1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifdef TARGET_COMPILER_gcc
  29 # include "utilities/globalDefinitions_gcc.hpp"
  30 #endif
  31 #ifdef TARGET_COMPILER_visCPP
  32 # include "utilities/globalDefinitions_visCPP.hpp"
  33 #endif
  34 #ifdef TARGET_COMPILER_sparcWorks
  35 # include "utilities/globalDefinitions_sparcWorks.hpp"
  36 #endif
  37 
  38 #include "utilities/macros.hpp"
  39 
  40 // This file holds all globally used constants & types, class (forward)
  41 // declarations and a few frequently used utility functions.
  42 
  43 //----------------------------------------------------------------------------------------------------
  44 // Constants
  45 
  46 const int LogBytesPerShort   = 1;
  47 const int LogBytesPerInt     = 2;
  48 #ifdef _LP64
  49 const int LogBytesPerWord    = 3;
  50 #else
  51 const int LogBytesPerWord    = 2;
  52 #endif
  53 const int LogBytesPerLong    = 3;
  54 
  55 const int BytesPerShort      = 1 << LogBytesPerShort;
  56 const int BytesPerInt        = 1 << LogBytesPerInt;
  57 const int BytesPerWord       = 1 << LogBytesPerWord;
  58 const int BytesPerLong       = 1 << LogBytesPerLong;
  59 
  60 const int LogBitsPerByte     = 3;
  61 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  62 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  63 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
  64 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
  65 
  66 const int BitsPerByte        = 1 << LogBitsPerByte;
  67 const int BitsPerShort       = 1 << LogBitsPerShort;
  68 const int BitsPerInt         = 1 << LogBitsPerInt;
  69 const int BitsPerWord        = 1 << LogBitsPerWord;
  70 const int BitsPerLong        = 1 << LogBitsPerLong;
  71 
  72 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
  73 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
  74 
  75 const int WordsPerLong       = 2;       // Number of stack entries for longs
  76 
  77 const int oopSize            = sizeof(char*); // Full-width oop
  78 extern int heapOopSize;                       // Oop within a java object
  79 const int wordSize           = sizeof(char*);
  80 const int longSize           = sizeof(jlong);
  81 const int jintSize           = sizeof(jint);
  82 const int size_tSize         = sizeof(size_t);
  83 
  84 const int BytesPerOop        = BytesPerWord;  // Full-width oop
  85 
  86 extern int LogBytesPerHeapOop;                // Oop within a java object
  87 extern int LogBitsPerHeapOop;
  88 extern int BytesPerHeapOop;
  89 extern int BitsPerHeapOop;
  90 
  91 // Oop encoding heap max
  92 extern uint64_t OopEncodingHeapMax;
  93 
  94 const int BitsPerJavaInteger = 32;
  95 const int BitsPerJavaLong    = 64;
  96 const int BitsPerSize_t      = size_tSize * BitsPerByte;
  97 
  98 // Size of a char[] needed to represent a jint as a string in decimal.
  99 const int jintAsStringSize = 12;
 100 
 101 // In fact this should be
 102 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 103 // see os::set_memory_serialize_page()
 104 #ifdef _LP64
 105 const int SerializePageShiftCount = 4;
 106 #else
 107 const int SerializePageShiftCount = 3;
 108 #endif
 109 
 110 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 111 // pointer into the heap.  We require that object sizes be measured in
 112 // units of heap words, so that that
 113 //   HeapWord* hw;
 114 //   hw += oop(hw)->foo();
 115 // works, where foo is a method (like size or scavenge) that returns the
 116 // object size.
 117 class HeapWord {
 118   friend class VMStructs;
 119  private:
 120   char* i;
 121 #ifndef PRODUCT
 122  public:
 123   char* value() { return i; }
 124 #endif
 125 };
 126 
 127 // HeapWordSize must be 2^LogHeapWordSize.
 128 const int HeapWordSize        = sizeof(HeapWord);
 129 #ifdef _LP64
 130 const int LogHeapWordSize     = 3;
 131 #else
 132 const int LogHeapWordSize     = 2;
 133 #endif
 134 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 135 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 136 
 137 // The larger HeapWordSize for 64bit requires larger heaps
 138 // for the same application running in 64bit.  See bug 4967770.
 139 // The minimum alignment to a heap word size is done.  Other
 140 // parts of the memory system may required additional alignment
 141 // and are responsible for those alignments.
 142 #ifdef _LP64
 143 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 144 #else
 145 #define ScaleForWordSize(x) (x)
 146 #endif
 147 
 148 // The minimum number of native machine words necessary to contain "byte_size"
 149 // bytes.
