1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 #define __ _masm->
  41 
  42 
  43 //------------------------------------------------------------
  44 
  45 
  46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  47   if (opr->is_constant()) {
  48     LIR_Const* constant = opr->as_constant_ptr();
  49     switch (constant->type()) {
  50       case T_INT: {
  51         jint value = constant->as_jint();
  52         return Assembler::is_simm13(value);
  53       }
  54 
  55       default:
  56         return false;
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 
  63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  64   switch (op->code()) {
  65     case lir_null_check:
  66     return true;
  67 
  68 
  69     case lir_add:
  70     case lir_ushr:
  71     case lir_shr:
  72     case lir_shl:
  73       // integer shifts and adds are always one instruction
  74       return op->result_opr()->is_single_cpu();
  75 
  76 
  77     case lir_move: {
  78       LIR_Op1* op1 = op->as_Op1();
  79       LIR_Opr src = op1->in_opr();
  80       LIR_Opr dst = op1->result_opr();
  81 
  82       if (src == dst) {
  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (dst->is_register()) {
 104         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 105           return !PatchALot;
 106         } else if (src->is_single_stack()) {
 107           return true;
 108         }
 109       }
 110 
 111       if (src->is_register()) {
 112         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 113           return !PatchALot;
 114         } else if (dst->is_single_stack()) {
 115           return true;
 116         }
 117       }
 118 
 119       if (dst->is_register() &&
 120           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 121            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 122         return true;
 123       }
 124 
 125       return false;
 126     }
 127 
 128     default:
 129       return false;
 130   }
 131   ShouldNotReachHere();
 132 }
 133 
 134 
 135 LIR_Opr LIR_Assembler::receiverOpr() {
 136   return FrameMap::O0_oop_opr;
 137 }
 138 
 139 
 140 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 141   return FrameMap::I0_oop_opr;
 142 }
 143 
 144 
 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
 146   return FrameMap::I0_opr;
 147 }
 148 
 149 
 150 int LIR_Assembler::initial_frame_size_in_bytes() {
 151   return in_bytes(frame_map()->framesize_in_bytes());
 152 }
 153 
 154 
 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
 157 // If they do not match we jump to slow case.
 158 int LIR_Assembler::check_icache() {
 159   int offset = __ offset();
 160   __ inline_cache_check(O0, G5_inline_cache_reg);
 161   return offset;
 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 167   //
 168   //   1. Create a new compiled activation.
 169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 170   //      at the osr_bci; it is not initialized.
 171   //   3. Jump to the continuation address in compiled code to resume execution.
 172 
 173   // OSR entry point
 174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 176   ValueStack* entry_state = osr_entry->end()->state();
 177   int number_of_locks = entry_state->locks_size();
 178 
 179   // Create a frame for the compiled activation.
 180   __ build_frame(initial_frame_size_in_bytes());
 181 
 182   // OSR buffer is
 183   //
 184   // locals[nlocals-1..0]
 185   // monitors[number_of_locks-1..0]
 186   //
 187   // locals is a direct copy of the interpreter frame so in the osr buffer
 188   // so first slot in the local array is the last local from the interpreter
 189   // and last slot is local[0] (receiver) from the interpreter
 190   //
 191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 193   // in the interpreter frame (the method lock if a sync method)
 194 
 195   // Initialize monitors in the compiled activation.
 196   //   I0: pointer to osr buffer
 197   //
 198   // All other registers are dead at this point and the locals will be
 199   // copied into place by code emitted in the IR.
 200 
 201   Register OSR_buf = osrBufferPointer()->as_register();
 202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 203     int monitor_offset = BytesPerWord * method()->max_locals() +
 204       (2 * BytesPerWord) * (number_of_locks - 1);
 205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 206     // the OSR buffer using 2 word entries: first the lock and then
 207     // the oop.
 208     for (int i = 0; i < number_of_locks; i++) {
 209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 210 #ifdef ASSERT
 211       // verify the interpreter's monitor has a non-null object
 212       {
 213         Label L;
 214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 215         __ cmp(G0, O7);
 216         __ br(Assembler::notEqual, false, Assembler::pt, L);
 217         __ delayed()->nop();
 218         __ stop("locked object is NULL");
 219         __ bind(L);
 220       }
 221 #endif // ASSERT
 222       // Copy the lock field into the compiled activation.
 223       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 224       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 225       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 226       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 227     }
 228   }
 229 }
 230 
 231 
 232 // Optimized Library calls
 233 // This is the fast version of java.lang.String.compare; it has not
 234 // OSR-entry and therefore, we generate a slow version for OSR's
 235 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 236   Register str0 = left->as_register();
 237   Register str1 = right->as_register();
 238 
 239   Label Ldone;
 240 
 241   Register result = dst->as_register();
 242   {
 243     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 244     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 245     // Also, get string0.count-string1.count in o7 and get the condition code set
 246     // Note: some instructions have been hoisted for better instruction scheduling
 247 
 248     Register tmp0 = L0;
 249     Register tmp1 = L1;
 250     Register tmp2 = L2;
 251 
 252     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 253     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 254     int  count_offset = java_lang_String:: count_offset_in_bytes();
 255 
 256     __ ld_ptr(str0, value_offset, tmp0);
 257     __ ld(str0, offset_offset, tmp2);
 258     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 259     __ ld(str0, count_offset, str0);
 260     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 261 
 262     // str1 may be null
 263     add_debug_info_for_null_check_here(info);
 264 
 265     __ ld_ptr(str1, value_offset, tmp1);
 266     __ add(tmp0, tmp2, tmp0);
 267 
 268     __ ld(str1, offset_offset, tmp2);
 269     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 270     __ ld(str1, count_offset, str1);
 271     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 272     __ subcc(str0, str1, O7);
 273     __ add(tmp1, tmp2, tmp1);
 274   }
 275 
 276   {
 277     // Compute the minimum of the string lengths, scale it and store it in limit
 278     Register count0 = I0;
 279     Register count1 = I1;
 280     Register limit  = L3;
 281 
 282     Label Lskip;
 283     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 284     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 285     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 286     __ bind(Lskip);
 287 
 288     // If either string is empty (or both of them) the result is the difference in lengths
 289     __ cmp(limit, 0);
 290     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 291     __ delayed()->mov(O7, result);  // result is difference in lengths
 292   }
 293 
 294   {
 295     // Neither string is empty
 296     Label Lloop;
 297 
 298     Register base0 = L0;
 299     Register base1 = L1;
 300     Register chr0  = I0;
 301     Register chr1  = I1;
 302     Register limit = L3;
 303 
 304     // Shift base0 and base1 to the end of the arrays, negate limit
 305     __ add(base0, limit, base0);
 306     __ add(base1, limit, base1);
 307     __ neg(limit);  // limit = -min{string0.count, strin1.count}
 308 
 309     __ lduh(base0, limit, chr0);
 310     __ bind(Lloop);
 311     __ lduh(base1, limit, chr1);
 312     __ subcc(chr0, chr1, chr0);
 313     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 314     assert(chr0 == result, "result must be pre-placed");
 315     __ delayed()->inccc(limit, sizeof(jchar));
 316     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 317     __ delayed()->lduh(base0, limit, chr0);
 318   }
 319 
 320   // If strings are equal up to min length, return the length difference.
 321   __ mov(O7, result);
 322 
 323   // Otherwise, return the difference between the first mismatched chars.
 324   __ bind(Ldone);
 325 }
 326 
 327 
 328 // --------------------------------------------------------------------------------------------
 329 
 330 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 331   if (!GenerateSynchronizationCode) return;
 332 
 333   Register obj_reg = obj_opr->as_register();
 334   Register lock_reg = lock_opr->as_register();
 335 
 336   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 337   Register reg = mon_addr.base();
 338   int offset = mon_addr.disp();
 339   // compute pointer to BasicLock
 340   if (mon_addr.is_simm13()) {
 341     __ add(reg, offset, lock_reg);
 342   }
 343   else {
 344     __ set(offset, lock_reg);
 345     __ add(reg, lock_reg, lock_reg);
 346   }
 347   // unlock object
 348   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 349   // _slow_case_stubs->append(slow_case);
 350   // temporary fix: must be created after exceptionhandler, therefore as call stub
 351   _slow_case_stubs->append(slow_case);
 352   if (UseFastLocking) {
 353     // try inlined fast unlocking first, revert to slow locking if it fails
 354     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 355     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 356     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 357   } else {
 358     // always do slow unlocking
 359     // note: the slow unlocking code could be inlined here, however if we use
 360     //       slow unlocking, speed doesn't matter anyway and this solution is
 361     //       simpler and requires less duplicated code - additionally, the
 362     //       slow unlocking code is the same in either case which simplifies
 363     //       debugging
 364     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 365     __ delayed()->nop();
 366   }
 367   // done
 368   __ bind(*slow_case->continuation());
 369 }
 370 
 371 
 372 int LIR_Assembler::emit_exception_handler() {
 373   // if the last instruction is a call (typically to do a throw which
 374   // is coming at the end after block reordering) the return address
 375   // must still point into the code area in order to avoid assertion
 376   // failures when searching for the corresponding bci => add a nop
 377   // (was bug 5/14/1999 - gri)
 378   __ nop();
 379 
 380   // generate code for exception handler
 381   ciMethod* method = compilation()->method();
 382 
 383   address handler_base = __ start_a_stub(exception_handler_size);
 384 
 385   if (handler_base == NULL) {
 386     // not enough space left for the handler
 387     bailout("exception handler overflow");
 388     return -1;
 389   }
 390 
 391   int offset = code_offset();
 392 
 393   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
 394   __ delayed()->nop();
 395   debug_only(__ stop("should have gone to the caller");)
 396   assert(code_offset() - offset <= exception_handler_size, "overflow");
 397   __ end_a_stub();
 398 
 399   return offset;
 400 }
 401 
 402 
 403 // Emit the code to remove the frame from the stack in the exception
 404 // unwind path.
