1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 inline void MacroAssembler::pd_patch_instruction(address branch, address target) {
  26   jint& stub_inst = *(jint*) branch;
  27   stub_inst = patched_branch(target - branch, stub_inst, 0);
  28 }
  29 
  30 #ifndef PRODUCT
  31 inline void MacroAssembler::pd_print_patched_instruction(address branch) {
  32   jint stub_inst = *(jint*) branch;
  33   print_instruction(stub_inst);
  34   ::tty->print("%s", " (unresolved)");
  35 }
  36 #endif // PRODUCT
  37 
  38 inline bool Address::is_simm13(int offset) { return Assembler::is_simm13(disp() + offset); }
  39 
  40 
  41 inline int AddressLiteral::low10() const {
  42   return Assembler::low10(value());
  43 }
  44 
  45 
  46 // inlines for SPARC assembler -- dmu 5/97
  47 
  48 inline void Assembler::check_delay() {
  49 # ifdef CHECK_DELAY
  50   guarantee( delay_state != at_delay_slot, "must say delayed() when filling delay slot");
  51   delay_state = no_delay;
  52 # endif
  53 }
  54 
  55 inline void Assembler::emit_long(int x) {
  56   check_delay();
  57   AbstractAssembler::emit_long(x);
  58 }
  59 
  60 inline void Assembler::emit_data(int x, relocInfo::relocType rtype) {
  61   relocate(rtype);
  62   emit_long(x);
  63 }
  64 
  65 inline void Assembler::emit_data(int x, RelocationHolder const& rspec) {
  66   relocate(rspec);
  67   emit_long(x);
  68 }
  69 
  70 
  71 inline void Assembler::add(Register s1, Register s2, Register d )                             { emit_long( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | rs2(s2) ); }
  72 inline void Assembler::add(Register s1, int simm13a, Register d, relocInfo::relocType rtype ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rtype ); }
  73 inline void Assembler::add(Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(add_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec ); }
  74 
  75 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bpr_op2) | wdisp16(intptr_t(d), intptr_t(pc())) | predict(p) | rs1(s1), rt);  has_delay_slot(); }
  76 inline void Assembler::bpr( RCondition c, bool a, Predict p, Register s1, Label& L) { bpr( c, a, p, s1, target(L)); }
  77 
  78 inline void Assembler::fb( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  79 inline void Assembler::fb( Condition c, bool a, Label& L ) { fb(c, a, target(L)); }
  80 
  81 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(fbp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  82 inline void Assembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) { fbp(c, a, cc, p, target(L)); }
  83 
  84 inline void Assembler::cb( Condition c, bool a, address d, relocInfo::relocType rt ) { v8_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(cb_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  85 inline void Assembler::cb( Condition c, bool a, Label& L ) { cb(c, a, target(L)); }
  86 
  87 inline void Assembler::br( Condition c, bool a, address d, relocInfo::relocType rt ) { v9_dep();   emit_data( op(branch_op) | annul(a) | cond(c) | op2(br_op2) | wdisp(intptr_t(d), intptr_t(pc()), 22), rt);  has_delay_slot(); }
  88 inline void Assembler::br( Condition c, bool a, Label& L ) { br(c, a, target(L)); }
  89 
  90 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) { v9_only();  emit_data( op(branch_op) | annul(a) | cond(c) | op2(bp_op2) | branchcc(cc) | predict(p) | wdisp(intptr_t(d), intptr_t(pc()), 19), rt);  has_delay_slot(); }
  91 inline void Assembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) { bp(c, a, cc, p, target(L)); }
  92 
  93 inline void Assembler::call( address d,  relocInfo::relocType rt ) { emit_data( op(call_op) | wdisp(intptr_t(d), intptr_t(pc()), 30), rt);  has_delay_slot(); assert(rt != relocInfo::virtual_call_type, "must use virtual_call_Relocation::spec"); }
  94 inline void Assembler::call( Label& L,   relocInfo::relocType rt ) { call( target(L), rt); }
  95 
  96 inline void Assembler::flush( Register s1, Register s2) { emit_long( op(arith_op) | op3(flush_op3) | rs1(s1) | rs2(s2)); }
  97 inline void Assembler::flush( Register s1, int simm13a) { emit_data( op(arith_op) | op3(flush_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
  98 
  99 inline void Assembler::jmpl( Register s1, Register s2, Register d                          ) { emit_long( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 100 inline void Assembler::jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec ) { emit_data( op(arith_op) | rd(d) | op3(jmpl_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec);  has_delay_slot(); }
 101 
 102 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d) {
 103   if (s2.is_register()) ldf(w, s1, s2.as_register(), d);
 104   else                  ldf(w, s1, s2.as_constant(), d);
 105 }
 106 
 107 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | rs2(s2) ); }
