1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
  27 
  28 #define __ _masm->
  29 
  30 
  31 //------------------------------------------------------------
  32 
  33 
  34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  35   if (opr->is_constant()) {
  36     LIR_Const* constant = opr->as_constant_ptr();
  37     switch (constant->type()) {
  38       case T_INT: {
  39         jint value = constant->as_jint();
  40         return Assembler::is_simm13(value);
  41       }
  42 
  43       default:
  44         return false;
  45     }
  46   }
  47   return false;
  48 }
  49 
  50 
  51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  52   switch (op->code()) {
  53     case lir_null_check:
  54     return true;
  55 
  56 
  57     case lir_add:
  58     case lir_ushr:
  59     case lir_shr:
  60     case lir_shl:
  61       // integer shifts and adds are always one instruction
  62       return op->result_opr()->is_single_cpu();
  63 
  64 
  65     case lir_move: {
  66       LIR_Op1* op1 = op->as_Op1();
  67       LIR_Opr src = op1->in_opr();
  68       LIR_Opr dst = op1->result_opr();
  69 
  70       if (src == dst) {
  71         NEEDS_CLEANUP;
  72         // this works around a problem where moves with the same src and dst
  73         // end up in the delay slot and then the assembler swallows the mov
  74         // since it has no effect and then it complains because the delay slot
  75         // is empty.  returning false stops the optimizer from putting this in
  76         // the delay slot
  77         return false;
  78       }
  79 
  80       // don't put moves involving oops into the delay slot since the VerifyOops code
  81       // will make it much larger than a single instruction.
  82       if (VerifyOops) {
  83         return false;
  84       }
  85 
  86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
  88         return false;
  89       }
  90 
  91       if (dst->is_register()) {
  92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
  93           return !PatchALot;
  94         } else if (src->is_single_stack()) {
  95           return true;
  96         }
  97       }
  98 
  99       if (src->is_register()) {
 100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 101           return !PatchALot;
 102         } else if (dst->is_single_stack()) {
 103           return true;
 104         }
 105       }
 106 
 107       if (dst->is_register() &&
 108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 110         return true;
 111       }
 112 
 113       return false;
 114     }
 115 
 116     default:
 117       return false;
 118   }
 119   ShouldNotReachHere();
 120 }
 121 
 122 
 123 LIR_Opr LIR_Assembler::receiverOpr() {
 124   return FrameMap::O0_oop_opr;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 129   return FrameMap::I0_oop_opr;
 130 }
 131 
 132 
 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
 134   return FrameMap::I0_opr;
 135 }
 136 
 137 
 138 int LIR_Assembler::initial_frame_size_in_bytes() {
 139   return in_bytes(frame_map()->framesize_in_bytes());
 140 }
 141 
 142 
 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
 145 // If they do not match we jump to slow case.
 146 int LIR_Assembler::check_icache() {
 147   int offset = __ offset();
 148   __ inline_cache_check(O0, G5_inline_cache_reg);
 149   return offset;
 150 }
 151 
 152 
 153 void LIR_Assembler::osr_entry() {
 154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 155   //
 156   //   1. Create a new compiled activation.
 157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 158   //      at the osr_bci; it is not initialized.
 159   //   3. Jump to the continuation address in compiled code to resume execution.
 160 
 161   // OSR entry point
 162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 164   ValueStack* entry_state = osr_entry->end()->state();
 165   int number_of_locks = entry_state->locks_size();
 166 
 167   // Create a frame for the compiled activation.
 168   __ build_frame(initial_frame_size_in_bytes());
 169 
 170   // OSR buffer is
 171   //
 172   // locals[nlocals-1..0]
 173   // monitors[number_of_locks-1..0]
 174   //
 175   // locals is a direct copy of the interpreter frame so in the osr buffer
 176   // so first slot in the local array is the last local from the interpreter
 177   // and last slot is local[0] (receiver) from the interpreter
 178   //
 179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 181   // in the interpreter frame (the method lock if a sync method)
 182 
 183   // Initialize monitors in the compiled activation.
 184   //   I0: pointer to osr buffer
 185   //
 186   // All other registers are dead at this point and the locals will be
 187   // copied into place by code emitted in the IR.
 188 
 189   Register OSR_buf = osrBufferPointer()->as_register();
 190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 191     int monitor_offset = BytesPerWord * method()->max_locals() +
 192       (2 * BytesPerWord) * (number_of_locks - 1);
 193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 194     // the OSR buffer using 2 word entries: first the lock and then
 195     // the oop.
 196     for (int i = 0; i < number_of_locks; i++) {
 197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 198 #ifdef ASSERT
 199       // verify the interpreter's monitor has a non-null object
 200       {
 201         Label L;
 202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 203         __ cmp(G0, O7);
 204         __ br(Assembler::notEqual, false, Assembler::pt, L);
 205         __ delayed()->nop();
 206         __ stop("locked object is NULL");
 207         __ bind(L);
 208       }
 209 #endif // ASSERT
 210       // Copy the lock field into the compiled activation.
 211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 215     }
 216   }
 217 }
 218 
 219 
 220 // Optimized Library calls
 221 // This is the fast version of java.lang.String.compare; it has not
 222 // OSR-entry and therefore, we generate a slow version for OSR's
 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 224   Register str0 = left->as_register();
 225   Register str1 = right->as_register();
 226 
 227   Label Ldone;
 228 
 229   Register result = dst->as_register();
 230   {
 231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 233     // Also, get string0.count-string1.count in o7 and get the condition code set
 234     // Note: some instructions have been hoisted for better instruction scheduling
 235 
 236     Register tmp0 = L0;
 237     Register tmp1 = L1;
 238     Register tmp2 = L2;
 239 
 240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 242     int  count_offset = java_lang_String:: count_offset_in_bytes();
 243 
 244     __ ld_ptr(str0, value_offset, tmp0);
 245     __ ld(str0, offset_offset, tmp2);
 246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 247     __ ld(str0, count_offset, str0);
 248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 249 
 250     // str1 may be null
 251     add_debug_info_for_null_check_here(info);
 252 
 253     __ ld_ptr(str1, value_offset, tmp1);
 254     __ add(tmp0, tmp2, tmp0);
 255 
 256     __ ld(str1, offset_offset, tmp2);
 257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 258     __ ld(str1, count_offset, str1);
 259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 260     __ subcc(str0, str1, O7);
 261     __ add(tmp1, tmp2, tmp1);
 262   }
 263 
 264   {
 265     // Compute the minimum of the string lengths, scale it and store it in limit
 266     Register count0 = I0;
 267     Register count1 = I1;
 268     Register limit  = L3;
 269 
 270     Label Lskip;
 271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 274     __ bind(Lskip);
 275 
 276     // If either string is empty (or both of them) the result is the difference in lengths
 277     __ cmp(limit, 0);
 278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 279     __ delayed()->mov(O7, result);  // result is difference in lengths
 280   }
 281 
 282   {
 283     // Neither string is empty
 284     Label Lloop;
 285 
 286     Register base0 = L0;
 287     Register base1 = L1;
 288     Register chr0  = I0;
 289     Register chr1  = I1;
 290     Register limit = L3;
 291 
 292     // Shift base0 and base1 to the end of the arrays, negate limit
 293     __ add(base0, limit, base0);
 294     __ add(base1, limit, base1);
 295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 296 
 297     __ lduh(base0, limit, chr0);
 298     __ bind(Lloop);
 299     __ lduh(base1, limit, chr1);
 300     __ subcc(chr0, chr1, chr0);
 301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 302     assert(chr0 == result, "result must be pre-placed");
 303     __ delayed()->inccc(limit, sizeof(jchar));
 304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 305     __ delayed()->lduh(base0, limit, chr0);
 306   }
 307 
 308   // If strings are equal up to min length, return the length difference.
 309   __ mov(O7, result);
 310 
 311   // Otherwise, return the difference between the first mismatched chars.
 312   __ bind(Ldone);
 313 }
 314 
 315 
 316 // --------------------------------------------------------------------------------------------
 317 
 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 319   if (!GenerateSynchronizationCode) return;
 320 
 321   Register obj_reg = obj_opr->as_register();
 322   Register lock_reg = lock_opr->as_register();
 323 
 324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 325   Register reg = mon_addr.base();
 326   int offset = mon_addr.disp();
 327   // compute pointer to BasicLock
 328   if (mon_addr.is_simm13()) {
 329     __ add(reg, offset, lock_reg);
 330   }
 331   else {
 332     __ set(offset, lock_reg);
 333     __ add(reg, lock_reg, lock_reg);
 334   }
 335   // unlock object
 336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 337   // _slow_case_stubs->append(slow_case);
 338   // temporary fix: must be created after exceptionhandler, therefore as call stub
 339   _slow_case_stubs->append(slow_case);
 340   if (UseFastLocking) {
 341     // try inlined fast unlocking first, revert to slow locking if it fails
 342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 345   } else {
 346     // always do slow unlocking
 347     // note: the slow unlocking code could be inlined here, however if we use
 348     //       slow unlocking, speed doesn't matter anyway and this solution is
 349     //       simpler and requires less duplicated code - additionally, the
 350     //       slow unlocking code is the same in either case which simplifies
 351     //       debugging
 352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 353     __ delayed()->nop();
 354   }
 355   // done
 356   __ bind(*slow_case->continuation());
 357 }
 358 
 359 
 360 int LIR_Assembler::emit_exception_handler() {
 361   // if the last instruction is a call (typically to do a throw which
 362   // is coming at the end after block reordering) the return address
 363   // must still point into the code area in order to avoid assertion
 364   // failures when searching for the corresponding bci => add a nop
 365   // (was bug 5/14/1999 - gri)
 366   __ nop();
 367 
 368   // generate code for exception handler
 369   ciMethod* method = compilation()->method();
 370 
 371   address handler_base = __ start_a_stub(exception_handler_size);
 372 
 373   if (handler_base == NULL) {
 374     // not enough space left for the handler
 375     bailout("exception handler overflow");
 376     return -1;
 377   }
 378 
 379   int offset = code_offset();
 380 
 381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
 382   __ delayed()->nop();
 383   debug_only(__ stop("should have gone to the caller");)
 384   assert(code_offset() - offset <= exception_handler_size, "overflow");
 385   __ end_a_stub();
 386 
 387   return offset;
 388 }
 389 
 390 
 391 // Emit the code to remove the frame from the stack in the exception
 392 // unwind path.