 150 inline size_t heap_word_size(size_t byte_size) {
 151   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 152 }
 153 
 154 
 155 const size_t K                  = 1024;
 156 const size_t M                  = K*K;
 157 const size_t G                  = M*K;
 158 const size_t HWperKB            = K / sizeof(HeapWord);
 159 
 160 const size_t LOG_K              = 10;
 161 const size_t LOG_M              = 2 * LOG_K;
 162 const size_t LOG_G              = 2 * LOG_M;
 163 
 164 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 165 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 166 
 167 // Constants for converting from a base unit to milli-base units.  For
 168 // example from seconds to milliseconds and microseconds
 169 
 170 const int MILLIUNITS    = 1000;         // milli units per base unit
 171 const int MICROUNITS    = 1000000;      // micro units per base unit
 172 const int NANOUNITS     = 1000000000;   // nano units per base unit
 173 
 174 inline const char* proper_unit_for_byte_size(size_t s) {
 175   if (s >= 10*M) {
 176     return "M";
 177   } else if (s >= 10*K) {
 178     return "K";
 179   } else {
 180     return "B";
 181   }
 182 }
 183 
 184 inline size_t byte_size_in_proper_unit(size_t s) {
 185   if (s >= 10*M) {
 186     return s/M;
 187   } else if (s >= 10*K) {
 188     return s/K;
 189   } else {
 190     return s;
 191   }
 192 }
 193 
 194 
 195 //----------------------------------------------------------------------------------------------------
 196 // VM type definitions
 197 
 198 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 199 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 200 
 201 typedef intptr_t  intx;
 202 typedef uintptr_t uintx;
 203 
 204 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 205 const intx  max_intx  = (uintx)min_intx - 1;
 206 const uintx max_uintx = (uintx)-1;
 207 
 208 // Table of values:
 209 //      sizeof intx         4               8
 210 // min_intx             0x80000000      0x8000000000000000
 211 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 212 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 213 
 214 typedef unsigned int uint;   NEEDS_CLEANUP
 215 
 216 
 217 //----------------------------------------------------------------------------------------------------
 218 // Java type definitions
 219 
 220 // All kinds of 'plain' byte addresses
 221 typedef   signed char s_char;
 222 typedef unsigned char u_char;
 223 typedef u_char*       address;
 224 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 225                                     // except for some implementations of a C++
 226                                     // linkage pointer to function. Should never
 227                                     // need one of those to be placed in this
 228                                     // type anyway.
 229 
 230 //  Utility functions to "portably" (?) bit twiddle pointers
 231 //  Where portable means keep ANSI C++ compilers quiet
 232 
 233 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 234 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 235 
 236 //  Utility functions to "portably" make cast to/from function pointers.
 237 
 238 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 239 inline address_word  castable_address(address x)              { return address_word(x) ; }
 240 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 241 
 242 // Pointer subtraction.
 243 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 244 // the range we might need to find differences from one end of the heap
 245 // to the other.
 246 // A typical use might be:
 247 //     if (pointer_delta(end(), top()) >= size) {
 248 //       // enough room for an object of size
 249 //       ...
 250 // and then additions like
 251 //       ... top() + size ...
 252 // are safe because we know that top() is at least size below end().
 253 inline size_t pointer_delta(const void* left,
 254                             const void* right,
 255                             size_t element_size) {
 256   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 257 }
 258 // A version specialized for HeapWord*'s.
 259 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 260   return pointer_delta(left, right, sizeof(HeapWord));
 261 }
 262 
 263 //
 264 // ANSI C++ does not allow casting from one pointer type to a function pointer
 265 // directly without at best a warning. This macro accomplishes it silently
 266 // In every case that is present at this point the value be cast is a pointer
 267 // to a C linkage function. In somecase the type used for the cast reflects
 268 // that linkage and a picky compiler would not complain. In other cases because
 269 // there is no convenient place to place a typedef with extern C linkage (i.e
 270 // a platform dependent header file) it doesn't. At this point no compiler seems
 271 // picky enough to catch these instances (which are few). It is possible that
 272 // using templates could fix these for all cases. This use of templates is likely
 273 // so far from the middle of the road that it is likely to be problematic in
 274 // many C++ compilers.
 275 //
 276 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 277 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 278 
 279 // Unsigned byte types for os and stream.hpp
 280 
 281 // Unsigned one, two, four and eigth byte quantities used for describing
 282 // the .class file format. See JVM book chapter 4.
 283 
 284 typedef jubyte  u1;
 285 typedef jushort u2;
 286 typedef juint   u4;
 287 typedef julong  u8;
 288 
 289 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 290 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 291 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 292 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 293 
 294 //----------------------------------------------------------------------------------------------------
 295 // JVM spec restrictions
 296 
 297 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 298 
 299 
 300 //----------------------------------------------------------------------------------------------------
 301 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 302 //
 303 // Determines whether on-the-fly class replacement and frame popping are enabled.
 304 
 305 #define HOTSWAP
 306 
 307 //----------------------------------------------------------------------------------------------------
 308 // Object alignment, in units of HeapWords.
 309 //
 310 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 311 // reference fields can be naturally aligned.
