1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class BiasedLockingCounters;
  26 
  27 // <sys/trap.h> promises that the system will not use traps 16-31
  28 #define ST_RESERVED_FOR_USER_0 0x10
  29 
  30 /* Written: David Ungar 4/19/97 */
  31 
  32 // Contains all the definitions needed for sparc assembly code generation.
  33 
  34 // Register aliases for parts of the system:
  35 
  36 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
  37 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
  38 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
  39 
  40 // g2-g4 are scratch registers called "application globals".  Their
  41 // meaning is reserved to the "compilation system"--which means us!
  42 // They are are not supposed to be touched by ordinary C code, although
  43 // highly-optimized C code might steal them for temps.  They are safe
  44 // across thread switches, and the ABI requires that they be safe
  45 // across function calls.
  46 //
  47 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
  48 // across func calls, and V8+ also allows g5 to be clobbered across
  49 // func calls.  Also, g1 and g5 can get touched while doing shared
  50 // library loading.
  51 //
  52 // We must not touch g7 (it is the thread-self register) and g6 is
  53 // reserved for certain tools.  g0, of course, is always zero.
  54 //
  55 // (Sources:  SunSoft Compilers Group, thread library engineers.)
  56 
  57 // %%%% The interpreter should be revisited to reduce global scratch regs.
  58 
  59 // This global always holds the current JavaThread pointer:
  60 
  61 REGISTER_DECLARATION(Register, G2_thread , G2);
  62 REGISTER_DECLARATION(Register, G6_heapbase , G6);
  63 
  64 // The following globals are part of the Java calling convention:
  65 
  66 REGISTER_DECLARATION(Register, G5_method             , G5);
  67 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
  68 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
  69 
  70 // The following globals are used for the new C1 & interpreter calling convention:
  71 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
  72 
  73 // This local is used to preserve G2_thread in the interpreter and in stubs:
  74 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
  75 
  76 // These globals are used as scratch registers in the interpreter:
  77 
  78 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
  79 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
  80 REGISTER_DECLARATION(Register, G3_scratch    , G3);
  81 REGISTER_DECLARATION(Register, G4_scratch    , G4);
  82 
  83 // These globals are used as short-lived scratch registers in the compiler:
  84 
  85 REGISTER_DECLARATION(Register, Gtemp  , G5);
  86 
  87 // JSR 292 fixed register usages:
  88 REGISTER_DECLARATION(Register, G5_method_type        , G5);
  89 REGISTER_DECLARATION(Register, G3_method_handle      , G3);
  90 REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
  91 
  92 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
  93 // because a single patchable "set" instruction (NativeMovConstReg,
  94 // or NativeMovConstPatching for compiler1) instruction
  95 // serves to set up either quantity, depending on whether the compiled
  96 // call site is an inline cache or is megamorphic.  See the function
  97 // CompiledIC::set_to_megamorphic.
  98 //
  99 // If a inline cache targets an interpreted method, then the
 100 // G5 register will be used twice during the call.  First,
 101 // the call site will be patched to load a compiledICHolder
 102 // into G5. (This is an ordered pair of ic_klass, method.)
 103 // The c2i adapter will first check the ic_klass, then load
 104 // G5_method with the method part of the pair just before
 105 // jumping into the interpreter.
 106 //
 107 // Note that G5_method is only the method-self for the interpreter,
 108 // and is logically unrelated to G5_megamorphic_method.
 109 //
 110 // Invariants on G2_thread (the JavaThread pointer):
 111 //  - it should not be used for any other purpose anywhere
 112 //  - it must be re-initialized by StubRoutines::call_stub()
 113 //  - it must be preserved around every use of call_VM
 114 
 115 // We can consider using g2/g3/g4 to cache more values than the
 116 // JavaThread, such as the card-marking base or perhaps pointers into
 117 // Eden.  It's something of a waste to use them as scratch temporaries,
 118 // since they are not supposed to be volatile.  (Of course, if we find
 119 // that Java doesn't benefit from application globals, then we can just
 120 // use them as ordinary temporaries.)
 121 //
 122 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
 123 // it makes sense to use them routinely for procedure linkage,
 124 // whenever the On registers are not applicable.  Examples:  G5_method,
 125 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
 126 // stubs.  This means that compiler stubs, etc., should be kept to a
 127 // maximum of two or three G-register arguments.
 128 
 129 
 130 // stub frames
 131 
 132 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
 133 
 134 // Interpreter frames
 135 
 136 #ifdef CC_INTERP
 137 REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
 138 REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
 139 REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
 140 REGISTER_DECLARATION(Register, L2_scratch       , L2);
 141 REGISTER_DECLARATION(Register, L3_scratch       , L3);
 142 REGISTER_DECLARATION(Register, L4_scratch       , L4);
 143 REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
 144 REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
 145 REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
 146 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
 147 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
 148                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
 149                                                        // is added and removed as needed in the frame code.
 150 // Interface to signature handler
 151 REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
 152 REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
 153 
 154 #else
 155 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
 156 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
 157 REGISTER_DECLARATION(Register, Lmethod          , L2);
 158 REGISTER_DECLARATION(Register, Llocals          , L3);
 159 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
 160                                                        // must match Llocals in asm interpreter
 161 REGISTER_DECLARATION(Register, Lmonitors        , L4);
 162 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
 163 // When calling out from the interpreter we record SP so that we can remove any extra stack
 164 // space allocated during adapter transitions. This register is only live from the point
 165 // of the call until we return.
 166 REGISTER_DECLARATION(Register, Llast_SP         , L5);
 167 REGISTER_DECLARATION(Register, Lscratch         , L5);
 168 REGISTER_DECLARATION(Register, Lscratch2        , L6);
 169 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
 170 
 171 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
 172 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
 173                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
 174                                                        // is added and removed as needed in the frame code.
 175 REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
 176 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
 177 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
 178 #endif /* CC_INTERP */
 179 
 180 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
 181 //       the interpreter code. If Lscratch2 needs to be used for some
 182 //       purpose than LcpoolCache should be restore after that for
 183 //       the interpreter to work right
 184 // (These assignments must be compatible with L7_thread_cache; see above.)
 185 
 186 // Since Lbcp points into the middle of the method object,
 187 // it is temporarily converted into a "bcx" during GC.
 188 
 189 // Exception processing
 190 // These registers are passed into exception handlers.
 191 // All exception handlers require the exception object being thrown.
 192 // In addition, an nmethod's exception handler must be passed
 193 // the address of the call site within the nmethod, to allow
 194 // proper selection of the applicable catch block.
 195 // (Interpreter frames use their own bcp() for this purpose.)
 196 //
 197 // The Oissuing_pc value is not always needed.  When jumping to a
 198 // handler that is known to be interpreted, the Oissuing_pc value can be
 199 // omitted.  An actual catch block in compiled code receives (from its
 200 // nmethod's exception handler) the thrown exception in the Oexception,
 201 // but it doesn't need the Oissuing_pc.
 202 //
 203 // If an exception handler (either interpreted or compiled)
 204 // discovers there is no applicable catch block, it updates
 205 // the Oissuing_pc to the continuation PC of its own caller,
 206 // pops back to that caller's stack frame, and executes that
 207 // caller's exception handler.  Obviously, this process will
 208 // iterate until the control stack is popped back to a method
 209 // containing an applicable catch block.  A key invariant is
 210 // that the Oissuing_pc value is always a value local to
 211 // the method whose exception handler is currently executing.
 212 //
 213 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
 214 // It is a "return pc", the address __following__ the call.
 215 // Raw return addresses are converted to issuing PCs by frame::pc(),
 216 // or by stubs.  Issuing PCs can be used directly with PC range tables.
 217 //
 218 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
 219 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
 220 
 221 
 222 // These must occur after the declarations above
 223 #ifndef DONT_USE_REGISTER_DEFINES
 224 
 225 #define Gthread             AS_REGISTER(Register, Gthread)
 226 #define Gmethod             AS_REGISTER(Register, Gmethod)
 227 #define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
 228 #define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
 229 #define Gargs               AS_REGISTER(Register, Gargs)
 230 #define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
 231 #define Gframe_size         AS_REGISTER(Register, Gframe_size)
 232 #define Gtemp               AS_REGISTER(Register, Gtemp)
 233 
 234 #ifdef CC_INTERP
 235 #define Lstate              AS_REGISTER(Register, Lstate)
 236 #define Lesp                AS_REGISTER(Register, Lesp)
 237 #define L1_scratch          AS_REGISTER(Register, L1_scratch)
 238 #define Lmirror             AS_REGISTER(Register, Lmirror)
 239 #define L2_scratch          AS_REGISTER(Register, L2_scratch)
 240 #define L3_scratch          AS_REGISTER(Register, L3_scratch)
 241 #define L4_scratch          AS_REGISTER(Register, L4_scratch)
 242 #define Lscratch            AS_REGISTER(Register, Lscratch)
 243 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
 244 #define L7_scratch          AS_REGISTER(Register, L7_scratch)
 245 #define Ostate              AS_REGISTER(Register, Ostate)
 246 #else
 247 #define Lesp                AS_REGISTER(Register, Lesp)
 248 #define Lbcp                AS_REGISTER(Register, Lbcp)
 249 #define Lmethod             AS_REGISTER(Register, Lmethod)
 250 #define Llocals             AS_REGISTER(Register, Llocals)
 251 #define Lmonitors           AS_REGISTER(Register, Lmonitors)
 252 #define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
 253 #define Lscratch            AS_REGISTER(Register, Lscratch)
 254 #define Lscratch2           AS_REGISTER(Register, Lscratch2)
 255 #define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
 256 #endif /* ! CC_INTERP */
 257 
 258 #define Lentry_args         AS_REGISTER(Register, Lentry_args)
 259 #define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
 260 #define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
 261 #define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
 262 #define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
 263 #define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
 264 
 265 #define Oexception          AS_REGISTER(Register, Oexception)
 266 #define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
 267 
 268 
 269 #endif
 270 
 271 // Address is an abstraction used to represent a memory location.