 393 int LIR_Assembler::emit_unwind_handler() {
 394 #ifndef PRODUCT
 395   if (CommentedAssembly) {
 396     _masm->block_comment("Unwind handler");
 397   }
 398 #endif
 399 
 400   int offset = code_offset();
 401 
 402   // Fetch the exception from TLS and clear out exception related thread state
 403   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 404   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 405   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 406 
 407   __ bind(_unwind_handler_entry);
 408   __ verify_not_null_oop(O0);
 409   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 410     __ mov(O0, I0);  // Preserve the exception
 411   }
 412 
 413   // Preform needed unlocking
 414   MonitorExitStub* stub = NULL;
 415   if (method()->is_synchronized()) {
 416     monitor_address(0, FrameMap::I1_opr);
 417     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 418     __ unlock_object(I3, I2, I1, *stub->entry());
 419     __ bind(*stub->continuation());
 420   }
 421 
 422   if (compilation()->env()->dtrace_method_probes()) {
 423     jobject2reg(method()->constant_encoding(), O0);
 424     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 425     __ delayed()->nop();
 426   }
 427 
 428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 429     __ mov(I0, O0);  // Restore the exception
 430   }
 431 
 432   // dispatch to the unwind logic
 433   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 434   __ delayed()->nop();
 435 
 436   // Emit the slow path assembly
 437   if (stub != NULL) {
 438     stub->emit_code(this);
 439   }
 440 
 441   return offset;
 442 }
 443 
 444 
 445 int LIR_Assembler::emit_deopt_handler() {
 446   // if the last instruction is a call (typically to do a throw which
 447   // is coming at the end after block reordering) the return address
 448   // must still point into the code area in order to avoid assertion
 449   // failures when searching for the corresponding bci => add a nop
 450   // (was bug 5/14/1999 - gri)
 451   __ nop();
 452 
 453   // generate code for deopt handler
 454   ciMethod* method = compilation()->method();
 455   address handler_base = __ start_a_stub(deopt_handler_size);
 456   if (handler_base == NULL) {
 457     // not enough space left for the handler
 458     bailout("deopt handler overflow");
 459     return -1;
 460   }
 461 
 462   int offset = code_offset();
 463   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 464   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 465   __ delayed()->nop();
 466   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 467   debug_only(__ stop("should have gone to the caller");)
 468   __ end_a_stub();
 469 
 470   return offset;
 471 }
 472 
 473 
 474 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 475   if (o == NULL) {
 476     __ set(NULL_WORD, reg);
 477   } else {
 478     int oop_index = __ oop_recorder()->find_index(o);
 479     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 480     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 481   }
 482 }
 483 
 484 
 485 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 486   // Allocate a new index in oop table to hold the oop once it's been patched
 487   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 488   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 489 
 490   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 491   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 492   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 493   // NULL will be dynamically patched later and the patched value may be large.  We must
 494   // therefore generate the sethi/add as a placeholders
 495   __ patchable_set(addrlit, reg);
 496 
 497   patching_epilog(patch, lir_patch_normal, reg, info);
 498 }
 499 
 500 
 501 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 502   Register Rdividend = op->in_opr1()->as_register();
 503   Register Rdivisor  = noreg;
 504   Register Rscratch  = op->in_opr3()->as_register();
 505   Register Rresult   = op->result_opr()->as_register();
 506   int divisor = -1;
 507 
 508   if (op->in_opr2()->is_register()) {
 509     Rdivisor = op->in_opr2()->as_register();
 510   } else {
 511     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 512     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 513   }
 514 
 515   assert(Rdividend != Rscratch, "");
 516   assert(Rdivisor  != Rscratch, "");
 517   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 518 
 519   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 520     // convert division by a power of two into some shifts and logical operations
 521     if (op->code() == lir_idiv) {
 522       if (divisor == 2) {
 523         __ srl(Rdividend, 31, Rscratch);
 524       } else {
 525         __ sra(Rdividend, 31, Rscratch);
 526         __ and3(Rscratch, divisor - 1, Rscratch);
 527       }
 528       __ add(Rdividend, Rscratch, Rscratch);
 529       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 530       return;
 531     } else {
 532       if (divisor == 2) {
 533         __ srl(Rdividend, 31, Rscratch);
 534       } else {
 535         __ sra(Rdividend, 31, Rscratch);
 536         __ and3(Rscratch, divisor - 1,Rscratch);
 537       }
 538       __ add(Rdividend, Rscratch, Rscratch);
 539       __ andn(Rscratch, divisor - 1,Rscratch);
 540       __ sub(Rdividend, Rscratch, Rresult);
 541       return;
 542     }
 543   }
 544 
 545   __ sra(Rdividend, 31, Rscratch);
 546   __ wry(Rscratch);
 547   if (!VM_Version::v9_instructions_work()) {
 548     // v9 doesn't require these nops
 549     __ nop();
 550     __ nop();
 551     __ nop();
 552     __ nop();
 553   }
 554 
 555   add_debug_info_for_div0_here(op->info());
 556 
 557   if (Rdivisor != noreg) {
 558     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 559   } else {
 560     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 561     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 562   }
 563 
 564   Label skip;
 565   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 566   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 567   __ bind(skip);
 568 
 569   if (op->code() == lir_irem) {
 570     if (Rdivisor != noreg) {
 571       __ smul(Rscratch, Rdivisor, Rscratch);
 572     } else {
 573       __ smul(Rscratch, divisor, Rscratch);
 574     }
 575     __ sub(Rdividend, Rscratch, Rresult);
 576   }
 577 }
 578 
 579 
 580 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 581 #ifdef ASSERT
 582   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 583   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 584   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 585 #endif
 586   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 587 
 588   if (op->cond() == lir_cond_always) {
 589     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 590   } else if (op->code() == lir_cond_float_branch) {
 591     assert(op->ublock() != NULL, "must have unordered successor");
 592     bool is_unordered = (op->ublock() == op->block());
 593     Assembler::Condition acond;
 594     switch (op->cond()) {
 595       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 596       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 597       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 598       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 599       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 600       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 601       default :                         ShouldNotReachHere();
 602     };
 603 
 604     if (!VM_Version::v9_instructions_work()) {
 605       __ nop();
 606     }
 607     __ fb( acond, false, Assembler::pn, *(op->label()));
 608   } else {
 609     assert (op->code() == lir_branch, "just checking");
 610 
 611     Assembler::Condition acond;
 612     switch (op->cond()) {
 613       case lir_cond_equal:        acond = Assembler::equal;                break;
 614       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 615       case lir_cond_less:         acond = Assembler::less;                 break;
 616       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 617       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 618       case lir_cond_greater:      acond = Assembler::greater;              break;
 619       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 620       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 621       default:                         ShouldNotReachHere();
 622     };
 623 
 624     // sparc has different condition codes for testing 32-bit
 625     // vs. 64-bit values.  We could always test xcc is we could
 626     // guarantee that 32-bit loads always sign extended but that isn't
 627     // true and since sign extension isn't free, it would impose a
 628     // slight cost.
 629 #ifdef _LP64
 630     if  (op->type() == T_INT) {
 631       __ br(acond, false, Assembler::pn, *(op->label()));
 632     } else
 633 #endif
 634       __ brx(acond, false, Assembler::pn, *(op->label()));
 635   }
 636   // The peephole pass fills the delay slot
 637 }
 638 
 639 
 640 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 641   Bytecodes::Code code = op->bytecode();
 642   LIR_Opr dst = op->result_opr();
 643 
 644   switch(code) {
 645     case Bytecodes::_i2l: {
 646       Register rlo  = dst->as_register_lo();
 647       Register rhi  = dst->as_register_hi();
 648       Register rval = op->in_opr()->as_register();
 649 #ifdef _LP64
 650       __ sra(rval, 0, rlo);
 651 #else
 652       __ mov(rval, rlo);
 653       __ sra(rval, BitsPerInt-1, rhi);
 654 #endif
 655       break;
 656     }
 657     case Bytecodes::_i2d:
 658     case Bytecodes::_i2f: {
 659       bool is_double = (code == Bytecodes::_i2d);
 660       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 661       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 662       FloatRegister rsrc = op->in_opr()->as_float_reg();
 663       if (rsrc != rdst) {
 664         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 665       }
 666       __ fitof(w, rdst, rdst);
 667       break;
 668     }
 669     case Bytecodes::_f2i:{
 670       FloatRegister rsrc = op->in_opr()->as_float_reg();
 671       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 672       Label L;
 673       // result must be 0 if value is NaN; test by comparing value to itself
 674       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 675       if (!VM_Version::v9_instructions_work()) {
 676         __ nop();
 677       }
 678       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 679       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 680       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 681       // move integer result from float register to int register
 682       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 683       __ bind (L);
 684       break;
 685     }
 686     case Bytecodes::_l2i: {
 687       Register rlo  = op->in_opr()->as_register_lo();
 688       Register rhi  = op->in_opr()->as_register_hi();
 689       Register rdst = dst->as_register();
 690 #ifdef _LP64
 691       __ sra(rlo, 0, rdst);
 692 #else
 693       __ mov(rlo, rdst);
 694 #endif
 695       break;
 696     }
 697     case Bytecodes::_d2f:
 698     case Bytecodes::_f2d: {
 699       bool is_double = (code == Bytecodes::_f2d);
 700       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 701       LIR_Opr val = op->in_opr();
 702       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 703       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 704       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 705       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 706       __ ftof(vw, dw, rval, rdst);
 707       break;
 708     }
 709     case Bytecodes::_i2s:
 710     case Bytecodes::_i2b: {
 711       Register rval = op->in_opr()->as_register();
 712       Register rdst = dst->as_register();
 713       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 714       __ sll (rval, shift, rdst);
 715       __ sra (rdst, shift, rdst);
 716       break;
 717     }
 718     case Bytecodes::_i2c: {
 719       Register rval = op->in_opr()->as_register();
 720       Register rdst = dst->as_register();
 721       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 722       __ sll (rval, shift, rdst);
 723       __ srl (rdst, shift, rdst);
 724       break;
 725     }
 726 
 727     default: ShouldNotReachHere();
 728   }
 729 }
 730 
 731 
 732 void LIR_Assembler::align_call(LIR_Code) {
 733   // do nothing since all instructions are word aligned on sparc
 734 }
 735 
 736 
 737 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 738   __ call(op->addr(), rtype);
 739   // The peephole pass fills the delay slot, add_call_info is done in
 740   // LIR_Assembler::emit_delay.
 741 }
 742 
 743 
 744 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 745   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 746   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 747   __ relocate(rspec);
 748   __ call(op->addr(), relocInfo::none);
 749   // The peephole pass fills the delay slot, add_call_info is done in
 750   // LIR_Assembler::emit_delay.
 751 }
 752 
 753 
 754 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 755   add_debug_info_for_null_check_here(op->info());
 756   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 757   if (__ is_simm13(op->vtable_offset())) {
 758     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 759   } else {
 760     // This will generate 2 instructions
 761     __ set(op->vtable_offset(), G5_method);
 762     // ld_ptr, set_hi, set
 763     __ ld_ptr(G3_scratch, G5_method, G5_method);
 764   }
 765   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 766   __ callr(G3_scratch, G0);
 767   // the peephole pass fills the delay slot
 768 }
 769 
 770 
 771 // load with 32-bit displacement
 772 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 773   int load_offset = code_offset();
 774   if (Assembler::is_simm13(disp)) {
 775     if (info != NULL) add_debug_info_for_null_check_here(info);
 776     switch(ld_type) {
 777       case T_BOOLEAN: // fall through
 778       case T_BYTE  : __ ldsb(s, disp, d); break;
 779       case T_CHAR  : __ lduh(s, disp, d); break;
 780       case T_SHORT : __ ldsh(s, disp, d); break;
 781       case T_INT   : __ ld(s, disp, d); break;
 782       case T_ADDRESS:// fall through
 783       case T_ARRAY : // fall through
 784       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 785       default      : ShouldNotReachHere();
 786     }
 787   } else {
 788     __ set(disp, O7);
 789     if (info != NULL) add_debug_info_for_null_check_here(info);
 790     load_offset = code_offset();
 791     switch(ld_type) {
 792       case T_BOOLEAN: // fall through
 793       case T_BYTE  : __ ldsb(s, O7, d); break;
 794       case T_CHAR  : __ lduh(s, O7, d); break;
 795       case T_SHORT : __ ldsh(s, O7, d); break;
 796       case T_INT   : __ ld(s, O7, d); break;
 797       case T_ADDRESS:// fall through
 798       case T_ARRAY : // fall through
 799       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 800       default      : ShouldNotReachHere();
 801     }
 802   }
 803   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 804   return load_offset;
 805 }
 806 
 807 
 808 // store with 32-bit displacement
 809 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 810   if (Assembler::is_simm13(offset)) {
 811     if (info != NULL)  add_debug_info_for_null_check_here(info);
 812     switch (type) {
 813       case T_BOOLEAN: // fall through
 814       case T_BYTE  : __ stb(value, base, offset); break;
 815       case T_CHAR  : __ sth(value, base, offset); break;
 816       case T_SHORT : __ sth(value, base, offset); break;
 817       case T_INT   : __ stw(value, base, offset); break;
 818       case T_ADDRESS:// fall through
 819       case T_ARRAY : // fall through
 820       case T_OBJECT: __ st_ptr(value, base, offset); break;
 821       default      : ShouldNotReachHere();
 822     }
 823   } else {
 824     __ set(offset, O7);
 825     if (info != NULL) add_debug_info_for_null_check_here(info);
 826     switch (type) {
 827       case T_BOOLEAN: // fall through
 828       case T_BYTE  : __ stb(value, base, O7); break;
 829       case T_CHAR  : __ sth(value, base, O7); break;
 830       case T_SHORT : __ sth(value, base, O7); break;
 831       case T_INT   : __ stw(value, base, O7); break;
 832       case T_ADDRESS:// fall through
 833       case T_ARRAY : //fall through
 834       case T_OBJECT: __ st_ptr(value, base, O7); break;
 835       default      : ShouldNotReachHere();
 836     }
 837   }
 838   // Note: Do the store before verification as the code might be patched!