 312 
 313 extern int MinObjAlignment;
 314 extern int MinObjAlignmentInBytes;
 315 extern int MinObjAlignmentInBytesMask;
 316 
 317 extern int LogMinObjAlignment;
 318 extern int LogMinObjAlignmentInBytes;
 319 
 320 // Machine dependent stuff
 321 
 322 #ifdef TARGET_ARCH_x86
 323 # include "globalDefinitions_x86.hpp"
 324 #endif
 325 #ifdef TARGET_ARCH_sparc
 326 # include "globalDefinitions_sparc.hpp"
 327 #endif
 328 #ifdef TARGET_ARCH_zero
 329 # include "globalDefinitions_zero.hpp"
 330 #endif
 331 
 332 
 333 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 334 // Note: this value must be a power of 2
 335 
 336 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 337 
 338 // Signed variants of alignment helpers.  There are two versions of each, a macro
 339 // for use in places like enum definitions that require compile-time constant
 340 // expressions and a function for all other places so as to get type checking.
 341 
 342 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 343 
 344 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 345   return align_size_up_(size, alignment);
 346 }
 347 
 348 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 349 
 350 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 351   return align_size_down_(size, alignment);
 352 }
 353 
 354 // Align objects by rounding up their size, in HeapWord units.
 355 
 356 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 357 
 358 inline intptr_t align_object_size(intptr_t size) {
 359   return align_size_up(size, MinObjAlignment);
 360 }
 361 
 362 inline bool is_object_aligned(intptr_t addr) {
 363   return addr == align_object_size(addr);
 364 }
 365 
 366 // Pad out certain offsets to jlong alignment, in HeapWord units.
 367 
 368 inline intptr_t align_object_offset(intptr_t offset) {
 369   return align_size_up(offset, HeapWordsPerLong);
 370 }
 371 
 372 // The expected size in bytes of a cache line, used to pad data structures.
 373 #define DEFAULT_CACHE_LINE_SIZE 64
 374 
 375 // Bytes needed to pad type to avoid cache-line sharing; alignment should be the
 376 // expected cache line size (a power of two).  The first addend avoids sharing
 377 // when the start address is not a multiple of alignment; the second maintains
 378 // alignment of starting addresses that happen to be a multiple.
 379 #define PADDING_SIZE(type, alignment)                           \
 380   ((alignment) + align_size_up_(sizeof(type), alignment))
 381 
 382 // Templates to create a subclass padded to avoid cache line sharing.  These are
 383 // effective only when applied to derived-most (leaf) classes.
 384 
 385 // When no args are passed to the base ctor.
 386 template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 387 class Padded: public T {
 388 private:
 389   char _pad_buf_[PADDING_SIZE(T, alignment)];
 390 };
 391 
 392 // When either 0 or 1 args may be passed to the base ctor.
 393 template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
 394 class Padded01: public T {
 395 public:
 396   Padded01(): T() { }
 397   Padded01(Arg1T arg1): T(arg1) { }
 398 private:
 399   char _pad_buf_[PADDING_SIZE(T, alignment)];
 400 };
 401 
 402 //----------------------------------------------------------------------------------------------------
 403 // Utility macros for compilers
 404 // used to silence compiler warnings
 405 
 406 #define Unused_Variable(var) var
 407 
 408 
 409 //----------------------------------------------------------------------------------------------------
 410 // Miscellaneous
 411 
 412 // 6302670 Eliminate Hotspot __fabsf dependency
 413 // All fabs() callers should call this function instead, which will implicitly
 414 // convert the operand to double, avoiding a dependency on __fabsf which
 415 // doesn't exist in early versions of Solaris 8.
