = init_size;
  36   _max_size = max_size;
  37   _memory_pool_obj = NULL;
  38   _available_for_allocation = true;
  39   _num_managers = 0;
  40   _type = type;
  41 
  42   // initialize the max and init size of collection usage
  43   _after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size);
  44 
  45   _usage_sensor = NULL;
  46   _gc_usage_sensor = NULL;
  47   // usage threshold supports both high and low threshold
  48   _usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold);
  49   // gc usage threshold supports only high threshold
  50   _gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold);
  51 }
  52 
  53 void MemoryPool::add_manager(MemoryManager* mgr) {
  54   assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max");
  55   if (_num_managers < MemoryPool::max_num_managers) {
  56     _managers[_num_managers] = mgr;
  57     _num_managers++;
  58   }
  59 }
  60 
  61 
  62 // Returns an instanceHandle of a MemoryPool object.
  63 // It creates a MemoryPool instance when the first time
  64 // this function is called.
  65 instanceOop MemoryPool::get_memory_pool_instance(TRAPS) {
  66   // Must do an acquire so as to force ordering of subsequent
  67   // loads from anything _memory_pool_obj points to or implies.
  68   instanceOop pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
  69   if (pool_obj == NULL) {
  70     // It's ok for more than one thread to execute the code up to the locked region.
  71     // Extra pool instances will just be gc'ed.
  72     klassOop k = Management::sun_management_ManagementFactory_klass(CHECK_NULL);
  73     instanceKlassHandle ik(THREAD, k);
  74 
  75     Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL);
  76     jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
  77     jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
  78 
  79     JavaValue result(T_OBJECT);
  80     JavaCallArguments args;
  81     args.push_oop(pool_name);           // Argument 1
  82     args.push_int((int) is_heap());     // Argument 2
  83 
  84     symbolHandle method_name = vmSymbolHandles::createMemoryPool_name();
  85     symbolHandle signature = vmSymbolHandles::createMemoryPool_signature();
  86 
  87     args.push_long(usage_threshold_value);    // Argument 3
  88     args.push_long(gc_usage_threshold_value); // Argument 4
  89 
  90     JavaCalls::call_static(&result,
  91                            ik,
  92                            method_name,
  93                            signature,
  94                            &args,
  95                            CHECK_NULL);
  96 
  97     instanceOop p = (instanceOop) result.get_jobject();
  98     instanceHandle pool(THREAD, p);
  99 
 100     {
 101       // Get lock since another thread may have create the instance
 102       MutexLocker ml(Management_lock);
 103 
 104       // Check if another thread has created the pool.  We reload
 105       // _memory_pool_obj here because some other thread may have
 106       // initialized it while we were executing the code before the lock.
 107       //
 108       // The lock has done an acquire, so the load can't float above it,
 109       // but we need to do a load_acquire as above.
 110       pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
 111       if (pool_obj != NULL) {
 112          return pool_obj;
 113       }
 114 
 115       // Get the address of the object we created via call_special.
 116       pool_obj = pool();
 117 
 118       // Use store barrier to make sure the memory accesses associated
 119       // with creating the pool are visible before publishing its address.
 120       // The unlock will publish the store to _memory_pool_obj because
 121       // it does a release first.