 108 inline void Assembler::ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13), rspec); }
 109 
 110 inline void Assembler::ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset) { relocate(a.rspec(offset)); ldf( w, a.base(), a.disp() + offset, d); }
 111 
 112 inline void Assembler::ldfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 113 inline void Assembler::ldfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 114 inline void Assembler::ldxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | rs2(s2) ); }
 115 inline void Assembler::ldxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(ldfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 116 
 117 inline void Assembler::ldc(   Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | rs2(s2) ); }
 118 inline void Assembler::ldc(   Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 119 inline void Assembler::lddc(  Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | rs2(s2) ); }
 120 inline void Assembler::lddc(  Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(lddc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 121 inline void Assembler::ldcsr( Register s1, Register s2, int crd) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | rs2(s2) ); }
 122 inline void Assembler::ldcsr( Register s1, int simm13a, int crd) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(ldcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 123 
 124 inline void Assembler::ldsb(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | rs2(s2) ); }
 125 inline void Assembler::ldsb(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 126 
 127 inline void Assembler::ldsh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | rs2(s2) ); }
 128 inline void Assembler::ldsh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 129 inline void Assembler::ldsw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | rs2(s2) ); }
 130 inline void Assembler::ldsw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldsw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 131 inline void Assembler::ldub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | rs2(s2) ); }
 132 inline void Assembler::ldub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 133 inline void Assembler::lduh(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | rs2(s2) ); }
 134 inline void Assembler::lduh(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduh_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 135 inline void Assembler::lduw(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | rs2(s2) ); }
 136 inline void Assembler::lduw(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(lduw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 137 
 138 inline void Assembler::ldx(   Register s1, Register s2, Register d) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | rs2(s2) ); }
 139 inline void Assembler::ldx(   Register s1, int simm13a, Register d) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(ldx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 140 inline void Assembler::ldd(   Register s1, Register s2, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | rs2(s2) ); }
 141 inline void Assembler::ldd(   Register s1, int simm13a, Register d) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(ldd_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 142 
 143 #ifdef _LP64
 144 // Make all 32 bit loads signed so 64 bit registers maintain proper sign
 145 inline void Assembler::ld(  Register s1, Register s2, Register d)      { ldsw( s1, s2, d); }
 146 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { ldsw( s1, simm13a, d); }
 147 #else
 148 inline void Assembler::ld(  Register s1, Register s2, Register d)      { lduw( s1, s2, d); }
 149 inline void Assembler::ld(  Register s1, int simm13a, Register d)      { lduw( s1, simm13a, d); }
 150 #endif
 151 
 152 #ifdef ASSERT
 153   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 154 # ifdef _LP64
 155 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { ldsw( s1, in_bytes(simm13a), d); }
 156 # else
 157 inline void Assembler::ld(  Register s1, ByteSize simm13a, Register d) { lduw( s1, in_bytes(simm13a), d); }
 158 # endif
 159 #endif
 160 
 161 inline void Assembler::ld(  const Address& a, Register d, int offset) {
 162   if (a.has_index()) { assert(offset == 0, ""); ld(  a.base(), a.index(),         d); }
 163   else               {                          ld(  a.base(), a.disp() + offset, d); }
 164 }
 165 inline void Assembler::ldsb(const Address& a, Register d, int offset) {
 166   if (a.has_index()) { assert(offset == 0, ""); ldsb(a.base(), a.index(),         d); }
 167   else               {                          ldsb(a.base(), a.disp() + offset, d); }
 168 }
 169 inline void Assembler::ldsh(const Address& a, Register d, int offset) {
 170   if (a.has_index()) { assert(offset == 0, ""); ldsh(a.base(), a.index(),         d); }