 839   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 840 }
 841 
 842 
 843 // load float with 32-bit displacement
 844 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 845   FloatRegisterImpl::Width w;
 846   switch(ld_type) {
 847     case T_FLOAT : w = FloatRegisterImpl::S; break;
 848     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 849     default      : ShouldNotReachHere();
 850   }
 851 
 852   if (Assembler::is_simm13(disp)) {
 853     if (info != NULL) add_debug_info_for_null_check_here(info);
 854     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 855       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 856       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 857     } else {
 858       __ ldf(w, s, disp, d);
 859     }
 860   } else {
 861     __ set(disp, O7);
 862     if (info != NULL) add_debug_info_for_null_check_here(info);
 863     __ ldf(w, s, O7, d);
 864   }
 865 }
 866 
 867 
 868 // store float with 32-bit displacement
 869 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 870   FloatRegisterImpl::Width w;
 871   switch(type) {
 872     case T_FLOAT : w = FloatRegisterImpl::S; break;
 873     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 874     default      : ShouldNotReachHere();
 875   }
 876 
 877   if (Assembler::is_simm13(offset)) {
 878     if (info != NULL) add_debug_info_for_null_check_here(info);
 879     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 880       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 881       __ stf(FloatRegisterImpl::S, value             , base, offset);
 882     } else {
 883       __ stf(w, value, base, offset);
 884     }
 885   } else {
 886     __ set(offset, O7);
 887     if (info != NULL) add_debug_info_for_null_check_here(info);
 888     __ stf(w, value, O7, base);
 889   }
 890 }
 891 
 892 
 893 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 894   int store_offset;
 895   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 896     assert(!unaligned, "can't handle this");
 897     // for offsets larger than a simm13 we setup the offset in O7
 898     __ set(offset, O7);
 899     store_offset = store(from_reg, base, O7, type);
 900   } else {
 901     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 902     store_offset = code_offset();
 903     switch (type) {
 904       case T_BOOLEAN: // fall through
 905       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 906       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 907       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 908       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 909       case T_LONG  :
 910 #ifdef _LP64
 911         if (unaligned || PatchALot) {
 912           __ srax(from_reg->as_register_lo(), 32, O7);
 913           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 914           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 915         } else {
 916           __ stx(from_reg->as_register_lo(), base, offset);
 917         }
 918 #else
 919         assert(Assembler::is_simm13(offset + 4), "must be");
 920         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 921         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 922 #endif
 923         break;
 924       case T_ADDRESS:// fall through
 925       case T_ARRAY : // fall through
 926       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
 927       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 928       case T_DOUBLE:
 929         {
 930           FloatRegister reg = from_reg->as_double_reg();
 931           // split unaligned stores
 932           if (unaligned || PatchALot) {
 933             assert(Assembler::is_simm13(offset + 4), "must be");
 934             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 935             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 936           } else {
 937             __ stf(FloatRegisterImpl::D, reg, base, offset);
 938           }
 939           break;
 940         }
 941       default      : ShouldNotReachHere();
 942     }
 943   }
 944   return store_offset;
 945 }
 946 
 947 
 948 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 949   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 950   int store_offset = code_offset();
 951   switch (type) {
 952     case T_BOOLEAN: // fall through
 953     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 954     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 955     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 956     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 957     case T_LONG  :
 958 #ifdef _LP64
 959       __ stx(from_reg->as_register_lo(), base, disp);
 960 #else
 961       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 962       __ std(from_reg->as_register_hi(), base, disp);
 963 #endif
 964       break;
 965     case T_ADDRESS:// fall through
 966     case T_ARRAY : // fall through
 967     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
 968     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 969     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 970     default      : ShouldNotReachHere();
 971   }
 972   return store_offset;
 973 }
 974 
 975 
 976 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 977   int load_offset;
 978   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 979     assert(base != O7, "destroying register");
 980     assert(!unaligned, "can't handle this");
 981     // for offsets larger than a simm13 we setup the offset in O7
 982     __ set(offset, O7);
 983     load_offset = load(base, O7, to_reg, type);
 984   } else {
 985     load_offset = code_offset();
 986     switch(type) {
 987       case T_BOOLEAN: // fall through
 988       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 989       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 990       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 991       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 992       case T_LONG  :
 993         if (!unaligned) {
 994 #ifdef _LP64
 995           __ ldx(base, offset, to_reg->as_register_lo());
 996 #else
 997           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 998                  "must be sequential");
 999           __ ldd(base, offset, to_reg->as_register_hi());
1000 #endif
1001         } else {
1002 #ifdef _LP64
1003           assert(base != to_reg->as_register_lo(), "can't handle this");
1004           assert(O7 != to_reg->as_register_lo(), "can't handle this");
1005           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
1006           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
1007           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
1008           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
1009 #else
1010           if (base == to_reg->as_register_lo()) {
1011             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1012             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1013           } else {
1014             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1015             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1016           }
1017 #endif
1018         }
1019         break;
1020       case T_ADDRESS:// fall through
1021       case T_ARRAY : // fall through
1022       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
1023       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1024       case T_DOUBLE:
1025         {
1026           FloatRegister reg = to_reg->as_double_reg();
1027           // split unaligned loads
1028           if (unaligned || PatchALot) {
1029             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1030             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1031           } else {
1032             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1033           }
1034           break;
1035         }
1036       default      : ShouldNotReachHere();
1037     }
1038     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1039   }
1040   return load_offset;
1041 }
1042 
1043 
1044 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1045   int load_offset = code_offset();
1046   switch(type) {
1047     case T_BOOLEAN: // fall through
1048     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1049     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1050     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1051     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1052     case T_ADDRESS:// fall through
1053     case T_ARRAY : // fall through
1054     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1055     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1056     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1057     case T_LONG  :
1058 #ifdef _LP64
1059       __ ldx(base, disp, to_reg->as_register_lo());
1060 #else
1061       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1062              "must be sequential");
1063       __ ldd(base, disp, to_reg->as_register_hi());
1064 #endif
1065       break;
1066     default      : ShouldNotReachHere();
1067   }
1068   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1069   return load_offset;
1070 }
1071 
1072 
1073 // load/store with an Address
1074 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1075   load(a.base(), a.disp() + offset, d, ld_type, info);
1076 }
1077 
1078 
1079 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1080   store(value, dest.base(), dest.disp() + offset, type, info);
1081 }
1082 
1083 
1084 // loadf/storef with an Address
1085 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1086   load(a.base(), a.disp() + offset, d, ld_type, info);
1087 }
1088 
1089 
1090 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1091   store(value, dest.base(), dest.disp() + offset, type, info);
1092 }
1093 
1094 
1095 // load/store with an Address
1096 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1097   load(as_Address(a), d, ld_type, info);
1098 }
1099 
1100 
1101 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1102   store(value, as_Address(dest), type, info);
1103 }
1104 
1105 
1106 // loadf/storef with an Address
1107 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1108   load(as_Address(a), d, ld_type, info);
1109 }
1110 
1111 
1112 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1113   store(value, as_Address(dest), type, info);
1114 }
1115 
1116 
1117 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1118   LIR_Const* c = src->as_constant_ptr();
1119   switch (c->type()) {
1120     case T_INT:
1121     case T_FLOAT:
1122     case T_ADDRESS: {
1123       Register src_reg = O7;
1124       int value = c->as_jint_bits();
1125       if (value == 0) {
1126         src_reg = G0;
1127       } else {
1128         __ set(value, O7);
1129       }
1130       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1131       __ stw(src_reg, addr.base(), addr.disp());
1132       break;
1133     }
1134     case T_OBJECT: {
1135       Register src_reg = O7;
1136       jobject2reg(c->as_jobject(), src_reg);
1137       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1138       __ st_ptr(src_reg, addr.base(), addr.disp());
1139       break;
1140     }
1141     case T_LONG:
1142     case T_DOUBLE: {
1143       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1144 
1145       Register tmp = O7;
1146       int value_lo = c->as_jint_lo_bits();
1147       if (value_lo == 0) {
1148         tmp = G0;
1149       } else {
1150         __ set(value_lo, O7);
1151       }
1152       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1153       int value_hi = c->as_jint_hi_bits();
1154       if (value_hi == 0) {
1155         tmp = G0;
1156       } else {
1157         __ set(value_hi, O7);
1158       }
1159       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1160       break;
1161     }
1162     default:
1163       Unimplemented();
1164   }
1165 }
1166 
1167 
1168 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1169   LIR_Const* c = src->as_constant_ptr();
1170   LIR_Address* addr     = dest->as_address_ptr();
1171   Register base = addr->base()->as_pointer_register();
1172 
1173   if (info != NULL) {
1174     add_debug_info_for_null_check_here(info);
1175   }
1176   switch (c->type()) {
1177     case T_INT:
1178     case T_FLOAT:
1179     case T_ADDRESS: {
1180       LIR_Opr tmp = FrameMap::O7_opr;
1181       int value = c->as_jint_bits();
1182       if (value == 0) {
1183         tmp = FrameMap::G0_opr;
1184       } else if (Assembler::is_simm13(value)) {
1185         __ set(value, O7);
1186       }
1187       if (addr->index()->is_valid()) {
1188         assert(addr->disp() == 0, "must be zero");
1189         store(tmp, base, addr->index()->as_pointer_register(), type);
1190       } else {
1191         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1192         store(tmp, base, addr->disp(), type);
1193       }
1194       break;
1195     }
1196     case T_LONG:
1197     case T_DOUBLE: {
1198       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1199       assert(Assembler::is_simm13(addr->disp()) &&
1200              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1201 
1202       Register tmp = O7;
1203       int value_lo = c->as_jint_lo_bits();
1204       if (value_lo == 0) {
1205         tmp = G0;
1206       } else {
1207         __ set(value_lo, O7);
1208       }
1209       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1210       int value_hi = c->as_jint_hi_bits();
1211       if (value_hi == 0) {
1212         tmp = G0;
1213       } else {
1214         __ set(value_hi, O7);
1215       }
1216       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1217       break;
1218     }
1219     case T_OBJECT: {
1220       jobject obj = c->as_jobject();
1221       LIR_Opr tmp;
1222       if (obj == NULL) {
1223         tmp = FrameMap::G0_opr;
1224       } else {
1225         tmp = FrameMap::O7_opr;
1226         jobject2reg(c->as_jobject(), O7);
1227       }
1228       // handle either reg+reg or reg+disp address
1229       if (addr->index()->is_valid()) {
1230         assert(addr->disp() == 0, "must be zero");
1231         store(tmp, base, addr->index()->as_pointer_register(), type);
1232       } else {
1233         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1234         store(tmp, base, addr->disp(), type);
1235       }
1236 
1237       break;
1238     }
1239     default:
1240       Unimplemented();
1241   }
1242 }
1243 
1244 
1245 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1246   LIR_Const* c = src->as_constant_ptr();
1247   LIR_Opr to_reg = dest;
1248 
1249   switch (c->type()) {
1250     case T_INT:
1251     case T_ADDRESS:
1252       {
1253         jint con = c->as_jint();
1254         if (to_reg->is_single_cpu()) {
1255           assert(patch_code == lir_patch_none, "no patching handled here");
1256           __ set(con, to_reg->as_register());
1257         } else {
1258           ShouldNotReachHere();
1259           assert(to_reg->is_single_fpu(), "wrong register kind");
1260 
1261           __ set(con, O7);
1262           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1263           __ st(O7, temp_slot);
1264           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1265         }
1266       }
1267       break;
1268 
1269     case T_LONG:
1270       {
1271         jlong con = c->as_jlong();
1272 
1273         if (to_reg->is_double_cpu()) {
1274 #ifdef _LP64
1275           __ set(con,  to_reg->as_register_lo());
1276 #else
1277           __ set(low(con),  to_reg->as_register_lo());
1278           __ set(high(con), to_reg->as_register_hi());
1279 #endif
1280 #ifdef _LP64
1281         } else if (to_reg->is_single_cpu()) {
1282           __ set(con, to_reg->as_register());
1283 #endif
1284         } else {
1285           ShouldNotReachHere();
1286           assert(to_reg->is_double_fpu(), "wrong register kind");
1287           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1288           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1289           __ set(low(con),  O7);
1290           __ st(O7, temp_slot_lo);
1291           __ set(high(con), O7);
1292           __ st(O7, temp_slot_hi);
1293           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1294         }
1295       }
1296       break;
1297 
1298     case T_OBJECT:
1299       {
1300         if (patch_code == lir_patch_none) {
1301           jobject2reg(c->as_jobject(), to_reg->as_register());
1302         } else {
1303           jobject2reg_with_patching(to_reg->as_register(), info);
1304         }
1305       }
1306       break;
1307 
1308     case T_FLOAT:
1309       {
1310         address const_addr = __ float_constant(c->as_jfloat());
1311         if (const_addr == NULL) {
1312           bailout("const section overflow");
1313           break;
1314         }
1315         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1316         AddressLiteral const_addrlit(const_addr, rspec);
1317         if (to_reg->is_single_fpu()) {
1318           __ patchable_sethi(const_addrlit, O7);