 416 inline double fabsd(double value) {
 417   return fabs(value);
 418 }
 419 
 420 inline jint low (jlong value)                    { return jint(value); }
 421 inline jint high(jlong value)                    { return jint(value >> 32); }
 422 
 423 // the fancy casts are a hopefully portable way
 424 // to do unsigned 32 to 64 bit type conversion
 425 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 426                                                    *value |= (jlong)(julong)(juint)low; }
 427 
 428 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 429                                                    *value |= (jlong)high       << 32; }
 430 
 431 inline jlong jlong_from(jint h, jint l) {
 432   jlong result = 0; // initialization to avoid warning
 433   set_high(&result, h);
 434   set_low(&result,  l);
 435   return result;
 436 }
 437 
 438 union jlong_accessor {
 439   jint  words[2];
 440   jlong long_value;
 441 };
 442 
 443 void basic_types_init(); // cannot define here; uses assert
 444 
 445 
 446 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 447 enum BasicType {
 448   T_BOOLEAN  =  4,
 449   T_CHAR     =  5,
 450   T_FLOAT    =  6,
 451   T_DOUBLE   =  7,
 452   T_BYTE     =  8,
 453   T_SHORT    =  9,
 454   T_INT      = 10,
 455   T_LONG     = 11,
 456   T_OBJECT   = 12,
 457   T_ARRAY    = 13,
 458   T_VOID     = 14,
 459   T_ADDRESS  = 15,
 460   T_NARROWOOP= 16,
 461   T_CONFLICT = 17, // for stack value type with conflicting contents
 462   T_ILLEGAL  = 99
 463 };
 464 
 465 inline bool is_java_primitive(BasicType t) {
 466   return T_BOOLEAN <= t && t <= T_LONG;
 467 }
 468 
 469 inline bool is_subword_type(BasicType t) {
 470   // these guys are processed exactly like T_INT in calling sequences:
 471   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 472 }
 473 
 474 inline bool is_signed_subword_type(BasicType t) {
 475   return (t == T_BYTE || t == T_SHORT);
 476 }
 477 
 478 // Convert a char from a classfile signature to a BasicType
 479 inline BasicType char2type(char c) {
 480   switch( c ) {
 481   case 'B': return T_BYTE;
 482   case 'C': return T_CHAR;
 483   case 'D': return T_DOUBLE;
 484   case 'F': return T_FLOAT;
 485   case 'I': return T_INT;
 486   case 'J': return T_LONG;
 487   case 'S': return T_SHORT;
 488   case 'Z': return T_BOOLEAN;
 489   case 'V': return T_VOID;
 490   case 'L': return T_OBJECT;
 491   case '[': return T_ARRAY;
 492   }
 493   return T_ILLEGAL;
 494 }
 495 
 496 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 497 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 498 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 499 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 500 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 501 extern BasicType name2type(const char* name);
 502 
 503 // Auxilary math routines
 504 // least common multiple
 505 extern size_t lcm(size_t a, size_t b);
 506 
 507 
 508 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 509 enum BasicTypeSize {
 510   T_BOOLEAN_size = 1,
 511   T_CHAR_size    = 1,
 512   T_FLOAT_size   = 1,
 513   T_DOUBLE_size  = 2,
 514   T_BYTE_size    = 1,
 515   T_SHORT_size   = 1,
 516   T_INT_size     = 1,
 517   T_LONG_size    = 2,
 518   T_OBJECT_size  = 1,
 519   T_ARRAY_size   = 1,
 520   T_NARROWOOP_size = 1,
 521   T_VOID_size    = 0
 522 };
 523 
 524 
 525 // maps a BasicType to its instance field storage type:
 526 // all sub-word integral types are widened to T_INT
 527 extern BasicType type2field[T_CONFLICT+1];
 528 extern BasicType type2wfield[T_CONFLICT+1];
 529 
 530 
 531 // size in bytes
 532 enum ArrayElementSize {
 533   T_BOOLEAN_aelem_bytes = 1,
 534   T_CHAR_aelem_bytes    = 2,
 535   T_FLOAT_aelem_bytes   = 4,
 536   T_DOUBLE_aelem_bytes  = 8,
 537   T_BYTE_aelem_bytes    = 1,
 538   T_SHORT_aelem_bytes   = 2,
 539   T_INT_aelem_bytes     = 4,
 540   T_LONG_aelem_bytes    = 8,
 541 #ifdef _LP64
 542   T_OBJECT_aelem_bytes  = 8,
 543   T_ARRAY_aelem_bytes   = 8,
 544 #else
 545   T_OBJECT_aelem_bytes  = 4,
 546   T_ARRAY_aelem_bytes   = 4,
 547 #endif
 548   T_NARROWOOP_aelem_bytes = 4,
 549   T_VOID_aelem_bytes    = 0
 550 };
 551 
 552 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 553 #ifdef ASSERT
 554 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 555 #else
 556 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 557 #endif
 558 
 559 
 560 // JavaValue serves as a container for arbitrary Java values.
 561 
 562 class JavaValue {
 563 
 564  public:
 565   typedef union JavaCallValue {
 566     jfloat   f;
 567     jdouble  d;
 568     jint     i;
 569     jlong    l;
 570     jobject  h;
 571   } JavaCallValue;
 572 
 573  private:
 574   BasicType _type;
 575   JavaCallValue _value;
 576 
 577  public:
 578   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 579 
 580   JavaValue(jfloat value) {
 581     _type    = T_FLOAT;
 582     _value.f = value;
 583   }
 584 
 585   JavaValue(jdouble value) {
 586     _type    = T_DOUBLE;
 587     _value.d = value;
 588   }
 589 
 590  jfloat get_jfloat() const { return _value.f; }
 591  jdouble get_jdouble() const { return _value.d; }
 592  jint get_jint() const { return _value.i; }
 593  jlong get_jlong() const { return _value.l; }
 594  jobject get_jobject() const { return _value.h; }
 595  JavaCallValue* get_value_addr() { return &_value; }
 596  BasicType get_type() const { return _type; }
 597 
 598  void set_jfloat(jfloat f) { _value.f = f;}
 599  void set_jdouble(jdouble d) { _value.d = d;}
 600  void set_jint(jint i) { _value.i = i;}
 601  void set_jlong(jlong l) { _value.l = l;}
 602  void set_jobject(jobject h) { _value.h = h;}
 603  void set_type(BasicType t) { _type = t; }
 604 
 605  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 606  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 607  jchar get_jchar() const { return (jchar) (_value.i);}
 608  jshort get_jshort() const { return (jshort) (_value.i);}
 609 
 610 };
 611 
 612 
 613 #define STACK_BIAS      0
 614 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 615 // in order to extend the reach of the stack pointer.