 171   else               {                          ldsh(a.base(), a.disp() + offset, d); }
 172 }
 173 inline void Assembler::ldsw(const Address& a, Register d, int offset) {
 174   if (a.has_index()) { assert(offset == 0, ""); ldsw(a.base(), a.index(),         d); }
 175   else               {                          ldsw(a.base(), a.disp() + offset, d); }
 176 }
 177 inline void Assembler::ldub(const Address& a, Register d, int offset) {
 178   if (a.has_index()) { assert(offset == 0, ""); ldub(a.base(), a.index(),         d); }
 179   else               {                          ldub(a.base(), a.disp() + offset, d); }
 180 }
 181 inline void Assembler::lduh(const Address& a, Register d, int offset) {
 182   if (a.has_index()) { assert(offset == 0, ""); lduh(a.base(), a.index(),         d); }
 183   else               {                          lduh(a.base(), a.disp() + offset, d); }
 184 }
 185 inline void Assembler::lduw(const Address& a, Register d, int offset) {
 186   if (a.has_index()) { assert(offset == 0, ""); lduw(a.base(), a.index(),         d); }
 187   else               {                          lduw(a.base(), a.disp() + offset, d); }
 188 }
 189 inline void Assembler::ldd( const Address& a, Register d, int offset) {
 190   if (a.has_index()) { assert(offset == 0, ""); ldd( a.base(), a.index(),         d); }
 191   else               {                          ldd( a.base(), a.disp() + offset, d); }
 192 }
 193 inline void Assembler::ldx( const Address& a, Register d, int offset) {
 194   if (a.has_index()) { assert(offset == 0, ""); ldx( a.base(), a.index(),         d); }
 195   else               {                          ldx( a.base(), a.disp() + offset, d); }
 196 }
 197 
 198 inline void Assembler::ldub(Register s1, RegisterOrConstant s2, Register d) { ldub(Address(s1, s2), d); }
 199 inline void Assembler::ldsb(Register s1, RegisterOrConstant s2, Register d) { ldsb(Address(s1, s2), d); }
 200 inline void Assembler::lduh(Register s1, RegisterOrConstant s2, Register d) { lduh(Address(s1, s2), d); }
 201 inline void Assembler::ldsh(Register s1, RegisterOrConstant s2, Register d) { ldsh(Address(s1, s2), d); }
 202 inline void Assembler::lduw(Register s1, RegisterOrConstant s2, Register d) { lduw(Address(s1, s2), d); }
 203 inline void Assembler::ldsw(Register s1, RegisterOrConstant s2, Register d) { ldsw(Address(s1, s2), d); }
 204 inline void Assembler::ldx( Register s1, RegisterOrConstant s2, Register d) { ldx( Address(s1, s2), d); }
 205 inline void Assembler::ld(  Register s1, RegisterOrConstant s2, Register d) { ld(  Address(s1, s2), d); }
 206 inline void Assembler::ldd( Register s1, RegisterOrConstant s2, Register d) { ldd( Address(s1, s2), d); }
 207 
 208 // form effective addresses this way:
 209 inline void Assembler::add(Register s1, RegisterOrConstant s2, Register d, int offset) {
 210   if (s2.is_register())  add(s1, s2.as_register(),          d);
 211   else                 { add(s1, s2.as_constant() + offset, d); offset = 0; }
 212   if (offset != 0)       add(d,  offset,                    d);
 213 }
 214 
 215 inline void Assembler::andn(Register s1, RegisterOrConstant s2, Register d) {
 216   if (s2.is_register())  andn(s1, s2.as_register(), d);
 217   else                   andn(s1, s2.as_constant(), d);
 218 }
 219 
 220 inline void Assembler::ldstub(  Register s1, Register s2, Register d) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | rs2(s2) ); }
 221 inline void Assembler::ldstub(  Register s1, int simm13a, Register d) { emit_data( op(ldst_op) | rd(d) | op3(ldstub_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 222 
 223 
 224 inline void Assembler::prefetch(Register s1, Register s2, PrefetchFcn f) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
 225 inline void Assembler::prefetch(Register s1, int simm13a, PrefetchFcn f) { v9_only();  emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 226 
 227 inline void Assembler::prefetch(const Address& a, PrefetchFcn f, int offset) { v9_only(); relocate(a.rspec(offset)); prefetch(a.base(), a.disp() + offset, f); }
 228 
 229 
 230 inline void Assembler::rett( Register s1, Register s2                         ) { emit_long( op(arith_op) | op3(rett_op3) | rs1(s1) | rs2(s2));  has_delay_slot(); }
 231 inline void Assembler::rett( Register s1, int simm13a, relocInfo::relocType rt) { emit_data( op(arith_op) | op3(rett_op3) | rs1(s1) | immed(true) | simm(simm13a, 13), rt);  has_delay_slot(); }
 232 
 233 inline void Assembler::sethi( int imm22a, Register d, RelocationHolder const& rspec ) { emit_data( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(imm22a), rspec); }
 234 
 235   // pp 222
 236 
 237 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2) {
 238   if (s2.is_register()) stf(w, d, s1, s2.as_register());
 239   else                  stf(w, d, s1, s2.as_constant());