 405 int LIR_Assembler::emit_unwind_handler() {
 406 #ifndef PRODUCT
 407   if (CommentedAssembly) {
 408     _masm->block_comment("Unwind handler");
 409   }
 410 #endif
 411 
 412   int offset = code_offset();
 413 
 414   // Fetch the exception from TLS and clear out exception related thread state
 415   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 416   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 417   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 418 
 419   __ bind(_unwind_handler_entry);
 420   __ verify_not_null_oop(O0);
 421   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 422     __ mov(O0, I0);  // Preserve the exception
 423   }
 424 
 425   // Preform needed unlocking
 426   MonitorExitStub* stub = NULL;
 427   if (method()->is_synchronized()) {
 428     monitor_address(0, FrameMap::I1_opr);
 429     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 430     __ unlock_object(I3, I2, I1, *stub->entry());
 431     __ bind(*stub->continuation());
 432   }
 433 
 434   if (compilation()->env()->dtrace_method_probes()) {
 435     jobject2reg(method()->constant_encoding(), O0);
 436     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 437     __ delayed()->nop();
 438   }
 439 
 440   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 441     __ mov(I0, O0);  // Restore the exception
 442   }
 443 
 444   // dispatch to the unwind logic
 445   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 446   __ delayed()->nop();
 447 
 448   // Emit the slow path assembly
 449   if (stub != NULL) {
 450     stub->emit_code(this);
 451   }
 452 
 453   return offset;
 454 }
 455 
 456 
 457 int LIR_Assembler::emit_deopt_handler() {
 458   // if the last instruction is a call (typically to do a throw which
 459   // is coming at the end after block reordering) the return address
 460   // must still point into the code area in order to avoid assertion
 461   // failures when searching for the corresponding bci => add a nop
 462   // (was bug 5/14/1999 - gri)
 463   __ nop();
 464 
 465   // generate code for deopt handler
 466   ciMethod* method = compilation()->method();
 467   address handler_base = __ start_a_stub(deopt_handler_size);
 468   if (handler_base == NULL) {
 469     // not enough space left for the handler
 470     bailout("deopt handler overflow");
 471     return -1;
 472   }
 473 
 474   int offset = code_offset();
 475   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 476   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 477   __ delayed()->nop();
 478   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 479   debug_only(__ stop("should have gone to the caller");)
 480   __ end_a_stub();
 481 
 482   return offset;
 483 }
 484 
 485 
 486 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 487   if (o == NULL) {
 488     __ set(NULL_WORD, reg);
 489   } else {
 490     int oop_index = __ oop_recorder()->find_index(o);
 491     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 492     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 493   }
 494 }
 495 
 496 
 497 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 498   // Allocate a new index in oop table to hold the oop once it's been patched
 499   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 500   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 501 
 502   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 503   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 504   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 505   // NULL will be dynamically patched later and the patched value may be large.  We must
 506   // therefore generate the sethi/add as a placeholders
 507   __ patchable_set(addrlit, reg);
 508 
 509   patching_epilog(patch, lir_patch_normal, reg, info);
 510 }
 511 
 512 
 513 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 514   Register Rdividend = op->in_opr1()->as_register();
 515   Register Rdivisor  = noreg;
 516   Register Rscratch  = op->in_opr3()->as_register();
 517   Register Rresult   = op->result_opr()->as_register();
 518   int divisor = -1;
 519 
 520   if (op->in_opr2()->is_register()) {
 521     Rdivisor = op->in_opr2()->as_register();
 522   } else {
 523     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 524     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 525   }
 526 
 527   assert(Rdividend != Rscratch, "");
 528   assert(Rdivisor  != Rscratch, "");
 529   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 530 
 531   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 532     // convert division by a power of two into some shifts and logical operations
 533     if (op->code() == lir_idiv) {
 534       if (divisor == 2) {
 535         __ srl(Rdividend, 31, Rscratch);
 536       } else {
 537         __ sra(Rdividend, 31, Rscratch);
 538         __ and3(Rscratch, divisor - 1, Rscratch);
 539       }
 540       __ add(Rdividend, Rscratch, Rscratch);
 541       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 542       return;
 543     } else {
 544       if (divisor == 2) {
 545         __ srl(Rdividend, 31, Rscratch);
 546       } else {
 547         __ sra(Rdividend, 31, Rscratch);
 548         __ and3(Rscratch, divisor - 1,Rscratch);
 549       }
 550       __ add(Rdividend, Rscratch, Rscratch);
 551       __ andn(Rscratch, divisor - 1,Rscratch);
 552       __ sub(Rdividend, Rscratch, Rresult);
 553       return;
 554     }
 555   }
 556 
 557   __ sra(Rdividend, 31, Rscratch);
 558   __ wry(Rscratch);
 559   if (!VM_Version::v9_instructions_work()) {
 560     // v9 doesn't require these nops
 561     __ nop();
 562     __ nop();
 563     __ nop();
 564     __ nop();
 565   }
 566 
 567   add_debug_info_for_div0_here(op->info());
 568 
 569   if (Rdivisor != noreg) {
 570     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 571   } else {
 572     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 573     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 574   }
 575 
 576   Label skip;
 577   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 578   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 579   __ bind(skip);
 580 
 581   if (op->code() == lir_irem) {
 582     if (Rdivisor != noreg) {
 583       __ smul(Rscratch, Rdivisor, Rscratch);
 584     } else {
 585       __ smul(Rscratch, divisor, Rscratch);
 586     }
 587     __ sub(Rdividend, Rscratch, Rresult);
 588   }
 589 }
 590 
 591 
 592 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 593 #ifdef ASSERT
 594   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 595   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 596   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 597 #endif
 598   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 599 
 600   if (op->cond() == lir_cond_always) {
 601     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 602   } else if (op->code() == lir_cond_float_branch) {
 603     assert(op->ublock() != NULL, "must have unordered successor");
 604     bool is_unordered = (op->ublock() == op->block());
 605     Assembler::Condition acond;
 606     switch (op->cond()) {
 607       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 608       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 609       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 610       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 611       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 612       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 613       default :                         ShouldNotReachHere();
 614     };
 615 
 616     if (!VM_Version::v9_instructions_work()) {
 617       __ nop();
 618     }
 619     __ fb( acond, false, Assembler::pn, *(op->label()));
 620   } else {
 621     assert (op->code() == lir_branch, "just checking");
 622 
 623     Assembler::Condition acond;
 624     switch (op->cond()) {
 625       case lir_cond_equal:        acond = Assembler::equal;                break;
 626       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 627       case lir_cond_less:         acond = Assembler::less;                 break;
 628       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 629       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 630       case lir_cond_greater:      acond = Assembler::greater;              break;
 631       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 632       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 633       default:                         ShouldNotReachHere();
 634     };
 635 
 636     // sparc has different condition codes for testing 32-bit
 637     // vs. 64-bit values.  We could always test xcc is we could
 638     // guarantee that 32-bit loads always sign extended but that isn't
 639     // true and since sign extension isn't free, it would impose a
 640     // slight cost.
 641 #ifdef _LP64
 642     if  (op->type() == T_INT) {
 643       __ br(acond, false, Assembler::pn, *(op->label()));
 644     } else
 645 #endif
 646       __ brx(acond, false, Assembler::pn, *(op->label()));
 647   }
 648   // The peephole pass fills the delay slot
 649 }
 650 
 651 
 652 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 653   Bytecodes::Code code = op->bytecode();
 654   LIR_Opr dst = op->result_opr();
 655 
 656   switch(code) {
 657     case Bytecodes::_i2l: {
 658       Register rlo  = dst->as_register_lo();
 659       Register rhi  = dst->as_register_hi();
 660       Register rval = op->in_opr()->as_register();
 661 #ifdef _LP64
 662       __ sra(rval, 0, rlo);
 663 #else
 664       __ mov(rval, rlo);
 665       __ sra(rval, BitsPerInt-1, rhi);
 666 #endif
 667       break;
 668     }
 669     case Bytecodes::_i2d:
 670     case Bytecodes::_i2f: {
 671       bool is_double = (code == Bytecodes::_i2d);
 672       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 673       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 674       FloatRegister rsrc = op->in_opr()->as_float_reg();
 675       if (rsrc != rdst) {
 676         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 677       }
 678       __ fitof(w, rdst, rdst);
 679       break;
 680     }
 681     case Bytecodes::_f2i:{
 682       FloatRegister rsrc = op->in_opr()->as_float_reg();
 683       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 684       Label L;
 685       // result must be 0 if value is NaN; test by comparing value to itself
 686       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 687       if (!VM_Version::v9_instructions_work()) {
 688         __ nop();
 689       }
 690       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 691       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 692       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 693       // move integer result from float register to int register
 694       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 695       __ bind (L);
 696       break;
 697     }
 698     case Bytecodes::_l2i: {
 699       Register rlo  = op->in_opr()->as_register_lo();
 700       Register rhi  = op->in_opr()->as_register_hi();
 701       Register rdst = dst->as_register();
 702 #ifdef _LP64
 703       __ sra(rlo, 0, rdst);
 704 #else
 705       __ mov(rlo, rdst);
 706 #endif
 707       break;
 708     }
 709     case Bytecodes::_d2f:
 710     case Bytecodes::_f2d: {
 711       bool is_double = (code == Bytecodes::_f2d);
 712       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 713       LIR_Opr val = op->in_opr();
 714       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 715       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 716       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 717       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 718       __ ftof(vw, dw, rval, rdst);
 719       break;
 720     }
 721     case Bytecodes::_i2s:
 722     case Bytecodes::_i2b: {
 723       Register rval = op->in_opr()->as_register();
 724       Register rdst = dst->as_register();
 725       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 726       __ sll (rval, shift, rdst);
 727       __ sra (rdst, shift, rdst);
 728       break;
 729     }
 730     case Bytecodes::_i2c: {
 731       Register rval = op->in_opr()->as_register();
 732       Register rdst = dst->as_register();
 733       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 734       __ sll (rval, shift, rdst);
 735       __ srl (rdst, shift, rdst);
 736       break;
 737     }
 738 
 739     default: ShouldNotReachHere();
 740   }
 741 }
 742 
 743 
 744 void LIR_Assembler::align_call(LIR_Code) {
 745   // do nothing since all instructions are word aligned on sparc
 746 }
 747 
 748 
 749 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 750   __ call(op->addr(), rtype);
 751   // The peephole pass fills the delay slot, add_call_info is done in
 752   // LIR_Assembler::emit_delay.
 753 }
 754 
 755 
 756 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 757   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 758   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 759   __ relocate(rspec);
 760   __ call(op->addr(), relocInfo::none);
 761   // The peephole pass fills the delay slot, add_call_info is done in
 762   // LIR_Assembler::emit_delay.
 763 }
 764 
 765 
 766 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 767   add_debug_info_for_null_check_here(op->info());
 768   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 769   if (__ is_simm13(op->vtable_offset())) {
 770     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 771   } else {
 772     // This will generate 2 instructions
 773     __ set(op->vtable_offset(), G5_method);
 774     // ld_ptr, set_hi, set
 775     __ ld_ptr(G3_scratch, G5_method, G5_method);
 776   }
 777   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 778   __ callr(G3_scratch, G0);
 779   // the peephole pass fills the delay slot
 780 }
 781 
 782 
 783 // load with 32-bit displacement
 784 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 785   int load_offset = code_offset();
 786   if (Assembler::is_simm13(disp)) {
 787     if (info != NULL) add_debug_info_for_null_check_here(info);
 788     switch(ld_type) {
 789       case T_BOOLEAN: // fall through
 790       case T_BYTE  : __ ldsb(s, disp, d); break;
 791       case T_CHAR  : __ lduh(s, disp, d); break;
 792       case T_SHORT : __ ldsh(s, disp, d); break;
 793       case T_INT   : __ ld(s, disp, d); break;
 794       case T_ADDRESS:// fall through
 795       case T_ARRAY : // fall through
 796       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 797       default      : ShouldNotReachHere();
 798     }
 799   } else {
 800     __ set(disp, O7);
 801     if (info != NULL) add_debug_info_for_null_check_here(info);
 802     load_offset = code_offset();
 803     switch(ld_type) {
 804       case T_BOOLEAN: // fall through
 805       case T_BYTE  : __ ldsb(s, O7, d); break;
 806       case T_CHAR  : __ lduh(s, O7, d); break;
 807       case T_SHORT : __ ldsh(s, O7, d); break;
 808       case T_INT   : __ ld(s, O7, d); break;
 809       case T_ADDRESS:// fall through
 810       case T_ARRAY : // fall through
 811       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 812       default      : ShouldNotReachHere();
 813     }
 814   }
 815   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 816   return load_offset;
 817 }
 818 
 819 
 820 // store with 32-bit displacement
 821 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 822   if (Assembler::is_simm13(offset)) {
 823     if (info != NULL)  add_debug_info_for_null_check_here(info);
 824     switch (type) {
 825       case T_BOOLEAN: // fall through
 826       case T_BYTE  : __ stb(value, base, offset); break;
 827       case T_CHAR  : __ sth(value, base, offset); break;
 828       case T_SHORT : __ sth(value, base, offset); break;
 829       case T_INT   : __ stw(value, base, offset); break;
 830       case T_ADDRESS:// fall through
 831       case T_ARRAY : // fall through
 832       case T_OBJECT: __ st_ptr(value, base, offset); break;
 833       default      : ShouldNotReachHere();
 834     }
 835   } else {
 836     __ set(offset, O7);
 837     if (info != NULL) add_debug_info_for_null_check_here(info);
 838     switch (type) {
 839       case T_BOOLEAN: // fall through
 840       case T_BYTE  : __ stb(value, base, O7); break;
 841       case T_CHAR  : __ sth(value, base, O7); break;
 842       case T_SHORT : __ sth(value, base, O7); break;
 843       case T_INT   : __ stw(value, base, O7); break;
 844       case T_ADDRESS:// fall through
 845       case T_ARRAY : //fall through
 846       case T_OBJECT: __ st_ptr(value, base, O7); break;
 847       default      : ShouldNotReachHere();
 848     }
 849   }
 850   // Note: Do the store before verification as the code might be patched!