 616 #if defined(SPARC) && defined(_LP64)
 617 #undef STACK_BIAS
 618 #define STACK_BIAS      0x7ff
 619 #endif
 620 
 621 
 622 // TosState describes the top-of-stack state before and after the execution of
 623 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 624 // registers. The TosState corresponds to the 'machine represention' of this cached
 625 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 626 // as well as a 5th state in case the top-of-stack value is actually on the top
 627 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 628 // state when it comes to machine representation but is used separately for (oop)
 629 // type specific operations (e.g. verification code).
 630 
 631 enum TosState {         // describes the tos cache contents
 632   btos = 0,             // byte, bool tos cached
 633   ctos = 1,             // char tos cached
 634   stos = 2,             // short tos cached
 635   itos = 3,             // int tos cached
 636   ltos = 4,             // long tos cached
 637   ftos = 5,             // float tos cached
 638   dtos = 6,             // double tos cached
 639   atos = 7,             // object cached
 640   vtos = 8,             // tos not cached
 641   number_of_states,
 642   ilgl                  // illegal state: should not occur
 643 };
 644 
 645 
 646 inline TosState as_TosState(BasicType type) {
 647   switch (type) {
 648     case T_BYTE   : return btos;
 649     case T_BOOLEAN: return btos; // FIXME: Add ztos
 650     case T_CHAR   : return ctos;
 651     case T_SHORT  : return stos;
 652     case T_INT    : return itos;
 653     case T_LONG   : return ltos;
 654     case T_FLOAT  : return ftos;
 655     case T_DOUBLE : return dtos;
 656     case T_VOID   : return vtos;
 657     case T_ARRAY  : // fall through
 658     case T_OBJECT : return atos;
 659   }
 660   return ilgl;
 661 }
 662 
 663 inline BasicType as_BasicType(TosState state) {
 664   switch (state) {
 665     //case ztos: return T_BOOLEAN;//FIXME
 666     case btos : return T_BYTE;
 667     case ctos : return T_CHAR;
 668     case stos : return T_SHORT;
 669     case itos : return T_INT;
 670     case ltos : return T_LONG;
 671     case ftos : return T_FLOAT;
 672     case dtos : return T_DOUBLE;
 673     case atos : return T_OBJECT;
 674     case vtos : return T_VOID;
 675   }
 676   return T_ILLEGAL;
 677 }
 678 
 679 
 680 // Helper function to convert BasicType info into TosState
 681 // Note: Cannot define here as it uses global constant at the time being.
 682 TosState as_TosState(BasicType type);
 683 
 684 
 685 // ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
 686 
 687 enum ReferenceType {
 688  REF_NONE,      // Regular class
 689  REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
 690  REF_SOFT,      // Subclass of java/lang/ref/SoftReference
 691  REF_WEAK,      // Subclass of java/lang/ref/WeakReference
 692  REF_FINAL,     // Subclass of java/lang/ref/FinalReference
 693  REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
 694 };
 695 
 696 
 697 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 698 // information is needed by the safepoint code.
 699 //
 700 // There are 4 essential states:
 701 //
 702 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 703 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 704 //  _thread_in_vm       : Executing in the vm
 705 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 706 //
 707 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 708 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 709 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 710 //
 711 // Given a state, the xxx_trans state can always be found by adding 1.
 712 //
 713 enum JavaThreadState {
 714   _thread_uninitialized     =  0, // should never happen (missing initialization)
 715   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 716   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 717   _thread_in_native         =  4, // running in native code
 718   _thread_in_native_trans   =  5, // corresponding transition state
 719   _thread_in_vm             =  6, // running in VM
 720   _thread_in_vm_trans       =  7, // corresponding transition state
 721   _thread_in_Java           =  8, // running in Java or in stub code
 722   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 723   _thread_blocked           = 10, // blocked in vm
 724   _thread_blocked_trans     = 11, // corresponding transition state
 725   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 726 };
 727 
 728 
 729 // Handy constants for deciding which compiler mode to use.