 240 }
 241 
 242 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2) { emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | rs2(s2) ); }
 243 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a) { emit_data( op(ldst_op) | fd(d, w) | alt_op3(stf_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 244 
 245 inline void Assembler::stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset) { relocate(a.rspec(offset)); stf(w, d, a.base(), a.disp() + offset); }
 246 
 247 inline void Assembler::stfsr(  Register s1, Register s2) { v9_dep();   emit_long( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 248 inline void Assembler::stfsr(  Register s1, int simm13a) { v9_dep();   emit_data( op(ldst_op) |             op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 249 inline void Assembler::stxfsr( Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | rs2(s2) ); }
 250 inline void Assembler::stxfsr( Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(G1)    | op3(stfsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 251 
 252   // p 226
 253 
 254 inline void Assembler::stb(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | rs2(s2) ); }
 255 inline void Assembler::stb(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stb_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 256 inline void Assembler::sth(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | rs2(s2) ); }
 257 inline void Assembler::sth(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(sth_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 258 inline void Assembler::stw(  Register d, Register s1, Register s2) { emit_long( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | rs2(s2) ); }
 259 inline void Assembler::stw(  Register d, Register s1, int simm13a) { emit_data( op(ldst_op) | rd(d) | op3(stw_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 260 
 261 
 262 inline void Assembler::stx(  Register d, Register s1, Register s2) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | rs2(s2) ); }
 263 inline void Assembler::stx(  Register d, Register s1, int simm13a) { v9_only();  emit_data( op(ldst_op) | rd(d) | op3(stx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 264 inline void Assembler::std(  Register d, Register s1, Register s2) { v9_dep(); assert(d->is_even(), "not even"); emit_long( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | rs2(s2) ); }
 265 inline void Assembler::std(  Register d, Register s1, int simm13a) { v9_dep(); assert(d->is_even(), "not even"); emit_data( op(ldst_op) | rd(d) | op3(std_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 266 
 267 inline void Assembler::st( Register d, Register s1, Register s2)      { stw(d, s1, s2); }
 268 inline void Assembler::st( Register d, Register s1, int simm13a)      { stw(d, s1, simm13a); }
 269 
 270 #ifdef ASSERT
 271 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 272 inline void Assembler::st( Register d, Register s1, ByteSize simm13a) { stw(d, s1, in_bytes(simm13a)); }
 273 #endif
 274 
 275 inline void Assembler::stb(Register d, const Address& a, int offset) {
 276   if (a.has_index()) { assert(offset == 0, ""); stb(d, a.base(), a.index()        ); }
 277   else               {                          stb(d, a.base(), a.disp() + offset); }
 278 }
 279 inline void Assembler::sth(Register d, const Address& a, int offset) {
 280   if (a.has_index()) { assert(offset == 0, ""); sth(d, a.base(), a.index()        ); }
 281   else               {                          sth(d, a.base(), a.disp() + offset); }
 282 }
 283 inline void Assembler::stw(Register d, const Address& a, int offset) {
 284   if (a.has_index()) { assert(offset == 0, ""); stw(d, a.base(), a.index()        ); }
 285   else               {                          stw(d, a.base(), a.disp() + offset); }
 286 }
 287 inline void Assembler::st( Register d, const Address& a, int offset) {
 288   if (a.has_index()) { assert(offset == 0, ""); st( d, a.base(), a.index()        ); }
 289   else               {                          st( d, a.base(), a.disp() + offset); }
 290 }
 291 inline void Assembler::std(Register d, const Address& a, int offset) {
 292   if (a.has_index()) { assert(offset == 0, ""); std(d, a.base(), a.index()        ); }
 293   else               {                          std(d, a.base(), a.disp() + offset); }
 294 }
 295 inline void Assembler::stx(Register d, const Address& a, int offset) {
 296   if (a.has_index()) { assert(offset == 0, ""); stx(d, a.base(), a.index()        ); }
 297   else               {                          stx(d, a.base(), a.disp() + offset); }
 298 }
 299 
 300 inline void Assembler::stb(Register d, Register s1, RegisterOrConstant s2) { stb(d, Address(s1, s2)); }
 301 inline void Assembler::sth(Register d, Register s1, RegisterOrConstant s2) { sth(d, Address(s1, s2)); }