 851   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 852 }
 853 
 854 
 855 // load float with 32-bit displacement
 856 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 857   FloatRegisterImpl::Width w;
 858   switch(ld_type) {
 859     case T_FLOAT : w = FloatRegisterImpl::S; break;
 860     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 861     default      : ShouldNotReachHere();
 862   }
 863 
 864   if (Assembler::is_simm13(disp)) {
 865     if (info != NULL) add_debug_info_for_null_check_here(info);
 866     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 867       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 868       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 869     } else {
 870       __ ldf(w, s, disp, d);
 871     }
 872   } else {
 873     __ set(disp, O7);
 874     if (info != NULL) add_debug_info_for_null_check_here(info);
 875     __ ldf(w, s, O7, d);
 876   }
 877 }
 878 
 879 
 880 // store float with 32-bit displacement
 881 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 882   FloatRegisterImpl::Width w;
 883   switch(type) {
 884     case T_FLOAT : w = FloatRegisterImpl::S; break;
 885     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 886     default      : ShouldNotReachHere();
 887   }
 888 
 889   if (Assembler::is_simm13(offset)) {
 890     if (info != NULL) add_debug_info_for_null_check_here(info);
 891     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 892       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 893       __ stf(FloatRegisterImpl::S, value             , base, offset);
 894     } else {
 895       __ stf(w, value, base, offset);
 896     }
 897   } else {
 898     __ set(offset, O7);
 899     if (info != NULL) add_debug_info_for_null_check_here(info);
 900     __ stf(w, value, O7, base);
 901   }
 902 }
 903 
 904 
 905 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 906   int store_offset;
 907   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 908     assert(!unaligned, "can't handle this");
 909     // for offsets larger than a simm13 we setup the offset in O7
 910     __ set(offset, O7);
 911     store_offset = store(from_reg, base, O7, type);
 912   } else {
 913     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 914     store_offset = code_offset();
 915     switch (type) {
 916       case T_BOOLEAN: // fall through
 917       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 918       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 919       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 920       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 921       case T_LONG  :
 922 #ifdef _LP64
 923         if (unaligned || PatchALot) {
 924           __ srax(from_reg->as_register_lo(), 32, O7);
 925           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 926           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 927         } else {
 928           __ stx(from_reg->as_register_lo(), base, offset);
 929         }
 930 #else
 931         assert(Assembler::is_simm13(offset + 4), "must be");
 932         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 933         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 934 #endif
 935         break;
 936       case T_ADDRESS:// fall through
 937       case T_ARRAY : // fall through
 938       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
 939       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 940       case T_DOUBLE:
 941         {
 942           FloatRegister reg = from_reg->as_double_reg();
 943           // split unaligned stores
 944           if (unaligned || PatchALot) {
 945             assert(Assembler::is_simm13(offset + 4), "must be");
 946             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 947             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 948           } else {
 949             __ stf(FloatRegisterImpl::D, reg, base, offset);
 950           }
 951           break;
 952         }
 953       default      : ShouldNotReachHere();
 954     }
 955   }
 956   return store_offset;
 957 }
 958 
 959 
 960 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 961   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
 962   int store_offset = code_offset();
 963   switch (type) {
 964     case T_BOOLEAN: // fall through
 965     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 966     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 967     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 968     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 969     case T_LONG  :
 970 #ifdef _LP64
 971       __ stx(from_reg->as_register_lo(), base, disp);
 972 #else
 973       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 974       __ std(from_reg->as_register_hi(), base, disp);
 975 #endif
 976       break;
 977     case T_ADDRESS:// fall through
 978     case T_ARRAY : // fall through
 979     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
 980     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 981     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 982     default      : ShouldNotReachHere();
 983   }
 984   return store_offset;
 985 }
 986 
 987 
 988 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 989   int load_offset;
 990   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 991     assert(base != O7, "destroying register");
 992     assert(!unaligned, "can't handle this");
 993     // for offsets larger than a simm13 we setup the offset in O7
 994     __ set(offset, O7);
 995     load_offset = load(base, O7, to_reg, type);
 996   } else {
 997     load_offset = code_offset();
 998     switch(type) {
 999       case T_BOOLEAN: // fall through
1000       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
1001       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
1002       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
1003       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
1004       case T_LONG  :
1005         if (!unaligned) {
1006 #ifdef _LP64
1007           __ ldx(base, offset, to_reg->as_register_lo());
1008 #else
1009           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1010                  "must be sequential");
1011           __ ldd(base, offset, to_reg->as_register_hi());
1012 #endif
1013         } else {
1014 #ifdef _LP64
1015           assert(base != to_reg->as_register_lo(), "can't handle this");
1016           assert(O7 != to_reg->as_register_lo(), "can't handle this");
1017           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
1018           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
1019           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
1020           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
1021 #else
1022           if (base == to_reg->as_register_lo()) {
1023             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1024             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1025           } else {
1026             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1027             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1028           }
1029 #endif
1030         }
1031         break;
1032       case T_ADDRESS:// fall through
1033       case T_ARRAY : // fall through
1034       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
1035       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1036       case T_DOUBLE:
1037         {
1038           FloatRegister reg = to_reg->as_double_reg();
1039           // split unaligned loads
1040           if (unaligned || PatchALot) {
1041             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1042             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1043           } else {
1044             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1045           }
1046           break;
1047         }
1048       default      : ShouldNotReachHere();
1049     }
1050     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1051   }
1052   return load_offset;
1053 }
1054 
1055 
1056 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1057   int load_offset = code_offset();
1058   switch(type) {
1059     case T_BOOLEAN: // fall through
1060     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1061     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1062     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1063     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1064     case T_ADDRESS:// fall through
1065     case T_ARRAY : // fall through
1066     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
1067     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1068     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1069     case T_LONG  :
1070 #ifdef _LP64
1071       __ ldx(base, disp, to_reg->as_register_lo());
1072 #else
1073       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1074              "must be sequential");
1075       __ ldd(base, disp, to_reg->as_register_hi());
1076 #endif
1077       break;
1078     default      : ShouldNotReachHere();
1079   }
1080   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
1081   return load_offset;
1082 }
1083 
1084 
1085 // load/store with an Address
1086 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1087   load(a.base(), a.disp() + offset, d, ld_type, info);
1088 }
1089 
1090 
1091 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1092   store(value, dest.base(), dest.disp() + offset, type, info);
1093 }
1094 
1095 
1096 // loadf/storef with an Address
1097 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1098   load(a.base(), a.disp() + offset, d, ld_type, info);
1099 }
1100 
1101 
1102 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1103   store(value, dest.base(), dest.disp() + offset, type, info);
1104 }
1105 
1106 
1107 // load/store with an Address
1108 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1109   load(as_Address(a), d, ld_type, info);
1110 }
1111 
1112 
1113 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1114   store(value, as_Address(dest), type, info);
1115 }
1116 
1117 
1118 // loadf/storef with an Address
1119 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1120   load(as_Address(a), d, ld_type, info);
1121 }
1122 
1123 
1124 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1125   store(value, as_Address(dest), type, info);
1126 }
1127 
1128 
1129 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1130   LIR_Const* c = src->as_constant_ptr();
1131   switch (c->type()) {
1132     case T_INT:
1133     case T_FLOAT:
1134     case T_ADDRESS: {
1135       Register src_reg = O7;
1136       int value = c->as_jint_bits();
1137       if (value == 0) {
1138         src_reg = G0;
1139       } else {
1140         __ set(value, O7);
1141       }
1142       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1143       __ stw(src_reg, addr.base(), addr.disp());
1144       break;
1145     }
1146     case T_OBJECT: {
1147       Register src_reg = O7;
1148       jobject2reg(c->as_jobject(), src_reg);
1149       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1150       __ st_ptr(src_reg, addr.base(), addr.disp());
1151       break;
1152     }
1153     case T_LONG:
1154     case T_DOUBLE: {
1155       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1156 
1157       Register tmp = O7;
1158       int value_lo = c->as_jint_lo_bits();
1159       if (value_lo == 0) {
1160         tmp = G0;
1161       } else {
1162         __ set(value_lo, O7);
1163       }
1164       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1165       int value_hi = c->as_jint_hi_bits();
1166       if (value_hi == 0) {
1167         tmp = G0;
1168       } else {
1169         __ set(value_hi, O7);
1170       }
1171       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1172       break;
1173     }
1174     default:
1175       Unimplemented();
1176   }
1177 }
1178 
1179 
1180 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1181   LIR_Const* c = src->as_constant_ptr();
1182   LIR_Address* addr     = dest->as_address_ptr();
1183   Register base = addr->base()->as_pointer_register();
1184 
1185   if (info != NULL) {
1186     add_debug_info_for_null_check_here(info);
1187   }
1188   switch (c->type()) {
1189     case T_INT:
1190     case T_FLOAT:
1191     case T_ADDRESS: {
1192       LIR_Opr tmp = FrameMap::O7_opr;
1193       int value = c->as_jint_bits();
1194       if (value == 0) {
1195         tmp = FrameMap::G0_opr;
1196       } else if (Assembler::is_simm13(value)) {
1197         __ set(value, O7);
1198       }
1199       if (addr->index()->is_valid()) {
1200         assert(addr->disp() == 0, "must be zero");
1201         store(tmp, base, addr->index()->as_pointer_register(), type);
1202       } else {
1203         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1204         store(tmp, base, addr->disp(), type);
1205       }
1206       break;
1207     }
1208     case T_LONG:
1209     case T_DOUBLE: {
1210       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1211       assert(Assembler::is_simm13(addr->disp()) &&
1212              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1213 
1214       Register tmp = O7;
1215       int value_lo = c->as_jint_lo_bits();
1216       if (value_lo == 0) {
1217         tmp = G0;
1218       } else {
1219         __ set(value_lo, O7);
1220       }
1221       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1222       int value_hi = c->as_jint_hi_bits();
1223       if (value_hi == 0) {
1224         tmp = G0;
1225       } else {
1226         __ set(value_hi, O7);
1227       }
1228       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1229       break;
1230     }
1231     case T_OBJECT: {
1232       jobject obj = c->as_jobject();
1233       LIR_Opr tmp;
1234       if (obj == NULL) {
1235         tmp = FrameMap::G0_opr;
1236       } else {
1237         tmp = FrameMap::O7_opr;
1238         jobject2reg(c->as_jobject(), O7);
1239       }
1240       // handle either reg+reg or reg+disp address
1241       if (addr->index()->is_valid()) {
1242         assert(addr->disp() == 0, "must be zero");
1243         store(tmp, base, addr->index()->as_pointer_register(), type);
1244       } else {
1245         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1246         store(tmp, base, addr->disp(), type);
1247       }
1248 
1249       break;
1250     }
1251     default:
1252       Unimplemented();
1253   }
1254 }
1255 
1256 
1257 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1258   LIR_Const* c = src->as_constant_ptr();
1259   LIR_Opr to_reg = dest;
1260 
1261   switch (c->type()) {
1262     case T_INT:
1263     case T_ADDRESS:
1264       {
1265         jint con = c->as_jint();
1266         if (to_reg->is_single_cpu()) {
1267           assert(patch_code == lir_patch_none, "no patching handled here");
1268           __ set(con, to_reg->as_register());
1269         } else {
1270           ShouldNotReachHere();
1271           assert(to_reg->is_single_fpu(), "wrong register kind");
1272 
1273           __ set(con, O7);
1274           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1275           __ st(O7, temp_slot);
1276           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1277         }
1278       }
1279       break;
1280 
1281     case T_LONG:
1282       {
1283         jlong con = c->as_jlong();
1284 
1285         if (to_reg->is_double_cpu()) {
1286 #ifdef _LP64
1287           __ set(con,  to_reg->as_register_lo());
1288 #else
1289           __ set(low(con),  to_reg->as_register_lo());
1290           __ set(high(con), to_reg->as_register_hi());
1291 #endif
1292 #ifdef _LP64
1293         } else if (to_reg->is_single_cpu()) {
1294           __ set(con, to_reg->as_register());
1295 #endif
1296         } else {
1297           ShouldNotReachHere();
1298           assert(to_reg->is_double_fpu(), "wrong register kind");
1299           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1300           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1301           __ set(low(con),  O7);
1302           __ st(O7, temp_slot_lo);
1303           __ set(high(con), O7);
1304           __ st(O7, temp_slot_hi);
1305           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1306         }
1307       }
1308       break;
1309 
1310     case T_OBJECT:
1311       {
1312         if (patch_code == lir_patch_none) {
1313           jobject2reg(c->as_jobject(), to_reg->as_register());
1314         } else {
1315           jobject2reg_with_patching(to_reg->as_register(), info);
1316         }
1317       }
1318       break;
1319 
1320     case T_FLOAT:
1321       {
1322         address const_addr = __ float_constant(c->as_jfloat());
1323         if (const_addr == NULL) {
1324           bailout("const section overflow");
1325           break;
1326         }
1327         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1328         AddressLiteral const_addrlit(const_addr, rspec);
1329         if (to_reg->is_single_fpu()) {
1330           __ patchable_sethi(const_addrlit, O7);