 122       OrderAccess::release_store_ptr(&_memory_pool_obj, pool_obj);
 123     }
 124   }
 125 
 126   return pool_obj;
 127 }
 128 
 129 inline static size_t get_max_value(size_t val1, size_t val2) {
 130     return (val1 > val2 ? val1 : val2);
 131 }
 132 
 133 void MemoryPool::record_peak_memory_usage() {
 134   // Caller in JDK is responsible for synchronization -
 135   // acquire the lock for this memory pool before calling VM
 136   MemoryUsage usage = get_memory_usage();
 137   size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
 138   size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
 139   size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());
 140 
 141   _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
 142 }
 143 
 144 static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) {
 145   assert(*sensor_ptr == NULL, "Should be called only once");
 146   SensorInfo* sensor = new SensorInfo();
 147   sensor->set_sensor(sh());
 148   *sensor_ptr = sensor;
 149 }
 150 
 151 void MemoryPool::set_usage_sensor_obj(instanceHandle sh) {
 152   set_sensor_obj_at(&_usage_sensor, sh);
 153 }
 154 
 155 void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) {
 156   set_sensor_obj_at(&_gc_usage_sensor, sh);
 157 }
 158 
 159 void MemoryPool::oops_do(OopClosure* f) {
 160   f->do_oop((oop*) &_memory_pool_obj);
 161   if (_usage_sensor != NULL) {
 162     _usage_sensor->oops_do(f);
 163   }
 164   if (_gc_usage_sensor != NULL) {
 165     _gc_usage_sensor->oops_do(f);
 166   }
 167 }
 168 
 169 ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space,
 170                                          const char* name,
 171                                          PoolType type,
 172                                          size_t max_size,
 173                                          bool support_usage_threshold) :
 174   CollectedMemoryPool(name, type, space->capacity(), max_size,
 175                       support_usage_threshold), _space(space) {
 176 }
 177 
 178 MemoryUsage ContiguousSpacePool::get_memory_usage() {
 179   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
 180   size_t used      = used_in_bytes();
 181   size_t committed = _space->capacity();
 182 
 183   return MemoryUsage(initial_size(), used, committed, maxSize);
 184 }
 185 
 186 SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* gen,
 187                                                          const char* name,
 188                                                          PoolType type,
 189                                                          size_t max_size,
 190                                                          bool support_usage_threshold) :
 191   CollectedMemoryPool(name, type, gen->from()->capacity(), max_size,
 192                       support_usage_threshold), _gen(gen) {
 193 }
 194 
 195 MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() {
 196   size_t maxSize = (available_for_allocation() ? max_size() : 0);
 197   size_t used    = used_in_bytes();
 198   size_t committed = committed_in_bytes();
 199 
 200   return MemoryUsage(initial_size(), used, committed, maxSize);
 201 }
 202 
 203 #ifndef SERIALGC
 204 CompactibleFreeListSpacePool::CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
 205                                                            const char* name,
 206                                                            PoolType type,
 207                                                            size_t max_size,
 208                                                            bool support_usage_threshold) :
 209   CollectedMemoryPool(name, type, space->capacity(), max_size,
 210                       support_usage_threshold), _space(space) {
 211 }
 212 
 213 MemoryUsage CompactibleFreeListSpacePool::get_memory_usage() {
 214   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
 215   size_t used      = used_in_bytes();
 216   size_t committed = _space->capacity();
 217 
 218   return MemoryUsage(initial_size(), used, committed, maxSize);
 219 }
 220 #endif // SERIALGC
 221 
 222 GenerationPool::GenerationPool(Generation* gen,
 223                                const char* name,
 224                                PoolType type,
 225                                bool support_usage_threshold) :
 226   CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(),
 227                       support_usage_threshold), _gen(gen) {
 228 }
 229 
 230 MemoryUsage GenerationPool::get_memory_usage() {
 231   size_t used      = used_in_bytes();
 232   size_t committed = _gen->capacity();
 233   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
 234 
 235   return MemoryUsage(initial_size(), used, committed, maxSize);
 236 }
 237 
 238 CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) :
 239   MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(),
 240              support_usage_threshold, false), _codeHeap(codeHeap) {
 241 }
 242 
 243 MemoryUsage CodeHeapPool::get_memory_usage() {
 244   size_t used      = used_in_bytes();
 245   size_t committed = _codeHeap->capacity();
 246   size_t maxSize   = (available_for_allocation() ? max_size() : 0);
 247 
 248   return MemoryUsage(initial_size(), used, committed, maxSize);
 249 }