 302 inline void Assembler::stw(Register d, Register s1, RegisterOrConstant s2) { stw(d, Address(s1, s2)); }
 303 inline void Assembler::stx(Register d, Register s1, RegisterOrConstant s2) { stx(d, Address(s1, s2)); }
 304 inline void Assembler::std(Register d, Register s1, RegisterOrConstant s2) { std(d, Address(s1, s2)); }
 305 inline void Assembler::st( Register d, Register s1, RegisterOrConstant s2) { st( d, Address(s1, s2)); }
 306 
 307 // v8 p 99
 308 
 309 inline void Assembler::stc(    int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | rs2(s2) ); }
 310 inline void Assembler::stc(    int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 311 inline void Assembler::stdc(   int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | rs2(s2) ); }
 312 inline void Assembler::stdc(   int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 313 inline void Assembler::stcsr(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | rs2(s2) ); }
 314 inline void Assembler::stcsr(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stcsr_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 315 inline void Assembler::stdcq(  int crd, Register s1, Register s2) { v8_only();  emit_long( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | rs2(s2) ); }
 316 inline void Assembler::stdcq(  int crd, Register s1, int simm13a) { v8_only();  emit_data( op(ldst_op) | fcn(crd) | op3(stdcq_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 317 
 318 
 319 // pp 231
 320 
 321 inline void Assembler::swap(    Register s1, Register s2, Register d) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | rs2(s2) ); }
 322 inline void Assembler::swap(    Register s1, int simm13a, Register d) { v9_dep();  emit_data( op(ldst_op) | rd(d) | op3(swap_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
 323 
 324 inline void Assembler::swap(    Address& a, Register d, int offset ) { relocate(a.rspec(offset)); swap(  a.base(), a.disp() + offset, d ); }
 325 
 326 
 327 // Use the right loads/stores for the platform
 328 inline void MacroAssembler::ld_ptr( Register s1, Register s2, Register d ) {
 329 #ifdef _LP64
 330   Assembler::ldx(s1, s2, d);
 331 #else
 332   Assembler::ld( s1, s2, d);
 333 #endif
 334 }
 335 
 336 inline void MacroAssembler::ld_ptr( Register s1, int simm13a, Register d ) {
 337 #ifdef _LP64
 338   Assembler::ldx(s1, simm13a, d);
 339 #else
 340   Assembler::ld( s1, simm13a, d);
 341 #endif
 342 }
 343 
 344 #ifdef ASSERT
 345 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 346 inline void MacroAssembler::ld_ptr( Register s1, ByteSize simm13a, Register d ) {
 347   ld_ptr(s1, in_bytes(simm13a), d);
 348 }
 349 #endif
 350 
 351 inline void MacroAssembler::ld_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 352 #ifdef _LP64
 353   Assembler::ldx(s1, s2, d);
 354 #else
 355   Assembler::ld( s1, s2, d);
 356 #endif
 357 }
 358 
 359 inline void MacroAssembler::ld_ptr(const Address& a, Register d, int offset) {
 360 #ifdef _LP64
 361   Assembler::ldx(a, d, offset);
 362 #else
 363   Assembler::ld( a, d, offset);
 364 #endif
 365 }
 366 
 367 inline void MacroAssembler::st_ptr( Register d, Register s1, Register s2 ) {
 368 #ifdef _LP64
 369   Assembler::stx(d, s1, s2);
 370 #else
 371   Assembler::st( d, s1, s2);
 372 #endif
 373 }
 374 
 375 inline void MacroAssembler::st_ptr( Register d, Register s1, int simm13a ) {
 376 #ifdef _LP64
 377   Assembler::stx(d, s1, simm13a);
 378 #else
 379   Assembler::st( d, s1, simm13a);
 380 #endif
 381 }
 382 
 383 #ifdef ASSERT
 384 // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
 385 inline void MacroAssembler::st_ptr( Register d, Register s1, ByteSize simm13a ) {
 386   st_ptr(d, s1, in_bytes(simm13a));
 387 }
 388 #endif
 389 
 390 inline void MacroAssembler::st_ptr( Register d, Register s1, RegisterOrConstant s2 ) {
 391 #ifdef _LP64
 392   Assembler::stx(d, s1, s2);
 393 #else
 394   Assembler::st( d, s1, s2);
 395 #endif
 396 }
 397 
 398 inline void MacroAssembler::st_ptr(Register d, const Address& a, int offset) {
 399 #ifdef _LP64
 400   Assembler::stx(d, a, offset);
 401 #else
 402   Assembler::st( d, a, offset);
 403 #endif
 404 }
 405 
 406 // Use the right loads/stores for the platform
 407 inline void MacroAssembler::ld_long( Register s1, Register s2, Register d ) {
 408 #ifdef _LP64
 409   Assembler::ldx(s1, s2, d);
 410 #else
 411   Assembler::ldd(s1, s2, d);
 412 #endif
 413 }
 414 
 415 inline void MacroAssembler::ld_long( Register s1, int simm13a, Register d ) {
 416 #ifdef _LP64
 417   Assembler::ldx(s1, simm13a, d);
 418 #else
 419   Assembler::ldd(s1, simm13a, d);
 420 #endif
 421 }
 422 
 423 inline void MacroAssembler::ld_long( Register s1, RegisterOrConstant s2, Register d ) {
 424 #ifdef _LP64
 425   Assembler::ldx(s1, s2, d);
 426 #else
 427   Assembler::ldd(s1, s2, d);
 428 #endif
 429 }
 430 