1319           __ relocate(rspec);
1320           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1321 
1322         } else {
1323           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1324 
1325           __ set(const_addrlit, O7);
1326           load(O7, 0, to_reg->as_register(), T_INT);
1327         }
1328       }
1329       break;
1330 
1331     case T_DOUBLE:
1332       {
1333         address const_addr = __ double_constant(c->as_jdouble());
1334         if (const_addr == NULL) {
1335           bailout("const section overflow");
1336           break;
1337         }
1338         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1339 
1340         if (to_reg->is_double_fpu()) {
1341           AddressLiteral const_addrlit(const_addr, rspec);
1342           __ patchable_sethi(const_addrlit, O7);
1343           __ relocate(rspec);
1344           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1345         } else {
1346           assert(to_reg->is_double_cpu(), "Must be a long register.");
1347 #ifdef _LP64
1348           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1349 #else
1350           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1351           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1352 #endif
1353         }
1354 
1355       }
1356       break;
1357 
1358     default:
1359       ShouldNotReachHere();
1360   }
1361 }
1362 
1363 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1364   Register reg = addr->base()->as_register();
1365   return Address(reg, addr->disp());
1366 }
1367 
1368 
1369 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1370   switch (type) {
1371     case T_INT:
1372     case T_FLOAT: {
1373       Register tmp = O7;
1374       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1375       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1376       __ lduw(from.base(), from.disp(), tmp);
1377       __ stw(tmp, to.base(), to.disp());
1378       break;
1379     }
1380     case T_OBJECT: {
1381       Register tmp = O7;
1382       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1383       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1384       __ ld_ptr(from.base(), from.disp(), tmp);
1385       __ st_ptr(tmp, to.base(), to.disp());
1386       break;
1387     }
1388     case T_LONG:
1389     case T_DOUBLE: {
1390       Register tmp = O7;
1391       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1392       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1393       __ lduw(from.base(), from.disp(), tmp);
1394       __ stw(tmp, to.base(), to.disp());
1395       __ lduw(from.base(), from.disp() + 4, tmp);
1396       __ stw(tmp, to.base(), to.disp() + 4);
1397       break;
1398     }
1399 
1400     default:
1401       ShouldNotReachHere();
1402   }
1403 }
1404 
1405 
1406 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1407   Address base = as_Address(addr);
1408   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1409 }
1410 
1411 
1412 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1413   Address base = as_Address(addr);
1414   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1415 }
1416 
1417 
1418 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1419                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1420 
1421   LIR_Address* addr = src_opr->as_address_ptr();
1422   LIR_Opr to_reg = dest;
1423 
1424   Register src = addr->base()->as_pointer_register();
1425   Register disp_reg = noreg;
1426   int disp_value = addr->disp();
1427   bool needs_patching = (patch_code != lir_patch_none);
1428 
1429   if (addr->base()->type() == T_OBJECT) {
1430     __ verify_oop(src);
1431   }
1432 
1433   PatchingStub* patch = NULL;
1434   if (needs_patching) {
1435     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1436     assert(!to_reg->is_double_cpu() ||
1437            patch_code == lir_patch_none ||
1438            patch_code == lir_patch_normal, "patching doesn't match register");
1439   }
1440 
1441   if (addr->index()->is_illegal()) {
1442     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1443       if (needs_patching) {
1444         __ patchable_set(0, O7);
1445       } else {
1446         __ set(disp_value, O7);
1447       }
1448       disp_reg = O7;
1449     }
1450   } else if (unaligned || PatchALot) {
1451     __ add(src, addr->index()->as_register(), O7);
1452     src = O7;
1453   } else {
1454     disp_reg = addr->index()->as_pointer_register();
1455     assert(disp_value == 0, "can't handle 3 operand addresses");
1456   }
1457 
1458   // remember the offset of the load.  The patching_epilog must be done
1459   // before the call to add_debug_info, otherwise the PcDescs don't get
1460   // entered in increasing order.
1461   int offset = code_offset();
1462 
1463   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1464   if (disp_reg == noreg) {
1465     offset = load(src, disp_value, to_reg, type, unaligned);
1466   } else {
1467     assert(!unaligned, "can't handle this");
1468     offset = load(src, disp_reg, to_reg, type);
1469   }
1470 
1471   if (patch != NULL) {
1472     patching_epilog(patch, patch_code, src, info);
1473   }
1474 
1475   if (info != NULL) add_debug_info_for_null_check(offset, info);
1476 }
1477 
1478 
1479 void LIR_Assembler::prefetchr(LIR_Opr src) {
1480   LIR_Address* addr = src->as_address_ptr();
1481   Address from_addr = as_Address(addr);
1482 
1483   if (VM_Version::has_v9()) {
1484     __ prefetch(from_addr, Assembler::severalReads);
1485   }
1486 }
1487 
1488 
1489 void LIR_Assembler::prefetchw(LIR_Opr src) {
1490   LIR_Address* addr = src->as_address_ptr();
1491   Address from_addr = as_Address(addr);
1492 
1493   if (VM_Version::has_v9()) {
1494     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1495   }
1496 }
1497 
1498 
1499 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1500   Address addr;
1501   if (src->is_single_word()) {
1502     addr = frame_map()->address_for_slot(src->single_stack_ix());
1503   } else if (src->is_double_word())  {
1504     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1505   }
1506 
1507   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1508   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1509 }
1510 
1511 
1512 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1513   Address addr;
1514   if (dest->is_single_word()) {
1515     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1516   } else if (dest->is_double_word())  {
1517     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1518   }
1519   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1520   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1521 }
1522 
1523 
1524 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1525   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1526     if (from_reg->is_double_fpu()) {
1527       // double to double moves
1528       assert(to_reg->is_double_fpu(), "should match");
1529       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1530     } else {
1531       // float to float moves
1532       assert(to_reg->is_single_fpu(), "should match");
1533       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1534     }
1535   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1536     if (from_reg->is_double_cpu()) {
1537 #ifdef _LP64
1538       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1539 #else
1540       assert(to_reg->is_double_cpu() &&
1541              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1542              from_reg->as_register_lo() != to_reg->as_register_hi(),
1543              "should both be long and not overlap");
1544       // long to long moves
1545       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1546       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1547 #endif
1548 #ifdef _LP64
1549     } else if (to_reg->is_double_cpu()) {
1550       // int to int moves
1551       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1552 #endif
1553     } else {
1554       // int to int moves
1555       __ mov(from_reg->as_register(), to_reg->as_register());
1556     }
1557   } else {
1558     ShouldNotReachHere();
1559   }
1560   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1561     __ verify_oop(to_reg->as_register());
1562   }
1563 }
1564 
1565 
1566 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1567                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1568                             bool unaligned) {
1569   LIR_Address* addr = dest->as_address_ptr();
1570 
1571   Register src = addr->base()->as_pointer_register();
1572   Register disp_reg = noreg;
1573   int disp_value = addr->disp();
1574   bool needs_patching = (patch_code != lir_patch_none);
1575 
1576   if (addr->base()->is_oop_register()) {
1577     __ verify_oop(src);
1578   }
1579 
1580   PatchingStub* patch = NULL;
1581   if (needs_patching) {
1582     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1583     assert(!from_reg->is_double_cpu() ||
1584            patch_code == lir_patch_none ||
1585            patch_code == lir_patch_normal, "patching doesn't match register");
1586   }
1587 
1588   if (addr->index()->is_illegal()) {
1589     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1590       if (needs_patching) {
1591         __ patchable_set(0, O7);
1592       } else {
1593         __ set(disp_value, O7);
1594       }
1595       disp_reg = O7;
1596     }
1597   } else if (unaligned || PatchALot) {
1598     __ add(src, addr->index()->as_register(), O7);
1599     src = O7;
1600   } else {
1601     disp_reg = addr->index()->as_pointer_register();
1602     assert(disp_value == 0, "can't handle 3 operand addresses");
1603   }
1604 
1605   // remember the offset of the store.  The patching_epilog must be done
1606   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1607   // entered in increasing order.
1608   int offset;
1609 
1610   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1611   if (disp_reg == noreg) {
1612     offset = store(from_reg, src, disp_value, type, unaligned);
1613   } else {
1614     assert(!unaligned, "can't handle this");
1615     offset = store(from_reg, src, disp_reg, type);
1616   }
1617 
1618   if (patch != NULL) {
1619     patching_epilog(patch, patch_code, src, info);
1620   }
1621 
1622   if (info != NULL) add_debug_info_for_null_check(offset, info);
1623 }
1624 
1625 
1626 void LIR_Assembler::return_op(LIR_Opr result) {
1627   // the poll may need a register so just pick one that isn't the return register
1628 #if defined(TIERED) && !defined(_LP64)
1629   if (result->type_field() == LIR_OprDesc::long_type) {
1630     // Must move the result to G1
1631     // Must leave proper result in O0,O1 and G1 (TIERED only)
1632     __ sllx(I0, 32, G1);          // Shift bits into high G1
1633     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1634     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1635 #ifdef ASSERT
1636     // mangle it so any problems will show up
1637     __ set(0xdeadbeef, I0);
1638     __ set(0xdeadbeef, I1);
1639 #endif
1640   }
1641 #endif // TIERED
1642   __ set((intptr_t)os::get_polling_page(), L0);
1643   __ relocate(relocInfo::poll_return_type);
1644   __ ld_ptr(L0, 0, G0);
1645   __ ret();
1646   __ delayed()->restore();
1647 }
1648 
1649 
1650 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1651   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1652   if (info != NULL) {
1653     add_debug_info_for_branch(info);
1654   } else {
1655     __ relocate(relocInfo::poll_type);
1656   }
1657 
1658   int offset = __ offset();
1659   __ ld_ptr(tmp->as_register(), 0, G0);
1660 
1661   return offset;
1662 }
1663 
1664 
1665 void LIR_Assembler::emit_static_call_stub() {
1666   address call_pc = __ pc();
1667   address stub = __ start_a_stub(call_stub_size);
1668   if (stub == NULL) {
1669     bailout("static call stub overflow");
1670     return;
1671   }
1672 
1673   int start = __ offset();
1674   __ relocate(static_stub_Relocation::spec(call_pc));
1675 
1676   __ set_oop(NULL, G5);
1677   // must be set to -1 at code generation time
1678   AddressLiteral addrlit(-1);
1679   __ jump_to(addrlit, G3);
1680   __ delayed()->nop();
1681 
1682   assert(__ offset() - start <= call_stub_size, "stub too big");
1683   __ end_a_stub();
1684 }
1685 
1686 
1687 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1688   if (opr1->is_single_fpu()) {
1689     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1690   } else if (opr1->is_double_fpu()) {
1691     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1692   } else if (opr1->is_single_cpu()) {
1693     if (opr2->is_constant()) {
1694       switch (opr2->as_constant_ptr()->type()) {
1695         case T_INT:
1696           { jint con = opr2->as_constant_ptr()->as_jint();
1697             if (Assembler::is_simm13(con)) {
1698               __ cmp(opr1->as_register(), con);
1699             } else {
1700               __ set(con, O7);
1701               __ cmp(opr1->as_register(), O7);
1702             }
1703           }
1704           break;
1705 
1706         case T_OBJECT:
1707           // there are only equal/notequal comparisions on objects
1708           { jobject con = opr2->as_constant_ptr()->as_jobject();
1709             if (con == NULL) {
1710               __ cmp(opr1->as_register(), 0);
1711             } else {
1712               jobject2reg(con, O7);
1713               __ cmp(opr1->as_register(), O7);
1714             }
1715           }
1716           break;
1717 
1718         default:
1719           ShouldNotReachHere();
1720           break;
1721       }
1722     } else {
1723       if (opr2->is_address()) {
1724         LIR_Address * addr = opr2->as_address_ptr();
1725         BasicType type = addr->type();
1726         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1727         else                    __ ld(as_Address(addr), O7);
1728         __ cmp(opr1->as_register(), O7);
1729       } else {
1730         __ cmp(opr1->as_register(), opr2->as_register());
1731       }
1732     }
1733   } else if (opr1->is_double_cpu()) {
1734     Register xlo = opr1->as_register_lo();
1735     Register xhi = opr1->as_register_hi();
1736     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1737       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1738 #ifdef _LP64
1739       __ orcc(xhi, G0, G0);
1740 #else
1741       __ orcc(xhi, xlo, G0);
1742 #endif
1743     } else if (opr2->is_register()) {
1744       Register ylo = opr2->as_register_lo();
1745       Register yhi = opr2->as_register_hi();
1746 #ifdef _LP64
1747       __ cmp(xlo, ylo);
1748 #else
1749       __ subcc(xlo, ylo, xlo);
1750       __ subccc(xhi, yhi, xhi);
1751       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1752         __ orcc(xhi, xlo, G0);
1753       }
1754 #endif
1755     } else {
1756       ShouldNotReachHere();
1757     }
1758   } else if (opr1->is_address()) {
1759     LIR_Address * addr = opr1->as_address_ptr();
1760     BasicType type = addr->type();
1761     assert (opr2->is_constant(), "Checking");
1762     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1763     else                    __ ld(as_Address(addr), O7);
1764     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1765   } else {
1766     ShouldNotReachHere();
1767   }
1768 }
1769 
1770 
1771 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1772   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1773     bool is_unordered_less = (code == lir_ucmp_fd2i);
1774     if (left->is_single_fpu()) {
1775       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1776     } else if (left->is_double_fpu()) {
1777       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1778     } else {
1779       ShouldNotReachHere();
1780     }
1781   } else if (code == lir_cmp_l2i) {
1782 #ifdef _LP64
1783     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1784 #else
1785     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1786             right->as_register_hi(), right->as_register_lo(),
1787             dst->as_register());
1788 #endif
1789   } else {
1790     ShouldNotReachHere();
1791   }
1792 }
1793 
1794 
1795 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1796 
1797   Assembler::Condition acond;
1798   switch (condition) {
1799     case lir_cond_equal:        acond = Assembler::equal;        break;
1800     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1801     case lir_cond_less:         acond = Assembler::less;         break;
1802     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1803     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1804     case lir_cond_greater:      acond = Assembler::greater;      break;
1805     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1806     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1807     default:                         ShouldNotReachHere();
1808   };
1809 
1810   if (opr1->is_constant() && opr1->type() == T_INT) {
1811     Register dest = result->as_register();
1812     // load up first part of constant before branch
1813     // and do the rest in the delay slot.