1331           __ relocate(rspec);
1332           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1333 
1334         } else {
1335           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1336 
1337           __ set(const_addrlit, O7);
1338           load(O7, 0, to_reg->as_register(), T_INT);
1339         }
1340       }
1341       break;
1342 
1343     case T_DOUBLE:
1344       {
1345         address const_addr = __ double_constant(c->as_jdouble());
1346         if (const_addr == NULL) {
1347           bailout("const section overflow");
1348           break;
1349         }
1350         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1351 
1352         if (to_reg->is_double_fpu()) {
1353           AddressLiteral const_addrlit(const_addr, rspec);
1354           __ patchable_sethi(const_addrlit, O7);
1355           __ relocate(rspec);
1356           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1357         } else {
1358           assert(to_reg->is_double_cpu(), "Must be a long register.");
1359 #ifdef _LP64
1360           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1361 #else
1362           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1363           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1364 #endif
1365         }
1366 
1367       }
1368       break;
1369 
1370     default:
1371       ShouldNotReachHere();
1372   }
1373 }
1374 
1375 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1376   Register reg = addr->base()->as_register();
1377   return Address(reg, addr->disp());
1378 }
1379 
1380 
1381 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1382   switch (type) {
1383     case T_INT:
1384     case T_FLOAT: {
1385       Register tmp = O7;
1386       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1387       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1388       __ lduw(from.base(), from.disp(), tmp);
1389       __ stw(tmp, to.base(), to.disp());
1390       break;
1391     }
1392     case T_OBJECT: {
1393       Register tmp = O7;
1394       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1395       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1396       __ ld_ptr(from.base(), from.disp(), tmp);
1397       __ st_ptr(tmp, to.base(), to.disp());
1398       break;
1399     }
1400     case T_LONG:
1401     case T_DOUBLE: {
1402       Register tmp = O7;
1403       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1404       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1405       __ lduw(from.base(), from.disp(), tmp);
1406       __ stw(tmp, to.base(), to.disp());
1407       __ lduw(from.base(), from.disp() + 4, tmp);
1408       __ stw(tmp, to.base(), to.disp() + 4);
1409       break;
1410     }
1411 
1412     default:
1413       ShouldNotReachHere();
1414   }
1415 }
1416 
1417 
1418 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1419   Address base = as_Address(addr);
1420   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1421 }
1422 
1423 
1424 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1425   Address base = as_Address(addr);
1426   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1427 }
1428 
1429 
1430 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1431                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1432 
1433   LIR_Address* addr = src_opr->as_address_ptr();
1434   LIR_Opr to_reg = dest;
1435 
1436   Register src = addr->base()->as_pointer_register();
1437   Register disp_reg = noreg;
1438   int disp_value = addr->disp();
1439   bool needs_patching = (patch_code != lir_patch_none);
1440 
1441   if (addr->base()->type() == T_OBJECT) {
1442     __ verify_oop(src);
1443   }
1444 
1445   PatchingStub* patch = NULL;
1446   if (needs_patching) {
1447     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1448     assert(!to_reg->is_double_cpu() ||
1449            patch_code == lir_patch_none ||
1450            patch_code == lir_patch_normal, "patching doesn't match register");
1451   }
1452 
1453   if (addr->index()->is_illegal()) {
1454     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1455       if (needs_patching) {
1456         __ patchable_set(0, O7);
1457       } else {
1458         __ set(disp_value, O7);
1459       }
1460       disp_reg = O7;
1461     }
1462   } else if (unaligned || PatchALot) {
1463     __ add(src, addr->index()->as_register(), O7);
1464     src = O7;
1465   } else {
1466     disp_reg = addr->index()->as_pointer_register();
1467     assert(disp_value == 0, "can't handle 3 operand addresses");
1468   }
1469 
1470   // remember the offset of the load.  The patching_epilog must be done
1471   // before the call to add_debug_info, otherwise the PcDescs don't get
1472   // entered in increasing order.
1473   int offset = code_offset();
1474 
1475   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1476   if (disp_reg == noreg) {
1477     offset = load(src, disp_value, to_reg, type, unaligned);
1478   } else {
1479     assert(!unaligned, "can't handle this");
1480     offset = load(src, disp_reg, to_reg, type);
1481   }
1482 
1483   if (patch != NULL) {
1484     patching_epilog(patch, patch_code, src, info);
1485   }
1486 
1487   if (info != NULL) add_debug_info_for_null_check(offset, info);
1488 }
1489 
1490 
1491 void LIR_Assembler::prefetchr(LIR_Opr src) {
1492   LIR_Address* addr = src->as_address_ptr();
1493   Address from_addr = as_Address(addr);
1494 
1495   if (VM_Version::has_v9()) {
1496     __ prefetch(from_addr, Assembler::severalReads);
1497   }
1498 }
1499 
1500 
1501 void LIR_Assembler::prefetchw(LIR_Opr src) {
1502   LIR_Address* addr = src->as_address_ptr();
1503   Address from_addr = as_Address(addr);
1504 
1505   if (VM_Version::has_v9()) {
1506     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1507   }
1508 }
1509 
1510 
1511 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1512   Address addr;
1513   if (src->is_single_word()) {
1514     addr = frame_map()->address_for_slot(src->single_stack_ix());
1515   } else if (src->is_double_word())  {
1516     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1517   }
1518 
1519   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1520   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1521 }
1522 
1523 
1524 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1525   Address addr;
1526   if (dest->is_single_word()) {
1527     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1528   } else if (dest->is_double_word())  {
1529     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1530   }
1531   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1532   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1533 }
1534 
1535 
1536 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1537   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1538     if (from_reg->is_double_fpu()) {
1539       // double to double moves
1540       assert(to_reg->is_double_fpu(), "should match");
1541       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1542     } else {
1543       // float to float moves
1544       assert(to_reg->is_single_fpu(), "should match");
1545       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1546     }
1547   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1548     if (from_reg->is_double_cpu()) {
1549 #ifdef _LP64
1550       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1551 #else
1552       assert(to_reg->is_double_cpu() &&
1553              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1554              from_reg->as_register_lo() != to_reg->as_register_hi(),
1555              "should both be long and not overlap");
1556       // long to long moves
1557       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1558       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1559 #endif
1560 #ifdef _LP64
1561     } else if (to_reg->is_double_cpu()) {
1562       // int to int moves
1563       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1564 #endif
1565     } else {
1566       // int to int moves
1567       __ mov(from_reg->as_register(), to_reg->as_register());
1568     }
1569   } else {
1570     ShouldNotReachHere();
1571   }
1572   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1573     __ verify_oop(to_reg->as_register());
1574   }
1575 }
1576 
1577 
1578 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1579                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1580                             bool unaligned) {
1581   LIR_Address* addr = dest->as_address_ptr();
1582 
1583   Register src = addr->base()->as_pointer_register();
1584   Register disp_reg = noreg;
1585   int disp_value = addr->disp();
1586   bool needs_patching = (patch_code != lir_patch_none);
1587 
1588   if (addr->base()->is_oop_register()) {
1589     __ verify_oop(src);
1590   }
1591 
1592   PatchingStub* patch = NULL;
1593   if (needs_patching) {
1594     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1595     assert(!from_reg->is_double_cpu() ||
1596            patch_code == lir_patch_none ||
1597            patch_code == lir_patch_normal, "patching doesn't match register");
1598   }
1599 
1600   if (addr->index()->is_illegal()) {
1601     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1602       if (needs_patching) {
1603         __ patchable_set(0, O7);
1604       } else {
1605         __ set(disp_value, O7);
1606       }
1607       disp_reg = O7;
1608     }
1609   } else if (unaligned || PatchALot) {
1610     __ add(src, addr->index()->as_register(), O7);
1611     src = O7;
1612   } else {
1613     disp_reg = addr->index()->as_pointer_register();
1614     assert(disp_value == 0, "can't handle 3 operand addresses");
1615   }
1616 
1617   // remember the offset of the store.  The patching_epilog must be done
1618   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1619   // entered in increasing order.
1620   int offset;
1621 
1622   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1623   if (disp_reg == noreg) {
1624     offset = store(from_reg, src, disp_value, type, unaligned);
1625   } else {
1626     assert(!unaligned, "can't handle this");
1627     offset = store(from_reg, src, disp_reg, type);
1628   }
1629 
1630   if (patch != NULL) {
1631     patching_epilog(patch, patch_code, src, info);
1632   }
1633 
1634   if (info != NULL) add_debug_info_for_null_check(offset, info);
1635 }
1636 
1637 
1638 void LIR_Assembler::return_op(LIR_Opr result) {
1639   // the poll may need a register so just pick one that isn't the return register
1640 #if defined(TIERED) && !defined(_LP64)
1641   if (result->type_field() == LIR_OprDesc::long_type) {
1642     // Must move the result to G1
1643     // Must leave proper result in O0,O1 and G1 (TIERED only)
1644     __ sllx(I0, 32, G1);          // Shift bits into high G1
1645     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1646     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1647 #ifdef ASSERT
1648     // mangle it so any problems will show up
1649     __ set(0xdeadbeef, I0);
1650     __ set(0xdeadbeef, I1);
1651 #endif
1652   }
1653 #endif // TIERED
1654   __ set((intptr_t)os::get_polling_page(), L0);
1655   __ relocate(relocInfo::poll_return_type);
1656   __ ld_ptr(L0, 0, G0);
1657   __ ret();
1658   __ delayed()->restore();
1659 }
1660 
1661 
1662 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1663   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1664   if (info != NULL) {
1665     add_debug_info_for_branch(info);
1666   } else {
1667     __ relocate(relocInfo::poll_type);
1668   }
1669 
1670   int offset = __ offset();
1671   __ ld_ptr(tmp->as_register(), 0, G0);
1672 
1673   return offset;
1674 }
1675 
1676 
1677 void LIR_Assembler::emit_static_call_stub() {
1678   address call_pc = __ pc();
1679   address stub = __ start_a_stub(call_stub_size);
1680   if (stub == NULL) {
1681     bailout("static call stub overflow");
1682     return;
1683   }
1684 
1685   int start = __ offset();
1686   __ relocate(static_stub_Relocation::spec(call_pc));
1687 
1688   __ set_oop(NULL, G5);
1689   // must be set to -1 at code generation time
1690   AddressLiteral addrlit(-1);
1691   __ jump_to(addrlit, G3);
1692   __ delayed()->nop();
1693 
1694   assert(__ offset() - start <= call_stub_size, "stub too big");
1695   __ end_a_stub();
1696 }
1697 
1698 
1699 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1700   if (opr1->is_single_fpu()) {
1701     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1702   } else if (opr1->is_double_fpu()) {
1703     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1704   } else if (opr1->is_single_cpu()) {
1705     if (opr2->is_constant()) {
1706       switch (opr2->as_constant_ptr()->type()) {
1707         case T_INT:
1708           { jint con = opr2->as_constant_ptr()->as_jint();
1709             if (Assembler::is_simm13(con)) {
1710               __ cmp(opr1->as_register(), con);
1711             } else {
1712               __ set(con, O7);
1713               __ cmp(opr1->as_register(), O7);
1714             }
1715           }
1716           break;
1717 
1718         case T_OBJECT:
1719           // there are only equal/notequal comparisions on objects
1720           { jobject con = opr2->as_constant_ptr()->as_jobject();
1721             if (con == NULL) {
1722               __ cmp(opr1->as_register(), 0);
1723             } else {
1724               jobject2reg(con, O7);
1725               __ cmp(opr1->as_register(), O7);
1726             }
1727           }
1728           break;
1729 
1730         default:
1731           ShouldNotReachHere();
1732           break;
1733       }
1734     } else {
1735       if (opr2->is_address()) {
1736         LIR_Address * addr = opr2->as_address_ptr();
1737         BasicType type = addr->type();
1738         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1739         else                    __ ld(as_Address(addr), O7);
1740         __ cmp(opr1->as_register(), O7);
1741       } else {
1742         __ cmp(opr1->as_register(), opr2->as_register());
1743       }
1744     }
1745   } else if (opr1->is_double_cpu()) {
1746     Register xlo = opr1->as_register_lo();
1747     Register xhi = opr1->as_register_hi();
1748     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1749       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1750 #ifdef _LP64
1751       __ orcc(xhi, G0, G0);
1752 #else
1753       __ orcc(xhi, xlo, G0);
1754 #endif
1755     } else if (opr2->is_register()) {
1756       Register ylo = opr2->as_register_lo();
1757       Register yhi = opr2->as_register_hi();
1758 #ifdef _LP64
1759       __ cmp(xlo, ylo);
1760 #else
1761       __ subcc(xlo, ylo, xlo);
1762       __ subccc(xhi, yhi, xhi);
1763       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1764         __ orcc(xhi, xlo, G0);
1765       }
1766 #endif
1767     } else {
1768       ShouldNotReachHere();
1769     }
1770   } else if (opr1->is_address()) {
1771     LIR_Address * addr = opr1->as_address_ptr();
1772     BasicType type = addr->type();
1773     assert (opr2->is_constant(), "Checking");
1774     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1775     else                    __ ld(as_Address(addr), O7);
1776     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1777   } else {
1778     ShouldNotReachHere();
1779   }
1780 }
1781 
1782 
1783 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1784   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1785     bool is_unordered_less = (code == lir_ucmp_fd2i);
1786     if (left->is_single_fpu()) {
1787       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1788     } else if (left->is_double_fpu()) {
1789       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1790     } else {
1791       ShouldNotReachHere();
1792     }
1793   } else if (code == lir_cmp_l2i) {
1794 #ifdef _LP64
1795     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1796 #else
1797     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1798             right->as_register_hi(), right->as_register_lo(),
1799             dst->as_register());
1800 #endif
1801   } else {
1802     ShouldNotReachHere();
1803   }
1804 }
1805 
1806 
1807 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1808 
1809   Assembler::Condition acond;
1810   switch (condition) {
1811     case lir_cond_equal:        acond = Assembler::equal;        break;
1812     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1813     case lir_cond_less:         acond = Assembler::less;         break;
1814     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1815     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1816     case lir_cond_greater:      acond = Assembler::greater;      break;
1817     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1818     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1819     default:                         ShouldNotReachHere();
1820   };
1821 
1822   if (opr1->is_constant() && opr1->type() == T_INT) {
1823     Register dest = result->as_register();
1824     // load up first part of constant before branch
1825     // and do the rest in the delay slot.