 431 inline void MacroAssembler::ld_long(const Address& a, Register d, int offset) {
 432 #ifdef _LP64
 433   Assembler::ldx(a, d, offset);
 434 #else
 435   Assembler::ldd(a, d, offset);
 436 #endif
 437 }
 438 
 439 inline void MacroAssembler::st_long( Register d, Register s1, Register s2 ) {
 440 #ifdef _LP64
 441   Assembler::stx(d, s1, s2);
 442 #else
 443   Assembler::std(d, s1, s2);
 444 #endif
 445 }
 446 
 447 inline void MacroAssembler::st_long( Register d, Register s1, int simm13a ) {
 448 #ifdef _LP64
 449   Assembler::stx(d, s1, simm13a);
 450 #else
 451   Assembler::std(d, s1, simm13a);
 452 #endif
 453 }
 454 
 455 inline void MacroAssembler::st_long( Register d, Register s1, RegisterOrConstant s2 ) {
 456 #ifdef _LP64
 457   Assembler::stx(d, s1, s2);
 458 #else
 459   Assembler::std(d, s1, s2);
 460 #endif
 461 }
 462 
 463 inline void MacroAssembler::st_long( Register d, const Address& a, int offset ) {
 464 #ifdef _LP64
 465   Assembler::stx(d, a, offset);
 466 #else
 467   Assembler::std(d, a, offset);
 468 #endif
 469 }
 470 
 471 // Functions for isolating 64 bit shifts for LP64
 472 
 473 inline void MacroAssembler::sll_ptr( Register s1, Register s2, Register d ) {
 474 #ifdef _LP64
 475   Assembler::sllx(s1, s2, d);
 476 #else
 477   Assembler::sll( s1, s2, d);
 478 #endif
 479 }
 480 
 481 inline void MacroAssembler::sll_ptr( Register s1, int imm6a,   Register d ) {
 482 #ifdef _LP64
 483   Assembler::sllx(s1, imm6a, d);
 484 #else
 485   Assembler::sll( s1, imm6a, d);
 486 #endif
 487 }
 488 
 489 inline void MacroAssembler::srl_ptr( Register s1, Register s2, Register d ) {
 490 #ifdef _LP64
 491   Assembler::srlx(s1, s2, d);
 492 #else
 493   Assembler::srl( s1, s2, d);
 494 #endif
 495 }
 496 
 497 inline void MacroAssembler::srl_ptr( Register s1, int imm6a,   Register d ) {
 498 #ifdef _LP64
 499   Assembler::srlx(s1, imm6a, d);
 500 #else
 501   Assembler::srl( s1, imm6a, d);
 502 #endif
 503 }
 504 
 505 inline void MacroAssembler::sll_ptr( Register s1, RegisterOrConstant s2, Register d ) {
 506   if (s2.is_register())  sll_ptr(s1, s2.as_register(), d);
 507   else                   sll_ptr(s1, s2.as_constant(), d);
 508 }
 509 
 510 // Use the right branch for the platform
 511 
 512 inline void MacroAssembler::br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 513   if (VM_Version::v9_instructions_work())
 514     Assembler::bp(c, a, icc, p, d, rt);
 515   else
 516     Assembler::br(c, a, d, rt);
 517 }
 518 
 519 inline void MacroAssembler::br( Condition c, bool a, Predict p, Label& L ) {
 520   br(c, a, p, target(L));
 521 }
 522 
 523 
 524 // Branch that tests either xcc or icc depending on the
 525 // architecture compiled (LP64 or not)
 526 inline void MacroAssembler::brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 527 #ifdef _LP64
 528     Assembler::bp(c, a, xcc, p, d, rt);
 529 #else
 530     MacroAssembler::br(c, a, p, d, rt);
 531 #endif
 532 }
 533 
 534 inline void MacroAssembler::brx( Condition c, bool a, Predict p, Label& L ) {
 535   brx(c, a, p, target(L));
 536 }
 537 
 538 inline void MacroAssembler::ba( bool a, Label& L ) {
 539   br(always, a, pt, L);
 540 }
 541 
 542 // Warning: V9 only functions
 543 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 544   Assembler::bp(c, a, cc, p, d, rt);
 545 }
 546 
 547 inline void MacroAssembler::bp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 548   Assembler::bp(c, a, cc, p, L);
 549 }
 550 
 551 inline void MacroAssembler::fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt ) {
 552   if (VM_Version::v9_instructions_work())
 553     fbp(c, a, fcc0, p, d, rt);
 554   else
 555     Assembler::fb(c, a, d, rt);
 556 }
 557 
 558 inline void MacroAssembler::fb( Condition c, bool a, Predict p, Label& L ) {
 559   fb(c, a, p, target(L));
 560 }
 561 
 562 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt ) {
 563   Assembler::fbp(c, a, cc, p, d, rt);
 564 }
 565 
 566 inline void MacroAssembler::fbp( Condition c, bool a, CC cc, Predict p, Label& L ) {
 567   Assembler::fbp(c, a, cc, p, L);
 568 }
 569 
 570 inline void MacroAssembler::jmp( Register s1, Register s2 ) { jmpl( s1, s2, G0 ); }
 571 inline void MacroAssembler::jmp( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, G0, rspec); }
 572 
 573 // Call with a check to see if we need to deal with the added
 574 // expense of relocation and if we overflow the displacement
 575 // of the quick call instruction./
 576 // Check to see if we have to deal with relocations
 577 inline void MacroAssembler::call( address d, relocInfo::relocType rt ) {
 578 #ifdef _LP64
 579   intptr_t disp;
 580   // NULL is ok because it will be relocated later.
 581   // Must change NULL to a reachable address in order to
 582   // pass asserts here and in wdisp.
 583   if ( d == NULL )
 584     d = pc();
 585 
 586   // Is this address within range of the call instruction?