1814     if (!Assembler::is_simm13(opr1->as_jint())) {
1815       __ sethi(opr1->as_jint(), dest);
1816     }
1817   } else if (opr1->is_constant()) {
1818     const2reg(opr1, result, lir_patch_none, NULL);
1819   } else if (opr1->is_register()) {
1820     reg2reg(opr1, result);
1821   } else if (opr1->is_stack()) {
1822     stack2reg(opr1, result, result->type());
1823   } else {
1824     ShouldNotReachHere();
1825   }
1826   Label skip;
1827   __ br(acond, false, Assembler::pt, skip);
1828   if (opr1->is_constant() && opr1->type() == T_INT) {
1829     Register dest = result->as_register();
1830     if (Assembler::is_simm13(opr1->as_jint())) {
1831       __ delayed()->or3(G0, opr1->as_jint(), dest);
1832     } else {
1833       // the sethi has been done above, so just put in the low 10 bits
1834       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1835     }
1836   } else {
1837     // can't do anything useful in the delay slot
1838     __ delayed()->nop();
1839   }
1840   if (opr2->is_constant()) {
1841     const2reg(opr2, result, lir_patch_none, NULL);
1842   } else if (opr2->is_register()) {
1843     reg2reg(opr2, result);
1844   } else if (opr2->is_stack()) {
1845     stack2reg(opr2, result, result->type());
1846   } else {
1847     ShouldNotReachHere();
1848   }
1849   __ bind(skip);
1850 }
1851 
1852 
1853 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1854   assert(info == NULL, "unused on this code path");
1855   assert(left->is_register(), "wrong items state");
1856   assert(dest->is_register(), "wrong items state");
1857 
1858   if (right->is_register()) {
1859     if (dest->is_float_kind()) {
1860 
1861       FloatRegister lreg, rreg, res;
1862       FloatRegisterImpl::Width w;
1863       if (right->is_single_fpu()) {
1864         w = FloatRegisterImpl::S;
1865         lreg = left->as_float_reg();
1866         rreg = right->as_float_reg();
1867         res  = dest->as_float_reg();
1868       } else {
1869         w = FloatRegisterImpl::D;
1870         lreg = left->as_double_reg();
1871         rreg = right->as_double_reg();
1872         res  = dest->as_double_reg();
1873       }
1874 
1875       switch (code) {
1876         case lir_add: __ fadd(w, lreg, rreg, res); break;
1877         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1878         case lir_mul: // fall through
1879         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1880         case lir_div: // fall through
1881         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1882         default: ShouldNotReachHere();
1883       }
1884 
1885     } else if (dest->is_double_cpu()) {
1886 #ifdef _LP64
1887       Register dst_lo = dest->as_register_lo();
1888       Register op1_lo = left->as_pointer_register();
1889       Register op2_lo = right->as_pointer_register();
1890 
1891       switch (code) {
1892         case lir_add:
1893           __ add(op1_lo, op2_lo, dst_lo);
1894           break;
1895 
1896         case lir_sub:
1897           __ sub(op1_lo, op2_lo, dst_lo);
1898           break;
1899 
1900         default: ShouldNotReachHere();
1901       }
1902 #else
1903       Register op1_lo = left->as_register_lo();
1904       Register op1_hi = left->as_register_hi();
1905       Register op2_lo = right->as_register_lo();
1906       Register op2_hi = right->as_register_hi();
1907       Register dst_lo = dest->as_register_lo();
1908       Register dst_hi = dest->as_register_hi();
1909 
1910       switch (code) {
1911         case lir_add:
1912           __ addcc(op1_lo, op2_lo, dst_lo);
1913           __ addc (op1_hi, op2_hi, dst_hi);
1914           break;
1915 
1916         case lir_sub:
1917           __ subcc(op1_lo, op2_lo, dst_lo);
1918           __ subc (op1_hi, op2_hi, dst_hi);
1919           break;
1920 
1921         default: ShouldNotReachHere();
1922       }
1923 #endif
1924     } else {
1925       assert (right->is_single_cpu(), "Just Checking");
1926 
1927       Register lreg = left->as_register();
1928       Register res  = dest->as_register();
1929       Register rreg = right->as_register();
1930       switch (code) {
1931         case lir_add:  __ add  (lreg, rreg, res); break;
1932         case lir_sub:  __ sub  (lreg, rreg, res); break;
1933         case lir_mul:  __ mult (lreg, rreg, res); break;
1934         default: ShouldNotReachHere();
1935       }
1936     }
1937   } else {
1938     assert (right->is_constant(), "must be constant");
1939 
1940     if (dest->is_single_cpu()) {
1941       Register lreg = left->as_register();
1942       Register res  = dest->as_register();
1943       int    simm13 = right->as_constant_ptr()->as_jint();
1944 
1945       switch (code) {
1946         case lir_add:  __ add  (lreg, simm13, res); break;
1947         case lir_sub:  __ sub  (lreg, simm13, res); break;
1948         case lir_mul:  __ mult (lreg, simm13, res); break;
1949         default: ShouldNotReachHere();
1950       }
1951     } else {
1952       Register lreg = left->as_pointer_register();
1953       Register res  = dest->as_register_lo();
1954       long con = right->as_constant_ptr()->as_jlong();
1955       assert(Assembler::is_simm13(con), "must be simm13");
1956 
1957       switch (code) {
1958         case lir_add:  __ add  (lreg, (int)con, res); break;
1959         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1960         case lir_mul:  __ mult (lreg, (int)con, res); break;
1961         default: ShouldNotReachHere();
1962       }
1963     }
1964   }
1965 }
1966 
1967 
1968 void LIR_Assembler::fpop() {
1969   // do nothing
1970 }
1971 
1972 
1973 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1974   switch (code) {
1975     case lir_sin:
1976     case lir_tan:
1977     case lir_cos: {
1978       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1979       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1980       break;
1981     }
1982     case lir_sqrt: {
1983       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1984       FloatRegister src_reg = value->as_double_reg();
1985       FloatRegister dst_reg = dest->as_double_reg();
1986       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1987       break;
1988     }
1989     case lir_abs: {
1990       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1991       FloatRegister src_reg = value->as_double_reg();
1992       FloatRegister dst_reg = dest->as_double_reg();
1993       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1994       break;
1995     }
1996     default: {
1997       ShouldNotReachHere();
1998       break;
1999     }
2000   }
2001 }
2002 
2003 
2004 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
2005   if (right->is_constant()) {
2006     if (dest->is_single_cpu()) {
2007       int simm13 = right->as_constant_ptr()->as_jint();
2008       switch (code) {
2009         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
2010         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
2011         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
2012         default: ShouldNotReachHere();
2013       }
2014     } else {
2015       long c = right->as_constant_ptr()->as_jlong();
2016       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
2017       int simm13 = (int)c;
2018       switch (code) {
2019         case lir_logic_and:
2020 #ifndef _LP64
2021           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
2022 #endif
2023           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
2024           break;
2025 
2026         case lir_logic_or:
2027 #ifndef _LP64
2028           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
2029 #endif
2030           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2031           break;
2032 
2033         case lir_logic_xor:
2034 #ifndef _LP64
2035           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
2036 #endif
2037           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2038           break;
2039 
2040         default: ShouldNotReachHere();
2041       }
2042     }
2043   } else {
2044     assert(right->is_register(), "right should be in register");
2045 
2046     if (dest->is_single_cpu()) {
2047       switch (code) {
2048         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2049         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
2050         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2051         default: ShouldNotReachHere();
2052       }
2053     } else {
2054 #ifdef _LP64
2055       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2056                                                                         left->as_register_lo();
2057       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2058                                                                           right->as_register_lo();
2059 
2060       switch (code) {
2061         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2062         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2063         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2064         default: ShouldNotReachHere();
2065       }
2066 #else
2067       switch (code) {
2068         case lir_logic_and:
2069           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2070           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2071           break;
2072 
2073         case lir_logic_or:
2074           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2075           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2076           break;
2077 
2078         case lir_logic_xor:
2079           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2080           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2081           break;
2082 
2083         default: ShouldNotReachHere();
2084       }
2085 #endif
2086     }
2087   }
2088 }
2089 
2090 
2091 int LIR_Assembler::shift_amount(BasicType t) {
2092   int elem_size = type2aelembytes(t);
2093   switch (elem_size) {
2094     case 1 : return 0;
2095     case 2 : return 1;
2096     case 4 : return 2;
2097     case 8 : return 3;
2098   }
2099   ShouldNotReachHere();
2100   return -1;
2101 }
2102 
2103 
2104 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2105   assert(exceptionOop->as_register() == Oexception, "should match");
2106   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2107 
2108   info->add_register_oop(exceptionOop);
2109 
2110   // reuse the debug info from the safepoint poll for the throw op itself
2111   address pc_for_athrow  = __ pc();
2112   int pc_for_athrow_offset = __ offset();
2113   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2114   __ set(pc_for_athrow, Oissuing_pc, rspec);
2115   add_call_info(pc_for_athrow_offset, info); // for exception handler
2116 
2117   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2118   __ delayed()->nop();
2119 }
2120 
2121 
2122 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2123   assert(exceptionOop->as_register() == Oexception, "should match");
2124 
2125   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2126   __ delayed()->nop();
2127 }
2128 
2129 
2130 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2131   Register src = op->src()->as_register();
2132   Register dst = op->dst()->as_register();
2133   Register src_pos = op->src_pos()->as_register();
2134   Register dst_pos = op->dst_pos()->as_register();
2135   Register length  = op->length()->as_register();
2136   Register tmp = op->tmp()->as_register();
2137   Register tmp2 = O7;
2138 
2139   int flags = op->flags();
2140   ciArrayKlass* default_type = op->expected_type();
2141   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2142   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2143 
2144   // set up the arraycopy stub information
2145   ArrayCopyStub* stub = op->stub();
2146 
2147   // always do stub if no type information is available.  it's ok if
2148   // the known type isn't loaded since the code sanity checks
2149   // in debug mode and the type isn't required when we know the exact type
2150   // also check that the type is an array type.