 730 enum MethodCompilation {
 731   InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
 732   InvalidOSREntryBci = -2
 733 };
 734 
 735 // Enumeration to distinguish tiers of compilation
 736 enum CompLevel {
 737   CompLevel_any               = -1,
 738   CompLevel_all               = -1,
 739   CompLevel_none              = 0,         // Interpreter
 740   CompLevel_simple            = 1,         // C1
 741   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 742   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 743   CompLevel_full_optimization = 4,         // C2
 744 
 745 #if defined(COMPILER2)
 746   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 747 #elif defined(COMPILER1)
 748   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 749 #else
 750   CompLevel_highest_tier      = CompLevel_none,
 751 #endif
 752 
 753 #if defined(TIERED)
 754   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 755 #elif defined(COMPILER1)
 756   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 757 #elif defined(COMPILER2)
 758   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 759 #else
 760   CompLevel_initial_compile   = CompLevel_none
 761 #endif
 762 };
 763 
 764 inline bool is_c1_compile(int comp_level) {
 765   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 766 }
 767 
 768 inline bool is_c2_compile(int comp_level) {
 769   return comp_level == CompLevel_full_optimization;
 770 }
 771 
 772 inline bool is_highest_tier_compile(int comp_level) {
 773   return comp_level == CompLevel_highest_tier;
 774 }
 775 
 776 //----------------------------------------------------------------------------------------------------
 777 // 'Forward' declarations of frequently used classes
 778 // (in order to reduce interface dependencies & reduce
 779 // number of unnecessary compilations after changes)
 780 
 781 class symbolTable;
 782 class ClassFileStream;
 783 
 784 class Event;
 785 
 786 class Thread;
 787 class  VMThread;
 788 class  JavaThread;
 789 class Threads;
 790 
 791 class VM_Operation;
 792 class VMOperationQueue;
 793 
 794 class CodeBlob;
 795 class  nmethod;
 796 class  OSRAdapter;
 797 class  I2CAdapter;
 798 class  C2IAdapter;
 799 class CompiledIC;
 800 class relocInfo;
 801 class ScopeDesc;
 802 class PcDesc;
 803 
 804 class Recompiler;
 805 class Recompilee;
 806 class RecompilationPolicy;
 807 class RFrame;
 808 class  CompiledRFrame;
 809 class  InterpretedRFrame;
 810 
 811 class frame;
 812 
 813 class vframe;
 814 class   javaVFrame;
 815 class     interpretedVFrame;
 816 class     compiledVFrame;
 817 class     deoptimizedVFrame;
 818 class   externalVFrame;
 819 class     entryVFrame;
 820 
 821 class RegisterMap;
 822 
 823 class Mutex;
 824 class Monitor;
 825 class BasicLock;
 826 class BasicObjectLock;
 827 
 828 class PeriodicTask;
 829 
 830 class JavaCallWrapper;
 831 
 832 class   oopDesc;
 833 
 834 class NativeCall;
 835 
 836 class zone;
 837 
 838 class StubQueue;
 839 
 840 class outputStream;
 841 
 842 class ResourceArea;
 843 
 844 class DebugInformationRecorder;
 845 class ScopeValue;
 846 class CompressedStream;
 847 class   DebugInfoReadStream;
 848 class   DebugInfoWriteStream;
 849 class LocationValue;
 850 class ConstantValue;
 851 class IllegalValue;
 852 
 853 class PrivilegedElement;
 854 class MonitorArray;
 855 
 856 class MonitorInfo;
 857 
 858 class OffsetClosure;
 859 class OopMapCache;
 860 class InterpreterOopMap;
 861 class OopMapCacheEntry;
 862 class OSThread;
 863 
 864 typedef int (*OSThreadStartFunc)(void*);
 865 
 866 class Space;
 867 
 868 class JavaValue;
 869 class methodHandle;
 870 class JavaCallArguments;
 871 
 872 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
 873 
 874 extern void basic_fatal(const char* msg);
 875 
 876 
 877 //----------------------------------------------------------------------------------------------------
 878 // Special constants for debugging
 879 
 880 const jint     badInt           = -3;                       // generic "bad int" value
 881 const long     badAddressVal    = -2;                       // generic "bad address" value
 882 const long     badOopVal        = -1;                       // generic "bad oop" value
 883 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 884 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 885 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 886 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 887 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 888 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
 889 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 890 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 891 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 892 
 893 
 894 // (These must be implemented as #defines because C++ compilers are
 895 // not obligated to inline non-integral constants!)
 896 #define       badAddress        ((address)::badAddressVal)
 897 #define       badOop            ((oop)::badOopVal)
 898 #define       badHeapWord       (::badHeapWordVal)
 899 #define       badJNIHandle      ((oop)::badJNIHandleVal)
 900 
 901 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 902 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 903 
 904 //----------------------------------------------------------------------------------------------------
 905 // Utility functions for bitfield manipulations
 906 
 907 const intptr_t AllBits    = ~0; // all bits set in a word
 908 const intptr_t NoBits     =  0; // no bits set in a word
 909 const jlong    NoLongBits =  0; // no bits set in a long
 910 const intptr_t OneBit     =  1; // only right_most bit set in a word
 911 
 912 // get a word with the n.th or the right-most or left-most n bits set
 913 // (note: #define used only so that they can be used in enum constant definitions)
 914 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
 915 #define right_n_bits(n)   (nth_bit(n) - 1)
 916 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
 917 
 918 // bit-operations using a mask m
 919 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 920 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 921 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 922 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 923 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 924 
 925 // bit-operations using the n.th bit
 926 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 927 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 928 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 929 
 930 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 931 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 932   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 933 }
 934 
 935 
 936 //----------------------------------------------------------------------------------------------------
 937 // Utility functions for integers
 938 
 939 // Avoid use of global min/max macros which may cause unwanted double
 940 // evaluation of arguments.