1826     if (!Assembler::is_simm13(opr1->as_jint())) {
1827       __ sethi(opr1->as_jint(), dest);
1828     }
1829   } else if (opr1->is_constant()) {
1830     const2reg(opr1, result, lir_patch_none, NULL);
1831   } else if (opr1->is_register()) {
1832     reg2reg(opr1, result);
1833   } else if (opr1->is_stack()) {
1834     stack2reg(opr1, result, result->type());
1835   } else {
1836     ShouldNotReachHere();
1837   }
1838   Label skip;
1839   __ br(acond, false, Assembler::pt, skip);
1840   if (opr1->is_constant() && opr1->type() == T_INT) {
1841     Register dest = result->as_register();
1842     if (Assembler::is_simm13(opr1->as_jint())) {
1843       __ delayed()->or3(G0, opr1->as_jint(), dest);
1844     } else {
1845       // the sethi has been done above, so just put in the low 10 bits
1846       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1847     }
1848   } else {
1849     // can't do anything useful in the delay slot
1850     __ delayed()->nop();
1851   }
1852   if (opr2->is_constant()) {
1853     const2reg(opr2, result, lir_patch_none, NULL);
1854   } else if (opr2->is_register()) {
1855     reg2reg(opr2, result);
1856   } else if (opr2->is_stack()) {
1857     stack2reg(opr2, result, result->type());
1858   } else {
1859     ShouldNotReachHere();
1860   }
1861   __ bind(skip);
1862 }
1863 
1864 
1865 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1866   assert(info == NULL, "unused on this code path");
1867   assert(left->is_register(), "wrong items state");
1868   assert(dest->is_register(), "wrong items state");
1869 
1870   if (right->is_register()) {
1871     if (dest->is_float_kind()) {
1872 
1873       FloatRegister lreg, rreg, res;
1874       FloatRegisterImpl::Width w;
1875       if (right->is_single_fpu()) {
1876         w = FloatRegisterImpl::S;
1877         lreg = left->as_float_reg();
1878         rreg = right->as_float_reg();
1879         res  = dest->as_float_reg();
1880       } else {
1881         w = FloatRegisterImpl::D;
1882         lreg = left->as_double_reg();
1883         rreg = right->as_double_reg();
1884         res  = dest->as_double_reg();
1885       }
1886 
1887       switch (code) {
1888         case lir_add: __ fadd(w, lreg, rreg, res); break;
1889         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1890         case lir_mul: // fall through
1891         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1892         case lir_div: // fall through
1893         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1894         default: ShouldNotReachHere();
1895       }
1896 
1897     } else if (dest->is_double_cpu()) {
1898 #ifdef _LP64
1899       Register dst_lo = dest->as_register_lo();
1900       Register op1_lo = left->as_pointer_register();
1901       Register op2_lo = right->as_pointer_register();
1902 
1903       switch (code) {
1904         case lir_add:
1905           __ add(op1_lo, op2_lo, dst_lo);
1906           break;
1907 
1908         case lir_sub:
1909           __ sub(op1_lo, op2_lo, dst_lo);
1910           break;
1911 
1912         default: ShouldNotReachHere();
1913       }
1914 #else
1915       Register op1_lo = left->as_register_lo();
1916       Register op1_hi = left->as_register_hi();
1917       Register op2_lo = right->as_register_lo();
1918       Register op2_hi = right->as_register_hi();
1919       Register dst_lo = dest->as_register_lo();
1920       Register dst_hi = dest->as_register_hi();
1921 
1922       switch (code) {
1923         case lir_add:
1924           __ addcc(op1_lo, op2_lo, dst_lo);
1925           __ addc (op1_hi, op2_hi, dst_hi);
1926           break;
1927 
1928         case lir_sub:
1929           __ subcc(op1_lo, op2_lo, dst_lo);
1930           __ subc (op1_hi, op2_hi, dst_hi);
1931           break;
1932 
1933         default: ShouldNotReachHere();
1934       }
1935 #endif
1936     } else {
1937       assert (right->is_single_cpu(), "Just Checking");
1938 
1939       Register lreg = left->as_register();
1940       Register res  = dest->as_register();
1941       Register rreg = right->as_register();
1942       switch (code) {
1943         case lir_add:  __ add  (lreg, rreg, res); break;
1944         case lir_sub:  __ sub  (lreg, rreg, res); break;
1945         case lir_mul:  __ mult (lreg, rreg, res); break;
1946         default: ShouldNotReachHere();
1947       }
1948     }
1949   } else {
1950     assert (right->is_constant(), "must be constant");
1951 
1952     if (dest->is_single_cpu()) {
1953       Register lreg = left->as_register();
1954       Register res  = dest->as_register();
1955       int    simm13 = right->as_constant_ptr()->as_jint();
1956 
1957       switch (code) {
1958         case lir_add:  __ add  (lreg, simm13, res); break;
1959         case lir_sub:  __ sub  (lreg, simm13, res); break;
1960         case lir_mul:  __ mult (lreg, simm13, res); break;
1961         default: ShouldNotReachHere();
1962       }
1963     } else {
1964       Register lreg = left->as_pointer_register();
1965       Register res  = dest->as_register_lo();
1966       long con = right->as_constant_ptr()->as_jlong();
1967       assert(Assembler::is_simm13(con), "must be simm13");
1968 
1969       switch (code) {
1970         case lir_add:  __ add  (lreg, (int)con, res); break;
1971         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1972         case lir_mul:  __ mult (lreg, (int)con, res); break;
1973         default: ShouldNotReachHere();
1974       }
1975     }
1976   }
1977 }
1978 
1979 
1980 void LIR_Assembler::fpop() {
1981   // do nothing
1982 }
1983 
1984 
1985 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1986   switch (code) {
1987     case lir_sin:
1988     case lir_tan:
1989     case lir_cos: {
1990       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1991       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1992       break;
1993     }
1994     case lir_sqrt: {
1995       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1996       FloatRegister src_reg = value->as_double_reg();
1997       FloatRegister dst_reg = dest->as_double_reg();
1998       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1999       break;
2000     }
2001     case lir_abs: {
2002       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
2003       FloatRegister src_reg = value->as_double_reg();
2004       FloatRegister dst_reg = dest->as_double_reg();
2005       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
2006       break;
2007     }
2008     default: {
2009       ShouldNotReachHere();
2010       break;
2011     }
2012   }
2013 }
2014 
2015 
2016 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
2017   if (right->is_constant()) {
2018     if (dest->is_single_cpu()) {
2019       int simm13 = right->as_constant_ptr()->as_jint();
2020       switch (code) {
2021         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
2022         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
2023         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
2024         default: ShouldNotReachHere();
2025       }
2026     } else {
2027       long c = right->as_constant_ptr()->as_jlong();
2028       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
2029       int simm13 = (int)c;
2030       switch (code) {
2031         case lir_logic_and:
2032 #ifndef _LP64
2033           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
2034 #endif
2035           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
2036           break;
2037 
2038         case lir_logic_or:
2039 #ifndef _LP64
2040           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
2041 #endif
2042           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
2043           break;
2044 
2045         case lir_logic_xor:
2046 #ifndef _LP64
2047           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
2048 #endif
2049           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
2050           break;
2051 
2052         default: ShouldNotReachHere();
2053       }
2054     }
2055   } else {
2056     assert(right->is_register(), "right should be in register");
2057 
2058     if (dest->is_single_cpu()) {
2059       switch (code) {
2060         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
2061         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
2062         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
2063         default: ShouldNotReachHere();
2064       }
2065     } else {
2066 #ifdef _LP64
2067       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
2068                                                                         left->as_register_lo();
2069       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
2070                                                                           right->as_register_lo();
2071 
2072       switch (code) {
2073         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
2074         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
2075         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
2076         default: ShouldNotReachHere();
2077       }
2078 #else
2079       switch (code) {
2080         case lir_logic_and:
2081           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2082           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2083           break;
2084 
2085         case lir_logic_or:
2086           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2087           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2088           break;
2089 
2090         case lir_logic_xor:
2091           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2092           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2093           break;
2094 
2095         default: ShouldNotReachHere();
2096       }
2097 #endif
2098     }
2099   }
2100 }
2101 
2102 
2103 int LIR_Assembler::shift_amount(BasicType t) {
2104   int elem_size = type2aelembytes(t);
2105   switch (elem_size) {
2106     case 1 : return 0;
2107     case 2 : return 1;
2108     case 4 : return 2;
2109     case 8 : return 3;
2110   }
2111   ShouldNotReachHere();
2112   return -1;
2113 }
2114 
2115 
2116 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2117   assert(exceptionOop->as_register() == Oexception, "should match");
2118   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2119 
2120   info->add_register_oop(exceptionOop);
2121 
2122   // reuse the debug info from the safepoint poll for the throw op itself
2123   address pc_for_athrow  = __ pc();
2124   int pc_for_athrow_offset = __ offset();
2125   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2126   __ set(pc_for_athrow, Oissuing_pc, rspec);
2127   add_call_info(pc_for_athrow_offset, info); // for exception handler
2128 
2129   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2130   __ delayed()->nop();
2131 }
2132 
2133 
2134 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2135   assert(exceptionOop->as_register() == Oexception, "should match");
2136 
2137   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2138   __ delayed()->nop();
2139 }
2140 
2141 
2142 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2143   Register src = op->src()->as_register();
2144   Register dst = op->dst()->as_register();
2145   Register src_pos = op->src_pos()->as_register();
2146   Register dst_pos = op->dst_pos()->as_register();
2147   Register length  = op->length()->as_register();
2148   Register tmp = op->tmp()->as_register();
2149   Register tmp2 = O7;
2150 
2151   int flags = op->flags();
2152   ciArrayKlass* default_type = op->expected_type();
2153   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2154   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2155 
2156   // set up the arraycopy stub information
2157   ArrayCopyStub* stub = op->stub();
2158 
2159   // always do stub if no type information is available.  it's ok if
2160   // the known type isn't loaded since the code sanity checks
2161   // in debug mode and the type isn't required when we know the exact type
2162   // also check that the type is an array type.