2151   // We also, for now, always call the stub if the barrier set requires a
2152   // write_ref_pre barrier (which the stub does, but none of the optimized
2153   // cases currently does).
2154   if (op->expected_type() == NULL ||
2155       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2156     __ mov(src,     O0);
2157     __ mov(src_pos, O1);
2158     __ mov(dst,     O2);
2159     __ mov(dst_pos, O3);
2160     __ mov(length,  O4);
2161     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2162 
2163     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2164     __ delayed()->nop();
2165     __ bind(*stub->continuation());
2166     return;
2167   }
2168 
2169   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2170 
2171   // make sure src and dst are non-null and load array length
2172   if (flags & LIR_OpArrayCopy::src_null_check) {
2173     __ tst(src);
2174     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2175     __ delayed()->nop();
2176   }
2177 
2178   if (flags & LIR_OpArrayCopy::dst_null_check) {
2179     __ tst(dst);
2180     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2181     __ delayed()->nop();
2182   }
2183 
2184   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2185     // test src_pos register
2186     __ tst(src_pos);
2187     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2188     __ delayed()->nop();
2189   }
2190 
2191   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2192     // test dst_pos register
2193     __ tst(dst_pos);
2194     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2195     __ delayed()->nop();
2196   }
2197 
2198   if (flags & LIR_OpArrayCopy::length_positive_check) {
2199     // make sure length isn't negative
2200     __ tst(length);
2201     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2202     __ delayed()->nop();
2203   }
2204 
2205   if (flags & LIR_OpArrayCopy::src_range_check) {
2206     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2207     __ add(length, src_pos, tmp);
2208     __ cmp(tmp2, tmp);
2209     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2210     __ delayed()->nop();
2211   }
2212 
2213   if (flags & LIR_OpArrayCopy::dst_range_check) {
2214     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2215     __ add(length, dst_pos, tmp);
2216     __ cmp(tmp2, tmp);
2217     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2218     __ delayed()->nop();
2219   }
2220 
2221   if (flags & LIR_OpArrayCopy::type_check) {
2222     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2223     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2224     __ cmp(tmp, tmp2);
2225     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2226     __ delayed()->nop();
2227   }
2228 
2229 #ifdef ASSERT
2230   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2231     // Sanity check the known type with the incoming class.  For the
2232     // primitive case the types must match exactly with src.klass and
2233     // dst.klass each exactly matching the default type.  For the
2234     // object array case, if no type check is needed then either the
2235     // dst type is exactly the expected type and the src type is a
2236     // subtype which we can't check or src is the same array as dst
2237     // but not necessarily exactly of type default_type.
2238     Label known_ok, halt;
2239     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2240     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2241     if (basic_type != T_OBJECT) {
2242       __ cmp(tmp, tmp2);
2243       __ br(Assembler::notEqual, false, Assembler::pn, halt);
2244       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2245       __ cmp(tmp, tmp2);
2246       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2247       __ delayed()->nop();
2248     } else {
2249       __ cmp(tmp, tmp2);
2250       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2251       __ delayed()->cmp(src, dst);
2252       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2253       __ delayed()->nop();
2254     }
2255     __ bind(halt);
2256     __ stop("incorrect type information in arraycopy");
2257     __ bind(known_ok);
2258   }
2259 #endif
2260 
2261   int shift = shift_amount(basic_type);
2262 
2263   Register src_ptr = O0;
2264   Register dst_ptr = O1;
2265   Register len     = O2;
2266 
2267   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2268   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2269   if (shift == 0) {
2270     __ add(src_ptr, src_pos, src_ptr);
2271   } else {
2272     __ sll(src_pos, shift, tmp);
2273     __ add(src_ptr, tmp, src_ptr);
2274   }
2275 
2276   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2277   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2278   if (shift == 0) {
2279     __ add(dst_ptr, dst_pos, dst_ptr);
2280   } else {
2281     __ sll(dst_pos, shift, tmp);
2282     __ add(dst_ptr, tmp, dst_ptr);
2283   }
2284 
2285   if (basic_type != T_OBJECT) {
2286     if (shift == 0) {
2287       __ mov(length, len);
2288     } else {
2289       __ sll(length, shift, len);
2290     }
2291     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2292   } else {
2293     // oop_arraycopy takes a length in number of elements, so don't scale it.
2294     __ mov(length, len);
2295     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2296   }
2297 
2298   __ bind(*stub->continuation());
2299 }
2300 
2301 
2302 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2303   if (dest->is_single_cpu()) {
2304 #ifdef _LP64
2305     if (left->type() == T_OBJECT) {
2306       switch (code) {
2307         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2308         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2309         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2310         default: ShouldNotReachHere();
2311       }
2312     } else
2313 #endif
2314       switch (code) {
2315         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2316         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2317         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2318         default: ShouldNotReachHere();
2319       }
2320   } else {
2321 #ifdef _LP64
2322     switch (code) {
2323       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2324       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2325       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2326       default: ShouldNotReachHere();
2327     }
2328 #else
2329     switch (code) {
2330       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2331       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2332       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2333       default: ShouldNotReachHere();
2334     }
2335 #endif
2336   }
2337 }
2338 
2339 
2340 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2341 #ifdef _LP64
2342   if (left->type() == T_OBJECT) {
2343     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2344     Register l = left->as_register();
2345     Register d = dest->as_register_lo();
2346     switch (code) {
2347       case lir_shl:  __ sllx  (l, count, d); break;
2348       case lir_shr:  __ srax  (l, count, d); break;
2349       case lir_ushr: __ srlx  (l, count, d); break;
2350       default: ShouldNotReachHere();
2351     }
2352     return;
2353   }
2354 #endif
2355 
2356   if (dest->is_single_cpu()) {
2357     count = count & 0x1F; // Java spec
2358     switch (code) {
2359       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2360       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2361       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2362       default: ShouldNotReachHere();
2363     }
2364   } else if (dest->is_double_cpu()) {
2365     count = count & 63; // Java spec
2366     switch (code) {
2367       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2368       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2369       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2370       default: ShouldNotReachHere();
2371     }
2372   } else {
2373     ShouldNotReachHere();
2374   }
2375 }
2376 
2377 
2378 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2379   assert(op->tmp1()->as_register()  == G1 &&
2380          op->tmp2()->as_register()  == G3 &&
2381          op->tmp3()->as_register()  == G4 &&
2382          op->obj()->as_register()   == O0 &&
2383          op->klass()->as_register() == G5, "must be");
2384   if (op->init_check()) {
2385     __ ld(op->klass()->as_register(),
2386           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2387           op->tmp1()->as_register());
2388     add_debug_info_for_null_check_here(op->stub()->info());
2389     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2390     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2391     __ delayed()->nop();
2392   }
2393   __ allocate_object(op->obj()->as_register(),
2394                      op->tmp1()->as_register(),
2395                      op->tmp2()->as_register(),
2396                      op->tmp3()->as_register(),
2397                      op->header_size(),
2398                      op->object_size(),
2399                      op->klass()->as_register(),
2400                      *op->stub()->entry());
2401   __ bind(*op->stub()->continuation());
2402   __ verify_oop(op->obj()->as_register());
2403 }
2404 
2405 
2406 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2407   assert(op->tmp1()->as_register()  == G1 &&
2408          op->tmp2()->as_register()  == G3 &&
2409          op->tmp3()->as_register()  == G4 &&
2410          op->tmp4()->as_register()  == O1 &&
2411          op->klass()->as_register() == G5, "must be");
2412   if (UseSlowPath ||
2413       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2414       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2415     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2416     __ delayed()->nop();
2417   } else {
2418     __ allocate_array(op->obj()->as_register(),
2419                       op->len()->as_register(),
2420                       op->tmp1()->as_register(),
2421                       op->tmp2()->as_register(),
2422                       op->tmp3()->as_register(),
2423                       arrayOopDesc::header_size(op->type()),
2424                       type2aelembytes(op->type()),
2425                       op->klass()->as_register(),
2426                       *op->stub()->entry());
2427   }
2428   __ bind(*op->stub()->continuation());
2429 }
2430 
2431 
2432 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2433                                         ciMethodData *md, ciProfileData *data,
2434                                         Register recv, Register tmp1, Label* update_done) {
2435   uint i;
2436   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2437     Label next_test;
2438     // See if the receiver is receiver[n].
2439     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2440                           mdo_offset_bias);
2441     __ ld_ptr(receiver_addr, tmp1);
2442     __ verify_oop(tmp1);
2443     __ cmp(recv, tmp1);
2444     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2445     __ delayed()->nop();
2446     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2447                       mdo_offset_bias);
2448     __ ld_ptr(data_addr, tmp1);
2449     __ add(tmp1, DataLayout::counter_increment, tmp1);
2450     __ st_ptr(tmp1, data_addr);
2451     __ ba(false, *update_done);
2452     __ delayed()->nop();
2453     __ bind(next_test);
2454   }
2455 
2456   // Didn't find receiver; find next empty slot and fill it in
2457   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2458     Label next_test;
2459     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2460                       mdo_offset_bias);
2461     load(recv_addr, tmp1, T_OBJECT);
2462     __ br_notnull(tmp1, false, Assembler::pt, next_test);
2463     __ delayed()->nop();
2464     __ st_ptr(recv, recv_addr);
2465     __ set(DataLayout::counter_increment, tmp1);
2466     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2467               mdo_offset_bias);
2468     __ ba(false, *update_done);
2469     __ delayed()->nop();
2470     __ bind(next_test);
2471   }
2472 }
2473 
2474 
2475 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2476                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2477   md = method->method_data();
2478   if (md == NULL) {
2479     bailout("out of memory building methodDataOop");
2480     return;
2481   }
2482   data = md->bci_to_data(bci);
2483   assert(data != NULL,       "need data for checkcast");
2484   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2485   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2486     // The offset is large so bias the mdo by the base of the slot so
2487     // that the ld can use simm13s to reference the slots of the data
2488     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2489   }
2490 }
2491 
2492 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2493   // we always need a stub for the failure case.
