1 /*
   2  * Copyright (c) 2007, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_cppInterpreter_sparc.cpp.incl"
  27 
  28 #ifdef CC_INTERP
  29 
  30 // Routine exists to make tracebacks look decent in debugger
  31 // while "shadow" interpreter frames are on stack. It is also
  32 // used to distinguish interpreter frames.
  33 
  34 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
  35   ShouldNotReachHere();
  36 }
  37 
  38 bool CppInterpreter::contains(address pc) {
  39   return ( _code->contains(pc) ||
  40          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
  41 }
  42 
  43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  44 #define __ _masm->
  45 
  46 Label frame_manager_entry;
  47 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
  48                                       // c++ interpreter entry point this holds that entry point label.
  49 
  50 static address unctrap_frame_manager_entry  = NULL;
  51 
  52 static address interpreter_return_address  = NULL;
  53 static address deopt_frame_manager_return_atos  = NULL;
  54 static address deopt_frame_manager_return_btos  = NULL;
  55 static address deopt_frame_manager_return_itos  = NULL;
  56 static address deopt_frame_manager_return_ltos  = NULL;
  57 static address deopt_frame_manager_return_ftos  = NULL;
  58 static address deopt_frame_manager_return_dtos  = NULL;
  59 static address deopt_frame_manager_return_vtos  = NULL;
  60 
  61 const Register prevState = G1_scratch;
  62 
  63 void InterpreterGenerator::save_native_result(void) {
  64   // result potentially in O0/O1: save it across calls
  65   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  66 #ifdef _LP64
  67   __ stx(O0, STATE(_native_lresult));
  68 #else
  69   __ std(O0, STATE(_native_lresult));
  70 #endif
  71 }
  72 
  73 void InterpreterGenerator::restore_native_result(void) {
  74 
  75   // Restore any method result value
  76   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  77 #ifdef _LP64
  78   __ ldx(STATE(_native_lresult), O0);
  79 #else
  80   __ ldd(STATE(_native_lresult), O0);
  81 #endif
  82 }
  83 
  84 // A result handler converts/unboxes a native call result into
  85 // a java interpreter/compiler result. The current frame is an
  86 // interpreter frame. The activation frame unwind code must be
  87 // consistent with that of TemplateTable::_return(...). In the
  88 // case of native methods, the caller's SP was not modified.
  89 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
  90   address entry = __ pc();
  91   Register Itos_i  = Otos_i ->after_save();
  92   Register Itos_l  = Otos_l ->after_save();
  93   Register Itos_l1 = Otos_l1->after_save();
  94   Register Itos_l2 = Otos_l2->after_save();
  95   switch (type) {
  96     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
  97     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
  98     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
  99     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
 100     case T_LONG   :
 101 #ifndef _LP64
 102                     __ mov(O1, Itos_l2);  // move other half of long
 103 #endif              // ifdef or no ifdef, fall through to the T_INT case
 104     case T_INT    : __ mov(O0, Itos_i);                         break;
 105     case T_VOID   : /* nothing to do */                         break;
 106     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
 107     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
 108     case T_OBJECT :
 109       __ ld_ptr(STATE(_oop_temp), Itos_i);
 110       __ verify_oop(Itos_i);
 111       break;
 112     default       : ShouldNotReachHere();
 113   }
 114   __ ret();                           // return from interpreter activation
 115   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 116   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 117   return entry;
 118 }
 119 
 120 // tosca based result to c++ interpreter stack based result.
 121 // Result goes to address in L1_scratch
 122 
 123 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
 124   // A result is in the native abi result register from a native method call.
 125   // We need to return this result to the interpreter by pushing the result on the interpreter's
 126   // stack. This is relatively simple the destination is in L1_scratch
 127   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
 128   // adjust L1_scratch
 129   address entry = __ pc();
 130   switch (type) {
 131     case T_BOOLEAN:
 132       // !0 => true; 0 => false
 133       __ subcc(G0, O0, G0);
 134       __ addc(G0, 0, O0);
 135       __ st(O0, L1_scratch, 0);
 136       __ sub(L1_scratch, wordSize, L1_scratch);
 137       break;
 138 
 139     // cannot use and3, 0xFFFF too big as immediate value!
 140     case T_CHAR   :
 141       __ sll(O0, 16, O0);
 142       __ srl(O0, 16, O0);
 143       __ st(O0, L1_scratch, 0);
 144       __ sub(L1_scratch, wordSize, L1_scratch);
 145       break;
 146 
 147     case T_BYTE   :
 148       __ sll(O0, 24, O0);
 149       __ sra(O0, 24, O0);
 150       __ st(O0, L1_scratch, 0);
 151       __ sub(L1_scratch, wordSize, L1_scratch);
 152       break;
 153 
 154     case T_SHORT  :
 155       __ sll(O0, 16, O0);
 156       __ sra(O0, 16, O0);
 157       __ st(O0, L1_scratch, 0);
 158       __ sub(L1_scratch, wordSize, L1_scratch);
 159       break;
 160     case T_LONG   :
 161 #ifndef _LP64
 162 #if defined(COMPILER2)
 163   // All return values are where we want them, except for Longs.  C2 returns
 164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 166   // build even if we are returning from interpreted we just do a little
 167   // stupid shuffing.
 168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 171       __ stx(G1, L1_scratch, -wordSize);
 172 #else
 173       // native result is in O0, O1
 174       __ st(O1, L1_scratch, 0);                      // Low order
 175       __ st(O0, L1_scratch, -wordSize);              // High order
 176 #endif /* COMPILER2 */
 177 #else
 178       __ stx(O0, L1_scratch, -wordSize);
 179 #endif
 180       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 181       break;
 182 
 183     case T_INT    :
 184       __ st(O0, L1_scratch, 0);
 185       __ sub(L1_scratch, wordSize, L1_scratch);
 186       break;
 187 
 188     case T_VOID   : /* nothing to do */
 189       break;
 190 
 191     case T_FLOAT  :
 192       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
 193       __ sub(L1_scratch, wordSize, L1_scratch);
 194       break;
 195 
 196     case T_DOUBLE :
 197       // Every stack slot is aligned on 64 bit, However is this
 198       // the correct stack slot on 64bit?? QQQ
 199       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
 200       __ sub(L1_scratch, 2*wordSize, L1_scratch);
 201       break;
 202     case T_OBJECT :
 203       __ verify_oop(O0);
 204       __ st_ptr(O0, L1_scratch, 0);
 205       __ sub(L1_scratch, wordSize, L1_scratch);
 206       break;
 207     default       : ShouldNotReachHere();
 208   }
 209   __ retl();                          // return from interpreter activation
 210   __ delayed()->nop();                // schedule this better
 211   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
 212   return entry;
 213 }
 214 
 215 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
 216   // A result is in the java expression stack of the interpreted method that has just
 217   // returned. Place this result on the java expression stack of the caller.
 218   //
 219   // The current interpreter activation in Lstate is for the method just returning its
 220   // result. So we know that the result of this method is on the top of the current
 221   // execution stack (which is pre-pushed) and will be return to the top of the caller
 222   // stack. The top of the callers stack is the bottom of the locals of the current
 223   // activation.
 224   // Because of the way activation are managed by the frame manager the value of esp is
 225   // below both the stack top of the current activation and naturally the stack top
 226   // of the calling activation. This enable this routine to leave the return address
 227   // to the frame manager on the stack and do a vanilla return.
 228   //
 229   // On entry: O0 - points to source (callee stack top)
 230   //           O1 - points to destination (caller stack top [i.e. free location])
 231   // destroys O2, O3
 232   //
 233 
 234   address entry = __ pc();
 235   switch (type) {
 236     case T_VOID:  break;
 237       break;
 238     case T_FLOAT  :
 239     case T_BOOLEAN:
 240     case T_CHAR   :
 241     case T_BYTE   :
 242     case T_SHORT  :
 243     case T_INT    :
 244       // 1 word result
 245       __ ld(O0, 0, O2);
 246       __ st(O2, O1, 0);
 247       __ sub(O1, wordSize, O1);
 248       break;
 249     case T_DOUBLE  :
 250     case T_LONG    :
 251       // return top two words on current expression stack to caller's expression stack
 252       // The caller's expression stack is adjacent to the current frame manager's intepretState
 253       // except we allocated one extra word for this intepretState so we won't overwrite it
 254       // when we return a two word result.
 255 #ifdef _LP64
 256       __ ld_ptr(O0, 0, O2);
 257       __ st_ptr(O2, O1, -wordSize);
 258 #else
 259       __ ld(O0, 0, O2);
 260       __ ld(O0, wordSize, O3);
 261       __ st(O3, O1, 0);
 262       __ st(O2, O1, -wordSize);
 263 #endif
 264       __ sub(O1, 2*wordSize, O1);
 265       break;
 266     case T_OBJECT :
 267       __ ld_ptr(O0, 0, O2);
 268       __ verify_oop(O2);                                               // verify it
 269       __ st_ptr(O2, O1, 0);
 270       __ sub(O1, wordSize, O1);
 271       break;
 272     default       : ShouldNotReachHere();
 273   }
 274   __ retl();
 275   __ delayed()->nop(); // QQ schedule this better
 276   return entry;
 277 }
 278 
 279 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
 280   // A result is in the java expression stack of the interpreted method that has just
 281   // returned. Place this result in the native abi that the caller expects.
 282   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
 283   //
 284   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
 285   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
 286   // and so rather than return result onto caller's java expression stack we return the
 287   // result in the expected location based on the native abi.
 288   // On entry: O0 - source (stack top)
 289   // On exit result in expected output register
 290   // QQQ schedule this better
 291 
 292   address entry = __ pc();
 293   switch (type) {
 294     case T_VOID:  break;
 295       break;
 296     case T_FLOAT  :
 297       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
 298       break;
 299     case T_BOOLEAN:
 300     case T_CHAR   :
 301     case T_BYTE   :
 302     case T_SHORT  :
 303     case T_INT    :
 304       // 1 word result
 305       __ ld(O0, 0, O0->after_save());
 306       break;
 307     case T_DOUBLE  :
 308       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
 309       break;
 310     case T_LONG    :
 311       // return top two words on current expression stack to caller's expression stack
 312       // The caller's expression stack is adjacent to the current frame manager's interpretState
 313       // except we allocated one extra word for this intepretState so we won't overwrite it
 314       // when we return a two word result.
 315 #ifdef _LP64
 316       __ ld_ptr(O0, 0, O0->after_save());
 317 #else
 318       __ ld(O0, wordSize, O1->after_save());
 319       __ ld(O0, 0, O0->after_save());
 320 #endif
 321 #if defined(COMPILER2) && !defined(_LP64)
 322       // C2 expects long results in G1 we can't tell if we're returning to interpreted
 323       // or compiled so just be safe use G1 and O0/O1
 324 
 325       // Shift bits into high (msb) of G1
 326       __ sllx(Otos_l1->after_save(), 32, G1);
 327       // Zero extend low bits
 328       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
 329       __ or3 (Otos_l2->after_save(), G1, G1);
 330 #endif /* COMPILER2 */
 331       break;
 332     case T_OBJECT :
 333       __ ld_ptr(O0, 0, O0->after_save());
 334       __ verify_oop(O0->after_save());                                               // verify it
 335       break;
 336     default       : ShouldNotReachHere();
 337   }
 338   __ retl();
 339   __ delayed()->nop();
 340   return entry;
 341 }
 342 
 343 address CppInterpreter::return_entry(TosState state, int length) {
 344   // make it look good in the debugger
 345   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
 346 }
 347 
 348 address CppInterpreter::deopt_entry(TosState state, int length) {
 349   address ret = NULL;
 350   if (length != 0) {
 351     switch (state) {
 352       case atos: ret = deopt_frame_manager_return_atos; break;
 353       case btos: ret = deopt_frame_manager_return_btos; break;
 354       case ctos:
 355       case stos:
 356       case itos: ret = deopt_frame_manager_return_itos; break;
 357       case ltos: ret = deopt_frame_manager_return_ltos; break;
 358       case ftos: ret = deopt_frame_manager_return_ftos; break;
 359       case dtos: ret = deopt_frame_manager_return_dtos; break;
 360       case vtos: ret = deopt_frame_manager_return_vtos; break;
 361     }
 362   } else {
 363     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
 364   }
 365   assert(ret != NULL, "Not initialized");
 366   return ret;
 367 }
 368 
 369 //
 370 // Helpers for commoning out cases in the various type of method entries.
 371 //
 372 
 373 // increment invocation count & check for overflow
 374 //
 375 // Note: checking for negative value instead of overflow
 376 //       so we have a 'sticky' overflow test
 377 //
 378 // Lmethod: method
 379 // ??: invocation counter
 380 //
 381 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 382   // Update standard invocation counters
 383   __ increment_invocation_counter(O0, G3_scratch);
 384   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
 385     __ ld_ptr(STATE(_method), G3_scratch);
 386     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
 387     __ ld(interpreter_invocation_counter, G3_scratch);
 388     __ inc(G3_scratch);
 389     __ st(G3_scratch, interpreter_invocation_counter);
 390   }
 391 
 392   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
 393   __ sethi(invocation_limit);
 394   __ ld(invocation_limit, G3_scratch);
 395   __ cmp(O0, G3_scratch);
 396   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
 397   __ delayed()->nop();
 398 
 399 }
 400 
 401 address InterpreterGenerator::generate_empty_entry(void) {
 402 
 403   // A method that does nothing but return...
 404 
 405   address entry = __ pc();
 406   Label slow_path;
 407 
 408   __ verify_oop(G5_method);
 409 
 410   // do nothing for empty methods (do not even increment invocation counter)
 411   if ( UseFastEmptyMethods) {
 412     // If we need a safepoint check, generate full interpreter entry.
 413     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 414     __ load_contents(sync_state, G3_scratch);
 415     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 416     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
 417     __ delayed()->nop();
 418 
 419     // Code: _return
 420     __ retl();
 421     __ delayed()->mov(O5_savedSP, SP);
 422     return entry;
 423   }
 424   return NULL;
 425 }
 426 
 427 // Call an accessor method (assuming it is resolved, otherwise drop into
 428 // vanilla (slow path) entry
 429 
 430 // Generates code to elide accessor methods
 431 // Uses G3_scratch and G1_scratch as scratch
 432 address InterpreterGenerator::generate_accessor_entry(void) {
 433 
 434   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
 435   // parameter size = 1
 436   // Note: We can only use this code if the getfield has been resolved
 437   //       and if we don't have a null-pointer exception => check for
 438   //       these conditions first and use slow path if necessary.
 439   address entry = __ pc();
 440   Label slow_path;
 441 
 442   if ( UseFastAccessorMethods) {
 443     // Check if we need to reach a safepoint and generate full interpreter
 444     // frame if so.
 445     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 446     __ load_contents(sync_state, G3_scratch);
 447     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 448     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 449     __ delayed()->nop();
 450 
 451     // Check if local 0 != NULL
 452     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
 453     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
 454     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
 455     __ delayed()->nop();
 456 
 457 
 458     // read first instruction word and extract bytecode @ 1 and index @ 2
 459     // get first 4 bytes of the bytecodes (big endian!)
 460     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
 461     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
 462 
 463     // move index @ 2 far left then to the right most two bytes.
 464     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
 465     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
 466                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
 467 
 468     // get constant pool cache
 469     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
 470     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
 471 
 472     // get specific constant pool cache entry
 473     __ add(G3_scratch, G1_scratch, G3_scratch);
 474 
 475     // Check the constant Pool cache entry to see if it has been resolved.
 476     // If not, need the slow path.
 477     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
 478     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
 479     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
 480     __ and3(G1_scratch, 0xFF, G1_scratch);
 481     __ cmp(G1_scratch, Bytecodes::_getfield);
 482     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
 483     __ delayed()->nop();
 484 
 485     // Get the type and return field offset from the constant pool cache
 486     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
 487     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
 488 
 489     Label xreturn_path;
 490     // Need to differentiate between igetfield, agetfield, bgetfield etc.
 491     // because they are different sizes.
 492     // Get the type from the constant pool cache
 493     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
 494     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
 495     ConstantPoolCacheEntry::verify_tosBits();
 496     __ cmp(G1_scratch, atos );
 497     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 498     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
 499     __ cmp(G1_scratch, itos);
 500     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 501     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
 502     __ cmp(G1_scratch, stos);
 503     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 504     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
 505     __ cmp(G1_scratch, ctos);
 506     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 507     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
 508 #ifdef ASSERT
 509     __ cmp(G1_scratch, btos);
 510     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
 511     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
 512     __ should_not_reach_here();
 513 #endif
 514     __ ldsb(Otos_i, G3_scratch, Otos_i);
 515     __ bind(xreturn_path);
 516 
 517     // _ireturn/_areturn
 518     __ retl();                      // return from leaf routine
 519     __ delayed()->mov(O5_savedSP, SP);
 520 
 521     // Generate regular method entry
 522     __ bind(slow_path);
 523     __ ba(false, fast_accessor_slow_entry_path);
 524     __ delayed()->nop();
 525     return entry;
 526   }
 527   return NULL;
 528 }
 529 
 530 //
 531 // Interpreter stub for calling a native method. (C++ interpreter)
 532 // This sets up a somewhat different looking stack for calling the native method
 533 // than the typical interpreter frame setup.
 534 //
 535 
 536 address InterpreterGenerator::generate_native_entry(bool synchronized) {
 537   address entry = __ pc();
 538 
 539   // the following temporary registers are used during frame creation
 540   const Register Gtmp1 = G3_scratch ;
 541   const Register Gtmp2 = G1_scratch;
 542   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
 543 
 544   bool inc_counter  = UseCompiler || CountCompiledCalls;
 545 
 546   // make sure registers are different!
 547   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
 548 
 549   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
 550 
 551   Label Lentry;
 552   __ bind(Lentry);
 553 
 554   __ verify_oop(G5_method);
 555 
 556   const Register Glocals_size = G3;
 557   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
 558 
 559   // make sure method is native & not abstract
 560   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
 561 #ifdef ASSERT
 562   __ ld(access_flags, Gtmp1);
 563   {
 564     Label L;
 565     __ btst(JVM_ACC_NATIVE, Gtmp1);
 566     __ br(Assembler::notZero, false, Assembler::pt, L);
 567     __ delayed()->nop();
 568     __ stop("tried to execute non-native method as native");
 569     __ bind(L);
 570   }
 571   { Label L;
 572     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
 573     __ br(Assembler::zero, false, Assembler::pt, L);
 574     __ delayed()->nop();
 575     __ stop("tried to execute abstract method as non-abstract");
 576     __ bind(L);
 577   }
 578 #endif // ASSERT
 579 
 580   __ lduh(size_of_parameters, Gtmp1);
 581   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
 582   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
 583   // NEW
 584   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
 585   // generate the code to allocate the interpreter stack frame
 586   // NEW FRAME ALLOCATED HERE
 587   // save callers original sp
 588   // __ mov(SP, I5_savedSP->after_restore());
 589 
 590   generate_compute_interpreter_state(Lstate, G0, true);
 591 
 592   // At this point Lstate points to new interpreter state
 593   //
 594 
 595   const Address do_not_unlock_if_synchronized(G2_thread, 0,
 596       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 597   // Since at this point in the method invocation the exception handler
 598   // would try to exit the monitor of synchronized methods which hasn't
 599   // been entered yet, we set the thread local variable
 600   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
 601   // runtime, exception handling i.e. unlock_if_synchronized_method will
 602   // check this thread local flag.
 603   // This flag has two effects, one is to force an unwind in the topmost
 604   // interpreter frame and not perform an unlock while doing so.
 605 
 606   __ movbool(true, G3_scratch);
 607   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
 608 
 609 
 610   // increment invocation counter and check for overflow
 611   //
 612   // Note: checking for negative value instead of overflow
 613   //       so we have a 'sticky' overflow test (may be of
 614   //       importance as soon as we have true MT/MP)
 615   Label invocation_counter_overflow;
 616   if (inc_counter) {
 617     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
 618   }
 619   Label Lcontinue;
 620   __ bind(Lcontinue);
 621 
 622   bang_stack_shadow_pages(true);
 623   // reset the _do_not_unlock_if_synchronized flag
 624   __ stbool(G0, do_not_unlock_if_synchronized);
 625 
 626   // check for synchronized methods
 627   // Must happen AFTER invocation_counter check, so method is not locked
 628   // if counter overflows.
 629 
 630   if (synchronized) {
 631     lock_method();
 632     // Don't see how G2_thread is preserved here...
 633     // __ verify_thread(); QQQ destroys L0,L1 can't use
 634   } else {
 635 #ifdef ASSERT
 636     { Label ok;
 637       __ ld_ptr(STATE(_method), G5_method);
 638       __ ld(access_flags, O0);
 639       __ btst(JVM_ACC_SYNCHRONIZED, O0);
 640       __ br( Assembler::zero, false, Assembler::pt, ok);
 641       __ delayed()->nop();
 642       __ stop("method needs synchronization");
 643       __ bind(ok);
 644     }
 645 #endif // ASSERT
 646   }
 647 
 648   // start execution
 649 
 650 //   __ verify_thread(); kills L1,L2 can't  use at the moment
 651 
 652   // jvmti/jvmpi support
 653   __ notify_method_entry();
 654 
 655   // native call
 656 
 657   // (note that O0 is never an oop--at most it is a handle)
 658   // It is important not to smash any handles created by this call,
 659   // until any oop handle in O0 is dereferenced.
 660 
 661   // (note that the space for outgoing params is preallocated)
 662 
 663   // get signature handler
 664 
 665   Label pending_exception_present;
 666 
 667   { Label L;
 668     __ ld_ptr(STATE(_method), G5_method);
 669     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
 670     __ tst(G3_scratch);
 671     __ brx(Assembler::notZero, false, Assembler::pt, L);
 672     __ delayed()->nop();
 673     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
 674     __ ld_ptr(STATE(_method), G5_method);
 675 
 676     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 677     __ ld_ptr(exception_addr, G3_scratch);
 678     __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present);
 679     __ delayed()->nop();
 680     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
 681     __ bind(L);
 682   }
 683 
 684   // Push a new frame so that the args will really be stored in
 685   // Copy a few locals across so the new frame has the variables
 686   // we need but these values will be dead at the jni call and
 687   // therefore not gc volatile like the values in the current
 688   // frame (Lstate in particular)
 689 
 690   // Flush the state pointer to the register save area
 691   // Which is the only register we need for a stack walk.
 692   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
 693 
 694   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
 695 
 696   // Calculate current frame size
 697   __ sub(SP, FP, O3);         // Calculate negative of current frame size
 698   __ save(SP, O3, SP);        // Allocate an identical sized frame
 699 
 700   __ mov(I1, Lstate);          // In the "natural" register.
 701 
 702   // Note I7 has leftover trash. Slow signature handler will fill it in
 703   // should we get there. Normal jni call will set reasonable last_Java_pc
 704   // below (and fix I7 so the stack trace doesn't have a meaningless frame
 705   // in it).
 706 
 707 
 708   // call signature handler
 709   __ ld_ptr(STATE(_method), Lmethod);
 710   __ ld_ptr(STATE(_locals), Llocals);
 711 
 712   __ callr(G3_scratch, 0);
 713   __ delayed()->nop();
 714   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
 715 
 716   { Label not_static;
 717 
 718     __ ld_ptr(STATE(_method), G5_method);
 719     __ ld(access_flags, O0);
 720     __ btst(JVM_ACC_STATIC, O0);
 721     __ br( Assembler::zero, false, Assembler::pt, not_static);
 722     __ delayed()->
 723       // get native function entry point(O0 is a good temp until the very end)
 724        ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
 725     // for static methods insert the mirror argument
 726     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
 727 
 728     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
 729     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
 730     __ ld_ptr(O1, mirror_offset, O1);
 731     // where the mirror handle body is allocated:
 732 #ifdef ASSERT
 733     if (!PrintSignatureHandlers)  // do not dirty the output with this
 734     { Label L;
 735       __ tst(O1);
 736       __ brx(Assembler::notZero, false, Assembler::pt, L);
 737       __ delayed()->nop();
 738       __ stop("mirror is missing");
 739       __ bind(L);
 740     }
 741 #endif // ASSERT
 742     __ st_ptr(O1, STATE(_oop_temp));
 743     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
 744     __ bind(not_static);
 745   }
 746 
 747   // At this point, arguments have been copied off of stack into
 748   // their JNI positions, which are O1..O5 and SP[68..].
 749   // Oops are boxed in-place on the stack, with handles copied to arguments.
 750   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
 751 
 752 #ifdef ASSERT
 753   { Label L;
 754     __ tst(O0);
 755     __ brx(Assembler::notZero, false, Assembler::pt, L);
 756     __ delayed()->nop();
 757     __ stop("native entry point is missing");
 758     __ bind(L);
 759   }
 760 #endif // ASSERT
 761 
 762   //
 763   // setup the java frame anchor
 764   //
 765   // The scavenge function only needs to know that the PC of this frame is
 766   // in the interpreter method entry code, it doesn't need to know the exact
 767   // PC and hence we can use O7 which points to the return address from the
 768   // previous call in the code stream (signature handler function)
 769   //
 770   // The other trick is we set last_Java_sp to FP instead of the usual SP because
 771   // we have pushed the extra frame in order to protect the volatile register(s)
 772   // in that frame when we return from the jni call
 773   //
 774 
 775 
 776   __ set_last_Java_frame(FP, O7);
 777   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
 778                    // not meaningless information that'll confuse me.
 779 
 780   // flush the windows now. We don't care about the current (protection) frame
 781   // only the outer frames
 782 
 783   __ flush_windows();
 784 
 785   // mark windows as flushed
 786   Address flags(G2_thread,
 787                 0,
 788                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
 789   __ set(JavaFrameAnchor::flushed, G3_scratch);
 790   __ st(G3_scratch, flags);
 791 
 792   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
 793 
 794   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
 795 #ifdef ASSERT
 796   { Label L;
 797     __ ld(thread_state, G3_scratch);
 798     __ cmp(G3_scratch, _thread_in_Java);
 799     __ br(Assembler::equal, false, Assembler::pt, L);
 800     __ delayed()->nop();
 801     __ stop("Wrong thread state in native stub");
 802     __ bind(L);
 803   }
 804 #endif // ASSERT
 805   __ set(_thread_in_native, G3_scratch);
 806   __ st(G3_scratch, thread_state);
 807 
 808   // Call the jni method, using the delay slot to set the JNIEnv* argument.
 809   __ callr(O0, 0);
 810   __ delayed()->
 811      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
 812   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 813 
 814   // must we block?
 815 
 816   // Block, if necessary, before resuming in _thread_in_Java state.
 817   // In order for GC to work, don't clear the last_Java_sp until after blocking.
 818   { Label no_block;
 819     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
 820 
 821     // Switch thread to "native transition" state before reading the synchronization state.
 822     // This additional state is necessary because reading and testing the synchronization
 823     // state is not atomic w.r.t. GC, as this scenario demonstrates:
 824     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
 825     //     VM thread changes sync state to synchronizing and suspends threads for GC.
 826     //     Thread A is resumed to finish this native method, but doesn't block here since it
 827     //     didn't see any synchronization is progress, and escapes.
 828     __ set(_thread_in_native_trans, G3_scratch);
 829     __ st(G3_scratch, thread_state);
 830     if(os::is_MP()) {
 831       // Write serialization page so VM thread can do a pseudo remote membar.
 832       // We use the current thread pointer to calculate a thread specific
 833       // offset to write to within the page. This minimizes bus traffic
 834       // due to cache line collision.
 835       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
 836     }
 837     __ load_contents(sync_state, G3_scratch);
 838     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
 839 
 840 
 841     Label L;
 842     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
 843     __ br(Assembler::notEqual, false, Assembler::pn, L);
 844     __ delayed()->
 845       ld(suspend_state, G3_scratch);
 846     __ cmp(G3_scratch, 0);
 847     __ br(Assembler::equal, false, Assembler::pt, no_block);
 848     __ delayed()->nop();
 849     __ bind(L);
 850 
 851     // Block.  Save any potential method result value before the operation and
 852     // use a leaf call to leave the last_Java_frame setup undisturbed.
 853     save_native_result();
 854     __ call_VM_leaf(noreg,
 855                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
 856                     G2_thread);
 857     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
 858     // Restore any method result value
 859     restore_native_result();
 860     __ bind(no_block);
 861   }
 862 
 863   // Clear the frame anchor now
 864 
 865   __ reset_last_Java_frame();
 866 
 867   // Move the result handler address
 868   __ mov(Lscratch, G3_scratch);
 869   // return possible result to the outer frame
 870 #ifndef __LP64
 871   __ mov(O0, I0);
 872   __ restore(O1, G0, O1);
 873 #else
 874   __ restore(O0, G0, O0);
 875 #endif /* __LP64 */
 876 
 877   // Move result handler to expected register
 878   __ mov(G3_scratch, Lscratch);
 879 
 880 
 881   // thread state is thread_in_native_trans. Any safepoint blocking has
 882   // happened in the trampoline we are ready to switch to thread_in_Java.
 883 
 884   __ set(_thread_in_Java, G3_scratch);
 885   __ st(G3_scratch, thread_state);
 886 
 887   // If we have an oop result store it where it will be safe for any further gc
 888   // until we return now that we've released the handle it might be protected by
 889 
 890   {
 891     Label no_oop, store_result;
 892 
 893     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
 894     __ cmp(G3_scratch, Lscratch);
 895     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
 896     __ delayed()->nop();
 897     __ addcc(G0, O0, O0);
 898     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
 899     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
 900     __ mov(G0, O0);
 901 
 902     __ bind(store_result);
 903     // Store it where gc will look for it and result handler expects it.
 904     __ st_ptr(O0, STATE(_oop_temp));
 905 
 906     __ bind(no_oop);
 907 
 908   }
 909 
 910   // reset handle block
 911   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
 912   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
 913 
 914 
 915   // handle exceptions (exception handling will handle unlocking!)
 916   { Label L;
 917     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
 918 
 919     __ ld_ptr(exception_addr, Gtemp);
 920     __ tst(Gtemp);
 921     __ brx(Assembler::equal, false, Assembler::pt, L);
 922     __ delayed()->nop();
 923     __ bind(pending_exception_present);
 924     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
 925     // Like x86 we ignore the result of the native call and leave the method locked. This
 926     // seems wrong to leave things locked.
 927 
 928     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 929     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
 930 
 931     __ bind(L);
 932   }
 933 
 934   // jvmdi/jvmpi support (preserves thread register)
 935   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
 936 
 937   if (synchronized) {
 938     // save and restore any potential method result value around the unlocking operation
 939     save_native_result();
 940 
 941     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
 942     // Get the initial monitor we allocated
 943     __ sub(Lstate, entry_size, O1);                        // initial monitor
 944     __ unlock_object(O1);
 945     restore_native_result();
 946   }
 947 
 948 #if defined(COMPILER2) && !defined(_LP64)
 949 
 950   // C2 expects long results in G1 we can't tell if we're returning to interpreted
 951   // or compiled so just be safe.
 952 
 953   __ sllx(O0, 32, G1);          // Shift bits into high G1
 954   __ srl (O1, 0, O1);           // Zero extend O1
 955   __ or3 (O1, G1, G1);          // OR 64 bits into G1
 956 
 957 #endif /* COMPILER2 && !_LP64 */
 958 
 959 #ifdef ASSERT
 960   {
 961     Label ok;
 962     __ cmp(I5_savedSP, FP);
 963     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
 964     __ delayed()->nop();
 965     __ stop("bad I5_savedSP value");
 966     __ should_not_reach_here();
 967     __ bind(ok);
 968   }
 969 #endif
 970   // Calls result handler which POPS FRAME
 971   if (TraceJumps) {
 972     // Move target to register that is recordable
 973     __ mov(Lscratch, G3_scratch);
 974     __ JMP(G3_scratch, 0);
 975   } else {
 976     __ jmp(Lscratch, 0);
 977   }
 978   __ delayed()->nop();
 979 
 980   if (inc_counter) {
 981     // handle invocation counter overflow
 982     __ bind(invocation_counter_overflow);
 983     generate_counter_overflow(Lcontinue);
 984   }
 985 
 986 
 987   return entry;
 988 }
 989 
 990 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
 991                                                               const Register prev_state,
 992                                                               bool native) {
 993 
 994   // On entry
 995   // G5_method - caller's method
 996   // Gargs - points to initial parameters (i.e. locals[0])
 997   // G2_thread - valid? (C1 only??)
 998   // "prev_state" - contains any previous frame manager state which we must save a link
 999   //
1000   // On return
1001   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
1002   // a new interpretState object and the method expression stack.
1003 
1004   assert_different_registers(state, prev_state);
1005   assert_different_registers(prev_state, G3_scratch);
1006   const Register Gtmp = G3_scratch;
1007   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
1008   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
1009   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1010   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
1011   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1012 
1013   // slop factor is two extra slots on the expression stack so that
1014   // we always have room to store a result when returning from a call without parameters
1015   // that returns a result.
1016 
1017   const int slop_factor = 2*wordSize;
1018 
1019   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
1020                          //6815692//methodOopDesc::extra_stack_words() +  // extra push slots for MH adapters
1021                          frame::memory_parameter_word_sp_offset +  // register save area + param window
1022                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
1023 
1024   // XXX G5_method valid
1025 
1026   // Now compute new frame size
1027 
1028   if (native) {
1029     __ lduh( size_of_parameters, Gtmp );
1030     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
1031   } else {
1032     __ lduh(max_stack, Gtmp);                // Full size expression stack
1033   }
1034   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
1035 
1036   __ neg(Gtmp);                               // negative space for stack/parameters in words
1037   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
1038   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
1039 
1040   // Need to do stack size check here before we fault on large frames
1041 
1042   Label stack_ok;
1043 
1044   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
1045                                                                               (StackRedPages+StackYellowPages);
1046 
1047 
1048   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
1049   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
1050   // compute stack bottom
1051   __ sub(O0, O1, O0);
1052 
1053   // Avoid touching the guard pages
1054   // Also a fudge for frame size of BytecodeInterpreter::run
1055   // It varies from 1k->4k depending on build type
1056   const int fudge = 6 * K;
1057 
1058   __ set(fudge + (max_pages * os::vm_page_size()), O1);
1059 
1060   __ add(O0, O1, O0);
1061   __ sub(O0, Gtmp, O0);
1062   __ cmp(SP, O0);
1063   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1064   __ delayed()->nop();
1065 
1066      // throw exception return address becomes throwing pc
1067 
1068   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1069   __ stop("never reached");
1070 
1071   __ bind(stack_ok);
1072 
1073   __ save(SP, Gtmp, SP);                      // setup new frame and register window
1074 
1075   // New window I7 call_stub or previous activation
1076   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1077   //
1078   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
1079   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
1080 
1081 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1082 
1083   // Initialize a new Interpreter state
1084   // orig_sp - caller's original sp
1085   // G2_thread - thread
1086   // Gargs - &locals[0] (unbiased?)
1087   // G5_method - method
1088   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1089 
1090 
1091   __ set(0xdead0004, O1);
1092 
1093 
1094   __ st_ptr(Gargs, XXX_STATE(_locals));
1095   __ st_ptr(G0, XXX_STATE(_oop_temp));
1096 
1097   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
1098   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1099   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
1100 
1101   if (native) {
1102     __ st_ptr(G0, XXX_STATE(_bcp));
1103   } else {
1104     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
1105     __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
1106     __ st_ptr(O2, XXX_STATE(_bcp));
1107   }
1108 
1109   __ st_ptr(G0, XXX_STATE(_mdx));
1110   __ st_ptr(G5_method, XXX_STATE(_method));
1111 
1112   __ set((int) BytecodeInterpreter::method_entry, O1);
1113   __ st(O1, XXX_STATE(_msg));
1114 
1115   __ ld_ptr(constants, O3);
1116   __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
1117   __ st_ptr(O2, XXX_STATE(_constants));
1118 
1119   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1120 
1121   // Monitor base is just start of BytecodeInterpreter object;
1122   __ mov(state, O2);
1123   __ st_ptr(O2, XXX_STATE(_monitor_base));
1124 
1125   // Do we need a monitor for synchonized method?
1126   {
1127     __ ld(access_flags, O1);
1128     Label done;
1129     Label got_obj;
1130     __ btst(JVM_ACC_SYNCHRONIZED, O1);
1131     __ br( Assembler::zero, false, Assembler::pt, done);
1132 
1133     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
1134     __ delayed()->btst(JVM_ACC_STATIC, O1);
1135     __ ld_ptr(XXX_STATE(_locals), O1);
1136     __ br( Assembler::zero, true, Assembler::pt, got_obj);
1137     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
1138     __ ld_ptr(constants, O1);
1139     __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
1140     // lock the mirror, not the klassOop
1141     __ ld_ptr( O1, mirror_offset, O1);
1142 
1143     __ bind(got_obj);
1144 
1145   #ifdef ASSERT
1146     __ tst(O1);
1147     __ breakpoint_trap(Assembler::zero);
1148   #endif // ASSERT
1149 
1150     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
1151     __ sub(SP, entry_size, SP);                         // account for initial monitor
1152     __ sub(O2, entry_size, O2);                        // initial monitor
1153     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1154     __ bind(done);
1155   }
1156 
1157   // Remember initial frame bottom
1158 
1159   __ st_ptr(SP, XXX_STATE(_frame_bottom));
1160 
1161   __ st_ptr(O2, XXX_STATE(_stack_base));
1162 
1163   __ sub(O2, wordSize, O2);                    // prepush
1164   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
1165 
1166   __ lduh(max_stack, O3);                      // Full size expression stack
1167   guarantee(!EnableMethodHandles, "no support yet for java.dyn.MethodHandle"); //6815692
1168   //6815692//if (EnableMethodHandles)
1169   //6815692//  __ inc(O3, methodOopDesc::extra_stack_entries());
1170   __ sll(O3, LogBytesPerWord, O3);
1171   __ sub(O2, O3, O3);
1172 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
1173   __ st_ptr(O3, XXX_STATE(_stack_limit));
1174 
1175   if (!native) {
1176     //
1177     // Code to initialize locals
1178     //
1179     Register init_value = noreg;    // will be G0 if we must clear locals
1180     // Now zero locals
1181     if (true /* zerolocals */ || ClearInterpreterLocals) {
1182       // explicitly initialize locals
1183       init_value = G0;
1184     } else {
1185     #ifdef ASSERT
1186       // initialize locals to a garbage pattern for better debugging
1187       init_value = O3;
1188       __ set( 0x0F0F0F0F, init_value );
1189     #endif // ASSERT
1190     }
1191     if (init_value != noreg) {
1192       Label clear_loop;
1193 
1194       // NOTE: If you change the frame layout, this code will need to
1195       // be updated!
1196       __ lduh( size_of_locals, O2 );
1197       __ lduh( size_of_parameters, O1 );
1198       __ sll( O2, LogBytesPerWord, O2);
1199       __ sll( O1, LogBytesPerWord, O1 );
1200       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1201       __ sub( L2_scratch, O2, O2 );
1202       __ sub( L2_scratch, O1, O1 );
1203 
1204       __ bind( clear_loop );
1205       __ inc( O2, wordSize );
1206 
1207       __ cmp( O2, O1 );
1208       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1209       __ delayed()->st_ptr( init_value, O2, 0 );
1210     }
1211   }
1212 }
1213 // Find preallocated  monitor and lock method (C++ interpreter)
1214 //
1215 void InterpreterGenerator::lock_method(void) {
1216 // Lock the current method.
1217 // Destroys registers L2_scratch, L3_scratch, O0
1218 //
1219 // Find everything relative to Lstate
1220 
1221 #ifdef ASSERT
1222   __ ld_ptr(STATE(_method), L2_scratch);
1223   __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
1224 
1225  { Label ok;
1226    __ btst(JVM_ACC_SYNCHRONIZED, O0);
1227    __ br( Assembler::notZero, false, Assembler::pt, ok);
1228    __ delayed()->nop();
1229    __ stop("method doesn't need synchronization");
1230    __ bind(ok);
1231   }
1232 #endif // ASSERT
1233 
1234   // monitor is already allocated at stack base
1235   // and the lockee is already present
1236   __ ld_ptr(STATE(_stack_base), L2_scratch);
1237   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
1238   __ lock_object(L2_scratch, O0);
1239 
1240 }
1241 
1242 //  Generate code for handling resuming a deopted method
1243 void CppInterpreterGenerator::generate_deopt_handling() {
1244 
1245   Label return_from_deopt_common;
1246 
1247   // deopt needs to jump to here to enter the interpreter (return a result)
1248   deopt_frame_manager_return_atos  = __ pc();
1249 
1250   // O0/O1 live
1251   __ ba(false, return_from_deopt_common);
1252   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
1253 
1254 
1255   // deopt needs to jump to here to enter the interpreter (return a result)
1256   deopt_frame_manager_return_btos  = __ pc();
1257 
1258   // O0/O1 live
1259   __ ba(false, return_from_deopt_common);
1260   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
1261 
1262   // deopt needs to jump to here to enter the interpreter (return a result)
1263   deopt_frame_manager_return_itos  = __ pc();
1264 
1265   // O0/O1 live
1266   __ ba(false, return_from_deopt_common);
1267   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
1268 
1269   // deopt needs to jump to here to enter the interpreter (return a result)
1270 
1271   deopt_frame_manager_return_ltos  = __ pc();
1272 #if !defined(_LP64) && defined(COMPILER2)
1273   // All return values are where we want them, except for Longs.  C2 returns
1274   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1275   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1276   // build even if we are returning from interpreted we just do a little
1277   // stupid shuffing.
1278   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1279   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1280   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1281 
1282   __ srl (G1, 0,O1);
1283   __ srlx(G1,32,O0);
1284 #endif /* !_LP64 && COMPILER2 */
1285   // O0/O1 live
1286   __ ba(false, return_from_deopt_common);
1287   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
1288 
1289   // deopt needs to jump to here to enter the interpreter (return a result)
1290 
1291   deopt_frame_manager_return_ftos  = __ pc();
1292   // O0/O1 live
1293   __ ba(false, return_from_deopt_common);
1294   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
1295 
1296   // deopt needs to jump to here to enter the interpreter (return a result)
1297   deopt_frame_manager_return_dtos  = __ pc();
1298 
1299   // O0/O1 live
1300   __ ba(false, return_from_deopt_common);
1301   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
1302 
1303   // deopt needs to jump to here to enter the interpreter (return a result)
1304   deopt_frame_manager_return_vtos  = __ pc();
1305 
1306   // O0/O1 live
1307   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1308 
1309   // Deopt return common
1310   // an index is present that lets us move any possible result being
1311   // return to the interpreter's stack
1312   //
1313   __ bind(return_from_deopt_common);
1314 
1315   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1316   // stack is in the state that the  calling convention left it.
1317   // Copy the result from native abi result and place it on java expression stack.
1318 
1319   // Current interpreter state is present in Lstate
1320 
1321   // Get current pre-pushed top of interpreter stack
1322   // Any result (if any) is in native abi
1323   // result type index is in L3_scratch
1324 
1325   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1326 
1327   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1328   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1329   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1330   __ jmpl(Lscratch, G0, O7);                                         // and convert it
1331   __ delayed()->nop();
1332 
1333   // L1_scratch points to top of stack (prepushed)
1334   __ st_ptr(L1_scratch, STATE(_stack));
1335 }
1336 
1337 // Generate the code to handle a more_monitors message from the c++ interpreter
1338 void CppInterpreterGenerator::generate_more_monitors() {
1339 
1340   Label entry, loop;
1341   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1342   // 1. compute new pointers                                // esp: old expression stack top
1343   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
1344   __ sub(L4_scratch, entry_size, L4_scratch);
1345   __ st_ptr(L4_scratch, STATE(_stack_base));
1346 
1347   __ sub(SP, entry_size, SP);                  // Grow stack
1348   __ st_ptr(SP, STATE(_frame_bottom));
1349 
1350   __ ld_ptr(STATE(_stack_limit), L2_scratch);
1351   __ sub(L2_scratch, entry_size, L2_scratch);
1352   __ st_ptr(L2_scratch, STATE(_stack_limit));
1353 
1354   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
1355   __ sub(L1_scratch, entry_size, L1_scratch);
1356   __ st_ptr(L1_scratch, STATE(_stack));
1357   __ ba(false, entry);
1358   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
1359 
1360   // 2. move expression stack
1361 
1362   __ bind(loop);
1363   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1364   __ add(L1_scratch, wordSize, L1_scratch);
1365   __ bind(entry);
1366   __ cmp(L1_scratch, L4_scratch);
1367   __ br(Assembler::notEqual, false, Assembler::pt, loop);
1368   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1369 
1370   // now zero the slot so we can find it.
1371   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1372 
1373 }
1374 
1375 // Initial entry to C++ interpreter from the call_stub.
1376 // This entry point is called the frame manager since it handles the generation
1377 // of interpreter activation frames via requests directly from the vm (via call_stub)
1378 // and via requests from the interpreter. The requests from the call_stub happen
1379 // directly thru the entry point. Requests from the interpreter happen via returning
1380 // from the interpreter and examining the message the interpreter has returned to
1381 // the frame manager. The frame manager can take the following requests:
1382 
1383 // NO_REQUEST - error, should never happen.
1384 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1385 //                 allocate a new monitor.
1386 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1387 //               happens during entry during the entry via the call stub.
1388 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1389 //
1390 // Arguments:
1391 //
1392 // ebx: methodOop
1393 // ecx: receiver - unused (retrieved from stack as needed)
1394 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1395 //
1396 //
1397 // Stack layout at entry
1398 //
1399 // [ return address     ] <--- esp
1400 // [ parameter n        ]
1401 //   ...
1402 // [ parameter 1        ]
1403 // [ expression stack   ]
1404 //
1405 //
1406 // We are free to blow any registers we like because the call_stub which brought us here
1407 // initially has preserved the callee save registers already.
1408 //
1409 //
1410 
1411 static address interpreter_frame_manager = NULL;
1412 
1413 #ifdef ASSERT
1414   #define VALIDATE_STATE(scratch, marker)                         \
1415   {                                                               \
1416     Label skip;                                                   \
1417     __ ld_ptr(STATE(_self_link), scratch);                        \
1418     __ cmp(Lstate, scratch);                                      \
1419     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
1420     __ delayed()->nop();                                          \
1421     __ breakpoint_trap();                                         \
1422     __ emit_long(marker);                                         \
1423     __ bind(skip);                                                \
1424   }
1425 #else
1426   #define VALIDATE_STATE(scratch, marker)
1427 #endif /* ASSERT */
1428 
1429 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1430 //
1431 // Adjust caller's stack so that all the locals can be contiguous with
1432 // the parameters.
1433 // Worries about stack overflow make this a pain.
1434 //
1435 // Destroys args, G3_scratch, G3_scratch
1436 // In/Out O5_savedSP (sender's original SP)
1437 //
1438 //  assert_different_registers(state, prev_state);
1439   const Register Gtmp = G3_scratch;
1440   const Register tmp = O2;
1441   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1442   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1443 
1444   __ lduh(size_of_parameters, tmp);
1445   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
1446   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
1447   // NEW
1448   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
1449   // determine extra space for non-argument locals & adjust caller's SP
1450   // Gtmp1: parameter size in words
1451   __ lduh(size_of_locals, Gtmp);
1452   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1453 
1454 #if 1
1455   // c2i adapters place the final interpreter argument in the register save area for O0/I0
1456   // the call_stub will place the final interpreter argument at
1457   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1458   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1459   // and try to make it look good in the debugger we will store the argument to
1460   // RecursiveInterpreterActivation in the register argument save area. Without allocating
1461   // extra space for the compiler this will overwrite locals in the local array of the
1462   // interpreter.
1463   // QQQ still needed with frameless adapters???
1464 
1465   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1466 
1467   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
1468 #endif // 1
1469 
1470 
1471   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
1472 }
1473 
1474 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1475 
1476   // G5_method: methodOop
1477   // G2_thread: thread (unused)
1478   // Gargs:   bottom of args (sender_sp)
1479   // O5: sender's sp
1480 
1481   // A single frame manager is plenty as we don't specialize for synchronized. We could and
1482   // the code is pretty much ready. Would need to change the test below and for good measure
1483   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1484   // routines. Not clear this is worth it yet.
1485 
1486   if (interpreter_frame_manager) {
1487     return interpreter_frame_manager;
1488   }
1489 
1490   __ bind(frame_manager_entry);
1491 
1492   // the following temporary registers are used during frame creation
1493   const Register Gtmp1 = G3_scratch;
1494   // const Register Lmirror = L1;     // native mirror (native calls only)
1495 
1496   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
1497   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
1498   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
1499   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
1500   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
1501 
1502   address entry_point = __ pc();
1503   __ mov(G0, prevState);                                                 // no current activation
1504 
1505 
1506   Label re_dispatch;
1507 
1508   __ bind(re_dispatch);
1509 
1510   // Interpreter needs to have locals completely contiguous. In order to do that
1511   // We must adjust the caller's stack pointer for any locals beyond just the
1512   // parameters
1513   adjust_callers_stack(Gargs);
1514 
1515   // O5_savedSP still contains sender's sp
1516 
1517   // NEW FRAME
1518 
1519   generate_compute_interpreter_state(Lstate, prevState, false);
1520 
1521   // At this point a new interpreter frame and state object are created and initialized
1522   // Lstate has the pointer to the new activation
1523   // Any stack banging or limit check should already be done.
1524 
1525   Label call_interpreter;
1526 
1527   __ bind(call_interpreter);
1528 
1529 
1530 #if 1
1531   __ set(0xdead002, Lmirror);
1532   __ set(0xdead002, L2_scratch);
1533   __ set(0xdead003, L3_scratch);
1534   __ set(0xdead004, L4_scratch);
1535   __ set(0xdead005, Lscratch);
1536   __ set(0xdead006, Lscratch2);
1537   __ set(0xdead007, L7_scratch);
1538 
1539   __ set(0xdeaf002, O2);
1540   __ set(0xdeaf003, O3);
1541   __ set(0xdeaf004, O4);
1542   __ set(0xdeaf005, O5);
1543 #endif
1544 
1545   // Call interpreter (stack bang complete) enter here if message is
1546   // set and we know stack size is valid
1547 
1548   Label call_interpreter_2;
1549 
1550   __ bind(call_interpreter_2);
1551 
1552 #ifdef ASSERT
1553   {
1554     Label skip;
1555     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1556     __ cmp(G3_scratch, SP);
1557     __ brx(Assembler::equal, false, Assembler::pt, skip);
1558     __ delayed()->nop();
1559     __ stop("SP not restored to frame bottom");
1560     __ bind(skip);
1561   }
1562 #endif
1563 
1564   VALIDATE_STATE(G3_scratch, 4);
1565   __ set_last_Java_frame(SP, noreg);
1566   __ mov(Lstate, O0);                 // (arg) pointer to current state
1567 
1568   __ call(CAST_FROM_FN_PTR(address,
1569                            JvmtiExport::can_post_interpreter_events() ?
1570                                                                   BytecodeInterpreter::runWithChecks
1571                                                                 : BytecodeInterpreter::run),
1572          relocInfo::runtime_call_type);
1573 
1574   __ delayed()->nop();
1575 
1576   __ ld_ptr(STATE(_thread), G2_thread);
1577   __ reset_last_Java_frame();
1578 
1579   // examine msg from interpreter to determine next action
1580   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
1581 
1582   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
1583 
1584   Label call_method;
1585   Label return_from_interpreted_method;
1586   Label throw_exception;
1587   Label do_OSR;
1588   Label bad_msg;
1589   Label resume_interpreter;
1590 
1591   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1592   __ br(Assembler::equal, false, Assembler::pt, call_method);
1593   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1594   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1595   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1596   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1597   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1598   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1599   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1600   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1601 
1602   // Allocate more monitor space, shuffle expression stack....
1603 
1604   generate_more_monitors();
1605 
1606   // new monitor slot allocated, resume the interpreter.
1607 
1608   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1609   VALIDATE_STATE(G3_scratch, 5);
1610   __ ba(false, call_interpreter);
1611   __ delayed()->st(L1_scratch, STATE(_msg));
1612 
1613   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1614   unctrap_frame_manager_entry  = __ pc();
1615 
1616   // QQQ what message do we send
1617 
1618   __ ba(false, call_interpreter);
1619   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
1620 
1621   //=============================================================================
1622   // Returning from a compiled method into a deopted method. The bytecode at the
1623   // bcp has completed. The result of the bytecode is in the native abi (the tosca
1624   // for the template based interpreter). Any stack space that was used by the
1625   // bytecode that has completed has been removed (e.g. parameters for an invoke)
1626   // so all that we have to do is place any pending result on the expression stack
1627   // and resume execution on the next bytecode.
1628 
1629   generate_deopt_handling();
1630 
1631   // ready to resume the interpreter
1632 
1633   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1634   __ ba(false, call_interpreter);
1635   __ delayed()->st(L1_scratch, STATE(_msg));
1636 
1637   // Current frame has caught an exception we need to dispatch to the
1638   // handler. We can get here because a native interpreter frame caught
1639   // an exception in which case there is no handler and we must rethrow
1640   // If it is a vanilla interpreted frame the we simply drop into the
1641   // interpreter and let it do the lookup.
1642 
1643   Interpreter::_rethrow_exception_entry = __ pc();
1644 
1645   Label return_with_exception;
1646   Label unwind_and_forward;
1647 
1648   // O0: exception
1649   // O7: throwing pc
1650 
1651   // We want exception in the thread no matter what we ultimately decide about frame type.
1652 
1653   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
1654   __ verify_thread();
1655   __ st_ptr(O0, exception_addr);
1656 
1657   // get the methodOop
1658   __ ld_ptr(STATE(_method), G5_method);
1659 
1660   // if this current frame vanilla or native?
1661 
1662   __ ld(access_flags, Gtmp1);
1663   __ btst(JVM_ACC_NATIVE, Gtmp1);
1664   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
1665   __ delayed()->nop();
1666 
1667   // We drop thru to unwind a native interpreted frame with a pending exception
1668   // We jump here for the initial interpreter frame with exception pending
1669   // We unwind the current acivation and forward it to our caller.
1670 
1671   __ bind(unwind_and_forward);
1672 
1673   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1674   // as expected by forward_exception.
1675 
1676   __ restore(FP, G0, SP);                  // unwind interpreter state frame
1677   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1678   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1679 
1680   // Return point from a call which returns a result in the native abi
1681   // (c1/c2/jni-native). This result must be processed onto the java
1682   // expression stack.
1683   //
1684   // A pending exception may be present in which case there is no result present
1685 
1686   address return_from_native_method = __ pc();
1687 
1688   VALIDATE_STATE(G3_scratch, 6);
1689 
1690   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1691   // stack is in the state that the  calling convention left it.
1692   // Copy the result from native abi result and place it on java expression stack.
1693 
1694   // Current interpreter state is present in Lstate
1695 
1696   // Exception pending?
1697 
1698   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1699   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
1700   __ tst(Lscratch);                                                            // exception pending?
1701   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1702   __ delayed()->nop();
1703 
1704   // Process the native abi result to java expression stack
1705 
1706   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
1707   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
1708   __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
1709   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
1710   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
1711   __ ld(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
1712 
1713   // tosca is really just native abi
1714   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1715   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1716   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
1717   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
1718   __ delayed()->nop();
1719 
1720   // L1_scratch points to top of stack (prepushed)
1721 
1722   __ ba(false, resume_interpreter);
1723   __ delayed()->mov(L1_scratch, O1);
1724 
1725   // An exception is being caught on return to a vanilla interpreter frame.
1726   // Empty the stack and resume interpreter
1727 
1728   __ bind(return_with_exception);
1729 
1730   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
1731   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
1732   __ ba(false, resume_interpreter);
1733   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
1734 
1735   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1736   // interpreter call, or native) and unwind this interpreter activation.
1737   // All monitors should be unlocked.
1738 
1739   __ bind(return_from_interpreted_method);
1740 
1741   VALIDATE_STATE(G3_scratch, 7);
1742 
1743   Label return_to_initial_caller;
1744 
1745   // Interpreted result is on the top of the completed activation expression stack.
1746   // We must return it to the top of the callers stack if caller was interpreted
1747   // otherwise we convert to native abi result and return to call_stub/c1/c2
1748   // The caller's expression stack was truncated by the call however the current activation
1749   // has enough stuff on the stack that we have usable space there no matter what. The
1750   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1751   // for the current activation
1752 
1753   __ ld_ptr(STATE(_prev_link), L1_scratch);
1754   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
1755   __ ld(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
1756   __ tst(L1_scratch);
1757   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1758   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1759 
1760   // Copy result to callers java stack
1761 
1762   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1763   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
1764   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
1765   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
1766 
1767   // O0 - will be source, O1 - will be destination (preserved)
1768   __ jmpl(Lscratch, G0, O7);                                          // and convert it
1769   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
1770 
1771   // O1 == &locals[0]
1772 
1773   // Result is now on caller's stack. Just unwind current activation and resume
1774 
1775   Label unwind_recursive_activation;
1776 
1777 
1778   __ bind(unwind_recursive_activation);
1779 
1780   // O1 == &locals[0] (really callers stacktop) for activation now returning
1781   // returning to interpreter method from "recursive" interpreter call
1782   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1783   // to. Now all we must do is unwind the state from the completed call
1784 
1785   // Must restore stack
1786   VALIDATE_STATE(G3_scratch, 8);
1787 
1788   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1789   // Result if any is already on the caller's stack. All we must do now is remove the now dead
1790   // frame and tell interpreter to resume.
1791 
1792 
1793   __ mov(O1, I1);                                                     // pass back new stack top across activation
1794   // POP FRAME HERE ==================================
1795   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1796   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
1797 
1798 
1799   // Resume the interpreter. The current frame contains the current interpreter
1800   // state object.
1801   //
1802   // O1 == new java stack pointer
1803 
1804   __ bind(resume_interpreter);
1805   VALIDATE_STATE(G3_scratch, 10);
1806 
1807   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1808 
1809   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1810   __ st(L1_scratch, STATE(_msg));
1811   __ ba(false, call_interpreter_2);
1812   __ delayed()->st_ptr(O1, STATE(_stack));
1813 
1814 
1815   // Fast accessor methods share this entry point.
1816   // This works because frame manager is in the same codelet
1817   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
1818   // we need to do a little register fixup here once we distinguish the two of them
1819   if (UseFastAccessorMethods && !synchronized) {
1820   // Call stub_return address still in O7
1821     __ bind(fast_accessor_slow_entry_path);
1822     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
1823     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
1824     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
1825     __ delayed()->nop();
1826     __ ba(false, re_dispatch);
1827     __ delayed()->mov(G0, prevState);                                   // initial entry
1828 
1829   }
1830 
1831   // interpreter returning to native code (call_stub/c1/c2)
1832   // convert result and unwind initial activation
1833   // L2_scratch - scaled result type index
1834 
1835   __ bind(return_to_initial_caller);
1836 
1837   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1838   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
1839   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
1840   __ jmpl(Lscratch, G0, O7);                                           // and convert it
1841   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
1842 
1843   Label unwind_initial_activation;
1844   __ bind(unwind_initial_activation);
1845 
1846   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1847   // we can return here with an exception that wasn't handled by interpreted code
1848   // how does c1/c2 see it on return?
1849 
1850   // compute resulting sp before/after args popped depending upon calling convention
1851   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1852   //
1853   // POP FRAME HERE ==================================
1854   __ restore(FP, G0, SP);
1855   __ retl();
1856   __ delayed()->mov(I5_savedSP->after_restore(), SP);
1857 
1858   // OSR request, unwind the current frame and transfer to the OSR entry
1859   // and enter OSR nmethod
1860 
1861   __ bind(do_OSR);
1862   Label remove_initial_frame;
1863   __ ld_ptr(STATE(_prev_link), L1_scratch);
1864   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1865 
1866   // We are going to pop this frame. Is there another interpreter frame underneath
1867   // it or is it callstub/compiled?
1868 
1869   __ tst(L1_scratch);
1870   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1871   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1872 
1873   // Frame underneath is an interpreter frame simply unwind
1874   // POP FRAME HERE ==================================
1875   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
1876   __ mov(I5_savedSP->after_restore(), SP);
1877 
1878   // Since we are now calling native need to change our "return address" from the
1879   // dummy RecursiveInterpreterActivation to a return from native
1880 
1881   __ set((intptr_t)return_from_native_method - 8, O7);
1882 
1883   __ jmpl(G3_scratch, G0, G0);
1884   __ delayed()->mov(G1_scratch, O0);
1885 
1886   __ bind(remove_initial_frame);
1887 
1888   // POP FRAME HERE ==================================
1889   __ restore(FP, G0, SP);
1890   __ mov(I5_savedSP->after_restore(), SP);
1891   __ jmpl(G3_scratch, G0, G0);
1892   __ delayed()->mov(G1_scratch, O0);
1893 
1894   // Call a new method. All we do is (temporarily) trim the expression stack
1895   // push a return address to bring us back to here and leap to the new entry.
1896   // At this point we have a topmost frame that was allocated by the frame manager
1897   // which contains the current method interpreted state. We trim this frame
1898   // of excess java expression stack entries and then recurse.
1899 
1900   __ bind(call_method);
1901 
1902   // stack points to next free location and not top element on expression stack
1903   // method expects sp to be pointing to topmost element
1904 
1905   __ ld_ptr(STATE(_thread), G2_thread);
1906   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1907 
1908 
1909   // SP already takes in to account the 2 extra words we use for slop
1910   // when we call a "static long no_params()" method. So if
1911   // we trim back sp by the amount of unused java expression stack
1912   // there will be automagically the 2 extra words we need.
1913   // We also have to worry about keeping SP aligned.
1914 
1915   __ ld_ptr(STATE(_stack), Gargs);
1916   __ ld_ptr(STATE(_stack_limit), L1_scratch);
1917 
1918   // compute the unused java stack size
1919   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
1920 
1921   // Round down the unused space to that stack is always 16-byte aligned
1922   // by making the unused space a multiple of the size of two longs.
1923 
1924   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
1925 
1926   // Now trim the stack
1927   __ add(SP, L2_scratch, SP);
1928 
1929 
1930   // Now point to the final argument (account for prepush)
1931   __ add(Gargs, wordSize, Gargs);
1932 #ifdef ASSERT
1933   // Make sure we have space for the window
1934   __ sub(Gargs, SP, L1_scratch);
1935   __ cmp(L1_scratch, 16*wordSize);
1936   {
1937     Label skip;
1938     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
1939     __ delayed()->nop();
1940     __ stop("killed stack");
1941     __ bind(skip);
1942   }
1943 #endif // ASSERT
1944 
1945   // Create a new frame where we can store values that make it look like the interpreter
1946   // really recursed.
1947 
1948   // prepare to recurse or call specialized entry
1949 
1950   // First link the registers we need
1951 
1952   // make the pc look good in debugger
1953   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
1954   // argument too
1955   __ mov(Lstate, I0);
1956 
1957   // Record our sending SP
1958   __ mov(SP, O5_savedSP);
1959 
1960   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
1961   __ set((intptr_t) entry_point, L1_scratch);
1962   __ cmp(L1_scratch, L2_scratch);
1963   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
1964   __ delayed()->mov(Lstate, prevState);                                // link activations
1965 
1966   // method uses specialized entry, push a return so we look like call stub setup
1967   // this path will handle fact that result is returned in registers and not
1968   // on the java stack.
1969 
1970   __ set((intptr_t)return_from_native_method - 8, O7);
1971   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
1972   __ delayed()->nop();
1973 
1974   //
1975   // Bad Message from interpreter
1976   //
1977   __ bind(bad_msg);
1978   __ stop("Bad message from interpreter");
1979 
1980   // Interpreted method "returned" with an exception pass it on...
1981   // Pass result, unwind activation and continue/return to interpreter/call_stub
1982   // We handle result (if any) differently based on return to interpreter or call_stub
1983 
1984   __ bind(throw_exception);
1985   __ ld_ptr(STATE(_prev_link), L1_scratch);
1986   __ tst(L1_scratch);
1987   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
1988   __ delayed()->nop();
1989 
1990   __ ld_ptr(STATE(_locals), O1);                                   // get result of popping callee's args
1991   __ ba(false, unwind_recursive_activation);
1992   __ delayed()->nop();
1993 
1994   interpreter_frame_manager = entry_point;
1995   return entry_point;
1996 }
1997 
1998 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1999  : CppInterpreterGenerator(code) {
2000    generate_all(); // down here so it can be "virtual"
2001 }
2002 
2003 
2004 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
2005 
2006   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
2007   // expression stack, the callee will have callee_extra_locals (so we can account for
2008   // frame extension) and monitor_size for monitors. Basically we need to calculate
2009   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
2010   //
2011   //
2012   // The big complicating thing here is that we must ensure that the stack stays properly
2013   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
2014   // needs to be aligned for). We are given that the sp (fp) is already aligned by
2015   // the caller so we must ensure that it is properly aligned for our callee.
2016   //
2017   // Ths c++ interpreter always makes sure that we have a enough extra space on the
2018   // stack at all times to deal with the "stack long no_params()" method issue. This
2019   // is "slop_factor" here.
2020   const int slop_factor = 2;
2021 
2022   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
2023                          frame::memory_parameter_word_sp_offset;   // register save area + param window
2024   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2025   return (round_to(max_stack +
2026                    extra_stack +
2027                    slop_factor +
2028                    fixed_size +
2029                    monitor_size +
2030                    (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
2031 
2032 }
2033 
2034 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
2035 
2036   // See call_stub code
2037   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
2038                                  WordsPerLong);    // 7 + register save area
2039 
2040   // Save space for one monitor to get into the interpreted method in case
2041   // the method is synchronized
2042   int monitor_size    = method->is_synchronized() ?
2043                                 1*frame::interpreter_frame_monitor_size() : 0;
2044   return size_activation_helper(method->max_locals(), method->max_stack(),
2045                                  monitor_size) + call_stub_size;
2046 }
2047 
2048 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
2049                                            frame* caller,
2050                                            frame* current,
2051                                            methodOop method,
2052                                            intptr_t* locals,
2053                                            intptr_t* stack,
2054                                            intptr_t* stack_base,
2055                                            intptr_t* monitor_base,
2056                                            intptr_t* frame_bottom,
2057                                            bool is_top_frame
2058                                            )
2059 {
2060   // What about any vtable?
2061   //
2062   to_fill->_thread = JavaThread::current();
2063   // This gets filled in later but make it something recognizable for now
2064   to_fill->_bcp = method->code_base();
2065   to_fill->_locals = locals;
2066   to_fill->_constants = method->constants()->cache();
2067   to_fill->_method = method;
2068   to_fill->_mdx = NULL;
2069   to_fill->_stack = stack;
2070   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2071     to_fill->_msg = deopt_resume2;
2072   } else {
2073     to_fill->_msg = method_resume;
2074   }
2075   to_fill->_result._to_call._bcp_advance = 0;
2076   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2077   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2078   to_fill->_prev_link = NULL;
2079 
2080   // Fill in the registers for the frame
2081 
2082   // Need to install _sender_sp. Actually not too hard in C++!
2083   // When the skeletal frames are layed out we fill in a value
2084   // for _sender_sp. That value is only correct for the oldest
2085   // skeletal frame constructed (because there is only a single
2086   // entry for "caller_adjustment". While the skeletal frames
2087   // exist that is good enough. We correct that calculation
2088   // here and get all the frames correct.
2089 
2090   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2091 
2092   *current->register_addr(Lstate) = (intptr_t) to_fill;
2093   // skeletal already places a useful value here and this doesn't account
2094   // for alignment so don't bother.
2095   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
2096 
2097   if (caller->is_interpreted_frame()) {
2098     interpreterState prev  = caller->get_interpreterState();
2099     to_fill->_prev_link = prev;
2100     // Make the prev callee look proper
2101     prev->_result._to_call._callee = method;
2102     if (*prev->_bcp == Bytecodes::_invokeinterface) {
2103       prev->_result._to_call._bcp_advance = 5;
2104     } else {
2105       prev->_result._to_call._bcp_advance = 3;
2106     }
2107   }
2108   to_fill->_oop_temp = NULL;
2109   to_fill->_stack_base = stack_base;
2110   // Need +1 here because stack_base points to the word just above the first expr stack entry
2111   // and stack_limit is supposed to point to the word just below the last expr stack entry.
2112   // See generate_compute_interpreter_state.
2113   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
2114   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
2115   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
2116 
2117   // sparc specific
2118   to_fill->_frame_bottom = frame_bottom;
2119   to_fill->_self_link = to_fill;
2120 #ifdef ASSERT
2121   to_fill->_native_fresult = 123456.789;
2122   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2123 #endif
2124 }
2125 
2126 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
2127   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
2128 }
2129 
2130 
2131 int AbstractInterpreter::layout_activation(methodOop method,
2132                                            int tempcount, // Number of slots on java expression stack in use
2133                                            int popframe_extra_args,
2134                                            int moncount,  // Number of active monitors
2135                                            int callee_param_size,
2136                                            int callee_locals_size,
2137                                            frame* caller,
2138                                            frame* interpreter_frame,
2139                                            bool is_top_frame) {
2140 
2141   assert(popframe_extra_args == 0, "NEED TO FIX");
2142   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2143   // does as far as allocating an interpreter frame.
2144   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
2145   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
2146   // as determined by a previous call to this method.
2147   // It is also guaranteed to be walkable even though it is in a skeletal state
2148   // NOTE: return size is in words not bytes
2149   // NOTE: tempcount is the current size of the java expression stack. For top most
2150   //       frames we will allocate a full sized expression stack and not the curback
2151   //       version that non-top frames have.
2152 
2153   // Calculate the amount our frame will be adjust by the callee. For top frame
2154   // this is zero.
2155 
2156   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2157   // calculates the extra locals based on itself. Not what the callee does
2158   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2159   // as getting sender_sp correct.
2160 
2161   int extra_locals_size = callee_locals_size - callee_param_size;
2162   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2163   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2164   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
2165   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2166 
2167 
2168   /*
2169     if we actually have a frame to layout we must now fill in all the pieces. This means both
2170     the interpreterState and the registers.
2171   */
2172   if (interpreter_frame != NULL) {
2173 
2174     // MUCHO HACK
2175 
2176     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2177     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2178     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2179     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2180 
2181     /* Now fillin the interpreterState object */
2182 
2183     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
2184 
2185 
2186     intptr_t* locals;
2187 
2188     // Calculate the postion of locals[0]. This is painful because of
2189     // stack alignment (same as ia64). The problem is that we can
2190     // not compute the location of locals from fp(). fp() will account
2191     // for the extra locals but it also accounts for aligning the stack
2192     // and we can't determine if the locals[0] was misaligned but max_locals
2193     // was enough to have the
2194     // calculate postion of locals. fp already accounts for extra locals.
2195     // +2 for the static long no_params() issue.
2196 
2197     if (caller->is_interpreted_frame()) {
2198       // locals must agree with the caller because it will be used to set the
2199       // caller's tos when we return.
2200       interpreterState prev  = caller->get_interpreterState();
2201       // stack() is prepushed.
2202       locals = prev->stack() + method->size_of_parameters();
2203     } else {
2204       // Lay out locals block in the caller adjacent to the register window save area.
2205       //
2206       // Compiled frames do not allocate a varargs area which is why this if
2207       // statement is needed.
2208       //
2209       intptr_t* fp = interpreter_frame->fp();
2210       int local_words = method->max_locals() * Interpreter::stackElementWords();
2211 
2212       if (caller->is_compiled_frame()) {
2213         locals = fp + frame::register_save_words + local_words - 1;
2214       } else {
2215         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2216       }
2217 
2218     }
2219     // END MUCHO HACK
2220 
2221     intptr_t* monitor_base = (intptr_t*) cur_state;
2222     intptr_t* stack_base =  monitor_base - monitor_size;
2223     /* +1 because stack is always prepushed */
2224     intptr_t* stack = stack_base - (tempcount + 1);
2225 
2226 
2227     BytecodeInterpreter::layout_interpreterState(cur_state,
2228                                           caller,
2229                                           interpreter_frame,
2230                                           method,
2231                                           locals,
2232                                           stack,
2233                                           stack_base,
2234                                           monitor_base,
2235                                           frame_bottom,
2236                                           is_top_frame);
2237 
2238     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2239 
2240   }
2241   return frame_words;
2242 }
2243 
2244 #endif // CC_INTERP