2163   // We also, for now, always call the stub if the barrier set requires a
2164   // write_ref_pre barrier (which the stub does, but none of the optimized
2165   // cases currently does).
2166   if (op->expected_type() == NULL ||
2167       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2168     __ mov(src,     O0);
2169     __ mov(src_pos, O1);
2170     __ mov(dst,     O2);
2171     __ mov(dst_pos, O3);
2172     __ mov(length,  O4);
2173     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2174 
2175     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2176     __ delayed()->nop();
2177     __ bind(*stub->continuation());
2178     return;
2179   }
2180 
2181   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2182 
2183   // make sure src and dst are non-null and load array length
2184   if (flags & LIR_OpArrayCopy::src_null_check) {
2185     __ tst(src);
2186     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2187     __ delayed()->nop();
2188   }
2189 
2190   if (flags & LIR_OpArrayCopy::dst_null_check) {
2191     __ tst(dst);
2192     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2193     __ delayed()->nop();
2194   }
2195 
2196   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2197     // test src_pos register
2198     __ tst(src_pos);
2199     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2200     __ delayed()->nop();
2201   }
2202 
2203   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2204     // test dst_pos register
2205     __ tst(dst_pos);
2206     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2207     __ delayed()->nop();
2208   }
2209 
2210   if (flags & LIR_OpArrayCopy::length_positive_check) {
2211     // make sure length isn't negative
2212     __ tst(length);
2213     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2214     __ delayed()->nop();
2215   }
2216 
2217   if (flags & LIR_OpArrayCopy::src_range_check) {
2218     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2219     __ add(length, src_pos, tmp);
2220     __ cmp(tmp2, tmp);
2221     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2222     __ delayed()->nop();
2223   }
2224 
2225   if (flags & LIR_OpArrayCopy::dst_range_check) {
2226     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2227     __ add(length, dst_pos, tmp);
2228     __ cmp(tmp2, tmp);
2229     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2230     __ delayed()->nop();
2231   }
2232 
2233   if (flags & LIR_OpArrayCopy::type_check) {
2234     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2235     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2236     __ cmp(tmp, tmp2);
2237     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2238     __ delayed()->nop();
2239   }
2240 
2241 #ifdef ASSERT
2242   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2243     // Sanity check the known type with the incoming class.  For the
2244     // primitive case the types must match exactly with src.klass and
2245     // dst.klass each exactly matching the default type.  For the
2246     // object array case, if no type check is needed then either the
2247     // dst type is exactly the expected type and the src type is a
2248     // subtype which we can't check or src is the same array as dst
2249     // but not necessarily exactly of type default_type.
2250     Label known_ok, halt;
2251     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2252     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2253     if (basic_type != T_OBJECT) {
2254       __ cmp(tmp, tmp2);
2255       __ br(Assembler::notEqual, false, Assembler::pn, halt);
2256       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2257       __ cmp(tmp, tmp2);
2258       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2259       __ delayed()->nop();
2260     } else {
2261       __ cmp(tmp, tmp2);
2262       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2263       __ delayed()->cmp(src, dst);
2264       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2265       __ delayed()->nop();
2266     }
2267     __ bind(halt);
2268     __ stop("incorrect type information in arraycopy");
2269     __ bind(known_ok);
2270   }
2271 #endif
2272 
2273   int shift = shift_amount(basic_type);
2274 
2275   Register src_ptr = O0;
2276   Register dst_ptr = O1;
2277   Register len     = O2;
2278 
2279   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2280   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2281   if (shift == 0) {
2282     __ add(src_ptr, src_pos, src_ptr);
2283   } else {
2284     __ sll(src_pos, shift, tmp);
2285     __ add(src_ptr, tmp, src_ptr);
2286   }
2287 
2288   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2289   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
2290   if (shift == 0) {
2291     __ add(dst_ptr, dst_pos, dst_ptr);
2292   } else {
2293     __ sll(dst_pos, shift, tmp);
2294     __ add(dst_ptr, tmp, dst_ptr);
2295   }
2296 
2297   if (basic_type != T_OBJECT) {
2298     if (shift == 0) {
2299       __ mov(length, len);
2300     } else {
2301       __ sll(length, shift, len);
2302     }
2303     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
2304   } else {
2305     // oop_arraycopy takes a length in number of elements, so don't scale it.
2306     __ mov(length, len);
2307     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
2308   }
2309 
2310   __ bind(*stub->continuation());
2311 }
2312 
2313 
2314 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2315   if (dest->is_single_cpu()) {
2316 #ifdef _LP64
2317     if (left->type() == T_OBJECT) {
2318       switch (code) {
2319         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2320         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2321         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2322         default: ShouldNotReachHere();
2323       }
2324     } else
2325 #endif
2326       switch (code) {
2327         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2328         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2329         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2330         default: ShouldNotReachHere();
2331       }
2332   } else {
2333 #ifdef _LP64
2334     switch (code) {
2335       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2336       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2337       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2338       default: ShouldNotReachHere();
2339     }
2340 #else
2341     switch (code) {
2342       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2343       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2344       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2345       default: ShouldNotReachHere();
2346     }
2347 #endif
2348   }
2349 }
2350 
2351 
2352 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2353 #ifdef _LP64
2354   if (left->type() == T_OBJECT) {
2355     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2356     Register l = left->as_register();
2357     Register d = dest->as_register_lo();
2358     switch (code) {
2359       case lir_shl:  __ sllx  (l, count, d); break;
2360       case lir_shr:  __ srax  (l, count, d); break;
2361       case lir_ushr: __ srlx  (l, count, d); break;
2362       default: ShouldNotReachHere();
2363     }
2364     return;
2365   }
2366 #endif
2367 
2368   if (dest->is_single_cpu()) {
2369     count = count & 0x1F; // Java spec
2370     switch (code) {
2371       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2372       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2373       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2374       default: ShouldNotReachHere();
2375     }
2376   } else if (dest->is_double_cpu()) {
2377     count = count & 63; // Java spec
2378     switch (code) {
2379       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2380       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2381       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2382       default: ShouldNotReachHere();
2383     }
2384   } else {
2385     ShouldNotReachHere();
2386   }
2387 }
2388 
2389 
2390 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2391   assert(op->tmp1()->as_register()  == G1 &&
2392          op->tmp2()->as_register()  == G3 &&
2393          op->tmp3()->as_register()  == G4 &&
2394          op->obj()->as_register()   == O0 &&
2395          op->klass()->as_register() == G5, "must be");
2396   if (op->init_check()) {
2397     __ ld(op->klass()->as_register(),
2398           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
2399           op->tmp1()->as_register());
2400     add_debug_info_for_null_check_here(op->stub()->info());
2401     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2402     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2403     __ delayed()->nop();
2404   }
2405   __ allocate_object(op->obj()->as_register(),
2406                      op->tmp1()->as_register(),
2407                      op->tmp2()->as_register(),
2408                      op->tmp3()->as_register(),
2409                      op->header_size(),
2410                      op->object_size(),
2411                      op->klass()->as_register(),
2412                      *op->stub()->entry());
2413   __ bind(*op->stub()->continuation());
2414   __ verify_oop(op->obj()->as_register());
2415 }
2416 
2417 
2418 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2419   assert(op->tmp1()->as_register()  == G1 &&
2420          op->tmp2()->as_register()  == G3 &&
2421          op->tmp3()->as_register()  == G4 &&
2422          op->tmp4()->as_register()  == O1 &&
2423          op->klass()->as_register() == G5, "must be");
2424   if (UseSlowPath ||
2425       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2426       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2427     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2428     __ delayed()->nop();
2429   } else {
2430     __ allocate_array(op->obj()->as_register(),
2431                       op->len()->as_register(),
2432                       op->tmp1()->as_register(),
2433                       op->tmp2()->as_register(),
2434                       op->tmp3()->as_register(),
2435                       arrayOopDesc::header_size(op->type()),
2436                       type2aelembytes(op->type()),
2437                       op->klass()->as_register(),
2438                       *op->stub()->entry());
2439   }
2440   __ bind(*op->stub()->continuation());
2441 }
2442 
2443 
2444 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2445                                         ciMethodData *md, ciProfileData *data,
2446                                         Register recv, Register tmp1, Label* update_done) {
2447   uint i;
2448   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2449     Label next_test;
2450     // See if the receiver is receiver[n].
2451     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2452                           mdo_offset_bias);
2453     __ ld_ptr(receiver_addr, tmp1);
2454     __ verify_oop(tmp1);
2455     __ cmp(recv, tmp1);
2456     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2457     __ delayed()->nop();
2458     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2459                       mdo_offset_bias);
2460     __ ld_ptr(data_addr, tmp1);
2461     __ add(tmp1, DataLayout::counter_increment, tmp1);
2462     __ st_ptr(tmp1, data_addr);
2463     __ ba(false, *update_done);
2464     __ delayed()->nop();
2465     __ bind(next_test);
2466   }
2467 
2468   // Didn't find receiver; find next empty slot and fill it in
2469   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2470     Label next_test;
2471     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2472                       mdo_offset_bias);
2473     load(recv_addr, tmp1, T_OBJECT);
2474     __ br_notnull(tmp1, false, Assembler::pt, next_test);
2475     __ delayed()->nop();
2476     __ st_ptr(recv, recv_addr);
2477     __ set(DataLayout::counter_increment, tmp1);
2478     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2479               mdo_offset_bias);
2480     __ ba(false, *update_done);
2481     __ delayed()->nop();
2482     __ bind(next_test);
2483   }
2484 }
2485 
2486 
2487 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2488                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2489   md = method->method_data();
2490   if (md == NULL) {
2491     bailout("out of memory building methodDataOop");
2492     return;
2493   }
2494   data = md->bci_to_data(bci);
2495   assert(data != NULL,       "need data for checkcast");
2496   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2497   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2498     // The offset is large so bias the mdo by the base of the slot so
2499     // that the ld can use simm13s to reference the slots of the data
2500     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2501   }
2502 }
2503 
2504 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2505   // we always need a stub for the failure case.