2494   CodeStub* stub = op->stub();
2495   Register obj = op->object()->as_register();
2496   Register k_RInfo = op->tmp1()->as_register();
2497   Register klass_RInfo = op->tmp2()->as_register();
2498   Register dst = op->result_opr()->as_register();
2499   Register Rtmp1 = op->tmp3()->as_register();
2500   ciKlass* k = op->klass();
2501 
2502 
2503   if (obj == k_RInfo) {
2504     k_RInfo = klass_RInfo;
2505     klass_RInfo = obj;
2506   }
2507 
2508   ciMethodData* md;
2509   ciProfileData* data;
2510   int mdo_offset_bias = 0;
2511   if (op->should_profile()) {
2512     ciMethod* method = op->profiled_method();
2513     assert(method != NULL, "Should have method");
2514     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2515 
2516     Label not_null;
2517     __ br_notnull(obj, false, Assembler::pn, not_null);
2518     __ delayed()->nop();
2519     Register mdo      = k_RInfo;
2520     Register data_val = Rtmp1;
2521     jobject2reg(md->constant_encoding(), mdo);
2522     if (mdo_offset_bias > 0) {
2523       __ set(mdo_offset_bias, data_val);
2524       __ add(mdo, data_val, mdo);
2525     }
2526     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2527     __ ldub(flags_addr, data_val);
2528     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2529     __ stb(data_val, flags_addr);
2530     __ ba(false, *obj_is_null);
2531     __ delayed()->nop();
2532     __ bind(not_null);
2533   } else {
2534     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2535     __ delayed()->nop();
2536   }
2537 
2538   Label profile_cast_failure, profile_cast_success;
2539   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2540   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2541 
2542   // patching may screw with our temporaries on sparc,
2543   // so let's do it before loading the class
2544   if (k->is_loaded()) {
2545     jobject2reg(k->constant_encoding(), k_RInfo);
2546   } else {
2547     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2548   }
2549   assert(obj != k_RInfo, "must be different");
2550 
2551   // get object class
2552   // not a safepoint as obj null check happens earlier
2553   load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2554   if (op->fast_check()) {
2555     assert_different_registers(klass_RInfo, k_RInfo);
2556     __ cmp(k_RInfo, klass_RInfo);
2557     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2558     __ delayed()->nop();
2559   } else {
2560     bool need_slow_path = true;
2561     if (k->is_loaded()) {
2562       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2563         need_slow_path = false;
2564       // perform the fast part of the checking logic
2565       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2566                                        (need_slow_path ? success_target : NULL),
2567                                        failure_target, NULL,
2568                                        RegisterOrConstant(k->super_check_offset()));
2569     } else {
2570       // perform the fast part of the checking logic
2571       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2572                                        failure_target, NULL);
2573     }
2574     if (need_slow_path) {
2575       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2576       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2577       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2578       __ delayed()->nop();
2579       __ cmp(G3, 0);
2580       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2581       __ delayed()->nop();
2582       // Fall through to success case
2583     }
2584   }
2585 
2586   if (op->should_profile()) {
2587     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2588     assert_different_registers(obj, mdo, recv, tmp1);
2589     __ bind(profile_cast_success);
2590     jobject2reg(md->constant_encoding(), mdo);
2591     if (mdo_offset_bias > 0) {
2592       __ set(mdo_offset_bias, tmp1);
2593       __ add(mdo, tmp1, mdo);
2594     }
2595     load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2596     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2597     // Jump over the failure case
2598     __ ba(false, *success);
2599     __ delayed()->nop();
2600     // Cast failure case
2601     __ bind(profile_cast_failure);
2602     jobject2reg(md->constant_encoding(), mdo);
2603     if (mdo_offset_bias > 0) {
2604       __ set(mdo_offset_bias, tmp1);
2605       __ add(mdo, tmp1, mdo);
2606     }
2607     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2608     __ ld_ptr(data_addr, tmp1);
2609     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2610     __ st_ptr(tmp1, data_addr);
2611     __ ba(false, *failure);
2612     __ delayed()->nop();
2613   }
2614   __ ba(false, *success);
2615   __ delayed()->nop();
2616 }
2617 
2618 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2619   LIR_Code code = op->code();
2620   if (code == lir_store_check) {
2621     Register value = op->object()->as_register();
2622     Register array = op->array()->as_register();
2623     Register k_RInfo = op->tmp1()->as_register();
2624     Register klass_RInfo = op->tmp2()->as_register();
2625     Register Rtmp1 = op->tmp3()->as_register();
2626 
2627     __ verify_oop(value);
2628     CodeStub* stub = op->stub();
2629     // check if it needs to be profiled
2630     ciMethodData* md;
2631     ciProfileData* data;
2632     int mdo_offset_bias = 0;
2633     if (op->should_profile()) {
2634       ciMethod* method = op->profiled_method();
2635       assert(method != NULL, "Should have method");
2636       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2637     }
2638     Label profile_cast_success, profile_cast_failure, done;
2639     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2640     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2641 
2642     if (op->should_profile()) {
2643       Label not_null;
2644       __ br_notnull(value, false, Assembler::pn, not_null);
2645       __ delayed()->nop();
2646       Register mdo      = k_RInfo;
2647       Register data_val = Rtmp1;
2648       jobject2reg(md->constant_encoding(), mdo);
2649       if (mdo_offset_bias > 0) {
2650         __ set(mdo_offset_bias, data_val);
2651         __ add(mdo, data_val, mdo);
2652       }
2653       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2654       __ ldub(flags_addr, data_val);
2655       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2656       __ stb(data_val, flags_addr);
2657       __ ba(false, done);
2658       __ delayed()->nop();
2659       __ bind(not_null);
2660     } else {
2661       __ br_null(value, false, Assembler::pn, done);
2662       __ delayed()->nop();
2663     }
2664     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2665     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2666 
2667     // get instance klass
2668     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2669     // perform the fast part of the checking logic
2670     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2671 
2672     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2673     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2674     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2675     __ delayed()->nop();
2676     __ cmp(G3, 0);
2677     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2678     __ delayed()->nop();
2679     // fall through to the success case
2680 
2681     if (op->should_profile()) {
2682       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2683       assert_different_registers(value, mdo, recv, tmp1);
2684       __ bind(profile_cast_success);
2685       jobject2reg(md->constant_encoding(), mdo);
2686       if (mdo_offset_bias > 0) {
2687         __ set(mdo_offset_bias, tmp1);
2688         __ add(mdo, tmp1, mdo);
2689       }
2690       load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2691       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2692       __ ba(false, done);
2693       __ delayed()->nop();
2694       // Cast failure case
2695       __ bind(profile_cast_failure);
2696       jobject2reg(md->constant_encoding(), mdo);
2697       if (mdo_offset_bias > 0) {
2698         __ set(mdo_offset_bias, tmp1);
2699         __ add(mdo, tmp1, mdo);
2700       }
2701       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2702       __ ld_ptr(data_addr, tmp1);
2703       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2704       __ st_ptr(tmp1, data_addr);
2705       __ ba(false, *stub->entry());
2706       __ delayed()->nop();
2707     }
2708     __ bind(done);
2709   } else if (code == lir_checkcast) {
2710     Register obj = op->object()->as_register();
2711     Register dst = op->result_opr()->as_register();
2712     Label success;
2713     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2714     __ bind(success);
2715     __ mov(obj, dst);
2716   } else if (code == lir_instanceof) {
2717     Register obj = op->object()->as_register();
2718     Register dst = op->result_opr()->as_register();
2719     Label success, failure, done;
2720     emit_typecheck_helper(op, &success, &failure, &failure);
2721     __ bind(failure);
2722     __ set(0, dst);
2723     __ ba(false, done);
2724     __ delayed()->nop();
2725     __ bind(success);
2726     __ set(1, dst);
2727     __ bind(done);
2728   } else {
2729     ShouldNotReachHere();
2730   }
2731 
2732 }
2733 
2734 
2735 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2736   if (op->code() == lir_cas_long) {
2737     assert(VM_Version::supports_cx8(), "wrong machine");
2738     Register addr = op->addr()->as_pointer_register();
2739     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2740     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2741     Register new_value_lo = op->new_value()->as_register_lo();
2742     Register new_value_hi = op->new_value()->as_register_hi();
2743     Register t1 = op->tmp1()->as_register();
2744     Register t2 = op->tmp2()->as_register();
2745 #ifdef _LP64
2746     __ mov(cmp_value_lo, t1);
2747     __ mov(new_value_lo, t2);
2748 #else
2749     // move high and low halves of long values into single registers
2750     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2751     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2752     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2753     __ sllx(new_value_hi, 32, t2);
2754     __ srl(new_value_lo, 0, new_value_lo);
2755     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2756 #endif
2757     // perform the compare and swap operation
2758     __ casx(addr, t1, t2);
2759     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2760     // overwritten with the original value in "addr" and will be equal to t1.
2761     __ cmp(t1, t2);
2762 
2763   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2764     Register addr = op->addr()->as_pointer_register();
2765     Register cmp_value = op->cmp_value()->as_register();
2766     Register new_value = op->new_value()->as_register();
2767     Register t1 = op->tmp1()->as_register();
2768     Register t2 = op->tmp2()->as_register();
2769     __ mov(cmp_value, t1);
2770     __ mov(new_value, t2);
2771 #ifdef _LP64
2772     if (op->code() == lir_cas_obj) {
2773       __ casx(addr, t1, t2);
2774     } else
2775 #endif
2776       {
2777         __ cas(addr, t1, t2);
2778       }
2779     __ cmp(t1, t2);
2780   } else {
2781     Unimplemented();
2782   }
2783 }
2784 
2785 void LIR_Assembler::set_24bit_FPU() {
2786   Unimplemented();
2787 }
2788 
2789 
2790 void LIR_Assembler::reset_FPU() {
2791   Unimplemented();
2792 }
2793 
2794 
2795 void LIR_Assembler::breakpoint() {
2796   __ breakpoint_trap();
2797 }
2798 
2799 
2800 void LIR_Assembler::push(LIR_Opr opr) {
2801   Unimplemented();
2802 }
2803 
2804 
2805 void LIR_Assembler::pop(LIR_Opr opr) {
2806   Unimplemented();
2807 }
2808 
2809 
2810 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2811   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2812   Register dst = dst_opr->as_register();
2813   Register reg = mon_addr.base();
2814   int offset = mon_addr.disp();
2815   // compute pointer to BasicLock
2816   if (mon_addr.is_simm13()) {
2817     __ add(reg, offset, dst);
2818   } else {
2819     __ set(offset, dst);
2820     __ add(dst, reg, dst);
2821   }
2822 }
2823 
2824 
2825 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2826   Register obj = op->obj_opr()->as_register();
2827   Register hdr = op->hdr_opr()->as_register();
2828   Register lock = op->lock_opr()->as_register();
2829 
2830   // obj may not be an oop
2831   if (op->code() == lir_lock) {
2832     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2833     if (UseFastLocking) {
2834       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2835       // add debug info for NullPointerException only if one is possible
2836       if (op->info() != NULL) {
2837         add_debug_info_for_null_check_here(op->info());
2838       }
2839       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2840     } else {
2841       // always do slow locking
2842       // note: the slow locking code could be inlined here, however if we use
2843       //       slow locking, speed doesn't matter anyway and this solution is
2844       //       simpler and requires less duplicated code - additionally, the
2845       //       slow locking code is the same in either case which simplifies
2846       //       debugging
2847       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2848       __ delayed()->nop();
2849     }
2850   } else {
2851     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2852     if (UseFastLocking) {
2853       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2854       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2855     } else {
2856       // always do slow unlocking
2857       // note: the slow unlocking code could be inlined here, however if we use
2858       //       slow unlocking, speed doesn't matter anyway and this solution is
2859       //       simpler and requires less duplicated code - additionally, the
2860       //       slow unlocking code is the same in either case which simplifies
2861       //       debugging
2862       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2863       __ delayed()->nop();
2864     }
2865   }
2866   __ bind(*op->stub()->continuation());
2867 }
2868 
2869 
2870 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2871   ciMethod* method = op->profiled_method();
2872   int bci          = op->profiled_bci();
2873 
2874   // Update counter for all call types
2875   ciMethodData* md = method->method_data();
2876   if (md == NULL) {
2877     bailout("out of memory building methodDataOop");
2878     return;
2879   }
2880   ciProfileData* data = md->bci_to_data(bci);
2881   assert(data->is_CounterData(), "need CounterData for calls");
2882   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2883   Register mdo  = op->mdo()->as_register();
2884 #ifdef _LP64
2885   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2886   Register tmp1 = op->tmp1()->as_register_lo();
2887 #else
2888   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2889   Register tmp1 = op->tmp1()->as_register();
2890 #endif
2891   jobject2reg(md->constant_encoding(), mdo);
2892   int mdo_offset_bias = 0;
2893   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2894                             data->size_in_bytes())) {
2895     // The offset is large so bias the mdo by the base of the slot so
2896     // that the ld can use simm13s to reference the slots of the data
2897     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2898     __ set(mdo_offset_bias, O7);
2899     __ add(mdo, O7, mdo);
2900   }
2901 
2902   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2903   Bytecodes::Code bc = method->java_code_at_bci(bci);
2904   // Perform additional virtual call profiling for invokevirtual and
2905   // invokeinterface bytecodes
2906   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2907       C1ProfileVirtualCalls) {
2908     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2909     Register recv = op->recv()->as_register();
2910     assert_different_registers(mdo, tmp1, recv);
2911     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2912     ciKlass* known_klass = op->known_holder();
2913     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2914       // We know the type that will be seen at this call site; we can
2915       // statically update the methodDataOop rather than needing to do
2916       // dynamic tests on the receiver type
2917 
2918       // NOTE: we should probably put a lock around this search to
2919       // avoid collisions by concurrent compilations
2920       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2921       uint i;
2922       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2923         ciKlass* receiver = vc_data->receiver(i);
2924         if (known_klass->equals(receiver)) {
2925           Address data_addr(mdo, md->byte_offset_of_slot(data,
2926                                                          VirtualCallData::receiver_count_offset(i)) -
2927                             mdo_offset_bias);
2928           __ ld_ptr(data_addr, tmp1);
2929           __ add(tmp1, DataLayout::counter_increment, tmp1);
2930           __ st_ptr(tmp1, data_addr);
2931           return;
2932         }
2933       }
2934 
2935       // Receiver type not found in profile data; select an empty slot
2936 
2937       // Note that this is less efficient than it should be because it
2938       // always does a write to the receiver part of the
2939       // VirtualCallData rather than just the first time
2940       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2941         ciKlass* receiver = vc_data->receiver(i);
2942         if (receiver == NULL) {
2943           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2944                             mdo_offset_bias);
2945           jobject2reg(known_klass->constant_encoding(), tmp1);
2946           __ st_ptr(tmp1, recv_addr);
2947           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2948                             mdo_offset_bias);
2949           __ ld_ptr(data_addr, tmp1);
2950           __ add(tmp1, DataLayout::counter_increment, tmp1);
2951           __ st_ptr(tmp1, data_addr);
2952           return;
2953         }
2954       }
2955     } else {
2956       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2957       Label update_done;
2958       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2959       // Receiver did not match any saved receiver and there is no empty row for it.