 587   // If not, use the expensive instruction sequence
 588   disp = (intptr_t)d - (intptr_t)pc();
 589   if ( disp != (intptr_t)(int32_t)disp ) {
 590     relocate(rt);
 591     AddressLiteral dest(d);
 592     jumpl_to(dest, O7, O7);
 593   }
 594   else {
 595     Assembler::call( d, rt );
 596   }
 597 #else
 598   Assembler::call( d, rt );
 599 #endif
 600 }
 601 
 602 inline void MacroAssembler::call( Label& L,   relocInfo::relocType rt ) {
 603   MacroAssembler::call( target(L), rt);
 604 }
 605 
 606 
 607 
 608 inline void MacroAssembler::callr( Register s1, Register s2 ) { jmpl( s1, s2, O7 ); }
 609 inline void MacroAssembler::callr( Register s1, int simm13a, RelocationHolder const& rspec ) { jmpl( s1, simm13a, O7, rspec); }
 610 
 611 // prefetch instruction
 612 inline void MacroAssembler::iprefetch( address d, relocInfo::relocType rt ) {
 613   if (VM_Version::v9_instructions_work())
 614     Assembler::bp( never, true, xcc, pt, d, rt );
 615 }
 616 inline void MacroAssembler::iprefetch( Label& L) { iprefetch( target(L) ); }
 617 
 618 
 619 // clobbers o7 on V8!!
 620 // returns delta from gotten pc to addr after
 621 inline int MacroAssembler::get_pc( Register d ) {
 622   int x = offset();
 623   if (VM_Version::v9_instructions_work())
 624     rdpc(d);
 625   else {
 626     Label lbl;
 627     Assembler::call(lbl, relocInfo::none);  // No relocation as this is call to pc+0x8
 628     if (d == O7)  delayed()->nop();
 629     else          delayed()->mov(O7, d);
 630     bind(lbl);
 631   }
 632   return offset() - x;
 633 }
 634 
 635 
 636 // Note:  All MacroAssembler::set_foo functions are defined out-of-line.
 637 
 638 
 639 // Loads the current PC of the following instruction as an immediate value in
 640 // 2 instructions.  All PCs in the CodeCache are within 2 Gig of each other.
 641 inline intptr_t MacroAssembler::load_pc_address( Register reg, int bytes_to_skip ) {
 642   intptr_t thepc = (intptr_t)pc() + 2*BytesPerInstWord + bytes_to_skip;
 643 #ifdef _LP64
 644   Unimplemented();
 645 #else
 646   Assembler::sethi(  thepc & ~0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 647   Assembler::add(reg,thepc &  0x3ff, reg, internal_word_Relocation::spec((address)thepc));
 648 #endif
 649   return thepc;
 650 }
 651 
 652 
 653 inline void MacroAssembler::load_contents(const AddressLiteral& addrlit, Register d, int offset) {
 654   assert_not_delayed();
 655   sethi(addrlit, d);
 656   ld(d, addrlit.low10() + offset, d);
 657 }
 658 
 659 
 660 inline void MacroAssembler::load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset) {
 661   assert_not_delayed();
 662   sethi(addrlit, d);
 663   ld_ptr(d, addrlit.low10() + offset, d);
 664 }
 665 
 666 
 667 inline void MacroAssembler::store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 668   assert_not_delayed();
 669   sethi(addrlit, temp);
 670   st(s, temp, addrlit.low10() + offset);
 671 }
 672 
 673 
 674 inline void MacroAssembler::store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset) {
 675   assert_not_delayed();
 676   sethi(addrlit, temp);
 677   st_ptr(s, temp, addrlit.low10() + offset);
 678 }
 679 
 680 
 681 // This code sequence is relocatable to any address, even on LP64.
 682 inline void MacroAssembler::jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset) {
 683   assert_not_delayed();
 684   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 685   // variable length instruction streams.
 686   patchable_sethi(addrlit, temp);
 687   jmpl(temp, addrlit.low10() + offset, d);
 688 }
 689 
 690 
 691 inline void MacroAssembler::jump_to(const AddressLiteral& addrlit, Register temp, int offset) {
 692   jumpl_to(addrlit, temp, G0, offset);
 693 }
 694 
 695 
 696 inline void MacroAssembler::jump_indirect_to(Address& a, Register temp,
 697                                              int ld_offset, int jmp_offset) {
 698   assert_not_delayed();
 699   //sethi(al);                   // sethi is caller responsibility for this one
 700   ld_ptr(a, temp, ld_offset);
 701   jmp(temp, jmp_offset);
 702 }
 703 
 704 
 705 inline void MacroAssembler::set_oop(jobject obj, Register d) {
 706   set_oop(allocate_oop_address(obj), d);
 707 }
 708 
 709 
 710 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) {
 711   set_oop(constant_oop_address(obj), d);
 712 }
 713 
 714 
 715 inline void MacroAssembler::set_oop(const AddressLiteral& obj_addr, Register d) {
 716   assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 717   set(obj_addr, d);
 718 }
 719 
 720 
 721 inline void MacroAssembler::load_argument( Argument& a, Register  d ) {
 722   if (a.is_register())
 723     mov(a.as_register(), d);
 724   else
 725     ld (a.as_address(),  d);
 726 }
 727 
 728 inline void MacroAssembler::store_argument( Register s, Argument& a ) {
 729   if (a.is_register())
 730     mov(s, a.as_register());
 731   else
 732     st_ptr (s, a.as_address());         // ABI says everything is right justified.