2506   CodeStub* stub = op->stub();
2507   Register obj = op->object()->as_register();
2508   Register k_RInfo = op->tmp1()->as_register();
2509   Register klass_RInfo = op->tmp2()->as_register();
2510   Register dst = op->result_opr()->as_register();
2511   Register Rtmp1 = op->tmp3()->as_register();
2512   ciKlass* k = op->klass();
2513 
2514 
2515   if (obj == k_RInfo) {
2516     k_RInfo = klass_RInfo;
2517     klass_RInfo = obj;
2518   }
2519 
2520   ciMethodData* md;
2521   ciProfileData* data;
2522   int mdo_offset_bias = 0;
2523   if (op->should_profile()) {
2524     ciMethod* method = op->profiled_method();
2525     assert(method != NULL, "Should have method");
2526     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2527 
2528     Label not_null;
2529     __ br_notnull(obj, false, Assembler::pn, not_null);
2530     __ delayed()->nop();
2531     Register mdo      = k_RInfo;
2532     Register data_val = Rtmp1;
2533     jobject2reg(md->constant_encoding(), mdo);
2534     if (mdo_offset_bias > 0) {
2535       __ set(mdo_offset_bias, data_val);
2536       __ add(mdo, data_val, mdo);
2537     }
2538     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2539     __ ldub(flags_addr, data_val);
2540     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2541     __ stb(data_val, flags_addr);
2542     __ ba(false, *obj_is_null);
2543     __ delayed()->nop();
2544     __ bind(not_null);
2545   } else {
2546     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2547     __ delayed()->nop();
2548   }
2549 
2550   Label profile_cast_failure, profile_cast_success;
2551   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2552   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2553 
2554   // patching may screw with our temporaries on sparc,
2555   // so let's do it before loading the class
2556   if (k->is_loaded()) {
2557     jobject2reg(k->constant_encoding(), k_RInfo);
2558   } else {
2559     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2560   }
2561   assert(obj != k_RInfo, "must be different");
2562 
2563   // get object class
2564   // not a safepoint as obj null check happens earlier
2565   load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2566   if (op->fast_check()) {
2567     assert_different_registers(klass_RInfo, k_RInfo);
2568     __ cmp(k_RInfo, klass_RInfo);
2569     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2570     __ delayed()->nop();
2571   } else {
2572     bool need_slow_path = true;
2573     if (k->is_loaded()) {
2574       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2575         need_slow_path = false;
2576       // perform the fast part of the checking logic
2577       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2578                                        (need_slow_path ? success_target : NULL),
2579                                        failure_target, NULL,
2580                                        RegisterOrConstant(k->super_check_offset()));
2581     } else {
2582       // perform the fast part of the checking logic
2583       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2584                                        failure_target, NULL);
2585     }
2586     if (need_slow_path) {
2587       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2588       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2589       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2590       __ delayed()->nop();
2591       __ cmp(G3, 0);
2592       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2593       __ delayed()->nop();
2594       // Fall through to success case
2595     }
2596   }
2597 
2598   if (op->should_profile()) {
2599     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2600     assert_different_registers(obj, mdo, recv, tmp1);
2601     __ bind(profile_cast_success);
2602     jobject2reg(md->constant_encoding(), mdo);
2603     if (mdo_offset_bias > 0) {
2604       __ set(mdo_offset_bias, tmp1);
2605       __ add(mdo, tmp1, mdo);
2606     }
2607     load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2608     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2609     // Jump over the failure case
2610     __ ba(false, *success);
2611     __ delayed()->nop();
2612     // Cast failure case
2613     __ bind(profile_cast_failure);
2614     jobject2reg(md->constant_encoding(), mdo);
2615     if (mdo_offset_bias > 0) {
2616       __ set(mdo_offset_bias, tmp1);
2617       __ add(mdo, tmp1, mdo);
2618     }
2619     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2620     __ ld_ptr(data_addr, tmp1);
2621     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2622     __ st_ptr(tmp1, data_addr);
2623     __ ba(false, *failure);
2624     __ delayed()->nop();
2625   }
2626   __ ba(false, *success);
2627   __ delayed()->nop();
2628 }
2629 
2630 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2631   LIR_Code code = op->code();
2632   if (code == lir_store_check) {
2633     Register value = op->object()->as_register();
2634     Register array = op->array()->as_register();
2635     Register k_RInfo = op->tmp1()->as_register();
2636     Register klass_RInfo = op->tmp2()->as_register();
2637     Register Rtmp1 = op->tmp3()->as_register();
2638 
2639     __ verify_oop(value);
2640     CodeStub* stub = op->stub();
2641     // check if it needs to be profiled
2642     ciMethodData* md;
2643     ciProfileData* data;
2644     int mdo_offset_bias = 0;
2645     if (op->should_profile()) {
2646       ciMethod* method = op->profiled_method();
2647       assert(method != NULL, "Should have method");
2648       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2649     }
2650     Label profile_cast_success, profile_cast_failure, done;
2651     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2652     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2653 
2654     if (op->should_profile()) {
2655       Label not_null;
2656       __ br_notnull(value, false, Assembler::pn, not_null);
2657       __ delayed()->nop();
2658       Register mdo      = k_RInfo;
2659       Register data_val = Rtmp1;
2660       jobject2reg(md->constant_encoding(), mdo);
2661       if (mdo_offset_bias > 0) {
2662         __ set(mdo_offset_bias, data_val);
2663         __ add(mdo, data_val, mdo);
2664       }
2665       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2666       __ ldub(flags_addr, data_val);
2667       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2668       __ stb(data_val, flags_addr);
2669       __ ba(false, done);
2670       __ delayed()->nop();
2671       __ bind(not_null);
2672     } else {
2673       __ br_null(value, false, Assembler::pn, done);
2674       __ delayed()->nop();
2675     }
2676     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2677     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2678 
2679     // get instance klass
2680     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2681     // perform the fast part of the checking logic
2682     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2683 
2684     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2685     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2686     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2687     __ delayed()->nop();
2688     __ cmp(G3, 0);
2689     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2690     __ delayed()->nop();
2691     // fall through to the success case
2692 
2693     if (op->should_profile()) {
2694       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2695       assert_different_registers(value, mdo, recv, tmp1);
2696       __ bind(profile_cast_success);
2697       jobject2reg(md->constant_encoding(), mdo);
2698       if (mdo_offset_bias > 0) {
2699         __ set(mdo_offset_bias, tmp1);
2700         __ add(mdo, tmp1, mdo);
2701       }
2702       load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2703       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2704       __ ba(false, done);
2705       __ delayed()->nop();
2706       // Cast failure case
2707       __ bind(profile_cast_failure);
2708       jobject2reg(md->constant_encoding(), mdo);
2709       if (mdo_offset_bias > 0) {
2710         __ set(mdo_offset_bias, tmp1);
2711         __ add(mdo, tmp1, mdo);
2712       }
2713       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2714       __ ld_ptr(data_addr, tmp1);
2715       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2716       __ st_ptr(tmp1, data_addr);
2717       __ ba(false, *stub->entry());
2718       __ delayed()->nop();
2719     }
2720     __ bind(done);
2721   } else if (code == lir_checkcast) {
2722     Register obj = op->object()->as_register();
2723     Register dst = op->result_opr()->as_register();
2724     Label success;
2725     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2726     __ bind(success);
2727     __ mov(obj, dst);
2728   } else if (code == lir_instanceof) {
2729     Register obj = op->object()->as_register();
2730     Register dst = op->result_opr()->as_register();
2731     Label success, failure, done;
2732     emit_typecheck_helper(op, &success, &failure, &failure);
2733     __ bind(failure);
2734     __ set(0, dst);
2735     __ ba(false, done);
2736     __ delayed()->nop();
2737     __ bind(success);
2738     __ set(1, dst);
2739     __ bind(done);
2740   } else {
2741     ShouldNotReachHere();
2742   }
2743 
2744 }
2745 
2746 
2747 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2748   if (op->code() == lir_cas_long) {
2749     assert(VM_Version::supports_cx8(), "wrong machine");
2750     Register addr = op->addr()->as_pointer_register();
2751     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2752     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2753     Register new_value_lo = op->new_value()->as_register_lo();
2754     Register new_value_hi = op->new_value()->as_register_hi();
2755     Register t1 = op->tmp1()->as_register();
2756     Register t2 = op->tmp2()->as_register();
2757 #ifdef _LP64
2758     __ mov(cmp_value_lo, t1);
2759     __ mov(new_value_lo, t2);
2760 #else
2761     // move high and low halves of long values into single registers
2762     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2763     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2764     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2765     __ sllx(new_value_hi, 32, t2);
2766     __ srl(new_value_lo, 0, new_value_lo);
2767     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2768 #endif
2769     // perform the compare and swap operation
2770     __ casx(addr, t1, t2);
2771     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2772     // overwritten with the original value in "addr" and will be equal to t1.
2773     __ cmp(t1, t2);
2774 
2775   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2776     Register addr = op->addr()->as_pointer_register();
2777     Register cmp_value = op->cmp_value()->as_register();
2778     Register new_value = op->new_value()->as_register();
2779     Register t1 = op->tmp1()->as_register();
2780     Register t2 = op->tmp2()->as_register();
2781     __ mov(cmp_value, t1);
2782     __ mov(new_value, t2);
2783 #ifdef _LP64
2784     if (op->code() == lir_cas_obj) {
2785       __ casx(addr, t1, t2);
2786     } else
2787 #endif
2788       {
2789         __ cas(addr, t1, t2);
2790       }
2791     __ cmp(t1, t2);
2792   } else {
2793     Unimplemented();
2794   }
2795 }
2796 
2797 void LIR_Assembler::set_24bit_FPU() {
2798   Unimplemented();
2799 }
2800 
2801 
2802 void LIR_Assembler::reset_FPU() {
2803   Unimplemented();
2804 }
2805 
2806 
2807 void LIR_Assembler::breakpoint() {
2808   __ breakpoint_trap();
2809 }
2810 
2811 
2812 void LIR_Assembler::push(LIR_Opr opr) {
2813   Unimplemented();
2814 }
2815 
2816 
2817 void LIR_Assembler::pop(LIR_Opr opr) {
2818   Unimplemented();
2819 }
2820 
2821 
2822 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2823   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2824   Register dst = dst_opr->as_register();
2825   Register reg = mon_addr.base();
2826   int offset = mon_addr.disp();
2827   // compute pointer to BasicLock
2828   if (mon_addr.is_simm13()) {
2829     __ add(reg, offset, dst);
2830   } else {
2831     __ set(offset, dst);
2832     __ add(dst, reg, dst);
2833   }
2834 }
2835 
2836 
2837 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2838   Register obj = op->obj_opr()->as_register();
2839   Register hdr = op->hdr_opr()->as_register();
2840   Register lock = op->lock_opr()->as_register();
2841 
2842   // obj may not be an oop
2843   if (op->code() == lir_lock) {
2844     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2845     if (UseFastLocking) {
2846       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2847       // add debug info for NullPointerException only if one is possible
2848       if (op->info() != NULL) {
2849         add_debug_info_for_null_check_here(op->info());
2850       }
2851       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2852     } else {
2853       // always do slow locking
2854       // note: the slow locking code could be inlined here, however if we use
2855       //       slow locking, speed doesn't matter anyway and this solution is
2856       //       simpler and requires less duplicated code - additionally, the
2857       //       slow locking code is the same in either case which simplifies
2858       //       debugging
2859       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2860       __ delayed()->nop();
2861     }
2862   } else {
2863     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2864     if (UseFastLocking) {
2865       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2866       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2867     } else {
2868       // always do slow unlocking
2869       // note: the slow unlocking code could be inlined here, however if we use
2870       //       slow unlocking, speed doesn't matter anyway and this solution is
2871       //       simpler and requires less duplicated code - additionally, the
2872       //       slow unlocking code is the same in either case which simplifies
2873       //       debugging
2874       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2875       __ delayed()->nop();
2876     }
2877   }
2878   __ bind(*op->stub()->continuation());
2879 }
2880 
2881 
2882 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2883   ciMethod* method = op->profiled_method();
2884   int bci          = op->profiled_bci();
2885 
2886   // Update counter for all call types
2887   ciMethodData* md = method->method_data();
2888   if (md == NULL) {
2889     bailout("out of memory building methodDataOop");
2890     return;
2891   }
2892   ciProfileData* data = md->bci_to_data(bci);
2893   assert(data->is_CounterData(), "need CounterData for calls");
2894   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2895   Register mdo  = op->mdo()->as_register();
2896 #ifdef _LP64
2897   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2898   Register tmp1 = op->tmp1()->as_register_lo();
2899 #else
2900   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2901   Register tmp1 = op->tmp1()->as_register();
2902 #endif
2903   jobject2reg(md->constant_encoding(), mdo);
2904   int mdo_offset_bias = 0;
2905   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2906                             data->size_in_bytes())) {
2907     // The offset is large so bias the mdo by the base of the slot so
2908     // that the ld can use simm13s to reference the slots of the data
2909     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2910     __ set(mdo_offset_bias, O7);
2911     __ add(mdo, O7, mdo);
2912   }
2913 
2914   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2915   Bytecodes::Code bc = method->java_code_at_bci(bci);
2916   // Perform additional virtual call profiling for invokevirtual and
2917   // invokeinterface bytecodes
2918   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2919       C1ProfileVirtualCalls) {
2920     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2921     Register recv = op->recv()->as_register();
2922     assert_different_registers(mdo, tmp1, recv);
2923     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2924     ciKlass* known_klass = op->known_holder();
2925     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2926       // We know the type that will be seen at this call site; we can
2927       // statically update the methodDataOop rather than needing to do
2928       // dynamic tests on the receiver type
2929 
2930       // NOTE: we should probably put a lock around this search to
2931       // avoid collisions by concurrent compilations
2932       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2933       uint i;
2934       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2935         ciKlass* receiver = vc_data->receiver(i);
2936         if (known_klass->equals(receiver)) {
2937           Address data_addr(mdo, md->byte_offset_of_slot(data,
2938                                                          VirtualCallData::receiver_count_offset(i)) -
2939                             mdo_offset_bias);
2940           __ ld_ptr(data_addr, tmp1);
2941           __ add(tmp1, DataLayout::counter_increment, tmp1);
2942           __ st_ptr(tmp1, data_addr);
2943           return;
2944         }
2945       }
2946 
2947       // Receiver type not found in profile data; select an empty slot
2948 
2949       // Note that this is less efficient than it should be because it
2950       // always does a write to the receiver part of the
2951       // VirtualCallData rather than just the first time
2952       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2953         ciKlass* receiver = vc_data->receiver(i);
2954         if (receiver == NULL) {
2955           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2956                             mdo_offset_bias);
2957           jobject2reg(known_klass->constant_encoding(), tmp1);
2958           __ st_ptr(tmp1, recv_addr);
2959           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2960                             mdo_offset_bias);
2961           __ ld_ptr(data_addr, tmp1);
2962           __ add(tmp1, DataLayout::counter_increment, tmp1);
2963           __ st_ptr(tmp1, data_addr);
2964           return;
2965         }
2966       }
2967     } else {
2968       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2969       Label update_done;
2970       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2971       // Receiver did not match any saved receiver and there is no empty row for it.