 941 #ifdef max
 942 #undef max
 943 #endif
 944 
 945 #ifdef min
 946 #undef min
 947 #endif
 948 
 949 #define max(a,b) Do_not_use_max_use_MAX2_instead
 950 #define min(a,b) Do_not_use_min_use_MIN2_instead
 951 
 952 // It is necessary to use templates here. Having normal overloaded
 953 // functions does not work because it is necessary to provide both 32-
 954 // and 64-bit overloaded functions, which does not work, and having
 955 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 956 // will be even more error-prone than macros.
 957 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 958 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 959 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 960 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 961 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 962 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 963 
 964 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 965 
 966 // true if x is a power of 2, false otherwise
 967 inline bool is_power_of_2(intptr_t x) {
 968   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 969 }
 970 
 971 // long version of is_power_of_2
 972 inline bool is_power_of_2_long(jlong x) {
 973   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 974 }
 975 
 976 //* largest i such that 2^i <= x
 977 //  A negative value of 'x' will return '31'
 978 inline int log2_intptr(intptr_t x) {
 979   int i = -1;
 980   uintptr_t p =  1;
 981   while (p != 0 && p <= (uintptr_t)x) {
 982     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 983     i++; p *= 2;
 984   }
 985   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 986   // (if p = 0 then overflow occurred and i = 31)
 987   return i;
 988 }
 989 
 990 //* largest i such that 2^i <= x
 991 //  A negative value of 'x' will return '63'
 992 inline int log2_long(jlong x) {
 993   int i = -1;
 994   julong p =  1;
 995   while (p != 0 && p <= (julong)x) {
 996     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 997     i++; p *= 2;
 998   }
 999   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1000   // (if p = 0 then overflow occurred and i = 63)
1001   return i;
1002 }
1003 
1004 //* the argument must be exactly a power of 2
1005 inline int exact_log2(intptr_t x) {
1006   #ifdef ASSERT
1007     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1008   #endif
1009   return log2_intptr(x);
1010 }
1011 
1012 //* the argument must be exactly a power of 2
1013 inline int exact_log2_long(jlong x) {
1014   #ifdef ASSERT
1015     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1016   #endif
1017   return log2_long(x);
1018 }
1019 
1020 
1021 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1022 inline intptr_t round_to(intptr_t x, uintx s) {
1023   #ifdef ASSERT
1024     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1025   #endif
1026   const uintx m = s - 1;
1027   return mask_bits(x + m, ~m);
1028 }
1029 
1030 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1031 inline intptr_t round_down(intptr_t x, uintx s) {
1032   #ifdef ASSERT
1033     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1034   #endif
1035   const uintx m = s - 1;
1036   return mask_bits(x, ~m);
1037 }
1038 
1039 
1040 inline bool is_odd (intx x) { return x & 1;      }
1041 inline bool is_even(intx x) { return !is_odd(x); }
1042 
1043 // "to" should be greater than "from."
1044 inline intx byte_size(void* from, void* to) {
1045   return (address)to - (address)from;
1046 }
1047 
1048 //----------------------------------------------------------------------------------------------------
1049 // Avoid non-portable casts with these routines (DEPRECATED)
1050 
1051 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1052 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1053 
1054 // Given sequence of four bytes, build into a 32-bit word
1055 // following the conventions used in class files.
1056 // On the 386, this could be realized with a simple address cast.