 272 //
 273 // Note: A register location is represented via a Register, not
 274 //       via an address for efficiency & simplicity reasons.
 275 
 276 class Address VALUE_OBJ_CLASS_SPEC {
 277  private:
 278   Register           _base;           // Base register.
 279   RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
 280   RelocationHolder   _rspec;
 281 
 282  public:
 283   Address() : _base(noreg), _index_or_disp(noreg) {}
 284 
 285   Address(Register base, RegisterOrConstant index_or_disp)
 286     : _base(base),
 287       _index_or_disp(index_or_disp) {
 288   }
 289 
 290   Address(Register base, Register index)
 291     : _base(base),
 292       _index_or_disp(index) {
 293   }
 294 
 295   Address(Register base, int disp)
 296     : _base(base),
 297       _index_or_disp(disp) {
 298   }
 299 
 300 #ifdef ASSERT
 301   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 302   Address(Register base, ByteSize disp)
 303     : _base(base),
 304       _index_or_disp(in_bytes(disp)) {
 305   }
 306 #endif
 307 
 308   // accessors
 309   Register base()      const { return _base; }
 310   Register index()     const { return _index_or_disp.as_register(); }
 311   int      disp()      const { return _index_or_disp.as_constant(); }
 312 
 313   bool     has_index() const { return _index_or_disp.is_register(); }
 314   bool     has_disp()  const { return _index_or_disp.is_constant(); }
 315 
 316   const relocInfo::relocType rtype() { return _rspec.type(); }
 317   const RelocationHolder&    rspec() { return _rspec; }
 318 
 319   RelocationHolder rspec(int offset) const {
 320     return offset == 0 ? _rspec : _rspec.plus(offset);
 321   }
 322 
 323   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
 324 
 325   Address plus_disp(int plusdisp) const {     // bump disp by a small amount
 326     assert(_index_or_disp.is_constant(), "must have a displacement");
 327     Address a(base(), disp() + plusdisp);
 328     return a;
 329   }
 330 
 331   Address after_save() const {
 332     Address a = (*this);
 333     a._base = a._base->after_save();
 334     return a;
 335   }
 336 
 337   Address after_restore() const {
 338     Address a = (*this);
 339     a._base = a._base->after_restore();
 340     return a;
 341   }
 342 
 343   // Convert the raw encoding form into the form expected by the
 344   // constructor for Address.
 345   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 346 
 347   friend class Assembler;
 348 };
 349 
 350 
 351 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 352  private:
 353   address          _address;
 354   RelocationHolder _rspec;
 355 
 356   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
 357     switch (rtype) {
 358     case relocInfo::external_word_type:
 359       return external_word_Relocation::spec(addr);
 360     case relocInfo::internal_word_type:
 361       return internal_word_Relocation::spec(addr);
 362 #ifdef _LP64
 363     case relocInfo::opt_virtual_call_type:
 364       return opt_virtual_call_Relocation::spec();
 365     case relocInfo::static_call_type:
 366       return static_call_Relocation::spec();
 367     case relocInfo::runtime_call_type:
 368       return runtime_call_Relocation::spec();
 369 #endif
 370     case relocInfo::none:
 371       return RelocationHolder();
 372     default:
 373       ShouldNotReachHere();
 374       return RelocationHolder();
 375     }
 376   }
 377 
 378  protected:
 379   // creation
 380   AddressLiteral() : _address(NULL), _rspec(NULL) {}
 381 
 382  public:
 383   AddressLiteral(address addr, RelocationHolder const& rspec)
 384     : _address(addr),
 385       _rspec(rspec) {}
 386 
 387   // Some constructors to avoid casting at the call site.
 388   AddressLiteral(jobject obj, RelocationHolder const& rspec)
 389     : _address((address) obj),
 390       _rspec(rspec) {}
 391 
 392   AddressLiteral(intptr_t value, RelocationHolder const& rspec)
 393     : _address((address) value),
 394       _rspec(rspec) {}
 395 
 396   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
 397     : _address((address) addr),
 398     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 399 
 400   // Some constructors to avoid casting at the call site.
 401   AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
 402     : _address((address) addr),
 403     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 404 
 405   AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
 406     : _address((address) addr),
 407       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 408 
 409   AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
 410     : _address((address) addr),
 411       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 412 
 413   AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
 414     : _address((address) addr),
 415       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 416 
 417   AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
 418     : _address((address) addr),
 419       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 420 
 421   AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
 422     : _address((address) addr),
 423       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 424 
 425 #ifdef _LP64
 426   // 32-bit complains about a multiple declaration for int*.
 427   AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
 428     : _address((address) addr),
 429       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 430 #endif
 431 
 432   AddressLiteral(oop addr, relocInfo::relocType rtype = relocInfo::none)
 433     : _address((address) addr),
 434       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 435 
 436   AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
 437     : _address((address) addr),
 438       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 439 
 440   AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
 441     : _address((address) addr),
 442       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
 443 
 444   intptr_t value() const { return (intptr_t) _address; }
 445   int      low10() const;
 446 
 447   const relocInfo::relocType rtype() const { return _rspec.type(); }
 448   const RelocationHolder&    rspec() const { return _rspec; }
 449 
 450   RelocationHolder rspec(int offset) const {
 451     return offset == 0 ? _rspec : _rspec.plus(offset);
 452   }
 453 };
 454 
 455 
 456 inline Address RegisterImpl::address_in_saved_window() const {
 457    return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
 458 }
 459 
 460 
 461 
 462 // Argument is an abstraction used to represent an outgoing
 463 // actual argument or an incoming formal parameter, whether
 464 // it resides in memory or in a register, in a manner consistent
 465 // with the SPARC Application Binary Interface, or ABI.  This is
 466 // often referred to as the native or C calling convention.
 467 
 468 class Argument VALUE_OBJ_CLASS_SPEC {
 469  private:
 470   int _number;
 471   bool _is_in;
 472 
 473  public:
 474 #ifdef _LP64
 475   enum {
 476     n_register_parameters = 6,          // only 6 registers may contain integer parameters
 477     n_float_register_parameters = 16    // Can have up to 16 floating registers
 478   };
 479 #else
 480   enum {
 481     n_register_parameters = 6           // only 6 registers may contain integer parameters
 482   };
 483 #endif
 484 
 485   // creation
 486   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
 487 
 488   int  number() const  { return _number;  }
 489   bool is_in()  const  { return _is_in;   }
 490   bool is_out() const  { return !is_in(); }
 491 
 492   Argument successor() const  { return Argument(number() + 1, is_in()); }
 493   Argument as_in()     const  { return Argument(number(), true ); }
 494   Argument as_out()    const  { return Argument(number(), false); }
 495 
 496   // locating register-based arguments:
 497   bool is_register() const { return _number < n_register_parameters; }
 498 
 499 #ifdef _LP64
 500   // locating Floating Point register-based arguments:
 501   bool is_float_register() const { return _number < n_float_register_parameters; }
 502 
 503   FloatRegister as_float_register() const {
 504     assert(is_float_register(), "must be a register argument");
 505     return as_FloatRegister(( number() *2 ) + 1);
 506   }
 507   FloatRegister as_double_register() const {
 508     assert(is_float_register(), "must be a register argument");
 509     return as_FloatRegister(( number() *2 ));
 510   }
 511 #endif
 512 
 513   Register as_register() const {
 514     assert(is_register(), "must be a register argument");
 515     return is_in() ? as_iRegister(number()) : as_oRegister(number());
 516   }
 517 
 518   // locating memory-based arguments
 519   Address as_address() const {
 520     assert(!is_register(), "must be a memory argument");
 521     return address_in_frame();
 522   }
 523 
 524   // When applied to a register-based argument, give the corresponding address
 525   // into the 6-word area "into which callee may store register arguments"
 526   // (This is a different place than the corresponding register-save area location.)
 527   Address address_in_frame() const;
 528 
 529   // debugging
 530   const char* name() const;
 531 
 532   friend class Assembler;
 533 };
 534 
 535 
 536 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
 537 // level; i.e., what you write
 538 // is what you get. The Assembler is generating code into a CodeBuffer.