2972       // Increment total counter to indicate polymorphic case.
2973       __ ld_ptr(counter_addr, tmp1);
2974       __ add(tmp1, DataLayout::counter_increment, tmp1);
2975       __ st_ptr(tmp1, counter_addr);
2976 
2977       __ bind(update_done);
2978     }
2979   } else {
2980     // Static call
2981     __ ld_ptr(counter_addr, tmp1);
2982     __ add(tmp1, DataLayout::counter_increment, tmp1);
2983     __ st_ptr(tmp1, counter_addr);
2984   }
2985 }
2986 
2987 void LIR_Assembler::align_backward_branch_target() {
2988   __ align(OptoLoopAlignment);
2989 }
2990 
2991 
2992 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2993   // make sure we are expecting a delay
2994   // this has the side effect of clearing the delay state
2995   // so we can use _masm instead of _masm->delayed() to do the
2996   // code generation.
2997   __ delayed();
2998 
2999   // make sure we only emit one instruction
3000   int offset = code_offset();
3001   op->delay_op()->emit_code(this);
3002 #ifdef ASSERT
3003   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3004     op->delay_op()->print();
3005   }
3006   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3007          "only one instruction can go in a delay slot");
3008 #endif
3009 
3010   // we may also be emitting the call info for the instruction
3011   // which we are the delay slot of.
3012   CodeEmitInfo* call_info = op->call_info();
3013   if (call_info) {
3014     add_call_info(code_offset(), call_info);
3015   }
3016 
3017   if (VerifyStackAtCalls) {
3018     _masm->sub(FP, SP, O7);
3019     _masm->cmp(O7, initial_frame_size_in_bytes());
3020     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3021   }
3022 }
3023 
3024 
3025 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3026   assert(left->is_register(), "can only handle registers");
3027 
3028   if (left->is_single_cpu()) {
3029     __ neg(left->as_register(), dest->as_register());
3030   } else if (left->is_single_fpu()) {
3031     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3032   } else if (left->is_double_fpu()) {
3033     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3034   } else {
3035     assert (left->is_double_cpu(), "Must be a long");
3036     Register Rlow = left->as_register_lo();
3037     Register Rhi = left->as_register_hi();
3038 #ifdef _LP64
3039     __ sub(G0, Rlow, dest->as_register_lo());
3040 #else
3041     __ subcc(G0, Rlow, dest->as_register_lo());
3042     __ subc (G0, Rhi,  dest->as_register_hi());
3043 #endif
3044   }
3045 }
3046 
3047 
3048 void LIR_Assembler::fxch(int i) {
3049   Unimplemented();
3050 }
3051 
3052 void LIR_Assembler::fld(int i) {
3053   Unimplemented();
3054 }
3055 
3056 void LIR_Assembler::ffree(int i) {
3057   Unimplemented();
3058 }
3059 
3060 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3061                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3062 
3063   // if tmp is invalid, then the function being called doesn't destroy the thread
3064   if (tmp->is_valid()) {
3065     __ save_thread(tmp->as_register());
3066   }
3067   __ call(dest, relocInfo::runtime_call_type);
3068   __ delayed()->nop();
3069   if (info != NULL) {
3070     add_call_info_here(info);
3071   }
3072   if (tmp->is_valid()) {
3073     __ restore_thread(tmp->as_register());
3074   }
3075 
3076 #ifdef ASSERT
3077   __ verify_thread();
3078 #endif // ASSERT
3079 }
3080 
3081 
3082 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3083 #ifdef _LP64
3084   ShouldNotReachHere();
3085 #endif
3086 
3087   NEEDS_CLEANUP;
3088   if (type == T_LONG) {
3089     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3090 
3091     // (extended to allow indexed as well as constant displaced for JSR-166)
3092     Register idx = noreg; // contains either constant offset or index
3093 
3094     int disp = mem_addr->disp();
3095     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3096       if (!Assembler::is_simm13(disp)) {
3097         idx = O7;
3098         __ set(disp, idx);
3099       }
3100     } else {
3101       assert(disp == 0, "not both indexed and disp");
3102       idx = mem_addr->index()->as_register();
3103     }
3104 
3105     int null_check_offset = -1;
3106 
3107     Register base = mem_addr->base()->as_register();
3108     if (src->is_register() && dest->is_address()) {
3109       // G4 is high half, G5 is low half
3110       if (VM_Version::v9_instructions_work()) {
3111         // clear the top bits of G5, and scale up G4
3112         __ srl (src->as_register_lo(),  0, G5);
3113         __ sllx(src->as_register_hi(), 32, G4);
3114         // combine the two halves into the 64 bits of G4
3115         __ or3(G4, G5, G4);
3116         null_check_offset = __ offset();
3117         if (idx == noreg) {
3118           __ stx(G4, base, disp);
3119         } else {
3120           __ stx(G4, base, idx);
3121         }
3122       } else {
3123         __ mov (src->as_register_hi(), G4);
3124         __ mov (src->as_register_lo(), G5);
3125         null_check_offset = __ offset();
3126         if (idx == noreg) {
3127           __ std(G4, base, disp);
3128         } else {
3129           __ std(G4, base, idx);
3130         }
3131       }
3132     } else if (src->is_address() && dest->is_register()) {
3133       null_check_offset = __ offset();
3134       if (VM_Version::v9_instructions_work()) {
3135         if (idx == noreg) {
3136           __ ldx(base, disp, G5);
3137         } else {
3138           __ ldx(base, idx, G5);
3139         }
3140         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3141         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3142       } else {
3143         if (idx == noreg) {
3144           __ ldd(base, disp, G4);
3145         } else {
3146           __ ldd(base, idx, G4);
3147         }
3148         // G4 is high half, G5 is low half
3149         __ mov (G4, dest->as_register_hi());
3150         __ mov (G5, dest->as_register_lo());
3151       }
3152     } else {
3153       Unimplemented();
3154     }
3155     if (info != NULL) {
3156       add_debug_info_for_null_check(null_check_offset, info);
3157     }
3158 
3159   } else {
3160     // use normal move for all other volatiles since they don't need
3161     // special handling to remain atomic.
3162     move_op(src, dest, type, lir_patch_none, info, false, false);
3163   }
3164 }
3165 
3166 void LIR_Assembler::membar() {
3167   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3168   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3169 }
3170 
3171 void LIR_Assembler::membar_acquire() {
3172   // no-op on TSO
3173 }
3174 
3175 void LIR_Assembler::membar_release() {
3176   // no-op on TSO
3177 }
3178 
3179 // Pack two sequential registers containing 32 bit values
3180 // into a single 64 bit register.
3181 // src and src->successor() are packed into dst
3182 // src and dst may be the same register.
3183 // Note: src is destroyed
3184 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3185   Register rs = src->as_register();
3186   Register rd = dst->as_register_lo();
3187   __ sllx(rs, 32, rs);
3188   __ srl(rs->successor(), 0, rs->successor());
3189   __ or3(rs, rs->successor(), rd);
3190 }
3191 
3192 // Unpack a 64 bit value in a register into
3193 // two sequential registers.
3194 // src is unpacked into dst and dst->successor()
3195 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3196   Register rs = src->as_register_lo();
3197   Register rd = dst->as_register_hi();
3198   assert_different_registers(rs, rd, rd->successor());
3199   __ srlx(rs, 32, rd);
3200   __ srl (rs,  0, rd->successor());
3201 }
3202 
3203 
3204 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3205   LIR_Address* addr = addr_opr->as_address_ptr();
3206   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3207 
3208   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3209 }
3210 
3211 
3212 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3213   assert(result_reg->is_register(), "check");
3214   __ mov(G2_thread, result_reg->as_register());
3215 }
3216 
3217 
3218 void LIR_Assembler::peephole(LIR_List* lir) {
3219   LIR_OpList* inst = lir->instructions_list();
3220   for (int i = 0; i < inst->length(); i++) {
3221     LIR_Op* op = inst->at(i);
3222     switch (op->code()) {
3223       case lir_cond_float_branch:
3224       case lir_branch: {
3225         LIR_OpBranch* branch = op->as_OpBranch();
3226         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3227         LIR_Op* delay_op = NULL;
3228         // we'd like to be able to pull following instructions into
3229         // this slot but we don't know enough to do it safely yet so
3230         // only optimize block to block control flow.
3231         if (LIRFillDelaySlots && branch->block()) {
3232           LIR_Op* prev = inst->at(i - 1);
3233           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3234             // swap previous instruction into delay slot
3235             inst->at_put(i - 1, op);
3236             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3237 #ifndef PRODUCT
3238             if (LIRTracePeephole) {
3239               tty->print_cr("delayed");
3240               inst->at(i - 1)->print();
3241               inst->at(i)->print();
3242               tty->cr();
3243             }
3244 #endif
3245             continue;
3246           }
3247         }
3248 
3249         if (!delay_op) {
3250           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3251         }
3252         inst->insert_before(i + 1, delay_op);
3253         break;
3254       }
3255       case lir_static_call:
3256       case lir_virtual_call:
3257       case lir_icvirtual_call:
3258       case lir_optvirtual_call:
3259       case lir_dynamic_call: {
3260         LIR_Op* prev = inst->at(i - 1);
3261         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3262             (op->code() != lir_virtual_call ||
3263              !prev->result_opr()->is_single_cpu() ||
3264              prev->result_opr()->as_register() != O0) &&
3265             LIR_Assembler::is_single_instruction(prev)) {
3266           // Only moves without info can be put into the delay slot.
3267           // Also don't allow the setup of the receiver in the delay
3268           // slot for vtable calls.
3269           inst->at_put(i - 1, op);
3270           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3271 #ifndef PRODUCT
3272           if (LIRTracePeephole) {
3273             tty->print_cr("delayed");
3274             inst->at(i - 1)->print();
3275             inst->at(i)->print();
3276             tty->cr();
3277           }
3278 #endif
3279         } else {
3280           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3281           inst->insert_before(i + 1, delay_op);
3282           i++;
3283         }
3284 
3285 #if defined(TIERED) && !defined(_LP64)
3286         // fixup the return value from G1 to O0/O1 for long returns.
3287         // It's done here instead of in LIRGenerator because there's
3288         // such a mismatch between the single reg and double reg
3289         // calling convention.
3290         LIR_OpJavaCall* callop = op->as_OpJavaCall();
3291         if (callop->result_opr() == FrameMap::out_long_opr) {
3292           LIR_OpJavaCall* call;
3293           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3294           for (int a = 0; a < arguments->length(); a++) {
3295             arguments[a] = callop->arguments()[a];
3296           }
3297           if (op->code() == lir_virtual_call) {
3298             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3299                                       callop->vtable_offset(), arguments, callop->info());
3300           } else {
3301             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3302                                       callop->addr(), arguments, callop->info());
3303           }
3304           inst->at_put(i - 1, call);
3305           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3306                                                  T_LONG, lir_patch_none, NULL));
3307         }
3308 #endif
3309         break;
3310       }
3311     }
3312   }
3313 }
3314 
3315 
3316 
3317 
3318 #undef __