 733 }
 734 
 735 inline void MacroAssembler::store_ptr_argument( Register s, Argument& a ) {
 736   if (a.is_register())
 737     mov(s, a.as_register());
 738   else
 739     st_ptr (s, a.as_address());
 740 }
 741 
 742 
 743 #ifdef _LP64
 744 inline void MacroAssembler::store_float_argument( FloatRegister s, Argument& a ) {
 745   if (a.is_float_register())
 746 // V9 ABI has F1, F3, F5 are used to pass instead of O0, O1, O2
 747     fmov(FloatRegisterImpl::S, s, a.as_float_register() );
 748   else
 749     // Floats are stored in the high half of the stack entry
 750     // The low half is undefined per the ABI.
 751     stf(FloatRegisterImpl::S, s, a.as_address(), sizeof(jfloat));
 752 }
 753 
 754 inline void MacroAssembler::store_double_argument( FloatRegister s, Argument& a ) {
 755   if (a.is_float_register())
 756 // V9 ABI has D0, D2, D4 are used to pass instead of O0, O1, O2
 757     fmov(FloatRegisterImpl::D, s, a.as_double_register() );
 758   else
 759     stf(FloatRegisterImpl::D, s, a.as_address());
 760 }
 761 
 762 inline void MacroAssembler::store_long_argument( Register s, Argument& a ) {
 763   if (a.is_register())
 764     mov(s, a.as_register());
 765   else
 766     stx(s, a.as_address());
 767 }
 768 #endif
 769 
 770 inline void MacroAssembler::clrb( Register s1, Register s2) {  stb( G0, s1, s2 ); }
 771 inline void MacroAssembler::clrh( Register s1, Register s2) {  sth( G0, s1, s2 ); }
 772 inline void MacroAssembler::clr(  Register s1, Register s2) {  stw( G0, s1, s2 ); }
 773 inline void MacroAssembler::clrx( Register s1, Register s2) {  stx( G0, s1, s2 ); }
 774 
 775 inline void MacroAssembler::clrb( Register s1, int simm13a) { stb( G0, s1, simm13a); }
 776 inline void MacroAssembler::clrh( Register s1, int simm13a) { sth( G0, s1, simm13a); }
 777 inline void MacroAssembler::clr(  Register s1, int simm13a) { stw( G0, s1, simm13a); }
 778 inline void MacroAssembler::clrx( Register s1, int simm13a) { stx( G0, s1, simm13a); }
 779 
 780 // returns if membar generates anything, obviously this code should mirror
 781 // membar below.
 782 inline bool MacroAssembler::membar_has_effect( Membar_mask_bits const7a ) {
 783   if( !os::is_MP() ) return false;  // Not needed on single CPU
 784   if( VM_Version::v9_instructions_work() ) {
 785     const Membar_mask_bits effective_mask =
 786         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 787     return (effective_mask != 0);
 788   } else {
 789     return true;
 790   }
 791 }
 792 
 793 inline void MacroAssembler::membar( Membar_mask_bits const7a ) {
 794   // Uniprocessors do not need memory barriers
 795   if (!os::is_MP()) return;
 796   // Weakened for current Sparcs and TSO.  See the v9 manual, sections 8.4.3,
 797   // 8.4.4.3, a.31 and a.50.
 798   if( VM_Version::v9_instructions_work() ) {
 799     // Under TSO, setting bit 3, 2, or 0 is redundant, so the only value
 800     // of the mmask subfield of const7a that does anything that isn't done
 801     // implicitly is StoreLoad.
 802     const Membar_mask_bits effective_mask =
 803         Membar_mask_bits(const7a & ~(LoadLoad | LoadStore | StoreStore));
 804     if ( effective_mask != 0 ) {
 805       Assembler::membar( effective_mask );
 806     }
 807   } else {
 808     // stbar is the closest there is on v8.  Equivalent to membar(StoreStore).  We
 809     // do not issue the stbar because to my knowledge all v8 machines implement TSO,
 810     // which guarantees that all stores behave as if an stbar were issued just after
 811     // each one of them.  On these machines, stbar ought to be a nop.  There doesn't
 812     // appear to be an equivalent of membar(StoreLoad) on v8: TSO doesn't require it,
 813     // it can't be specified by stbar, nor have I come up with a way to simulate it.
 814     //
 815     // Addendum.  Dave says that ldstub guarantees a write buffer flush to coherent
 816     // space.  Put one here to be on the safe side.
 817     Assembler::ldstub(SP, 0, G0);
 818   }
 819 }