 539 
 540 class Assembler : public AbstractAssembler  {
 541  protected:
 542 
 543   static void print_instruction(int inst);
 544   static int  patched_branch(int dest_pos, int inst, int inst_pos);
 545   static int  branch_destination(int inst, int pos);
 546 
 547 
 548   friend class AbstractAssembler;
 549   friend class AddressLiteral;
 550 
 551   // code patchers need various routines like inv_wdisp()
 552   friend class NativeInstruction;
 553   friend class NativeGeneralJump;
 554   friend class Relocation;
 555   friend class Label;
 556 
 557  public:
 558   // op carries format info; see page 62 & 267
 559 
 560   enum ops {
 561     call_op   = 1, // fmt 1
 562     branch_op = 0, // also sethi (fmt2)
 563     arith_op  = 2, // fmt 3, arith & misc
 564     ldst_op   = 3  // fmt 3, load/store
 565   };
 566 
 567   enum op2s {
 568     bpr_op2   = 3,
 569     fb_op2    = 6,
 570     fbp_op2   = 5,
 571     br_op2    = 2,
 572     bp_op2    = 1,
 573     cb_op2    = 7, // V8
 574     sethi_op2 = 4
 575   };
 576 
 577   enum op3s {
 578     // selected op3s
 579     add_op3      = 0x00,
 580     and_op3      = 0x01,
 581     or_op3       = 0x02,
 582     xor_op3      = 0x03,
 583     sub_op3      = 0x04,
 584     andn_op3     = 0x05,
 585     orn_op3      = 0x06,
 586     xnor_op3     = 0x07,
 587     addc_op3     = 0x08,
 588     mulx_op3     = 0x09,
 589     umul_op3     = 0x0a,
 590     smul_op3     = 0x0b,
 591     subc_op3     = 0x0c,
 592     udivx_op3    = 0x0d,
 593     udiv_op3     = 0x0e,
 594     sdiv_op3     = 0x0f,
 595 
 596     addcc_op3    = 0x10,
 597     andcc_op3    = 0x11,
 598     orcc_op3     = 0x12,
 599     xorcc_op3    = 0x13,
 600     subcc_op3    = 0x14,
 601     andncc_op3   = 0x15,
 602     orncc_op3    = 0x16,
 603     xnorcc_op3   = 0x17,
 604     addccc_op3   = 0x18,
 605     umulcc_op3   = 0x1a,
 606     smulcc_op3   = 0x1b,
 607     subccc_op3   = 0x1c,
 608     udivcc_op3   = 0x1e,
 609     sdivcc_op3   = 0x1f,
 610 
 611     taddcc_op3   = 0x20,
 612     tsubcc_op3   = 0x21,
 613     taddcctv_op3 = 0x22,
 614     tsubcctv_op3 = 0x23,
 615     mulscc_op3   = 0x24,
 616     sll_op3      = 0x25,
 617     sllx_op3     = 0x25,
 618     srl_op3      = 0x26,
 619     srlx_op3     = 0x26,
 620     sra_op3      = 0x27,
 621     srax_op3     = 0x27,
 622     rdreg_op3    = 0x28,
 623     membar_op3   = 0x28,
 624 
 625     flushw_op3   = 0x2b,
 626     movcc_op3    = 0x2c,
 627     sdivx_op3    = 0x2d,
 628     popc_op3     = 0x2e,
 629     movr_op3     = 0x2f,
 630 
 631     sir_op3      = 0x30,
 632     wrreg_op3    = 0x30,
 633     saved_op3    = 0x31,
 634 
 635     fpop1_op3    = 0x34,
 636     fpop2_op3    = 0x35,
 637     impdep1_op3  = 0x36,
 638     impdep2_op3  = 0x37,
 639     jmpl_op3     = 0x38,
 640     rett_op3     = 0x39,
 641     trap_op3     = 0x3a,
 642     flush_op3    = 0x3b,
 643     save_op3     = 0x3c,
 644     restore_op3  = 0x3d,
 645     done_op3     = 0x3e,
 646     retry_op3    = 0x3e,
 647 
 648     lduw_op3     = 0x00,
 649     ldub_op3     = 0x01,
 650     lduh_op3     = 0x02,
 651     ldd_op3      = 0x03,
 652     stw_op3      = 0x04,
 653     stb_op3      = 0x05,
 654     sth_op3      = 0x06,
 655     std_op3      = 0x07,
 656     ldsw_op3     = 0x08,
 657     ldsb_op3     = 0x09,
 658     ldsh_op3     = 0x0a,
 659     ldx_op3      = 0x0b,
 660 
 661     ldstub_op3   = 0x0d,
 662     stx_op3      = 0x0e,
 663     swap_op3     = 0x0f,
 664 
 665     stwa_op3     = 0x14,
 666     stxa_op3     = 0x1e,
 667 
 668     ldf_op3      = 0x20,
 669     ldfsr_op3    = 0x21,
 670     ldqf_op3     = 0x22,
 671     lddf_op3     = 0x23,
 672     stf_op3      = 0x24,
 673     stfsr_op3    = 0x25,
 674     stqf_op3     = 0x26,
 675     stdf_op3     = 0x27,
 676 
 677     prefetch_op3 = 0x2d,
 678 
 679 
 680     ldc_op3      = 0x30,
 681     ldcsr_op3    = 0x31,
 682     lddc_op3     = 0x33,
 683     stc_op3      = 0x34,
 684     stcsr_op3    = 0x35,
 685     stdcq_op3    = 0x36,
 686     stdc_op3     = 0x37,
 687 
 688     casa_op3     = 0x3c,
 689     casxa_op3    = 0x3e,
 690 
 691     alt_bit_op3  = 0x10,
 692      cc_bit_op3  = 0x10
 693   };
 694 
 695   enum opfs {
 696     // selected opfs
 697     fmovs_opf   = 0x01,
 698     fmovd_opf   = 0x02,
 699 
 700     fnegs_opf   = 0x05,
 701     fnegd_opf   = 0x06,
 702 
 703     fadds_opf   = 0x41,
 704     faddd_opf   = 0x42,
 705     fsubs_opf   = 0x45,
 706     fsubd_opf   = 0x46,
 707 
 708     fmuls_opf   = 0x49,
 709     fmuld_opf   = 0x4a,
 710     fdivs_opf   = 0x4d,
 711     fdivd_opf   = 0x4e,
 712 
 713     fcmps_opf   = 0x51,
 714     fcmpd_opf   = 0x52,
 715 
 716     fstox_opf   = 0x81,
 717     fdtox_opf   = 0x82,
 718     fxtos_opf   = 0x84,
 719     fxtod_opf   = 0x88,
 720     fitos_opf   = 0xc4,
 721     fdtos_opf   = 0xc6,
 722     fitod_opf   = 0xc8,
 723     fstod_opf   = 0xc9,
 724     fstoi_opf   = 0xd1,
 725     fdtoi_opf   = 0xd2
 726   };
 727 
 728   enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
 729 
 730   enum Condition {
 731      // for FBfcc & FBPfcc instruction
 732     f_never                     = 0,
 733     f_notEqual                  = 1,
 734     f_notZero                   = 1,
 735     f_lessOrGreater             = 2,
 736     f_unorderedOrLess           = 3,
 737     f_less                      = 4,
 738     f_unorderedOrGreater        = 5,
 739     f_greater                   = 6,
 740     f_unordered                 = 7,
 741     f_always                    = 8,
 742     f_equal                     = 9,
 743     f_zero                      = 9,
 744     f_unorderedOrEqual          = 10,
 745     f_greaterOrEqual            = 11,
 746     f_unorderedOrGreaterOrEqual = 12,
 747     f_lessOrEqual               = 13,
 748     f_unorderedOrLessOrEqual    = 14,
 749     f_ordered                   = 15,
 750 
 751     // V8 coproc, pp 123 v8 manual
 752 
 753     cp_always  = 8,
 754     cp_never   = 0,
 755     cp_3       = 7,
 756     cp_2       = 6,
 757     cp_2or3    = 5,
 758     cp_1       = 4,
 759     cp_1or3    = 3,
 760     cp_1or2    = 2,
 761     cp_1or2or3 = 1,
 762     cp_0       = 9,
 763     cp_0or3    = 10,
 764     cp_0or2    = 11,
 765     cp_0or2or3 = 12,
 766     cp_0or1    = 13,
 767     cp_0or1or3 = 14,
 768     cp_0or1or2 = 15,
 769 
 770 
 771     // for integers
 772 
 773     never                 =  0,
 774     equal                 =  1,
 775     zero                  =  1,
 776     lessEqual             =  2,
 777     less                  =  3,
 778     lessEqualUnsigned     =  4,
 779     lessUnsigned          =  5,
 780     carrySet              =  5,
 781     negative              =  6,
 782     overflowSet           =  7,
 783     always                =  8,
 784     notEqual              =  9,
 785     notZero               =  9,
 786     greater               =  10,
 787     greaterEqual          =  11,
 788     greaterUnsigned       =  12,
 789     greaterEqualUnsigned  =  13,
 790     carryClear            =  13,
 791     positive              =  14,
 792     overflowClear         =  15
 793   };
 794 
 795   enum CC {
 796     icc  = 0,  xcc  = 2,
 797     // ptr_cc is the correct condition code for a pointer or intptr_t:
 798     ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
 799     fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
 800   };
 801 
 802   enum PrefetchFcn {
 803     severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
 804   };
 805 
 806  public:
 807   // Helper functions for groups of instructions
 808 
 809   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
 810 
 811   enum Membar_mask_bits { // page 184, v9
 812     StoreStore = 1 << 3,
 813     LoadStore  = 1 << 2,
 814     StoreLoad  = 1 << 1,
 815     LoadLoad   = 1 << 0,
 816 
 817     Sync       = 1 << 6,
 818     MemIssue   = 1 << 5,
 819     Lookaside  = 1 << 4
 820   };
 821 
 822   // test if x is within signed immediate range for nbits
 823   static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
 824 
 825   // test if -4096 <= x <= 4095
 826   static bool is_simm13(int x) { return is_simm(x, 13); }
 827 
 828   enum ASIs { // page 72, v9
 829     ASI_PRIMARY        = 0x80,
 830     ASI_PRIMARY_LITTLE = 0x88
 831     // add more from book as needed
 832   };
 833 
 834  protected:
 835   // helpers
 836 
 837   // x is supposed to fit in a field "nbits" wide
 838   // and be sign-extended. Check the range.
 839 
 840   static void assert_signed_range(intptr_t x, int nbits) {
 841     assert( nbits == 32
 842         ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
 843       "value out of range");
 844   }
 845 
 846   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
 847     assert( (x & 3) == 0, "not word aligned");
 848     assert_signed_range(x, nbits + 2);
 849   }
 850 
 851   static void assert_unsigned_const(int x, int nbits) {
 852     assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
 853   }
 854 
 855   // fields: note bits numbered from LSB = 0,
 856   //  fields known by inclusive bit range
 857 
 858   static int fmask(juint hi_bit, juint lo_bit) {
 859     assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
 860     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
 861   }
 862 
 863   // inverse of u_field
 864 
 865   static int inv_u_field(int x, int hi_bit, int lo_bit) {
 866     juint r = juint(x) >> lo_bit;
 867     r &= fmask( hi_bit, lo_bit);
 868     return int(r);
 869   }
 870 
 871 
 872   // signed version: extract from field and sign-extend
 873 
 874   static int inv_s_field(int x, int hi_bit, int lo_bit) {
 875     int sign_shift = 31 - hi_bit;
 876     return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
 877   }
 878 
 879   // given a field that ranges from hi_bit to lo_bit (inclusive,
 880   // LSB = 0), and an unsigned value for the field,
 881   // shift it into the field
 882 
 883 #ifdef ASSERT
 884   static int u_field(int x, int hi_bit, int lo_bit) {
 885     assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
 886             "value out of range");
 887     int r = x << lo_bit;
 888     assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
 889     return r;
 890   }
 891 #else
 892   // make sure this is inlined as it will reduce code size significantly
 893   #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
 894 #endif
 895 
 896   static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
 897   static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
 898   static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
 899   static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
 900 
 901   static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
 902 
 903   static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
 904   static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
 905   static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
 906 
 907   static int op(       int         x)  { return  u_field(x,             31, 30); }
 908   static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
 909   static int fcn(      int         x)  { return  u_field(x,             29, 25); }
 910   static int op3(      int         x)  { return  u_field(x,             24, 19); }
 911   static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
 912   static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
 913   static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
 914   static int cond(     int         x)  { return  u_field(x,             28, 25); }
 915   static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
 916   static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
 917   static int op2(      int         x)  { return  u_field(x,             24, 22); }
 918   static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
 919   static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
 920   static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
 921   static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
 922   static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
 923   static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
 924   static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
 925   static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
 926   static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
 927   static int opf(      int         x)  { return  u_field(x,             13,  5); }
 928 
 929   static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
 930   static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
 931 
 932   static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
 933   static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
 934   static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
 935 
 936   // some float instructions use this encoding on the op3 field
 937   static int alt_op3(int op, FloatRegisterImpl::Width w) {
 938     int r;
 939     switch(w) {
 940      case FloatRegisterImpl::S: r = op + 0;  break;
 941      case FloatRegisterImpl::D: r = op + 3;  break;
 942      case FloatRegisterImpl::Q: r = op + 2;  break;
 943      default: ShouldNotReachHere(); break;
 944     }
 945     return op3(r);
 946   }
 947 
 948 
 949   // compute inverse of simm
 950   static int inv_simm(int x, int nbits) {
 951     return (int)(x << (32 - nbits)) >> (32 - nbits);
 952   }
 953 
 954   static int inv_simm13( int x ) { return inv_simm(x, 13); }
 955 
 956   // signed immediate, in low bits, nbits long
 957   static int simm(int x, int nbits) {
 958     assert_signed_range(x, nbits);
 959     return x  &  (( 1 << nbits ) - 1);
 960   }
 961 
 962   // compute inverse of wdisp16
 963   static intptr_t inv_wdisp16(int x, intptr_t pos) {
 964     int lo = x & (( 1 << 14 ) - 1);
 965     int hi = (x >> 20) & 3;
 966     if (hi >= 2) hi |= ~1;
 967     return (((hi << 14) | lo) << 2) + pos;
 968   }
 969 
 970   // word offset, 14 bits at LSend, 2 bits at B21, B20
 971   static int wdisp16(intptr_t x, intptr_t off) {
 972     intptr_t xx = x - off;
 973     assert_signed_word_disp_range(xx, 16);
 974     int r =  (xx >> 2) & ((1 << 14) - 1)
 975            |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
 976     assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
 977     return r;
 978   }
 979 
 980 
 981   // word displacement in low-order nbits bits
 982 
 983   static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
 984     int pre_sign_extend = x & (( 1 << nbits ) - 1);
 985     int r =  pre_sign_extend >= ( 1 << (nbits-1) )
 986        ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
 987        :   pre_sign_extend;
 988     return (r << 2) + pos;
 989   }
 990 
 991   static int wdisp( intptr_t x, intptr_t off, int nbits ) {
 992     intptr_t xx = x - off;
 993     assert_signed_word_disp_range(xx, nbits);
 994     int r =  (xx >> 2) & (( 1 << nbits ) - 1);
 995     assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
 996     return r;
 997   }
 998 
 999 
1000   // Extract the top 32 bits in a 64 bit word
1001   static int32_t hi32( int64_t x ) {
1002     int32_t r = int32_t( (uint64_t)x >> 32 );
1003     return r;
1004   }
1005 
1006   // given a sethi instruction, extract the constant, left-justified
1007   static int inv_hi22( int x ) {
1008     return x << 10;
1009   }
1010 
1011   // create an imm22 field, given a 32-bit left-justified constant
1012   static int hi22( int x ) {
1013     int r = int( juint(x) >> 10 );
1014     assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
1015     return r;
1016   }
1017 
1018   // create a low10 __value__ (not a field) for a given a 32-bit constant
1019   static int low10( int x ) {
1020     return x & ((1 << 10) - 1);
1021   }
1022 
1023   // instruction only in v9
1024   static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
1025 
1026   // instruction only in v8
1027   static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
1028 
1029   // instruction deprecated in v9
1030   static void v9_dep()  { } // do nothing for now
1031 
1032   // some float instructions only exist for single prec. on v8
1033   static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
1034 
1035   // v8 has no CC field
1036   static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
1037 
1038  protected:
1039   // Simple delay-slot scheme:
1040   // In order to check the programmer, the assembler keeps track of deley slots.
1041   // It forbids CTIs in delay slots (conservative, but should be OK).
1042   // Also, when putting an instruction into a delay slot, you must say
1043   // asm->delayed()->add(...), in order to check that you don't omit
1044   // delay-slot instructions.
1045   // To implement this, we use a simple FSA
1046 
1047 #ifdef ASSERT
1048   #define CHECK_DELAY
1049 #endif
1050 #ifdef CHECK_DELAY
1051   enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
1052 #endif
1053 
1054  public:
1055   // Tells assembler next instruction must NOT be in delay slot.
1056   // Use at start of multinstruction macros.
1057   void assert_not_delayed() {
1058     // This is a separate overloading to avoid creation of string constants
1059     // in non-asserted code--with some compilers this pollutes the object code.
1060 #ifdef CHECK_DELAY
1061     assert_not_delayed("next instruction should not be a delay slot");
1062 #endif
1063   }
1064   void assert_not_delayed(const char* msg) {
1065 #ifdef CHECK_DELAY
1066     assert(delay_state == no_delay, msg);
1067 #endif
1068   }
1069 
1070  protected:
1071   // Delay slot helpers
1072   // cti is called when emitting control-transfer instruction,
1073   // BEFORE doing the emitting.
1074   // Only effective when assertion-checking is enabled.
1075   void cti() {
1076 #ifdef CHECK_DELAY
1077     assert_not_delayed("cti should not be in delay slot");
1078 #endif
1079   }
1080 
1081   // called when emitting cti with a delay slot, AFTER emitting
1082   void has_delay_slot() {
1083 #ifdef CHECK_DELAY
1084     assert_not_delayed("just checking");
1085     delay_state = at_delay_slot;
1086 #endif
1087   }
1088 
1089 public:
1090   // Tells assembler you know that next instruction is delayed
1091   Assembler* delayed() {
1092 #ifdef CHECK_DELAY
1093     assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
1094     delay_state = filling_delay_slot;
1095 #endif
1096     return this;
1097   }
1098 
1099   void flush() {
1100 #ifdef CHECK_DELAY
1101     assert ( delay_state == no_delay, "ending code with a delay slot");
1102 #endif
1103     AbstractAssembler::flush();
1104   }
1105 
1106   inline void emit_long(int);  // shadows AbstractAssembler::emit_long
1107   inline void emit_data(int x) { emit_long(x); }
1108   inline void emit_data(int, RelocationHolder const&);
1109   inline void emit_data(int, relocInfo::relocType rtype);
1110   // helper for above fcns
1111   inline void check_delay();
1112 
1113 
1114  public:
1115   // instructions, refer to page numbers in the SPARC Architecture Manual, V9
1116 
1117   // pp 135 (addc was addx in v8)
1118 
1119   inline void add(Register s1, Register s2, Register d );
1120   inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
1121   inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
1122   inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
1123   inline void add(const Address& a, Register d, int offset = 0) { add( a.base(), a.disp() + offset, d, a.rspec(offset)); }
1124 
1125   void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1126   void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1127   void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
1128   void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1129   void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1130   void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1131 
1132   // pp 136
1133 
1134   inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1135   inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
1136 
1137  protected: // use MacroAssembler::br instead
1138 
1139   // pp 138
1140 
1141   inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1142   inline void fb( Condition c, bool a, Label& L );
1143 
1144   // pp 141
1145 
1146   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1147   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1148 
1149  public:
1150 
1151   // pp 144
1152 
1153   inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1154   inline void br( Condition c, bool a, Label& L );
1155 
1156   // pp 146
1157 
1158   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1159   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1160 
1161   // pp 121 (V8)
1162 
1163   inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
1164   inline void cb( Condition c, bool a, Label& L );
1165 
1166   // pp 149
1167 
1168   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1169   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1170 
1171   // pp 150
1172 
1173   // These instructions compare the contents of s2 with the contents of
1174   // memory at address in s1. If the values are equal, the contents of memory
1175   // at address s1 is swapped with the data in d. If the values are not equal,
1176   // the the contents of memory at s1 is loaded into d, without the swap.
1177 
1178   void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1179   void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
1180 
1181   // pp 152
1182 
1183   void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
1184   void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1185   void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
1186   void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1187   void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1188   void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1189   void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
1190   void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1191 
1192   // pp 155
1193 
1194   void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
1195   void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
1196 
1197   // pp 156
1198 
1199   void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
1200   void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
1201 
1202   // pp 157
1203 
1204   void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
1205   void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
1206 
1207   // pp 159
1208 
1209   void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
1210   void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
1211 
1212   // pp 160
1213 
1214   void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
1215 
1216   // pp 161
1217 
1218   void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
1219   void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
1220 
1221   // pp 162
1222 
1223   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
1224 
1225   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
1226 
1227   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
1228   // on v8 to do negation of single, double and quad precision floats.
1229 
1230   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
1231 
1232   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
1233 
1234   // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
1235   // on v8 to do abs operation on single/double/quad precision floats.
1236 
1237   void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
1238 
1239   // pp 163
1240 
1241   void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
1242   void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
1243   void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
1244 
1245   // pp 164
1246 
1247   void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
1248 
1249   // pp 165
1250 
1251   inline void flush( Register s1, Register s2 );
1252   inline void flush( Register s1, int simm13a);
1253 
1254   // pp 167
1255 
1256   void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
1257 
1258   // pp 168
1259 
1260   void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
1261   // v8 unimp == illtrap(0)
1262 
1263   // pp 169
1264 
1265   void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
1266   void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
1267 
1268   // pp 149 (v8)
1269 
1270   void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1271   void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
1272 
1273   // pp 170
1274 
1275   void jmpl( Register s1, Register s2, Register d );
1276   void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1277 
1278   // 171
1279 
1280   inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
1281   inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
1282   inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
1283 
1284   inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
1285 
1286 
1287   inline void ldfsr(  Register s1, Register s2 );
1288   inline void ldfsr(  Register s1, int simm13a);
1289   inline void ldxfsr( Register s1, Register s2 );
1290   inline void ldxfsr( Register s1, int simm13a);
1291 
1292   // pp 94 (v8)
1293 
1294   inline void ldc(   Register s1, Register s2, int crd );
1295   inline void ldc(   Register s1, int simm13a, int crd);
1296   inline void lddc(  Register s1, Register s2, int crd );
1297   inline void lddc(  Register s1, int simm13a, int crd);
1298   inline void ldcsr( Register s1, Register s2, int crd );
1299   inline void ldcsr( Register s1, int simm13a, int crd);
1300 
1301 
1302   // 173
1303 
1304   void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1305   void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1306 
1307   // pp 175, lduw is ld on v8
1308 
1309   inline void ldsb(  Register s1, Register s2, Register d );
1310   inline void ldsb(  Register s1, int simm13a, Register d);
1311   inline void ldsh(  Register s1, Register s2, Register d );
1312   inline void ldsh(  Register s1, int simm13a, Register d);
1313   inline void ldsw(  Register s1, Register s2, Register d );
1314   inline void ldsw(  Register s1, int simm13a, Register d);
1315   inline void ldub(  Register s1, Register s2, Register d );
1316   inline void ldub(  Register s1, int simm13a, Register d);
1317   inline void lduh(  Register s1, Register s2, Register d );
1318   inline void lduh(  Register s1, int simm13a, Register d);
1319   inline void lduw(  Register s1, Register s2, Register d );
1320   inline void lduw(  Register s1, int simm13a, Register d);
1321   inline void ldx(   Register s1, Register s2, Register d );
1322   inline void ldx(   Register s1, int simm13a, Register d);
1323   inline void ld(    Register s1, Register s2, Register d );
1324   inline void ld(    Register s1, int simm13a, Register d);
1325   inline void ldd(   Register s1, Register s2, Register d );
1326   inline void ldd(   Register s1, int simm13a, Register d);
1327 
1328 #ifdef ASSERT
1329   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1330   inline void ld(    Register s1, ByteSize simm13a, Register d);
1331 #endif
1332 
1333   inline void ldsb(const Address& a, Register d, int offset = 0);
1334   inline void ldsh(const Address& a, Register d, int offset = 0);
1335   inline void ldsw(const Address& a, Register d, int offset = 0);
1336   inline void ldub(const Address& a, Register d, int offset = 0);
1337   inline void lduh(const Address& a, Register d, int offset = 0);
1338   inline void lduw(const Address& a, Register d, int offset = 0);
1339   inline void ldx( const Address& a, Register d, int offset = 0);
1340   inline void ld(  const Address& a, Register d, int offset = 0);
1341   inline void ldd( const Address& a, Register d, int offset = 0);
1342 
1343   inline void ldub(  Register s1, RegisterOrConstant s2, Register d );
1344   inline void ldsb(  Register s1, RegisterOrConstant s2, Register d );
1345   inline void lduh(  Register s1, RegisterOrConstant s2, Register d );
1346   inline void ldsh(  Register s1, RegisterOrConstant s2, Register d );
1347   inline void lduw(  Register s1, RegisterOrConstant s2, Register d );
1348   inline void ldsw(  Register s1, RegisterOrConstant s2, Register d );
1349   inline void ldx(   Register s1, RegisterOrConstant s2, Register d );
1350   inline void ld(    Register s1, RegisterOrConstant s2, Register d );
1351   inline void ldd(   Register s1, RegisterOrConstant s2, Register d );
1352 
1353   // pp 177
1354 
1355   void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1356   void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1357   void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1358   void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1359   void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1360   void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1361   void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1362   void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1363   void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1364   void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1365   void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1366   void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1367   void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1368   void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1369   void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1370   void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1371 
1372   // pp 179
1373 
1374   inline void ldstub(  Register s1, Register s2, Register d );
1375   inline void ldstub(  Register s1, int simm13a, Register d);
1376 
1377   // pp 180
1378 
1379   void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1380   void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1381 
1382   // pp 181
1383 
1384   void and3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | rs2(s2) ); }
1385   void and3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1386   void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1387   void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1388   void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
1389   void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1390   void andn(    Register s1, RegisterOrConstant s2, Register d);
1391   void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1392   void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1393   void or3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
1394   void or3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1395   void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1396   void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1397   void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
1398   void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1399   void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1400   void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1401   void xor3(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
1402   void xor3(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1403   void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1404   void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1405   void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
1406   void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1407   void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1408   void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1409 
1410   // pp 183
1411 
1412   void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
1413 
1414   // pp 185
1415 
1416   void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
1417 
1418   // pp 189
1419 
1420   void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
1421 
1422   // pp 191
1423 
1424   void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
1425   void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
1426 
1427   // pp 195
1428 
1429   void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
1430   void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
1431 
1432   // pp 196
1433 
1434   void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
1435   void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1436   void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
1437   void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1438   void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
1439   void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1440 
1441   // pp 197
1442 
1443   void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
1444   void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1445   void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
1446   void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1447   void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1448   void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1449   void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1450   void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1451 
1452   // pp 199
1453 
1454   void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
1455   void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1456 
1457   // pp 201
1458 
1459   void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
1460 
1461 
1462   // pp 202
1463 
1464   void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
1465   void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
1466 
1467   // pp 203
1468 
1469   void prefetch(   Register s1, Register s2,         PrefetchFcn f);
1470   void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
1471   void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1472   void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1473 
1474   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
1475 
1476   // pp 208
1477 
1478   // not implementing read privileged register
1479 
1480   inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
1481   inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
1482   inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
1483   inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
1484   inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
1485   inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
1486 
1487   // pp 213
1488 
1489   inline void rett( Register s1, Register s2);
1490   inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
1491 
1492   // pp 214
1493 
1494   void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
1495   void save(    Register s1, int simm13a, Register d ) {
1496     // make sure frame is at least large enough for the register save area
1497     assert(-simm13a >= 16 * wordSize, "frame too small");
1498     emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
1499   }
1500 
1501   void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
1502   void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1503 
1504   // pp 216
1505 
1506   void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
1507   void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
1508 
1509   // pp 217
1510 
1511   inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
1512   // pp 218
1513 
1514   void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1515   void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1516   void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1517   void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1518   void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
1519   void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
1520 
1521   void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1522   void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1523   void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1524   void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1525   void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
1526   void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
1527 
1528   // pp 220
1529 
1530   void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
1531 
1532   // pp 221
1533 
1534   void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
1535 
1536   // pp 222
1537 
1538   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
1539   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
1540   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
1541   inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
1542 
1543   inline void stfsr(  Register s1, Register s2 );
1544   inline void stfsr(  Register s1, int simm13a);
1545   inline void stxfsr( Register s1, Register s2 );
1546   inline void stxfsr( Register s1, int simm13a);
1547 
1548   //  pp 224
1549 
1550   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1551   void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1552 
1553   // p 226
1554 
1555   inline void stb(  Register d, Register s1, Register s2 );
1556   inline void stb(  Register d, Register s1, int simm13a);
1557   inline void sth(  Register d, Register s1, Register s2 );
1558   inline void sth(  Register d, Register s1, int simm13a);
1559   inline void stw(  Register d, Register s1, Register s2 );
1560   inline void stw(  Register d, Register s1, int simm13a);
1561   inline void st(   Register d, Register s1, Register s2 );
1562   inline void st(   Register d, Register s1, int simm13a);
1563   inline void stx(  Register d, Register s1, Register s2 );
1564   inline void stx(  Register d, Register s1, int simm13a);
1565   inline void std(  Register d, Register s1, Register s2 );
1566   inline void std(  Register d, Register s1, int simm13a);
1567 
1568 #ifdef ASSERT
1569   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
1570   inline void st(   Register d, Register s1, ByteSize simm13a);
1571 #endif
1572 
1573   inline void stb(  Register d, const Address& a, int offset = 0 );
1574   inline void sth(  Register d, const Address& a, int offset = 0 );
1575   inline void stw(  Register d, const Address& a, int offset = 0 );
1576   inline void stx(  Register d, const Address& a, int offset = 0 );
1577   inline void st(   Register d, const Address& a, int offset = 0 );
1578   inline void std(  Register d, const Address& a, int offset = 0 );
1579 
1580   inline void stb(  Register d, Register s1, RegisterOrConstant s2 );
1581   inline void sth(  Register d, Register s1, RegisterOrConstant s2 );
1582   inline void stw(  Register d, Register s1, RegisterOrConstant s2 );
1583   inline void stx(  Register d, Register s1, RegisterOrConstant s2 );
1584   inline void std(  Register d, Register s1, RegisterOrConstant s2 );
1585   inline void st(   Register d, Register s1, RegisterOrConstant s2 );
1586 
1587   // pp 177
1588 
1589   void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1590   void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1591   void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1592   void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1593   void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1594   void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1595   void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1596   void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1597   void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1598   void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1599 
1600   // pp 97 (v8)
1601 
1602   inline void stc(   int crd, Register s1, Register s2 );
1603   inline void stc(   int crd, Register s1, int simm13a);
1604   inline void stdc(  int crd, Register s1, Register s2 );
1605   inline void stdc(  int crd, Register s1, int simm13a);
1606   inline void stcsr( int crd, Register s1, Register s2 );
1607   inline void stcsr( int crd, Register s1, int simm13a);
1608   inline void stdcq( int crd, Register s1, Register s2 );
1609   inline void stdcq( int crd, Register s1, int simm13a);
1610 
1611   // pp 230
1612 
1613   void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
1614   void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1615   void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
1616   void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1617   void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
1618   void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1619   void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
1620   void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1621 
1622   // pp 231
1623 
1624   inline void swap( Register s1, Register s2, Register d );
1625   inline void swap( Register s1, int simm13a, Register d);
1626   inline void swap( Address& a,               Register d, int offset = 0 );
1627 
1628   // pp 232
1629 
1630   void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
1631   void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1632 
1633   // pp 234, note op in book is wrong, see pp 268
1634 
1635   void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
1636   void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1637   void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
1638   void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1639 
1640   // pp 235
1641 
1642   void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
1643   void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1644   void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
1645   void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
1646 
1647   // pp 237
1648 
1649   void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
1650   void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
1651   // simple uncond. trap
1652   void trap( int trapa ) { trap( always, icc, G0, trapa ); }
1653 
1654   // pp 239 omit write priv register for now
1655 
1656   inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
1657   inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
1658   inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
1659                                                                            rs1(s) |
1660                                                                            op3(wrreg_op3) |
1661                                                                            u_field(2, 29, 25) |
1662                                                                            u_field(1, 13, 13) |
1663                                                                            simm(simm13a, 13)); }
1664   inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
1665   inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
1666 
1667   // For a given register condition, return the appropriate condition code
1668   // Condition (the one you would use to get the same effect after "tst" on
1669   // the target register.)
1670   Assembler::Condition reg_cond_to_cc_cond(RCondition in);
1671 
1672 
1673   // Creation
1674   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
1675 #ifdef CHECK_DELAY
1676     delay_state = no_delay;
1677 #endif
1678   }
1679 
1680   // Testing
1681 #ifndef PRODUCT
1682   void test_v9();
1683   void test_v8_onlys();
1684 #endif
1685 };
1686 
1687 
1688 class RegistersForDebugging : public StackObj {
1689  public:
1690   intptr_t i[8], l[8], o[8], g[8];
1691   float    f[32];
1692   double   d[32];
1693 
1694   void print(outputStream* s);
1695 
1696   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
1697   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
1698   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
1699   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
1700   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
1701   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
1702 
1703   // gen asm code to save regs
1704   static void save_registers(MacroAssembler* a);
1705 
1706   // restore global registers in case C code disturbed them
1707   static void restore_registers(MacroAssembler* a, Register r);
1708 
1709 
1710 };
1711 
1712 
1713 // MacroAssembler extends Assembler by a few frequently used macros.
1714 //
1715 // Most of the standard SPARC synthetic ops are defined here.
1716 // Instructions for which a 'better' code sequence exists depending
1717 // on arguments should also go in here.
1718 
1719 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
1720 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
1721 #define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
1722 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
1723 
1724 
1725 class MacroAssembler: public Assembler {
1726  protected:
1727   // Support for VM calls
1728   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1729   // may customize this version by overriding it for its purposes (e.g., to save/restore
1730   // additional registers when doing a VM call).
1731 #ifdef CC_INTERP
1732   #define VIRTUAL
1733 #else
1734   #define VIRTUAL virtual
1735 #endif
1736 
1737   VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
1738 
1739   //
1740   // It is imperative that all calls into the VM are handled via the call_VM macros.
1741   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1742   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1743   //
1744   // This is the base routine called by the different versions of call_VM. The interpreter
1745   // may customize this version by overriding it for its purposes (e.g., to save/restore
1746   // additional registers when doing a VM call).
1747   //
1748   // A non-volatile java_thread_cache register should be specified so
1749   // that the G2_thread value can be preserved across the call.
1750   // (If java_thread_cache is noreg, then a slow get_thread call
1751   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
1752   // thread.
1753   //
1754   // If no last_java_sp is specified (noreg) than SP will be used instead.
1755 
1756   virtual void call_VM_base(
1757     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
1758     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
1759     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
1760     address         entry_point,            // the entry point
1761     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
1762     bool            check_exception=true    // flag which indicates if exception should be checked
1763   );
1764 
1765   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1766   // The implementation is only non-empty for the InterpreterMacroAssembler,
1767   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
1768   virtual void check_and_handle_popframe(Register scratch_reg);
1769   virtual void check_and_handle_earlyret(Register scratch_reg);
1770 
1771  public:
1772   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1773 
1774   // Support for NULL-checks
1775   //
1776   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1777   // If the accessed location is M[reg + offset] and the offset is known, provide the
1778   // offset.  No explicit code generation is needed if the offset is within a certain
1779   // range (0 <= offset <= page_size).
1780   //
1781   // %%%%%% Currently not done for SPARC
1782 
1783   void null_check(Register reg, int offset = -1);
1784   static bool needs_explicit_null_check(intptr_t offset);
1785 
1786   // support for delayed instructions
1787   MacroAssembler* delayed() { Assembler::delayed();  return this; }
1788 
1789   // branches that use right instruction for v8 vs. v9
1790   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1791   inline void br( Condition c, bool a, Predict p, Label& L );
1792   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1793   inline void fb( Condition c, bool a, Predict p, Label& L );
1794 
1795   // compares register with zero and branches (V9 and V8 instructions)
1796   void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
1797   // Compares a pointer register with zero and branches on (not)null.
1798   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
1799   void br_null   ( Register s1, bool a, Predict p, Label& L );
1800   void br_notnull( Register s1, bool a, Predict p, Label& L );
1801 
1802   // These versions will do the most efficient thing on v8 and v9.  Perhaps
1803   // this is what the routine above was meant to do, but it didn't (and
1804   // didn't cover both target address kinds.)
1805   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
1806   void br_on_reg_cond( RCondition c, bool a, Predict p, Register s1, Label& L);
1807 
1808   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1809   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
1810 
1811   // Branch that tests xcc in LP64 and icc in !LP64
1812   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1813   inline void brx( Condition c, bool a, Predict p, Label& L );
1814 
1815   // unconditional short branch
1816   inline void ba( bool a, Label& L );
1817 
1818   // Branch that tests fp condition codes
1819   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
1820   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
1821 
1822   // get PC the best way
1823   inline int get_pc( Register d );
1824 
1825   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
1826   inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
1827   inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
1828 
1829   inline void jmp( Register s1, Register s2 );
1830   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1831 
1832   inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
1833   inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
1834   inline void callr( Register s1, Register s2 );
1835   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
1836 
1837   // Emits nothing on V8
1838   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
1839   inline void iprefetch( Label& L);
1840 
1841   inline void tst( Register s ) { orcc( G0, s, G0 ); }
1842 
1843 #ifdef PRODUCT
1844   inline void ret(  bool trace = TraceJumps )   { if (trace) {
1845                                                     mov(I7, O7); // traceable register
1846                                                     JMP(O7, 2 * BytesPerInstWord);
1847                                                   } else {
1848                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
1849                                                   }
1850                                                 }
1851 
1852   inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
1853                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
1854 #else
1855   void ret(  bool trace = TraceJumps );
1856   void retl( bool trace = TraceJumps );
1857 #endif /* PRODUCT */
1858 
1859   // Required platform-specific helpers for Label::patch_instructions.
1860   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1861   void pd_patch_instruction(address branch, address target);
1862 #ifndef PRODUCT
1863   static void pd_print_patched_instruction(address branch);
1864 #endif
1865 
1866   // sethi Macro handles optimizations and relocations
1867 private:
1868   void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
1869 public:
1870   void sethi(const AddressLiteral& addrlit, Register d);
1871   void patchable_sethi(const AddressLiteral& addrlit, Register d);
1872 
1873   // compute the size of a sethi/set
1874   static int  size_of_sethi( address a, bool worst_case = false );
1875   static int  worst_case_size_of_set();
1876 
1877   // set may be either setsw or setuw (high 32 bits may be zero or sign)
1878 private:
1879   void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
1880 public:
1881   void set(const AddressLiteral& addrlit, Register d);
1882   void set(intptr_t value, Register d);
1883   void set(address addr, Register d, RelocationHolder const& rspec);
1884   void patchable_set(const AddressLiteral& addrlit, Register d);
1885   void patchable_set(intptr_t value, Register d);
1886   void set64(jlong value, Register d, Register tmp);
1887 
1888   // sign-extend 32 to 64
1889   inline void signx( Register s, Register d ) { sra( s, G0, d); }
1890   inline void signx( Register d )             { sra( d, G0, d); }
1891 
1892   inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
1893   inline void not1( Register d )             { xnor( d, G0, d ); }
1894 
1895   inline void neg( Register s, Register d ) { sub( G0, s, d ); }
1896   inline void neg( Register d )             { sub( G0, d, d ); }
1897 
1898   inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
1899   inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
1900   // Functions for isolating 64 bit atomic swaps for LP64
1901   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
1902   inline void cas_ptr(  Register s1, Register s2, Register d) {
1903 #ifdef _LP64
1904     casx( s1, s2, d );
1905 #else
1906     cas( s1, s2, d );
1907 #endif
1908   }
1909 
1910   // Functions for isolating 64 bit shifts for LP64
1911   inline void sll_ptr( Register s1, Register s2, Register d );
1912   inline void sll_ptr( Register s1, int imm6a,   Register d );
1913   inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
1914   inline void srl_ptr( Register s1, Register s2, Register d );
1915   inline void srl_ptr( Register s1, int imm6a,   Register d );
1916 
1917   // little-endian
1918   inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
1919   inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
1920 
1921   inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
1922   inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
1923 
1924   inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
1925   inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
1926 
1927   inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
1928   inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
1929 
1930   inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
1931   inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
1932 
1933   inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
1934   inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
1935 
1936   inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
1937   inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
1938 
1939   inline void clr( Register d ) { or3( G0, G0, d ); }
1940 
1941   inline void clrb( Register s1, Register s2);
1942   inline void clrh( Register s1, Register s2);
1943   inline void clr(  Register s1, Register s2);
1944   inline void clrx( Register s1, Register s2);
1945 
1946   inline void clrb( Register s1, int simm13a);
1947   inline void clrh( Register s1, int simm13a);
1948   inline void clr(  Register s1, int simm13a);
1949   inline void clrx( Register s1, int simm13a);
1950 
1951   // copy & clear upper word
1952   inline void clruw( Register s, Register d ) { srl( s, G0, d); }
1953   // clear upper word
1954   inline void clruwu( Register d ) { srl( d, G0, d); }
1955 
1956   // membar psuedo instruction.  takes into account target memory model.
1957   inline void membar( Assembler::Membar_mask_bits const7a );
1958 
1959   // returns if membar generates anything.
1960   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
1961 
1962   // mov pseudo instructions
1963   inline void mov( Register s,  Register d) {
1964     if ( s != d )    or3( G0, s, d);
1965     else             assert_not_delayed();  // Put something useful in the delay slot!
1966   }
1967 
1968   inline void mov_or_nop( Register s,  Register d) {
1969     if ( s != d )    or3( G0, s, d);
1970     else             nop();
1971   }
1972 
1973   inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
1974 
1975   // address pseudos: make these names unlike instruction names to avoid confusion
1976   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
1977   inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
1978   inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
1979   inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
1980   inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
1981   inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
1982   inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
1983   inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
1984 
1985   // ring buffer traceable jumps
1986 
1987   void jmp2( Register r1, Register r2, const char* file, int line );
1988   void jmp ( Register r1, int offset,  const char* file, int line );
1989 
1990   void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
1991   void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
1992 
1993 
1994   // argument pseudos:
1995 
1996   inline void load_argument( Argument& a, Register  d );
1997   inline void store_argument( Register s, Argument& a );
1998   inline void store_ptr_argument( Register s, Argument& a );
1999   inline void store_float_argument( FloatRegister s, Argument& a );
2000   inline void store_double_argument( FloatRegister s, Argument& a );
2001   inline void store_long_argument( Register s, Argument& a );
2002 
2003   // handy macros:
2004 
2005   inline void round_to( Register r, int modulus ) {
2006     assert_not_delayed();
2007     inc( r, modulus - 1 );
2008     and3( r, -modulus, r );
2009   }
2010 
2011   // --------------------------------------------------
2012 
2013   // Functions for isolating 64 bit loads for LP64
2014   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
2015   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
2016   inline void ld_ptr(Register s1, Register s2, Register d);
2017   inline void ld_ptr(Register s1, int simm13a, Register d);
2018   inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
2019   inline void ld_ptr(const Address& a, Register d, int offset = 0);
2020   inline void st_ptr(Register d, Register s1, Register s2);
2021   inline void st_ptr(Register d, Register s1, int simm13a);
2022   inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
2023   inline void st_ptr(Register d, const Address& a, int offset = 0);
2024 
2025 #ifdef ASSERT
2026   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
2027   inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
2028   inline void st_ptr(Register d, Register s1, ByteSize simm13a);
2029 #endif
2030 
2031   // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
2032   // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
2033   inline void ld_long(Register s1, Register s2, Register d);
2034   inline void ld_long(Register s1, int simm13a, Register d);
2035   inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
2036   inline void ld_long(const Address& a, Register d, int offset = 0);
2037   inline void st_long(Register d, Register s1, Register s2);
2038   inline void st_long(Register d, Register s1, int simm13a);
2039   inline void st_long(Register d, Register s1, RegisterOrConstant s2);
2040   inline void st_long(Register d, const Address& a, int offset = 0);
2041 
2042   // Helpers for address formation.
2043   // - They emit only a move if s2 is a constant zero.
2044   // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
2045   // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
2046   RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2047   RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2048   RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
2049 
2050   RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
2051     if (is_simm13(src.constant_or_zero()))
2052       return src;               // register or short constant
2053     guarantee(temp != noreg, "constant offset overflow");
2054     set(src.as_constant(), temp);
2055     return temp;
2056   }
2057 
2058   // --------------------------------------------------
2059 
2060  public:
2061   // traps as per trap.h (SPARC ABI?)
2062 
2063   void breakpoint_trap();
2064   void breakpoint_trap(Condition c, CC cc = icc);
2065   void flush_windows_trap();
2066   void clean_windows_trap();
2067   void get_psr_trap();
2068   void set_psr_trap();
2069 
2070   // V8/V9 flush_windows
2071   void flush_windows();
2072 
2073   // Support for serializing memory accesses between threads
2074   void serialize_memory(Register thread, Register tmp1, Register tmp2);
2075 
2076   // Stack frame creation/removal
2077   void enter();
2078   void leave();
2079 
2080   // V8/V9 integer multiply
2081   void mult(Register s1, Register s2, Register d);
2082   void mult(Register s1, int simm13a, Register d);
2083 
2084   // V8/V9 read and write of condition codes.
2085   void read_ccr(Register d);
2086   void write_ccr(Register s);
2087 
2088   // Manipulation of C++ bools
2089   // These are idioms to flag the need for care with accessing bools but on
2090   // this platform we assume byte size
2091 
2092   inline void stbool(Register d, const Address& a) { stb(d, a); }
2093   inline void ldbool(const Address& a, Register d) { ldsb(a, d); }
2094   inline void tstbool( Register s ) { tst(s); }
2095   inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
2096 
2097   // klass oop manipulations if compressed
2098   void load_klass(Register src_oop, Register klass);
2099   void store_klass(Register klass, Register dst_oop);
2100   void store_klass_gap(Register s, Register dst_oop);
2101 
2102    // oop manipulations
2103   void load_heap_oop(const Address& s, Register d);
2104   void load_heap_oop(Register s1, Register s2, Register d);
2105   void load_heap_oop(Register s1, int simm13a, Register d);
2106   void store_heap_oop(Register d, Register s1, Register s2);
2107   void store_heap_oop(Register d, Register s1, int simm13a);
2108   void store_heap_oop(Register d, const Address& a, int offset = 0);
2109 
2110   void encode_heap_oop(Register src, Register dst);
2111   void encode_heap_oop(Register r) {
2112     encode_heap_oop(r, r);
2113   }
2114   void decode_heap_oop(Register src, Register dst);
2115   void decode_heap_oop(Register r) {
2116     decode_heap_oop(r, r);
2117   }
2118   void encode_heap_oop_not_null(Register r);
2119   void decode_heap_oop_not_null(Register r);
2120   void encode_heap_oop_not_null(Register src, Register dst);
2121   void decode_heap_oop_not_null(Register src, Register dst);
2122 
2123   // Support for managing the JavaThread pointer (i.e.; the reference to
2124   // thread-local information).
2125   void get_thread();                                // load G2_thread
2126   void verify_thread();                             // verify G2_thread contents
2127   void save_thread   (const Register threache); // save to cache
2128   void restore_thread(const Register thread_cache); // restore from cache
2129 
2130   // Support for last Java frame (but use call_VM instead where possible)
2131   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
2132   void reset_last_Java_frame(void);
2133 
2134   // Call into the VM.
2135   // Passes the thread pointer (in O0) as a prepended argument.
2136   // Makes sure oop return values are visible to the GC.
2137   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2138   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
2139   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2140   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2141 
2142   // these overloadings are not presently used on SPARC:
2143   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
2144   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
2145   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
2146   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
2147 
2148   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
2149   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
2150   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
2151   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
2152 
2153   void get_vm_result  (Register oop_result);
2154   void get_vm_result_2(Register oop_result);
2155 
2156   // vm result is currently getting hijacked to for oop preservation
2157   void set_vm_result(Register oop_result);
2158 
2159   // if call_VM_base was called with check_exceptions=false, then call
2160   // check_and_forward_exception to handle exceptions when it is safe
2161   void check_and_forward_exception(Register scratch_reg);
2162 
2163  private:
2164   // For V8
2165   void read_ccr_trap(Register ccr_save);
2166   void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
2167 
2168 #ifdef ASSERT
2169   // For V8 debugging.  Uses V8 instruction sequence and checks
2170   // result with V9 insturctions rdccr and wrccr.
2171   // Uses Gscatch and Gscatch2
2172   void read_ccr_v8_assert(Register ccr_save);
2173   void write_ccr_v8_assert(Register ccr_save);
2174 #endif // ASSERT
2175 
2176  public:
2177 
2178   // Write to card table for - register is destroyed afterwards.
2179   void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
2180 
2181   void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2182 
2183 #ifndef SERIALGC
2184   // Array store and offset
2185   void g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs);
2186 
2187   void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
2188 
2189   // May do filtering, depending on the boolean arguments.
2190   void g1_card_table_write(jbyte* byte_map_base,
2191                            Register tmp, Register obj, Register new_val,
2192                            bool region_filter, bool null_filter);
2193 #endif // SERIALGC
2194 
2195   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
2196   void push_fTOS();
2197 
2198   // pops double TOS element from CPU stack and pushes on FPU stack
2199   void pop_fTOS();
2200 
2201   void empty_FPU_stack();
2202 
2203   void push_IU_state();
2204   void pop_IU_state();
2205 
2206   void push_FPU_state();
2207   void pop_FPU_state();
2208 
2209   void push_CPU_state();
2210   void pop_CPU_state();
2211 
2212   // if heap base register is used - reinit it with the correct value
2213   void reinit_heapbase();
2214 
2215   // Debugging
2216   void _verify_oop(Register reg, const char * msg, const char * file, int line);
2217   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
2218 
2219 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
2220 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
2221 
2222         // only if +VerifyOops
2223   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
2224         // only if +VerifyFPU
2225   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
2226   void warn(const char* msg);                          // prints msg, but don't stop
2227   void untested(const char* what = "");
2228   void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
2229   void should_not_reach_here()                   { stop("should not reach here"); }
2230   void print_CPU_state();
2231 
2232   // oops in code
2233   AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
2234   AddressLiteral constant_oop_address(jobject obj);                          // find_index
2235   inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
2236   inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
2237   inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
2238 
2239   void set_narrow_oop( jobject obj, Register d );
2240 
2241   // nop padding
2242   void align(int modulus);
2243 
2244   // declare a safepoint
2245   void safepoint();
2246 
2247   // factor out part of stop into subroutine to save space
2248   void stop_subroutine();
2249   // factor out part of verify_oop into subroutine to save space
2250   void verify_oop_subroutine();
2251 
2252   // side-door communication with signalHandler in os_solaris.cpp
2253   static address _verify_oop_implicit_branch[3];
2254 
2255 #ifndef PRODUCT
2256   static void test();
2257 #endif
2258 
2259   // convert an incoming arglist to varargs format; put the pointer in d
2260   void set_varargs( Argument a, Register d );
2261 
2262   int total_frame_size_in_bytes(int extraWords);
2263 
2264   // used when extraWords known statically
2265   void save_frame(int extraWords);
2266   void save_frame_c1(int size_in_bytes);
2267   // make a frame, and simultaneously pass up one or two register value
2268   // into the new register window
2269   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
2270 
2271   // give no. (outgoing) params, calc # of words will need on frame
2272   void calc_mem_param_words(Register Rparam_words, Register Rresult);
2273 
2274   // used to calculate frame size dynamically
2275   // result is in bytes and must be negated for save inst
2276   void calc_frame_size(Register extraWords, Register resultReg);
2277 
2278   // calc and also save
2279   void calc_frame_size_and_save(Register extraWords, Register resultReg);
2280 
2281   static void debug(char* msg, RegistersForDebugging* outWindow);
2282 
2283   // implementations of bytecodes used by both interpreter and compiler
2284 
2285   void lcmp( Register Ra_hi, Register Ra_low,
2286              Register Rb_hi, Register Rb_low,
2287              Register Rresult);
2288 
2289   void lneg( Register Rhi, Register Rlow );
2290 
2291   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
2292               Register Rout_high, Register Rout_low, Register Rtemp );
2293 
2294   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
2295               Register Rout_high, Register Rout_low, Register Rtemp );
2296 
2297   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
2298               Register Rout_high, Register Rout_low, Register Rtemp );
2299 
2300 #ifdef _LP64
2301   void lcmp( Register Ra, Register Rb, Register Rresult);
2302 #endif
2303 
2304   // Loading values by size and signed-ness
2305   void load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed);
2306 
2307   void float_cmp( bool is_float, int unordered_result,
2308                   FloatRegister Fa, FloatRegister Fb,
2309                   Register Rresult);
2310 
2311   void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2312   void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
2313   void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2314   void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
2315 
2316   void save_all_globals_into_locals();
2317   void restore_globals_from_locals();
2318 
2319   void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2320     address lock_addr=0, bool use_call_vm=false);
2321   void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
2322     address lock_addr=0, bool use_call_vm=false);
2323   void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
2324 
2325   // These set the icc condition code to equal if the lock succeeded
2326   // and notEqual if it failed and requires a slow case
2327   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
2328                             Register Rscratch,
2329                             BiasedLockingCounters* counters = NULL,
2330                             bool try_bias = UseBiasedLocking);
2331   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
2332                               Register Rscratch,
2333                               bool try_bias = UseBiasedLocking);
2334 
2335   // Biased locking support
2336   // Upon entry, lock_reg must point to the lock record on the stack,
2337   // obj_reg must contain the target object, and mark_reg must contain
2338   // the target object's header.
2339   // Destroys mark_reg if an attempt is made to bias an anonymously
2340   // biased lock. In this case a failure will go either to the slow
2341   // case or fall through with the notEqual condition code set with
2342   // the expectation that the slow case in the runtime will be called.
2343   // In the fall-through case where the CAS-based lock is done,
2344   // mark_reg is not destroyed.
2345   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
2346                             Label& done, Label* slow_case = NULL,
2347                             BiasedLockingCounters* counters = NULL);
2348   // Upon entry, the base register of mark_addr must contain the oop.
2349   // Destroys temp_reg.
2350 
2351   // If allow_delay_slot_filling is set to true, the next instruction
2352   // emitted after this one will go in an annulled delay slot if the
2353   // biased locking exit case failed.
2354   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
2355 
2356   // allocation
2357   void eden_allocate(
2358     Register obj,                      // result: pointer to object after successful allocation
2359     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2360     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2361     Register t1,                       // temp register
2362     Register t2,                       // temp register
2363     Label&   slow_case                 // continuation point if fast allocation fails
2364   );
2365   void tlab_allocate(
2366     Register obj,                      // result: pointer to object after successful allocation
2367     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
2368     int      con_size_in_bytes,        // object size in bytes if   known at compile time
2369     Register t1,                       // temp register
2370     Label&   slow_case                 // continuation point if fast allocation fails
2371   );
2372   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
2373 
2374   // interface method calling
2375   void lookup_interface_method(Register recv_klass,
2376                                Register intf_klass,
2377                                RegisterOrConstant itable_index,
2378                                Register method_result,
2379                                Register temp_reg, Register temp2_reg,
2380                                Label& no_such_interface);
2381 
2382   // Test sub_klass against super_klass, with fast and slow paths.
2383 
2384   // The fast path produces a tri-state answer: yes / no / maybe-slow.
2385   // One of the three labels can be NULL, meaning take the fall-through.
2386   // If super_check_offset is -1, the value is loaded up from super_klass.
2387   // No registers are killed, except temp_reg and temp2_reg.
2388   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
2389   void check_klass_subtype_fast_path(Register sub_klass,
2390                                      Register super_klass,
2391                                      Register temp_reg,
2392                                      Register temp2_reg,
2393                                      Label* L_success,
2394                                      Label* L_failure,
2395                                      Label* L_slow_path,
2396                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1),
2397                 Register instanceof_hack = noreg);
2398 
2399   // The rest of the type check; must be wired to a corresponding fast path.
2400   // It does not repeat the fast path logic, so don't use it standalone.
2401   // The temp_reg can be noreg, if no temps are available.
2402   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
2403   // Updates the sub's secondary super cache as necessary.
2404   void check_klass_subtype_slow_path(Register sub_klass,
2405                                      Register super_klass,
2406                                      Register temp_reg,
2407                                      Register temp2_reg,
2408                                      Register temp3_reg,
2409                                      Register temp4_reg,
2410                                      Label* L_success,
2411                                      Label* L_failure);
2412 
2413   // Simplified, combined version, good for typical uses.
2414   // Falls through on failure.
2415   void check_klass_subtype(Register sub_klass,
2416                            Register super_klass,
2417                            Register temp_reg,
2418                            Register temp2_reg,
2419                            Label& L_success);
2420 
2421   // method handles (JSR 292)
2422   void check_method_handle_type(Register mtype_reg, Register mh_reg,
2423                                 Register temp_reg,
2424                                 Label& wrong_method_type);
2425   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
2426                                   Register temp_reg);
2427   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
2428   // offset relative to Gargs of argument at tos[arg_slot].
2429   // (arg_slot == 0 means the last argument, not the first).
2430   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
2431                                      int extra_slot_offset = 0);
2432   // Address of Gargs and argument_offset.
2433   Address            argument_address(RegisterOrConstant arg_slot,
2434                                       int extra_slot_offset = 0);
2435 
2436   // Stack overflow checking
2437 
2438   // Note: this clobbers G3_scratch
2439   void bang_stack_with_offset(int offset) {
2440     // stack grows down, caller passes positive offset
2441     assert(offset > 0, "must bang with negative offset");
2442     set((-offset)+STACK_BIAS, G3_scratch);
2443     st(G0, SP, G3_scratch);
2444   }
2445 
2446   // Writes to stack successive pages until offset reached to check for
2447   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
2448   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
2449 
2450   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
2451 
2452   void verify_tlab();
2453 
2454   Condition negate_condition(Condition cond);
2455 
2456   // Helper functions for statistics gathering.
2457   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
2458   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
2459   // Unconditional increment.
2460   void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
2461   void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
2462 
2463   // Compare char[] arrays aligned to 4 bytes.
2464   void char_arrays_equals(Register ary1, Register ary2,
2465                           Register limit, Register result,
2466                           Register chr1, Register chr2, Label& Ldone);
2467 
2468 #undef VIRTUAL
2469 
2470 };
2471 
2472 /**
2473  * class SkipIfEqual:
2474  *
2475  * Instantiating this class will result in assembly code being output that will
2476  * jump around any code emitted between the creation of the instance and it's
2477  * automatic destruction at the end of a scope block, depending on the value of
2478  * the flag passed to the constructor, which will be checked at run-time.
2479  */
2480 class SkipIfEqual : public StackObj {
2481  private:
2482   MacroAssembler* _masm;
2483   Label _label;
2484 
2485  public:
2486    // 'temp' is a temp register that this object can use (and trash)
2487    SkipIfEqual(MacroAssembler*, Register temp,
2488                const bool* flag_addr, Assembler::Condition condition);
2489    ~SkipIfEqual();
2490 };
2491 
2492 #ifdef ASSERT
2493 // On RISC, there's no benefit to verifying instruction boundaries.
2494 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
2495 #endif