2960       // Increment total counter to indicate polymorphic case.
2961       __ ld_ptr(counter_addr, tmp1);
2962       __ add(tmp1, DataLayout::counter_increment, tmp1);
2963       __ st_ptr(tmp1, counter_addr);
2964 
2965       __ bind(update_done);
2966     }
2967   } else {
2968     // Static call
2969     __ ld_ptr(counter_addr, tmp1);
2970     __ add(tmp1, DataLayout::counter_increment, tmp1);
2971     __ st_ptr(tmp1, counter_addr);
2972   }
2973 }
2974 
2975 void LIR_Assembler::align_backward_branch_target() {
2976   __ align(OptoLoopAlignment);
2977 }
2978 
2979 
2980 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2981   // make sure we are expecting a delay
2982   // this has the side effect of clearing the delay state
2983   // so we can use _masm instead of _masm->delayed() to do the
2984   // code generation.
2985   __ delayed();
2986 
2987   // make sure we only emit one instruction
2988   int offset = code_offset();
2989   op->delay_op()->emit_code(this);
2990 #ifdef ASSERT
2991   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
2992     op->delay_op()->print();
2993   }
2994   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
2995          "only one instruction can go in a delay slot");
2996 #endif
2997 
2998   // we may also be emitting the call info for the instruction
2999   // which we are the delay slot of.
3000   CodeEmitInfo* call_info = op->call_info();
3001   if (call_info) {
3002     add_call_info(code_offset(), call_info);
3003   }
3004 
3005   if (VerifyStackAtCalls) {
3006     _masm->sub(FP, SP, O7);
3007     _masm->cmp(O7, initial_frame_size_in_bytes());
3008     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3009   }
3010 }
3011 
3012 
3013 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3014   assert(left->is_register(), "can only handle registers");
3015 
3016   if (left->is_single_cpu()) {
3017     __ neg(left->as_register(), dest->as_register());
3018   } else if (left->is_single_fpu()) {
3019     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3020   } else if (left->is_double_fpu()) {
3021     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3022   } else {
3023     assert (left->is_double_cpu(), "Must be a long");
3024     Register Rlow = left->as_register_lo();
3025     Register Rhi = left->as_register_hi();
3026 #ifdef _LP64
3027     __ sub(G0, Rlow, dest->as_register_lo());
3028 #else
3029     __ subcc(G0, Rlow, dest->as_register_lo());
3030     __ subc (G0, Rhi,  dest->as_register_hi());
3031 #endif
3032   }
3033 }
3034 
3035 
3036 void LIR_Assembler::fxch(int i) {
3037   Unimplemented();
3038 }
3039 
3040 void LIR_Assembler::fld(int i) {
3041   Unimplemented();
3042 }
3043 
3044 void LIR_Assembler::ffree(int i) {
3045   Unimplemented();
3046 }
3047 
3048 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3049                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3050 
3051   // if tmp is invalid, then the function being called doesn't destroy the thread
3052   if (tmp->is_valid()) {
3053     __ save_thread(tmp->as_register());
3054   }
3055   __ call(dest, relocInfo::runtime_call_type);
3056   __ delayed()->nop();
3057   if (info != NULL) {
3058     add_call_info_here(info);
3059   }
3060   if (tmp->is_valid()) {
3061     __ restore_thread(tmp->as_register());
3062   }
3063 
3064 #ifdef ASSERT
3065   __ verify_thread();
3066 #endif // ASSERT
3067 }
3068 
3069 
3070 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3071 #ifdef _LP64
3072   ShouldNotReachHere();
3073 #endif
3074 
3075   NEEDS_CLEANUP;
3076   if (type == T_LONG) {
3077     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3078 
3079     // (extended to allow indexed as well as constant displaced for JSR-166)
3080     Register idx = noreg; // contains either constant offset or index
3081 
3082     int disp = mem_addr->disp();
3083     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3084       if (!Assembler::is_simm13(disp)) {
3085         idx = O7;
3086         __ set(disp, idx);
3087       }
3088     } else {
3089       assert(disp == 0, "not both indexed and disp");
3090       idx = mem_addr->index()->as_register();
3091     }
3092 
3093     int null_check_offset = -1;
3094 
3095     Register base = mem_addr->base()->as_register();
3096     if (src->is_register() && dest->is_address()) {
3097       // G4 is high half, G5 is low half
3098       if (VM_Version::v9_instructions_work()) {
3099         // clear the top bits of G5, and scale up G4
3100         __ srl (src->as_register_lo(),  0, G5);
3101         __ sllx(src->as_register_hi(), 32, G4);
3102         // combine the two halves into the 64 bits of G4
3103         __ or3(G4, G5, G4);
3104         null_check_offset = __ offset();
3105         if (idx == noreg) {
3106           __ stx(G4, base, disp);
3107         } else {
3108           __ stx(G4, base, idx);
3109         }
3110       } else {
3111         __ mov (src->as_register_hi(), G4);
3112         __ mov (src->as_register_lo(), G5);
3113         null_check_offset = __ offset();
3114         if (idx == noreg) {
3115           __ std(G4, base, disp);
3116         } else {
3117           __ std(G4, base, idx);
3118         }
3119       }
3120     } else if (src->is_address() && dest->is_register()) {
3121       null_check_offset = __ offset();
3122       if (VM_Version::v9_instructions_work()) {
3123         if (idx == noreg) {
3124           __ ldx(base, disp, G5);
3125         } else {
3126           __ ldx(base, idx, G5);
3127         }
3128         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3129         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3130       } else {
3131         if (idx == noreg) {
3132           __ ldd(base, disp, G4);
3133         } else {
3134           __ ldd(base, idx, G4);
3135         }
3136         // G4 is high half, G5 is low half
3137         __ mov (G4, dest->as_register_hi());
3138         __ mov (G5, dest->as_register_lo());
3139       }
3140     } else {
3141       Unimplemented();
3142     }
3143     if (info != NULL) {
3144       add_debug_info_for_null_check(null_check_offset, info);
3145     }
3146 
3147   } else {
3148     // use normal move for all other volatiles since they don't need
3149     // special handling to remain atomic.
3150     move_op(src, dest, type, lir_patch_none, info, false, false);
3151   }
3152 }
3153 
3154 void LIR_Assembler::membar() {
3155   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3156   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3157 }
3158 
3159 void LIR_Assembler::membar_acquire() {
3160   // no-op on TSO
3161 }
3162 
3163 void LIR_Assembler::membar_release() {
3164   // no-op on TSO
3165 }
3166 
3167 // Pack two sequential registers containing 32 bit values
3168 // into a single 64 bit register.
3169 // src and src->successor() are packed into dst
3170 // src and dst may be the same register.
3171 // Note: src is destroyed
3172 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3173   Register rs = src->as_register();
3174   Register rd = dst->as_register_lo();
3175   __ sllx(rs, 32, rs);
3176   __ srl(rs->successor(), 0, rs->successor());
3177   __ or3(rs, rs->successor(), rd);
3178 }
3179 
3180 // Unpack a 64 bit value in a register into
3181 // two sequential registers.
3182 // src is unpacked into dst and dst->successor()
3183 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3184   Register rs = src->as_register_lo();
3185   Register rd = dst->as_register_hi();
3186   assert_different_registers(rs, rd, rd->successor());
3187   __ srlx(rs, 32, rd);
3188   __ srl (rs,  0, rd->successor());
3189 }
3190 
3191 
3192 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3193   LIR_Address* addr = addr_opr->as_address_ptr();
3194   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3195 
3196   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3197 }
3198 
3199 
3200 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3201   assert(result_reg->is_register(), "check");
3202   __ mov(G2_thread, result_reg->as_register());
3203 }
3204 
3205 
3206 void LIR_Assembler::peephole(LIR_List* lir) {
3207   LIR_OpList* inst = lir->instructions_list();
3208   for (int i = 0; i < inst->length(); i++) {
3209     LIR_Op* op = inst->at(i);
3210     switch (op->code()) {
3211       case lir_cond_float_branch:
3212       case lir_branch: {
3213         LIR_OpBranch* branch = op->as_OpBranch();
3214         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3215         LIR_Op* delay_op = NULL;
3216         // we'd like to be able to pull following instructions into
3217         // this slot but we don't know enough to do it safely yet so
3218         // only optimize block to block control flow.
3219         if (LIRFillDelaySlots && branch->block()) {
3220           LIR_Op* prev = inst->at(i - 1);
3221           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3222             // swap previous instruction into delay slot
3223             inst->at_put(i - 1, op);
3224             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3225 #ifndef PRODUCT
3226             if (LIRTracePeephole) {
3227               tty->print_cr("delayed");
3228               inst->at(i - 1)->print();
3229               inst->at(i)->print();
3230               tty->cr();
3231             }
3232 #endif
3233             continue;
3234           }
3235         }
3236 
3237         if (!delay_op) {
3238           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3239         }
3240         inst->insert_before(i + 1, delay_op);
3241         break;
3242       }
3243       case lir_static_call:
3244       case lir_virtual_call:
3245       case lir_icvirtual_call:
3246       case lir_optvirtual_call:
3247       case lir_dynamic_call: {
3248         LIR_Op* prev = inst->at(i - 1);
3249         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3250             (op->code() != lir_virtual_call ||
3251              !prev->result_opr()->is_single_cpu() ||
3252              prev->result_opr()->as_register() != O0) &&
3253             LIR_Assembler::is_single_instruction(prev)) {
3254           // Only moves without info can be put into the delay slot.
3255           // Also don't allow the setup of the receiver in the delay
3256           // slot for vtable calls.
3257           inst->at_put(i - 1, op);
3258           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3259 #ifndef PRODUCT
3260           if (LIRTracePeephole) {
3261             tty->print_cr("delayed");
3262             inst->at(i - 1)->print();
3263             inst->at(i)->print();
3264             tty->cr();
3265           }
3266 #endif
3267         } else {
3268           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3269           inst->insert_before(i + 1, delay_op);
3270           i++;
3271         }
3272 
3273 #if defined(TIERED) && !defined(_LP64)
3274         // fixup the return value from G1 to O0/O1 for long returns.
3275         // It's done here instead of in LIRGenerator because there's
3276         // such a mismatch between the single reg and double reg
3277         // calling convention.
3278         LIR_OpJavaCall* callop = op->as_OpJavaCall();
3279         if (callop->result_opr() == FrameMap::out_long_opr) {
3280           LIR_OpJavaCall* call;
3281           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3282           for (int a = 0; a < arguments->length(); a++) {
3283             arguments[a] = callop->arguments()[a];
3284           }
3285           if (op->code() == lir_virtual_call) {
3286             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3287                                       callop->vtable_offset(), arguments, callop->info());
3288           } else {
3289             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3290                                       callop->addr(), arguments, callop->info());
3291           }
3292           inst->at_put(i - 1, call);
3293           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3294                                                  T_LONG, lir_patch_none, NULL));
3295         }
3296 #endif
3297         break;
3298       }
3299     }
3300   }
3301 }
3302 
3303 
3304 
3305 
3306 #undef __