1057 //
1058 
1059 // This routine takes eight bytes:
1060 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1061   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1062        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1063        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1064        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1065        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1066        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1067        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1068        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1069 }
1070 
1071 // This routine takes four bytes:
1072 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1073   return  (( u4(c1) << 24 )  &  0xff000000)
1074        |  (( u4(c2) << 16 )  &  0x00ff0000)
1075        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1076        |  (( u4(c4) <<  0 )  &  0x000000ff);
1077 }
1078 
1079 // And this one works if the four bytes are contiguous in memory:
1080 inline u4 build_u4_from( u1* p ) {
1081   return  build_u4_from( p[0], p[1], p[2], p[3] );
1082 }
1083 
1084 // Ditto for two-byte ints:
1085 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1086   return  u2((( u2(c1) <<  8 )  &  0xff00)
1087           |  (( u2(c2) <<  0 )  &  0x00ff));
1088 }
1089 
1090 // And this one works if the two bytes are contiguous in memory:
1091 inline u2 build_u2_from( u1* p ) {
1092   return  build_u2_from( p[0], p[1] );
1093 }
1094 
1095 // Ditto for floats:
1096 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1097   u4 u = build_u4_from( c1, c2, c3, c4 );
1098   return  *(jfloat*)&u;
1099 }
1100 
1101 inline jfloat build_float_from( u1* p ) {
1102   u4 u = build_u4_from( p );
1103   return  *(jfloat*)&u;
1104 }
1105 
1106 
1107 // now (64-bit) longs
1108 
1109 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1110   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1111        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1112        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1113        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1114        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1115        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1116        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1117        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1118 }
1119 
1120 inline jlong build_long_from( u1* p ) {
1121   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1122 }
1123 
1124 
1125 // Doubles, too!
1126 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1127   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1128   return  *(jdouble*)&u;
1129 }
1130 
1131 inline jdouble build_double_from( u1* p ) {
1132   jlong u = build_long_from( p );
1133   return  *(jdouble*)&u;
1134 }
1135 
1136 
1137 // Portable routines to go the other way:
1138 
1139 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1140   c1 = u1(x >> 8);
1141   c2 = u1(x);
1142 }
1143 
1144 inline void explode_short_to( u2 x, u1* p ) {
1145   explode_short_to( x, p[0], p[1]);
1146 }
1147 
1148 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1149   c1 = u1(x >> 24);
1150   c2 = u1(x >> 16);
1151   c3 = u1(x >>  8);
1152   c4 = u1(x);
1153 }
1154 
1155 inline void explode_int_to( u4 x, u1* p ) {
1156   explode_int_to( x, p[0], p[1], p[2], p[3]);
1157 }
1158 
1159 
1160 // Pack and extract shorts to/from ints:
1161 
1162 inline int extract_low_short_from_int(jint x) {
1163   return x & 0xffff;
1164 }
1165 
1166 inline int extract_high_short_from_int(jint x) {
1167   return (x >> 16) & 0xffff;
1168 }
1169 
1170 inline int build_int_from_shorts( jushort low, jushort high ) {
1171   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1172 }
1173 
1174 // Printf-style formatters for fixed- and variable-width types as pointers and
1175 // integers.
1176 //
1177 // Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1178 // must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1179 // '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1180 // (in ILP32).
1181 
1182 // Format 32-bit quantities.
1183 #define INT32_FORMAT  "%d"
1184 #define UINT32_FORMAT "%u"
1185 #define INT32_FORMAT_W(width)   "%" #width "d"
1186 #define UINT32_FORMAT_W(width)  "%" #width "u"
1187 
1188 #define PTR32_FORMAT  "0x%08x"
1189 
1190 // Format 64-bit quantities.
1191 #define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
1192 #define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1193 #define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
1194 
1195 #define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
1196 #define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1197 
1198 // Format macros that allow the field width to be specified.  The width must be
1199 // a string literal (e.g., "8") or a macro that evaluates to one.
1200 #ifdef _LP64
1201 #define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
1202 #define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
1203 #define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
1204 #else
1205 #define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
1206 #define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
1207 #define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
1208 #endif // _LP64
1209 
1210 // Format pointers and size_t (or size_t-like integer types) which change size
1211 // between 32- and 64-bit. The pointer format theoretically should be "%p",
1212 // however, it has different output on different platforms. On Windows, the data
1213 // will be padded with zeros automatically. On Solaris, we can use "%016p" &
1214 // "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
1215 // On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
1216 // 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
1217 // GCC 4.3.2, however requires the data to be converted to "intptr_t" when
1218 // using "%x".
1219 #ifdef  _LP64
1220 #define PTR_FORMAT    PTR64_FORMAT
1221 #define UINTX_FORMAT  UINT64_FORMAT
1222 #define INTX_FORMAT   INT64_FORMAT
1223 #define SIZE_FORMAT   UINT64_FORMAT
1224 #define SSIZE_FORMAT  INT64_FORMAT
1225 #else   // !_LP64
1226 #define PTR_FORMAT    PTR32_FORMAT
1227 #define UINTX_FORMAT  UINT32_FORMAT
1228 #define INTX_FORMAT   INT32_FORMAT
1229 #define SIZE_FORMAT   UINT32_FORMAT
1230 #define SSIZE_FORMAT  INT32_FORMAT
1231 #endif  // _LP64
1232 
1233 #define INTPTR_FORMAT PTR_FORMAT
1234 
1235 // Enable zap-a-lot if in debug version.
1236 
1237 # ifdef ASSERT
1238 # ifdef COMPILER2
1239 #   define ENABLE_ZAP_DEAD_LOCALS
1240 #endif /* COMPILER2 */
1241 # endif /* ASSERT */
1242 
1243 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1244 
1245 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP