1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
  27 
  28 
  29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  31 // fast versions of NegF/NegD and AbsF/AbsD.
  32 
  33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  36   // of 128-bits operands for SSE instructions.
  37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  38   // Store the value to a 128-bits operand.
  39   operand[0] = lo;
  40   operand[1] = hi;
  41   return operand;
  42 }
  43 
  44 // Buffer for 128-bits masks used by SSE instructions.
  45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  46 
  47 // Static initialization during VM startup.
  48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  52 
  53 
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register IC_Klass    = rax;   // where the IC klass is cached
  57 const Register SYNC_header = rax;   // synchronization header
  58 const Register SHIFT_count = rcx;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 100   if (opr->is_constant()) {
 101     LIR_Const* constant = opr->as_constant_ptr();
 102     switch (constant->type()) {
 103       case T_INT: {
 104         return true;
 105       }
 106 
 107       default:
 108         return false;
 109     }
 110   }
 111   return false;
 112 }
 113 
 114 
 115 LIR_Opr LIR_Assembler::receiverOpr() {
 116   return FrameMap::receiver_opr;
 117 }
 118 
 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 120   return receiverOpr();
 121 }
 122 
 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
 124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 125 }
 126 
 127 //--------------fpu register translations-----------------------
 128 
 129 
 130 address LIR_Assembler::float_constant(float f) {
 131   address const_addr = __ float_constant(f);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 
 141 address LIR_Assembler::double_constant(double d) {
 142   address const_addr = __ double_constant(d);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 void LIR_Assembler::set_24bit_FPU() {
 153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 154 }
 155 
 156 void LIR_Assembler::reset_FPU() {
 157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 158 }
 159 
 160 void LIR_Assembler::fpop() {
 161   __ fpop();
 162 }
 163 
 164 void LIR_Assembler::fxch(int i) {
 165   __ fxch(i);
 166 }
 167 
 168 void LIR_Assembler::fld(int i) {
 169   __ fld_s(i);
 170 }
 171 
 172 void LIR_Assembler::ffree(int i) {
 173   __ ffree(i);
 174 }
 175 
 176 void LIR_Assembler::breakpoint() {
 177   __ int3();
 178 }
 179 
 180 void LIR_Assembler::push(LIR_Opr opr) {
 181   if (opr->is_single_cpu()) {
 182     __ push_reg(opr->as_register());
 183   } else if (opr->is_double_cpu()) {
 184     NOT_LP64(__ push_reg(opr->as_register_hi()));
 185     __ push_reg(opr->as_register_lo());
 186   } else if (opr->is_stack()) {
 187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 188   } else if (opr->is_constant()) {
 189     LIR_Const* const_opr = opr->as_constant_ptr();
 190     if (const_opr->type() == T_OBJECT) {
 191       __ push_oop(const_opr->as_jobject());
 192     } else if (const_opr->type() == T_INT) {
 193       __ push_jint(const_opr->as_jint());
 194     } else {
 195       ShouldNotReachHere();
 196     }
 197 
 198   } else {
 199     ShouldNotReachHere();
 200   }
 201 }
 202 
 203 void LIR_Assembler::pop(LIR_Opr opr) {
 204   if (opr->is_single_cpu()) {
 205     __ pop_reg(opr->as_register());
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 212   return addr->base()->is_illegal() && addr->index()->is_illegal();
 213 }
 214 
 215 //-------------------------------------------
 216 
 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 218   return as_Address(addr, rscratch1);
 219 }
 220 
 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 222   if (addr->base()->is_illegal()) {
 223     assert(addr->index()->is_illegal(), "must be illegal too");
 224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 225     if (! __ reachable(laddr)) {
 226       __ movptr(tmp, laddr.addr());
 227       Address res(tmp, 0);
 228       return res;
 229     } else {
 230       return __ as_Address(laddr);
 231     }
 232   }
 233 
 234   Register base = addr->base()->as_pointer_register();
 235 
 236   if (addr->index()->is_illegal()) {
 237     return Address( base, addr->disp());
 238   } else if (addr->index()->is_cpu_register()) {
 239     Register index = addr->index()->as_pointer_register();
 240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 241   } else if (addr->index()->is_constant()) {
 242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 243     assert(Assembler::is_simm32(addr_offset), "must be");
 244 
 245     return Address(base, addr_offset);
 246   } else {
 247     Unimplemented();
 248     return Address();
 249   }
 250 }
 251 
 252 
 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 254   Address base = as_Address(addr);
 255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 260   return as_Address(addr);
 261 }
 262 
 263 
 264 void LIR_Assembler::osr_entry() {
 265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 267   ValueStack* entry_state = osr_entry->state();
 268   int number_of_locks = entry_state->locks_size();
 269 
 270   // we jump here if osr happens with the interpreter
 271   // state set up to continue at the beginning of the
 272   // loop that triggered osr - in particular, we have
 273   // the following registers setup:
 274   //
 275   // rcx: osr buffer
 276   //
 277 
 278   // build frame
 279   ciMethod* m = compilation()->method();
 280   __ build_frame(initial_frame_size_in_bytes());
 281 
 282   // OSR buffer is
 283   //
 284   // locals[nlocals-1..0]
 285   // monitors[0..number_of_locks]
 286   //
 287   // locals is a direct copy of the interpreter frame so in the osr buffer
 288   // so first slot in the local array is the last local from the interpreter
 289   // and last slot is local[0] (receiver) from the interpreter
 290   //
 291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 293   // in the interpreter frame (the method lock if a sync method)
 294 
 295   // Initialize monitors in the compiled activation.
 296   //   rcx: pointer to osr buffer
 297   //
 298   // All other registers are dead at this point and the locals will be
 299   // copied into place by code emitted in the IR.
 300 
 301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 303     int monitor_offset = BytesPerWord * method()->max_locals() +
 304       (2 * BytesPerWord) * (number_of_locks - 1);
 305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 306     // the OSR buffer using 2 word entries: first the lock and then
 307     // the oop.
 308     for (int i = 0; i < number_of_locks; i++) {
 309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 310 #ifdef ASSERT
 311       // verify the interpreter's monitor has a non-null object
 312       {
 313         Label L;
 314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 315         __ jcc(Assembler::notZero, L);
 316         __ stop("locked object is NULL");
 317         __ bind(L);
 318       }
 319 #endif
 320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 324     }
 325   }
 326 }
 327 
 328 
 329 // inline cache check; done before the frame is built.
 330 int LIR_Assembler::check_icache() {
 331   Register receiver = FrameMap::receiver_opr->as_register();
 332   Register ic_klass = IC_Klass;
 333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 334 
 335   if (!VerifyOops) {
 336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 338       __ nop();
 339     }
 340   }
 341   int offset = __ offset();
 342   __ inline_cache_check(receiver, IC_Klass);
 343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
 344   if (VerifyOops) {
 345     // force alignment after the cache check.
 346     // It's been verified to be aligned if !VerifyOops
 347     __ align(CodeEntryAlignment);
 348   }
 349   return offset;
 350 }
 351 
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 354   jobject o = NULL;
 355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 356   __ movoop(reg, o);
 357   patching_epilog(patch, lir_patch_normal, reg, info);
 358 }
 359 
 360 
 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 362   if (exception->is_valid()) {
 363     // preserve exception
 364     // note: the monitor_exit runtime call is a leaf routine
 365     //       and cannot block => no GC can happen
 366     // The slow case (MonitorAccessStub) uses the first two stack slots
 367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 368     __ movptr (Address(rsp, 2*wordSize), exception);
 369   }
 370 
 371   Register obj_reg  = obj_opr->as_register();
 372   Register lock_reg = lock_opr->as_register();
 373 
 374   // setup registers (lock_reg must be rax, for lock_object)
 375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 376   Register hdr = lock_reg;
 377   assert(new_hdr == SYNC_header, "wrong register");
 378   lock_reg = new_hdr;
 379   // compute pointer to BasicLock
 380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 381   __ lea(lock_reg, lock_addr);
 382   // unlock object
 383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 384   // _slow_case_stubs->append(slow_case);
 385   // temporary fix: must be created after exceptionhandler, therefore as call stub
 386   _slow_case_stubs->append(slow_case);
 387   if (UseFastLocking) {
 388     // try inlined fast unlocking first, revert to slow locking if it fails
 389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 392   } else {
 393     // always do slow unlocking
 394     // note: the slow unlocking code could be inlined here, however if we use
 395     //       slow unlocking, speed doesn't matter anyway and this solution is
 396     //       simpler and requires less duplicated code - additionally, the
 397     //       slow unlocking code is the same in either case which simplifies
 398     //       debugging
 399     __ jmp(*slow_case->entry());
 400   }
 401   // done
 402   __ bind(*slow_case->continuation());
 403 
 404   if (exception->is_valid()) {
 405     // restore exception
 406     __ movptr (exception, Address(rsp, 2 * wordSize));
 407   }
 408 }
 409 
 410 // This specifies the rsp decrement needed to build the frame
 411 int LIR_Assembler::initial_frame_size_in_bytes() {
 412   // if rounding, must let FrameMap know!
 413 
 414   // The frame_map records size in slots (32bit word)
 415 
 416   // subtract two words to account for return address and link
 417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 
 421 int LIR_Assembler::emit_exception_handler() {
 422   // if the last instruction is a call (typically to do a throw which
 423   // is coming at the end after block reordering) the return address
 424   // must still point into the code area in order to avoid assertion
 425   // failures when searching for the corresponding bci => add a nop
 426   // (was bug 5/14/1999 - gri)
 427   __ nop();
 428 
 429   // generate code for exception handler
 430   address handler_base = __ start_a_stub(exception_handler_size);
 431   if (handler_base == NULL) {
 432     // not enough space left for the handler
 433     bailout("exception handler overflow");
 434     return -1;
 435   }
 436 
 437   int offset = code_offset();
 438 
 439   // the exception oop and pc are in rax, and rdx
 440   // no other registers need to be preserved, so invalidate them
 441   __ invalidate_registers(false, true, true, false, true, true);
 442 
 443   // check that there is really an exception
 444   __ verify_not_null_oop(rax);
 445 
 446   // search an exception handler (rax: exception oop, rdx: throwing pc)
 447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 448 
 449   __ stop("should not reach here");
 450 
 451   assert(code_offset() - offset <= exception_handler_size, "overflow");
 452   __ end_a_stub();
 453 
 454   return offset;
 455 }
 456 
 457 
 458 // Emit the code to remove the frame from the stack in the exception
 459 // unwind path.
 460 int LIR_Assembler::emit_unwind_handler() {
 461 #ifndef PRODUCT
 462   if (CommentedAssembly) {
 463     _masm->block_comment("Unwind handler");
 464   }
 465 #endif
 466 
 467   int offset = code_offset();
 468 
 469   // Fetch the exception from TLS and clear out exception related thread state
 470   __ get_thread(rsi);
 471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 474 
 475   __ bind(_unwind_handler_entry);
 476   __ verify_not_null_oop(rax);
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rsi, rax);  // Preserve the exception
 479   }
 480 
 481   // Preform needed unlocking
 482   MonitorExitStub* stub = NULL;
 483   if (method()->is_synchronized()) {
 484     monitor_address(0, FrameMap::rax_opr);
 485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 486     __ unlock_object(rdi, rbx, rax, *stub->entry());
 487     __ bind(*stub->continuation());
 488   }
 489 
 490   if (compilation()->env()->dtrace_method_probes()) {
 491     __ movoop(Address(rsp, 0), method()->constant_encoding());
 492     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 493   }
 494 
 495   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 496     __ mov(rax, rsi);  // Restore the exception
 497   }
 498 
 499   // remove the activation and dispatch to the unwind handler
 500   __ remove_frame(initial_frame_size_in_bytes());
 501   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 502 
 503   // Emit the slow path assembly
 504   if (stub != NULL) {
 505     stub->emit_code(this);
 506   }
 507 
 508   return offset;
 509 }
 510 
 511 
 512 int LIR_Assembler::emit_deopt_handler() {
 513   // if the last instruction is a call (typically to do a throw which
 514   // is coming at the end after block reordering) the return address
 515   // must still point into the code area in order to avoid assertion
 516   // failures when searching for the corresponding bci => add a nop
 517   // (was bug 5/14/1999 - gri)
 518   __ nop();
 519 
 520   // generate code for exception handler
 521   address handler_base = __ start_a_stub(deopt_handler_size);
 522   if (handler_base == NULL) {
 523     // not enough space left for the handler
 524     bailout("deopt handler overflow");
 525     return -1;
 526   }
 527 
 528   int offset = code_offset();
 529   InternalAddress here(__ pc());
 530 
 531   __ pushptr(here.addr());
 532   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 533 
 534   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 535   __ end_a_stub();
 536 
 537   return offset;
 538 }
 539 
 540 
 541 // This is the fast version of java.lang.String.compare; it has not
 542 // OSR-entry and therefore, we generate a slow version for OSR's
 543 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 544   __ movptr (rbx, rcx); // receiver is in rcx
 545   __ movptr (rax, arg1->as_register());
 546 
 547   // Get addresses of first characters from both Strings
 548   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 549   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 550   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 551 
 552 
 553   // rbx, may be NULL
 554   add_debug_info_for_null_check_here(info);
 555   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 556   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 557   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 558 
 559   // compute minimum length (in rax) and difference of lengths (on top of stack)
 560   if (VM_Version::supports_cmov()) {
 561     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 562     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 563     __ mov      (rcx, rbx);
 564     __ subptr   (rbx, rax); // subtract lengths
 565     __ push     (rbx);      // result
 566     __ cmov     (Assembler::lessEqual, rax, rcx);
 567   } else {
 568     Label L;
 569     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 570     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 571     __ mov      (rax, rbx);
 572     __ subptr   (rbx, rcx);
 573     __ push     (rbx);
 574     __ jcc      (Assembler::lessEqual, L);
 575     __ mov      (rax, rcx);
 576     __ bind (L);
 577   }
 578   // is minimum length 0?
 579   Label noLoop, haveResult;
 580   __ testptr (rax, rax);
 581   __ jcc (Assembler::zero, noLoop);
 582 
 583   // compare first characters
 584   __ load_unsigned_short(rcx, Address(rdi, 0));
 585   __ load_unsigned_short(rbx, Address(rsi, 0));
 586   __ subl(rcx, rbx);
 587   __ jcc(Assembler::notZero, haveResult);
 588   // starting loop
 589   __ decrement(rax); // we already tested index: skip one
 590   __ jcc(Assembler::zero, noLoop);
 591 
 592   // set rsi.edi to the end of the arrays (arrays have same length)
 593   // negate the index
 594 
 595   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 596   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 597   __ negptr(rax);
 598 
 599   // compare the strings in a loop
 600 
 601   Label loop;
 602   __ align(wordSize);
 603   __ bind(loop);
 604   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 605   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 606   __ subl(rcx, rbx);
 607   __ jcc(Assembler::notZero, haveResult);
 608   __ increment(rax);
 609   __ jcc(Assembler::notZero, loop);
 610 
 611   // strings are equal up to min length
 612 
 613   __ bind(noLoop);
 614   __ pop(rax);
 615   return_op(LIR_OprFact::illegalOpr);
 616 
 617   __ bind(haveResult);
 618   // leave instruction is going to discard the TOS value
 619   __ mov (rax, rcx); // result of call is in rax,
 620 }
 621 
 622 
 623 void LIR_Assembler::return_op(LIR_Opr result) {
 624   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 625   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 626     assert(result->fpu() == 0, "result must already be on TOS");
 627   }
 628 
 629   // Pop the stack before the safepoint code
 630   __ remove_frame(initial_frame_size_in_bytes());
 631 
 632   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 633 
 634   // Note: we do not need to round double result; float result has the right precision
 635   // the poll sets the condition code, but no data registers
 636   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 637                               relocInfo::poll_return_type);
 638 
 639   // NOTE: the requires that the polling page be reachable else the reloc
 640   // goes to the movq that loads the address and not the faulting instruction
 641   // which breaks the signal handler code
 642 
 643   __ test32(rax, polling_page);
 644 
 645   __ ret(0);
 646 }
 647 
 648 
 649 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 650   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 651                               relocInfo::poll_type);
 652 
 653   if (info != NULL) {
 654     add_debug_info_for_branch(info);
 655   } else {
 656     ShouldNotReachHere();
 657   }
 658 
 659   int offset = __ offset();
 660 
 661   // NOTE: the requires that the polling page be reachable else the reloc
 662   // goes to the movq that loads the address and not the faulting instruction
 663   // which breaks the signal handler code
 664 
 665   __ test32(rax, polling_page);
 666   return offset;
 667 }
 668 
 669 
 670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 671   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 672 }
 673 
 674 void LIR_Assembler::swap_reg(Register a, Register b) {
 675   __ xchgptr(a, b);
 676 }
 677 
 678 
 679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 680   assert(src->is_constant(), "should not call otherwise");
 681   assert(dest->is_register(), "should not call otherwise");
 682   LIR_Const* c = src->as_constant_ptr();
 683 
 684   switch (c->type()) {
 685     case T_INT:
 686     case T_ADDRESS: {
 687       assert(patch_code == lir_patch_none, "no patching handled here");
 688       __ movl(dest->as_register(), c->as_jint());
 689       break;
 690     }
 691 
 692     case T_LONG: {
 693       assert(patch_code == lir_patch_none, "no patching handled here");
 694 #ifdef _LP64
 695       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 696 #else
 697       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 698       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 699 #endif // _LP64
 700       break;
 701     }
 702 
 703     case T_OBJECT: {
 704       if (patch_code != lir_patch_none) {
 705         jobject2reg_with_patching(dest->as_register(), info);
 706       } else {
 707         __ movoop(dest->as_register(), c->as_jobject());
 708       }
 709       break;
 710     }
 711 
 712     case T_FLOAT: {
 713       if (dest->is_single_xmm()) {
 714         if (c->is_zero_float()) {
 715           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 716         } else {
 717           __ movflt(dest->as_xmm_float_reg(),
 718                    InternalAddress(float_constant(c->as_jfloat())));
 719         }
 720       } else {
 721         assert(dest->is_single_fpu(), "must be");
 722         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 723         if (c->is_zero_float()) {
 724           __ fldz();
 725         } else if (c->is_one_float()) {
 726           __ fld1();
 727         } else {
 728           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 729         }
 730       }
 731       break;
 732     }
 733 
 734     case T_DOUBLE: {
 735       if (dest->is_double_xmm()) {
 736         if (c->is_zero_double()) {
 737           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 738         } else {
 739           __ movdbl(dest->as_xmm_double_reg(),
 740                     InternalAddress(double_constant(c->as_jdouble())));
 741         }
 742       } else {
 743         assert(dest->is_double_fpu(), "must be");
 744         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 745         if (c->is_zero_double()) {
 746           __ fldz();
 747         } else if (c->is_one_double()) {
 748           __ fld1();
 749         } else {
 750           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 751         }
 752       }
 753       break;
 754     }
 755 
 756     default:
 757       ShouldNotReachHere();
 758   }
 759 }
 760 
 761 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 762   assert(src->is_constant(), "should not call otherwise");
 763   assert(dest->is_stack(), "should not call otherwise");
 764   LIR_Const* c = src->as_constant_ptr();
 765 
 766   switch (c->type()) {
 767     case T_INT:  // fall through
 768     case T_FLOAT:
 769     case T_ADDRESS:
 770       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 771       break;
 772 
 773     case T_OBJECT:
 774       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 775       break;
 776 
 777     case T_LONG:  // fall through
 778     case T_DOUBLE:
 779 #ifdef _LP64
 780       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 781                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 782 #else
 783       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 784                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 785       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 786                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 787 #endif // _LP64
 788       break;
 789 
 790     default:
 791       ShouldNotReachHere();
 792   }
 793 }
 794 
 795 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
 796   assert(src->is_constant(), "should not call otherwise");
 797   assert(dest->is_address(), "should not call otherwise");
 798   LIR_Const* c = src->as_constant_ptr();
 799   LIR_Address* addr = dest->as_address_ptr();
 800 
 801   int null_check_here = code_offset();
 802   switch (type) {
 803     case T_INT:    // fall through
 804     case T_FLOAT:
 805     case T_ADDRESS:
 806       __ movl(as_Address(addr), c->as_jint_bits());
 807       break;
 808 
 809     case T_OBJECT:  // fall through
 810     case T_ARRAY:
 811       if (c->as_jobject() == NULL) {
 812         __ movptr(as_Address(addr), NULL_WORD);
 813       } else {
 814         if (is_literal_address(addr)) {
 815           ShouldNotReachHere();
 816           __ movoop(as_Address(addr, noreg), c->as_jobject());
 817         } else {
 818 #ifdef _LP64
 819           __ movoop(rscratch1, c->as_jobject());
 820           null_check_here = code_offset();
 821           __ movptr(as_Address_lo(addr), rscratch1);
 822 #else
 823           __ movoop(as_Address(addr), c->as_jobject());
 824 #endif
 825         }
 826       }
 827       break;
 828 
 829     case T_LONG:    // fall through
 830     case T_DOUBLE:
 831 #ifdef _LP64
 832       if (is_literal_address(addr)) {
 833         ShouldNotReachHere();
 834         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 835       } else {
 836         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 837         null_check_here = code_offset();
 838         __ movptr(as_Address_lo(addr), r10);
 839       }
 840 #else
 841       // Always reachable in 32bit so this doesn't produce useless move literal
 842       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 843       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 844 #endif // _LP64
 845       break;
 846 
 847     case T_BOOLEAN: // fall through
 848     case T_BYTE:
 849       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 850       break;
 851 
 852     case T_CHAR:    // fall through
 853     case T_SHORT:
 854       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 855       break;
 856 
 857     default:
 858       ShouldNotReachHere();
 859   };
 860 
 861   if (info != NULL) {
 862     add_debug_info_for_null_check(null_check_here, info);
 863   }
 864 }
 865 
 866 
 867 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 868   assert(src->is_register(), "should not call otherwise");
 869   assert(dest->is_register(), "should not call otherwise");
 870 
 871   // move between cpu-registers
 872   if (dest->is_single_cpu()) {
 873 #ifdef _LP64
 874     if (src->type() == T_LONG) {
 875       // Can do LONG -> OBJECT
 876       move_regs(src->as_register_lo(), dest->as_register());
 877       return;
 878     }
 879 #endif
 880     assert(src->is_single_cpu(), "must match");
 881     if (src->type() == T_OBJECT) {
 882       __ verify_oop(src->as_register());
 883     }
 884     move_regs(src->as_register(), dest->as_register());
 885 
 886   } else if (dest->is_double_cpu()) {
 887 #ifdef _LP64
 888     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 889       // Surprising to me but we can see move of a long to t_object
 890       __ verify_oop(src->as_register());
 891       move_regs(src->as_register(), dest->as_register_lo());
 892       return;
 893     }
 894 #endif
 895     assert(src->is_double_cpu(), "must match");
 896     Register f_lo = src->as_register_lo();
 897     Register f_hi = src->as_register_hi();
 898     Register t_lo = dest->as_register_lo();
 899     Register t_hi = dest->as_register_hi();
 900 #ifdef _LP64
 901     assert(f_hi == f_lo, "must be same");
 902     assert(t_hi == t_lo, "must be same");
 903     move_regs(f_lo, t_lo);
 904 #else
 905     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 906 
 907 
 908     if (f_lo == t_hi && f_hi == t_lo) {
 909       swap_reg(f_lo, f_hi);
 910     } else if (f_hi == t_lo) {
 911       assert(f_lo != t_hi, "overwriting register");
 912       move_regs(f_hi, t_hi);
 913       move_regs(f_lo, t_lo);
 914     } else {
 915       assert(f_hi != t_lo, "overwriting register");
 916       move_regs(f_lo, t_lo);
 917       move_regs(f_hi, t_hi);
 918     }
 919 #endif // LP64
 920 
 921     // special moves from fpu-register to xmm-register
 922     // necessary for method results
 923   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 924     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 925     __ fld_s(Address(rsp, 0));
 926   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 927     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 928     __ fld_d(Address(rsp, 0));
 929   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 930     __ fstp_s(Address(rsp, 0));
 931     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 932   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 933     __ fstp_d(Address(rsp, 0));
 934     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 935 
 936     // move between xmm-registers
 937   } else if (dest->is_single_xmm()) {
 938     assert(src->is_single_xmm(), "must match");
 939     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 940   } else if (dest->is_double_xmm()) {
 941     assert(src->is_double_xmm(), "must match");
 942     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 943 
 944     // move between fpu-registers (no instruction necessary because of fpu-stack)
 945   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 946     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 947     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 948   } else {
 949     ShouldNotReachHere();
 950   }
 951 }
 952 
 953 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 954   assert(src->is_register(), "should not call otherwise");
 955   assert(dest->is_stack(), "should not call otherwise");
 956 
 957   if (src->is_single_cpu()) {
 958     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 959     if (type == T_OBJECT || type == T_ARRAY) {
 960       __ verify_oop(src->as_register());
 961       __ movptr (dst, src->as_register());
 962     } else {
 963       __ movl (dst, src->as_register());
 964     }
 965 
 966   } else if (src->is_double_cpu()) {
 967     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 968     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 969     __ movptr (dstLO, src->as_register_lo());
 970     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 971 
 972   } else if (src->is_single_xmm()) {
 973     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 974     __ movflt(dst_addr, src->as_xmm_float_reg());
 975 
 976   } else if (src->is_double_xmm()) {
 977     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 978     __ movdbl(dst_addr, src->as_xmm_double_reg());
 979 
 980   } else if (src->is_single_fpu()) {
 981     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 982     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 983     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 984     else                   __ fst_s  (dst_addr);
 985 
 986   } else if (src->is_double_fpu()) {
 987     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 988     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 989     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 990     else                   __ fst_d  (dst_addr);
 991 
 992   } else {
 993     ShouldNotReachHere();
 994   }
 995 }
 996 
 997 
 998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
 999   LIR_Address* to_addr = dest->as_address_ptr();
1000   PatchingStub* patch = NULL;
1001 
1002   if (type == T_ARRAY || type == T_OBJECT) {
1003     __ verify_oop(src->as_register());
1004   }
1005   if (patch_code != lir_patch_none) {
1006     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1007     Address toa = as_Address(to_addr);
1008     assert(toa.disp() != 0, "must have");
1009   }
1010   if (info != NULL) {
1011     add_debug_info_for_null_check_here(info);
1012   }
1013 
1014   switch (type) {
1015     case T_FLOAT: {
1016       if (src->is_single_xmm()) {
1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018       } else {
1019         assert(src->is_single_fpu(), "must be");
1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022         else                    __ fst_s (as_Address(to_addr));
1023       }
1024       break;
1025     }
1026 
1027     case T_DOUBLE: {
1028       if (src->is_double_xmm()) {
1029         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1030       } else {
1031         assert(src->is_double_fpu(), "must be");
1032         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1033         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1034         else                    __ fst_d (as_Address(to_addr));
1035       }
1036       break;
1037     }
1038 
1039     case T_ADDRESS: // fall through
1040     case T_ARRAY:   // fall through
1041     case T_OBJECT:  // fall through
1042 #ifdef _LP64
1043       __ movptr(as_Address(to_addr), src->as_register());
1044       break;
1045 #endif // _LP64
1046     case T_INT:
1047       __ movl(as_Address(to_addr), src->as_register());
1048       break;
1049 
1050     case T_LONG: {
1051       Register from_lo = src->as_register_lo();
1052       Register from_hi = src->as_register_hi();
1053 #ifdef _LP64
1054       __ movptr(as_Address_lo(to_addr), from_lo);
1055 #else
1056       Register base = to_addr->base()->as_register();
1057       Register index = noreg;
1058       if (to_addr->index()->is_register()) {
1059         index = to_addr->index()->as_register();
1060       }
1061       if (base == from_lo || index == from_lo) {
1062         assert(base != from_hi, "can't be");
1063         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1064         __ movl(as_Address_hi(to_addr), from_hi);
1065         if (patch != NULL) {
1066           patching_epilog(patch, lir_patch_high, base, info);
1067           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1068           patch_code = lir_patch_low;
1069         }
1070         __ movl(as_Address_lo(to_addr), from_lo);
1071       } else {
1072         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1073         __ movl(as_Address_lo(to_addr), from_lo);
1074         if (patch != NULL) {
1075           patching_epilog(patch, lir_patch_low, base, info);
1076           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1077           patch_code = lir_patch_high;
1078         }
1079         __ movl(as_Address_hi(to_addr), from_hi);
1080       }
1081 #endif // _LP64
1082       break;
1083     }
1084 
1085     case T_BYTE:    // fall through
1086     case T_BOOLEAN: {
1087       Register src_reg = src->as_register();
1088       Address dst_addr = as_Address(to_addr);
1089       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1090       __ movb(dst_addr, src_reg);
1091       break;
1092     }
1093 
1094     case T_CHAR:    // fall through
1095     case T_SHORT:
1096       __ movw(as_Address(to_addr), src->as_register());
1097       break;
1098 
1099     default:
1100       ShouldNotReachHere();
1101   }
1102 
1103   if (patch_code != lir_patch_none) {
1104     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1105   }
1106 }
1107 
1108 
1109 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1110   assert(src->is_stack(), "should not call otherwise");
1111   assert(dest->is_register(), "should not call otherwise");
1112 
1113   if (dest->is_single_cpu()) {
1114     if (type == T_ARRAY || type == T_OBJECT) {
1115       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1116       __ verify_oop(dest->as_register());
1117     } else {
1118       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1119     }
1120 
1121   } else if (dest->is_double_cpu()) {
1122     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1123     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1124     __ movptr(dest->as_register_lo(), src_addr_LO);
1125     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1126 
1127   } else if (dest->is_single_xmm()) {
1128     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1129     __ movflt(dest->as_xmm_float_reg(), src_addr);
1130 
1131   } else if (dest->is_double_xmm()) {
1132     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1133     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1134 
1135   } else if (dest->is_single_fpu()) {
1136     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1137     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1138     __ fld_s(src_addr);
1139 
1140   } else if (dest->is_double_fpu()) {
1141     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1142     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1143     __ fld_d(src_addr);
1144 
1145   } else {
1146     ShouldNotReachHere();
1147   }
1148 }
1149 
1150 
1151 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1152   if (src->is_single_stack()) {
1153     if (type == T_OBJECT || type == T_ARRAY) {
1154       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1155       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1156     } else {
1157 #ifndef _LP64
1158       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1159       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1160 #else
1161       //no pushl on 64bits
1162       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1163       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1164 #endif
1165     }
1166 
1167   } else if (src->is_double_stack()) {
1168 #ifdef _LP64
1169     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1170     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1171 #else
1172     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1173     // push and pop the part at src + wordSize, adding wordSize for the previous push
1174     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1175     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1176     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1177 #endif // _LP64
1178 
1179   } else {
1180     ShouldNotReachHere();
1181   }
1182 }
1183 
1184 
1185 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1186   assert(src->is_address(), "should not call otherwise");
1187   assert(dest->is_register(), "should not call otherwise");
1188 
1189   LIR_Address* addr = src->as_address_ptr();
1190   Address from_addr = as_Address(addr);
1191 
1192   switch (type) {
1193     case T_BOOLEAN: // fall through
1194     case T_BYTE:    // fall through
1195     case T_CHAR:    // fall through
1196     case T_SHORT:
1197       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1198         // on pre P6 processors we may get partial register stalls
1199         // so blow away the value of to_rinfo before loading a
1200         // partial word into it.  Do it here so that it precedes
1201         // the potential patch point below.
1202         __ xorptr(dest->as_register(), dest->as_register());
1203       }
1204       break;
1205   }
1206 
1207   PatchingStub* patch = NULL;
1208   if (patch_code != lir_patch_none) {
1209     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1210     assert(from_addr.disp() != 0, "must have");
1211   }
1212   if (info != NULL) {
1213     add_debug_info_for_null_check_here(info);
1214   }
1215 
1216   switch (type) {
1217     case T_FLOAT: {
1218       if (dest->is_single_xmm()) {
1219         __ movflt(dest->as_xmm_float_reg(), from_addr);
1220       } else {
1221         assert(dest->is_single_fpu(), "must be");
1222         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1223         __ fld_s(from_addr);
1224       }
1225       break;
1226     }
1227 
1228     case T_DOUBLE: {
1229       if (dest->is_double_xmm()) {
1230         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1231       } else {
1232         assert(dest->is_double_fpu(), "must be");
1233         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1234         __ fld_d(from_addr);
1235       }
1236       break;
1237     }
1238 
1239     case T_ADDRESS: // fall through
1240     case T_OBJECT:  // fall through
1241     case T_ARRAY:   // fall through
1242 #ifdef _LP64
1243       __ movptr(dest->as_register(), from_addr);
1244       break;
1245 #endif // _L64
1246     case T_INT:
1247       __ movl(dest->as_register(), from_addr);
1248       break;
1249 
1250     case T_LONG: {
1251       Register to_lo = dest->as_register_lo();
1252       Register to_hi = dest->as_register_hi();
1253 #ifdef _LP64
1254       __ movptr(to_lo, as_Address_lo(addr));
1255 #else
1256       Register base = addr->base()->as_register();
1257       Register index = noreg;
1258       if (addr->index()->is_register()) {
1259         index = addr->index()->as_register();
1260       }
1261       if ((base == to_lo && index == to_hi) ||
1262           (base == to_hi && index == to_lo)) {
1263         // addresses with 2 registers are only formed as a result of
1264         // array access so this code will never have to deal with
1265         // patches or null checks.
1266         assert(info == NULL && patch == NULL, "must be");
1267         __ lea(to_hi, as_Address(addr));
1268         __ movl(to_lo, Address(to_hi, 0));
1269         __ movl(to_hi, Address(to_hi, BytesPerWord));
1270       } else if (base == to_lo || index == to_lo) {
1271         assert(base != to_hi, "can't be");
1272         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1273         __ movl(to_hi, as_Address_hi(addr));
1274         if (patch != NULL) {
1275           patching_epilog(patch, lir_patch_high, base, info);
1276           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1277           patch_code = lir_patch_low;
1278         }
1279         __ movl(to_lo, as_Address_lo(addr));
1280       } else {
1281         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1282         __ movl(to_lo, as_Address_lo(addr));
1283         if (patch != NULL) {
1284           patching_epilog(patch, lir_patch_low, base, info);
1285           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1286           patch_code = lir_patch_high;
1287         }
1288         __ movl(to_hi, as_Address_hi(addr));
1289       }
1290 #endif // _LP64
1291       break;
1292     }
1293 
1294     case T_BOOLEAN: // fall through
1295     case T_BYTE: {
1296       Register dest_reg = dest->as_register();
1297       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1298       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1299         __ movsbl(dest_reg, from_addr);
1300       } else {
1301         __ movb(dest_reg, from_addr);
1302         __ shll(dest_reg, 24);
1303         __ sarl(dest_reg, 24);
1304       }
1305       break;
1306     }
1307 
1308     case T_CHAR: {
1309       Register dest_reg = dest->as_register();
1310       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1311       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1312         __ movzwl(dest_reg, from_addr);
1313       } else {
1314         __ movw(dest_reg, from_addr);
1315       }
1316       break;
1317     }
1318 
1319     case T_SHORT: {
1320       Register dest_reg = dest->as_register();
1321       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1322         __ movswl(dest_reg, from_addr);
1323       } else {
1324         __ movw(dest_reg, from_addr);
1325         __ shll(dest_reg, 16);
1326         __ sarl(dest_reg, 16);
1327       }
1328       break;
1329     }
1330 
1331     default:
1332       ShouldNotReachHere();
1333   }
1334 
1335   if (patch != NULL) {
1336     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1337   }
1338 
1339   if (type == T_ARRAY || type == T_OBJECT) {
1340     __ verify_oop(dest->as_register());
1341   }
1342 }
1343 
1344 
1345 void LIR_Assembler::prefetchr(LIR_Opr src) {
1346   LIR_Address* addr = src->as_address_ptr();
1347   Address from_addr = as_Address(addr);
1348 
1349   if (VM_Version::supports_sse()) {
1350     switch (ReadPrefetchInstr) {
1351       case 0:
1352         __ prefetchnta(from_addr); break;
1353       case 1:
1354         __ prefetcht0(from_addr); break;
1355       case 2:
1356         __ prefetcht2(from_addr); break;
1357       default:
1358         ShouldNotReachHere(); break;
1359     }
1360   } else if (VM_Version::supports_3dnow()) {
1361     __ prefetchr(from_addr);
1362   }
1363 }
1364 
1365 
1366 void LIR_Assembler::prefetchw(LIR_Opr src) {
1367   LIR_Address* addr = src->as_address_ptr();
1368   Address from_addr = as_Address(addr);
1369 
1370   if (VM_Version::supports_sse()) {
1371     switch (AllocatePrefetchInstr) {
1372       case 0:
1373         __ prefetchnta(from_addr); break;
1374       case 1:
1375         __ prefetcht0(from_addr); break;
1376       case 2:
1377         __ prefetcht2(from_addr); break;
1378       case 3:
1379         __ prefetchw(from_addr); break;
1380       default:
1381         ShouldNotReachHere(); break;
1382     }
1383   } else if (VM_Version::supports_3dnow()) {
1384     __ prefetchw(from_addr);
1385   }
1386 }
1387 
1388 
1389 NEEDS_CLEANUP; // This could be static?
1390 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1391   int elem_size = type2aelembytes(type);
1392   switch (elem_size) {
1393     case 1: return Address::times_1;
1394     case 2: return Address::times_2;
1395     case 4: return Address::times_4;
1396     case 8: return Address::times_8;
1397   }
1398   ShouldNotReachHere();
1399   return Address::no_scale;
1400 }
1401 
1402 
1403 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1404   switch (op->code()) {
1405     case lir_idiv:
1406     case lir_irem:
1407       arithmetic_idiv(op->code(),
1408                       op->in_opr1(),
1409                       op->in_opr2(),
1410                       op->in_opr3(),
1411                       op->result_opr(),
1412                       op->info());
1413       break;
1414     default:      ShouldNotReachHere(); break;
1415   }
1416 }
1417 
1418 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1419 #ifdef ASSERT
1420   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1421   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1422   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1423 #endif
1424 
1425   if (op->cond() == lir_cond_always) {
1426     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1427     __ jmp (*(op->label()));
1428   } else {
1429     Assembler::Condition acond = Assembler::zero;
1430     if (op->code() == lir_cond_float_branch) {
1431       assert(op->ublock() != NULL, "must have unordered successor");
1432       __ jcc(Assembler::parity, *(op->ublock()->label()));
1433       switch(op->cond()) {
1434         case lir_cond_equal:        acond = Assembler::equal;      break;
1435         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1436         case lir_cond_less:         acond = Assembler::below;      break;
1437         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1438         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1439         case lir_cond_greater:      acond = Assembler::above;      break;
1440         default:                         ShouldNotReachHere();
1441       }
1442     } else {
1443       switch (op->cond()) {
1444         case lir_cond_equal:        acond = Assembler::equal;       break;
1445         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1446         case lir_cond_less:         acond = Assembler::less;        break;
1447         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1448         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1449         case lir_cond_greater:      acond = Assembler::greater;     break;
1450         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1451         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1452         default:                         ShouldNotReachHere();
1453       }
1454     }
1455     __ jcc(acond,*(op->label()));
1456   }
1457 }
1458 
1459 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1460   LIR_Opr src  = op->in_opr();
1461   LIR_Opr dest = op->result_opr();
1462 
1463   switch (op->bytecode()) {
1464     case Bytecodes::_i2l:
1465 #ifdef _LP64
1466       __ movl2ptr(dest->as_register_lo(), src->as_register());
1467 #else
1468       move_regs(src->as_register(), dest->as_register_lo());
1469       move_regs(src->as_register(), dest->as_register_hi());
1470       __ sarl(dest->as_register_hi(), 31);
1471 #endif // LP64
1472       break;
1473 
1474     case Bytecodes::_l2i:
1475       move_regs(src->as_register_lo(), dest->as_register());
1476       break;
1477 
1478     case Bytecodes::_i2b:
1479       move_regs(src->as_register(), dest->as_register());
1480       __ sign_extend_byte(dest->as_register());
1481       break;
1482 
1483     case Bytecodes::_i2c:
1484       move_regs(src->as_register(), dest->as_register());
1485       __ andl(dest->as_register(), 0xFFFF);
1486       break;
1487 
1488     case Bytecodes::_i2s:
1489       move_regs(src->as_register(), dest->as_register());
1490       __ sign_extend_short(dest->as_register());
1491       break;
1492 
1493 
1494     case Bytecodes::_f2d:
1495     case Bytecodes::_d2f:
1496       if (dest->is_single_xmm()) {
1497         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1498       } else if (dest->is_double_xmm()) {
1499         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1500       } else {
1501         assert(src->fpu() == dest->fpu(), "register must be equal");
1502         // do nothing (float result is rounded later through spilling)
1503       }
1504       break;
1505 
1506     case Bytecodes::_i2f:
1507     case Bytecodes::_i2d:
1508       if (dest->is_single_xmm()) {
1509         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1510       } else if (dest->is_double_xmm()) {
1511         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1512       } else {
1513         assert(dest->fpu() == 0, "result must be on TOS");
1514         __ movl(Address(rsp, 0), src->as_register());
1515         __ fild_s(Address(rsp, 0));
1516       }
1517       break;
1518 
1519     case Bytecodes::_f2i:
1520     case Bytecodes::_d2i:
1521       if (src->is_single_xmm()) {
1522         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1523       } else if (src->is_double_xmm()) {
1524         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1525       } else {
1526         assert(src->fpu() == 0, "input must be on TOS");
1527         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1528         __ fist_s(Address(rsp, 0));
1529         __ movl(dest->as_register(), Address(rsp, 0));
1530         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1531       }
1532 
1533       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1534       assert(op->stub() != NULL, "stub required");
1535       __ cmpl(dest->as_register(), 0x80000000);
1536       __ jcc(Assembler::equal, *op->stub()->entry());
1537       __ bind(*op->stub()->continuation());
1538       break;
1539 
1540     case Bytecodes::_l2f:
1541     case Bytecodes::_l2d:
1542       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1543       assert(dest->fpu() == 0, "result must be on TOS");
1544 
1545       __ movptr(Address(rsp, 0),            src->as_register_lo());
1546       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1547       __ fild_d(Address(rsp, 0));
1548       // float result is rounded later through spilling
1549       break;
1550 
1551     case Bytecodes::_f2l:
1552     case Bytecodes::_d2l:
1553       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1554       assert(src->fpu() == 0, "input must be on TOS");
1555       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1556 
1557       // instruction sequence too long to inline it here
1558       {
1559         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1560       }
1561       break;
1562 
1563     default: ShouldNotReachHere();
1564   }
1565 }
1566 
1567 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1568   if (op->init_check()) {
1569     __ cmpl(Address(op->klass()->as_register(),
1570                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1571             instanceKlass::fully_initialized);
1572     add_debug_info_for_null_check_here(op->stub()->info());
1573     __ jcc(Assembler::notEqual, *op->stub()->entry());
1574   }
1575   __ allocate_object(op->obj()->as_register(),
1576                      op->tmp1()->as_register(),
1577                      op->tmp2()->as_register(),
1578                      op->header_size(),
1579                      op->object_size(),
1580                      op->klass()->as_register(),
1581                      *op->stub()->entry());
1582   __ bind(*op->stub()->continuation());
1583 }
1584 
1585 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1586   if (UseSlowPath ||
1587       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1588       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1589     __ jmp(*op->stub()->entry());
1590   } else {
1591     Register len =  op->len()->as_register();
1592     Register tmp1 = op->tmp1()->as_register();
1593     Register tmp2 = op->tmp2()->as_register();
1594     Register tmp3 = op->tmp3()->as_register();
1595     if (len == tmp1) {
1596       tmp1 = tmp3;
1597     } else if (len == tmp2) {
1598       tmp2 = tmp3;
1599     } else if (len == tmp3) {
1600       // everything is ok
1601     } else {
1602       __ mov(tmp3, len);
1603     }
1604     __ allocate_array(op->obj()->as_register(),
1605                       len,
1606                       tmp1,
1607                       tmp2,
1608                       arrayOopDesc::header_size(op->type()),
1609                       array_element_size(op->type()),
1610                       op->klass()->as_register(),
1611                       *op->stub()->entry());
1612   }
1613   __ bind(*op->stub()->continuation());
1614 }
1615 
1616 void LIR_Assembler::type_profile_helper(Register mdo,
1617                                         ciMethodData *md, ciProfileData *data,
1618                                         Register recv, Label* update_done) {
1619   uint i;
1620   for (i = 0; i < ReceiverTypeData::row_limit(); i++) {
1621     Label next_test;
1622     // See if the receiver is receiver[n].
1623     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1624     __ jccb(Assembler::notEqual, next_test);
1625     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1626     __ addptr(data_addr, DataLayout::counter_increment);
1627     __ jmp(*update_done);
1628     __ bind(next_test);
1629   }
1630 
1631   // Didn't find receiver; find next empty slot and fill it in
1632   for (i = 0; i < ReceiverTypeData::row_limit(); i++) {
1633     Label next_test;
1634     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1635     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1636     __ jccb(Assembler::notEqual, next_test);
1637     __ movptr(recv_addr, recv);
1638     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1639     __ jmp(*update_done);
1640     __ bind(next_test);
1641   }
1642 }
1643 
1644 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1645   // we always need a stub for the failure case.
1646   CodeStub* stub = op->stub();
1647   Register obj = op->object()->as_register();
1648   Register k_RInfo = op->tmp1()->as_register();
1649   Register klass_RInfo = op->tmp2()->as_register();
1650   Register dst = op->result_opr()->as_register();
1651   ciKlass* k = op->klass();
1652   Register Rtmp1 = noreg;
1653 
1654   // check if it needs to be profiled
1655   ciMethodData* md;
1656   ciProfileData* data;
1657 
1658   if (op->should_profile()) {
1659     ciMethod* method = op->profiled_method();
1660     assert(method != NULL, "Should have method");
1661     int bci = op->profiled_bci();
1662     md = method->method_data();
1663     if (md == NULL) {
1664       bailout("out of memory building methodDataOop");
1665       return;
1666     }
1667     data = md->bci_to_data(bci);
1668     assert(data != NULL,                "need data for type check");
1669     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1670   }
1671   Label profile_cast_success, profile_cast_failure;
1672   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1673   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1674 
1675   if (obj == k_RInfo) {
1676     k_RInfo = dst;
1677   } else if (obj == klass_RInfo) {
1678     klass_RInfo = dst;
1679   }
1680   if (k->is_loaded()) {
1681     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1682   } else {
1683     Rtmp1 = op->tmp3()->as_register();
1684     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1685   }
1686 
1687   assert_different_registers(obj, k_RInfo, klass_RInfo);
1688   if (!k->is_loaded()) {
1689     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1690   } else {
1691 #ifdef _LP64
1692     __ movoop(k_RInfo, k->constant_encoding());
1693 #endif // _LP64
1694   }
1695   assert(obj != k_RInfo, "must be different");
1696 
1697   __ cmpptr(obj, (int32_t)NULL_WORD);
1698   if (op->should_profile()) {
1699     Label not_null;
1700     __ jccb(Assembler::notEqual, not_null);
1701     // Object is null; update MDO and exit
1702     Register mdo  = klass_RInfo;
1703     __ movoop(mdo, md->constant_encoding());
1704     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1705     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1706     __ orl(data_addr, header_bits);
1707     __ jmp(*obj_is_null);
1708     __ bind(not_null);
1709   } else {
1710     __ jcc(Assembler::equal, *obj_is_null);
1711   }
1712   __ verify_oop(obj);
1713 
1714   if (op->fast_check()) {
1715     // get object class
1716     // not a safepoint as obj null check happens earlier
1717     if (k->is_loaded()) {
1718 #ifdef _LP64
1719       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1720 #else
1721       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1722 #endif // _LP64
1723     } else {
1724       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1725     }
1726     __ jcc(Assembler::notEqual, *failure_target);
1727     // successful cast, fall through to profile or jump
1728   } else {
1729     // get object class
1730     // not a safepoint as obj null check happens earlier
1731     __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1732     if (k->is_loaded()) {
1733       // See if we get an immediate positive hit
1734 #ifdef _LP64
1735       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1736 #else
1737       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1738 #endif // _LP64
1739       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1740         __ jcc(Assembler::notEqual, *failure_target);
1741         // successful cast, fall through to profile or jump
1742       } else {
1743         // See if we get an immediate positive hit
1744         __ jcc(Assembler::equal, *success_target);
1745         // check for self
1746 #ifdef _LP64
1747         __ cmpptr(klass_RInfo, k_RInfo);
1748 #else
1749         __ cmpoop(klass_RInfo, k->constant_encoding());
1750 #endif // _LP64
1751         __ jcc(Assembler::equal, *success_target);
1752 
1753         __ push(klass_RInfo);
1754 #ifdef _LP64
1755         __ push(k_RInfo);
1756 #else
1757         __ pushoop(k->constant_encoding());
1758 #endif // _LP64
1759         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1760         __ pop(klass_RInfo);
1761         __ pop(klass_RInfo);
1762         // result is a boolean
1763         __ cmpl(klass_RInfo, 0);
1764         __ jcc(Assembler::equal, *failure_target);
1765         // successful cast, fall through to profile or jump
1766       }
1767     } else {
1768       // perform the fast part of the checking logic
1769       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1770       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1771       __ push(klass_RInfo);
1772       __ push(k_RInfo);
1773       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1774       __ pop(klass_RInfo);
1775       __ pop(k_RInfo);
1776       // result is a boolean
1777       __ cmpl(k_RInfo, 0);
1778       __ jcc(Assembler::equal, *failure_target);
1779       // successful cast, fall through to profile or jump
1780     }
1781   }
1782   if (op->should_profile()) {
1783     Register mdo  = klass_RInfo, recv = k_RInfo;
1784     __ bind(profile_cast_success);
1785     __ movoop(mdo, md->constant_encoding());
1786     __ movptr(recv, Address(obj, oopDesc::klass_offset_in_bytes()));
1787     Label update_done;
1788     type_profile_helper(mdo, md, data, recv, success);
1789     __ jmp(*success);
1790 
1791     __ bind(profile_cast_failure);
1792     __ movoop(mdo, md->constant_encoding());
1793     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1794     __ subptr(counter_addr, DataLayout::counter_increment);
1795     __ jmp(*failure);
1796   }
1797   __ jmp(*success);
1798 }
1799 
1800 
1801 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1802   LIR_Code code = op->code();
1803   if (code == lir_store_check) {
1804     Register value = op->object()->as_register();
1805     Register array = op->array()->as_register();
1806     Register k_RInfo = op->tmp1()->as_register();
1807     Register klass_RInfo = op->tmp2()->as_register();
1808     Register Rtmp1 = op->tmp3()->as_register();
1809 
1810     CodeStub* stub = op->stub();
1811 
1812     // check if it needs to be profiled
1813     ciMethodData* md;
1814     ciProfileData* data;
1815 
1816     if (op->should_profile()) {
1817       ciMethod* method = op->profiled_method();
1818       assert(method != NULL, "Should have method");
1819       int bci = op->profiled_bci();
1820       md = method->method_data();
1821       if (md == NULL) {
1822         bailout("out of memory building methodDataOop");
1823         return;
1824       }
1825       data = md->bci_to_data(bci);
1826       assert(data != NULL,                "need data for type check");
1827       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1828     }
1829     Label profile_cast_success, profile_cast_failure, done;
1830     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1831     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1832 
1833     __ cmpptr(value, (int32_t)NULL_WORD);
1834     if (op->should_profile()) {
1835       Label not_null;
1836       __ jccb(Assembler::notEqual, not_null);
1837       // Object is null; update MDO and exit
1838       Register mdo  = klass_RInfo;
1839       __ movoop(mdo, md->constant_encoding());
1840       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1841       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1842       __ orl(data_addr, header_bits);
1843       __ jmp(done);
1844       __ bind(not_null);
1845     } else {
1846       __ jcc(Assembler::equal, done);
1847     }
1848 
1849     add_debug_info_for_null_check_here(op->info_for_exception());
1850     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1851     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1852 
1853     // get instance klass
1854     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1855     // perform the fast part of the checking logic
1856     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1857     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1858     __ push(klass_RInfo);
1859     __ push(k_RInfo);
1860     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1861     __ pop(klass_RInfo);
1862     __ pop(k_RInfo);
1863     // result is a boolean
1864     __ cmpl(k_RInfo, 0);
1865     __ jcc(Assembler::equal, *failure_target);
1866     // fall through to the success case
1867 
1868     if (op->should_profile()) {
1869       Register mdo  = klass_RInfo, recv = k_RInfo;
1870       __ bind(profile_cast_success);
1871       __ movoop(mdo, md->constant_encoding());
1872       __ movptr(recv, Address(value, oopDesc::klass_offset_in_bytes()));
1873       Label update_done;
1874       type_profile_helper(mdo, md, data, recv, &done);
1875       __ jmpb(done);
1876 
1877       __ bind(profile_cast_failure);
1878       __ movoop(mdo, md->constant_encoding());
1879       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1880       __ subptr(counter_addr, DataLayout::counter_increment);
1881       __ jmp(*stub->entry());
1882     }
1883 
1884     __ bind(done);
1885   } else
1886     if (code == lir_checkcast) {
1887       Register obj = op->object()->as_register();
1888       Register dst = op->result_opr()->as_register();
1889       Label success;
1890       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1891       __ bind(success);
1892       if (dst != obj) {
1893         __ mov(dst, obj);
1894       }
1895     } else
1896       if (code == lir_instanceof) {
1897         Register obj = op->object()->as_register();
1898         Register dst = op->result_opr()->as_register();
1899         Label success, failure, done;
1900         emit_typecheck_helper(op, &success, &failure, &failure);
1901         __ bind(failure);
1902         __ xorptr(dst, dst);
1903         __ jmpb(done);
1904         __ bind(success);
1905         __ movptr(dst, 1);
1906         __ bind(done);
1907       } else {
1908         ShouldNotReachHere();
1909       }
1910 
1911 }
1912 
1913 
1914 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1915   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1916     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1917     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1918     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1919     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1920     Register addr = op->addr()->as_register();
1921     if (os::is_MP()) {
1922       __ lock();
1923     }
1924     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1925 
1926   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1927     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1928     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1929     Register newval = op->new_value()->as_register();
1930     Register cmpval = op->cmp_value()->as_register();
1931     assert(cmpval == rax, "wrong register");
1932     assert(newval != NULL, "new val must be register");
1933     assert(cmpval != newval, "cmp and new values must be in different registers");
1934     assert(cmpval != addr, "cmp and addr must be in different registers");
1935     assert(newval != addr, "new value and addr must be in different registers");
1936     if (os::is_MP()) {
1937       __ lock();
1938     }
1939     if ( op->code() == lir_cas_obj) {
1940       __ cmpxchgptr(newval, Address(addr, 0));
1941     } else if (op->code() == lir_cas_int) {
1942       __ cmpxchgl(newval, Address(addr, 0));
1943     } else {
1944       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
1945     }
1946 #ifdef _LP64
1947   } else if (op->code() == lir_cas_long) {
1948     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1949     Register newval = op->new_value()->as_register_lo();
1950     Register cmpval = op->cmp_value()->as_register_lo();
1951     assert(cmpval == rax, "wrong register");
1952     assert(newval != NULL, "new val must be register");
1953     assert(cmpval != newval, "cmp and new values must be in different registers");
1954     assert(cmpval != addr, "cmp and addr must be in different registers");
1955     assert(newval != addr, "new value and addr must be in different registers");
1956     if (os::is_MP()) {
1957       __ lock();
1958     }
1959     __ cmpxchgq(newval, Address(addr, 0));
1960 #endif // _LP64
1961   } else {
1962     Unimplemented();
1963   }
1964 }
1965 
1966 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1967   Assembler::Condition acond, ncond;
1968   switch (condition) {
1969     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1970     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1971     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1972     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1973     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1974     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1975     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1976     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1977     default:                    ShouldNotReachHere();
1978   }
1979 
1980   if (opr1->is_cpu_register()) {
1981     reg2reg(opr1, result);
1982   } else if (opr1->is_stack()) {
1983     stack2reg(opr1, result, result->type());
1984   } else if (opr1->is_constant()) {
1985     const2reg(opr1, result, lir_patch_none, NULL);
1986   } else {
1987     ShouldNotReachHere();
1988   }
1989 
1990   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1991     // optimized version that does not require a branch
1992     if (opr2->is_single_cpu()) {
1993       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1994       __ cmov(ncond, result->as_register(), opr2->as_register());
1995     } else if (opr2->is_double_cpu()) {
1996       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1997       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1998       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1999       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2000     } else if (opr2->is_single_stack()) {
2001       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2002     } else if (opr2->is_double_stack()) {
2003       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2004       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2005     } else {
2006       ShouldNotReachHere();
2007     }
2008 
2009   } else {
2010     Label skip;
2011     __ jcc (acond, skip);
2012     if (opr2->is_cpu_register()) {
2013       reg2reg(opr2, result);
2014     } else if (opr2->is_stack()) {
2015       stack2reg(opr2, result, result->type());
2016     } else if (opr2->is_constant()) {
2017       const2reg(opr2, result, lir_patch_none, NULL);
2018     } else {
2019       ShouldNotReachHere();
2020     }
2021     __ bind(skip);
2022   }
2023 }
2024 
2025 
2026 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2027   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2028 
2029   if (left->is_single_cpu()) {
2030     assert(left == dest, "left and dest must be equal");
2031     Register lreg = left->as_register();
2032 
2033     if (right->is_single_cpu()) {
2034       // cpu register - cpu register
2035       Register rreg = right->as_register();
2036       switch (code) {
2037         case lir_add: __ addl (lreg, rreg); break;
2038         case lir_sub: __ subl (lreg, rreg); break;
2039         case lir_mul: __ imull(lreg, rreg); break;
2040         default:      ShouldNotReachHere();
2041       }
2042 
2043     } else if (right->is_stack()) {
2044       // cpu register - stack
2045       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2046       switch (code) {
2047         case lir_add: __ addl(lreg, raddr); break;
2048         case lir_sub: __ subl(lreg, raddr); break;
2049         default:      ShouldNotReachHere();
2050       }
2051 
2052     } else if (right->is_constant()) {
2053       // cpu register - constant
2054       jint c = right->as_constant_ptr()->as_jint();
2055       switch (code) {
2056         case lir_add: {
2057           __ incrementl(lreg, c);
2058           break;
2059         }
2060         case lir_sub: {
2061           __ decrementl(lreg, c);
2062           break;
2063         }
2064         default: ShouldNotReachHere();
2065       }
2066 
2067     } else {
2068       ShouldNotReachHere();
2069     }
2070 
2071   } else if (left->is_double_cpu()) {
2072     assert(left == dest, "left and dest must be equal");
2073     Register lreg_lo = left->as_register_lo();
2074     Register lreg_hi = left->as_register_hi();
2075 
2076     if (right->is_double_cpu()) {
2077       // cpu register - cpu register
2078       Register rreg_lo = right->as_register_lo();
2079       Register rreg_hi = right->as_register_hi();
2080       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2081       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2082       switch (code) {
2083         case lir_add:
2084           __ addptr(lreg_lo, rreg_lo);
2085           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2086           break;
2087         case lir_sub:
2088           __ subptr(lreg_lo, rreg_lo);
2089           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2090           break;
2091         case lir_mul:
2092 #ifdef _LP64
2093           __ imulq(lreg_lo, rreg_lo);
2094 #else
2095           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2096           __ imull(lreg_hi, rreg_lo);
2097           __ imull(rreg_hi, lreg_lo);
2098           __ addl (rreg_hi, lreg_hi);
2099           __ mull (rreg_lo);
2100           __ addl (lreg_hi, rreg_hi);
2101 #endif // _LP64
2102           break;
2103         default:
2104           ShouldNotReachHere();
2105       }
2106 
2107     } else if (right->is_constant()) {
2108       // cpu register - constant
2109 #ifdef _LP64
2110       jlong c = right->as_constant_ptr()->as_jlong_bits();
2111       __ movptr(r10, (intptr_t) c);
2112       switch (code) {
2113         case lir_add:
2114           __ addptr(lreg_lo, r10);
2115           break;
2116         case lir_sub:
2117           __ subptr(lreg_lo, r10);
2118           break;
2119         default:
2120           ShouldNotReachHere();
2121       }
2122 #else
2123       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2124       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2125       switch (code) {
2126         case lir_add:
2127           __ addptr(lreg_lo, c_lo);
2128           __ adcl(lreg_hi, c_hi);
2129           break;
2130         case lir_sub:
2131           __ subptr(lreg_lo, c_lo);
2132           __ sbbl(lreg_hi, c_hi);
2133           break;
2134         default:
2135           ShouldNotReachHere();
2136       }
2137 #endif // _LP64
2138 
2139     } else {
2140       ShouldNotReachHere();
2141     }
2142 
2143   } else if (left->is_single_xmm()) {
2144     assert(left == dest, "left and dest must be equal");
2145     XMMRegister lreg = left->as_xmm_float_reg();
2146 
2147     if (right->is_single_xmm()) {
2148       XMMRegister rreg = right->as_xmm_float_reg();
2149       switch (code) {
2150         case lir_add: __ addss(lreg, rreg);  break;
2151         case lir_sub: __ subss(lreg, rreg);  break;
2152         case lir_mul_strictfp: // fall through
2153         case lir_mul: __ mulss(lreg, rreg);  break;
2154         case lir_div_strictfp: // fall through
2155         case lir_div: __ divss(lreg, rreg);  break;
2156         default: ShouldNotReachHere();
2157       }
2158     } else {
2159       Address raddr;
2160       if (right->is_single_stack()) {
2161         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2162       } else if (right->is_constant()) {
2163         // hack for now
2164         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2165       } else {
2166         ShouldNotReachHere();
2167       }
2168       switch (code) {
2169         case lir_add: __ addss(lreg, raddr);  break;
2170         case lir_sub: __ subss(lreg, raddr);  break;
2171         case lir_mul_strictfp: // fall through
2172         case lir_mul: __ mulss(lreg, raddr);  break;
2173         case lir_div_strictfp: // fall through
2174         case lir_div: __ divss(lreg, raddr);  break;
2175         default: ShouldNotReachHere();
2176       }
2177     }
2178 
2179   } else if (left->is_double_xmm()) {
2180     assert(left == dest, "left and dest must be equal");
2181 
2182     XMMRegister lreg = left->as_xmm_double_reg();
2183     if (right->is_double_xmm()) {
2184       XMMRegister rreg = right->as_xmm_double_reg();
2185       switch (code) {
2186         case lir_add: __ addsd(lreg, rreg);  break;
2187         case lir_sub: __ subsd(lreg, rreg);  break;
2188         case lir_mul_strictfp: // fall through
2189         case lir_mul: __ mulsd(lreg, rreg);  break;
2190         case lir_div_strictfp: // fall through
2191         case lir_div: __ divsd(lreg, rreg);  break;
2192         default: ShouldNotReachHere();
2193       }
2194     } else {
2195       Address raddr;
2196       if (right->is_double_stack()) {
2197         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2198       } else if (right->is_constant()) {
2199         // hack for now
2200         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2201       } else {
2202         ShouldNotReachHere();
2203       }
2204       switch (code) {
2205         case lir_add: __ addsd(lreg, raddr);  break;
2206         case lir_sub: __ subsd(lreg, raddr);  break;
2207         case lir_mul_strictfp: // fall through
2208         case lir_mul: __ mulsd(lreg, raddr);  break;
2209         case lir_div_strictfp: // fall through
2210         case lir_div: __ divsd(lreg, raddr);  break;
2211         default: ShouldNotReachHere();
2212       }
2213     }
2214 
2215   } else if (left->is_single_fpu()) {
2216     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2217 
2218     if (right->is_single_fpu()) {
2219       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2220 
2221     } else {
2222       assert(left->fpu_regnr() == 0, "left must be on TOS");
2223       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2224 
2225       Address raddr;
2226       if (right->is_single_stack()) {
2227         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2228       } else if (right->is_constant()) {
2229         address const_addr = float_constant(right->as_jfloat());
2230         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2231         // hack for now
2232         raddr = __ as_Address(InternalAddress(const_addr));
2233       } else {
2234         ShouldNotReachHere();
2235       }
2236 
2237       switch (code) {
2238         case lir_add: __ fadd_s(raddr); break;
2239         case lir_sub: __ fsub_s(raddr); break;
2240         case lir_mul_strictfp: // fall through
2241         case lir_mul: __ fmul_s(raddr); break;
2242         case lir_div_strictfp: // fall through
2243         case lir_div: __ fdiv_s(raddr); break;
2244         default:      ShouldNotReachHere();
2245       }
2246     }
2247 
2248   } else if (left->is_double_fpu()) {
2249     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2250 
2251     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2252       // Double values require special handling for strictfp mul/div on x86
2253       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2254       __ fmulp(left->fpu_regnrLo() + 1);
2255     }
2256 
2257     if (right->is_double_fpu()) {
2258       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2259 
2260     } else {
2261       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2262       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2263 
2264       Address raddr;
2265       if (right->is_double_stack()) {
2266         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2267       } else if (right->is_constant()) {
2268         // hack for now
2269         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2270       } else {
2271         ShouldNotReachHere();
2272       }
2273 
2274       switch (code) {
2275         case lir_add: __ fadd_d(raddr); break;
2276         case lir_sub: __ fsub_d(raddr); break;
2277         case lir_mul_strictfp: // fall through
2278         case lir_mul: __ fmul_d(raddr); break;
2279         case lir_div_strictfp: // fall through
2280         case lir_div: __ fdiv_d(raddr); break;
2281         default: ShouldNotReachHere();
2282       }
2283     }
2284 
2285     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2286       // Double values require special handling for strictfp mul/div on x86
2287       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2288       __ fmulp(dest->fpu_regnrLo() + 1);
2289     }
2290 
2291   } else if (left->is_single_stack() || left->is_address()) {
2292     assert(left == dest, "left and dest must be equal");
2293 
2294     Address laddr;
2295     if (left->is_single_stack()) {
2296       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2297     } else if (left->is_address()) {
2298       laddr = as_Address(left->as_address_ptr());
2299     } else {
2300       ShouldNotReachHere();
2301     }
2302 
2303     if (right->is_single_cpu()) {
2304       Register rreg = right->as_register();
2305       switch (code) {
2306         case lir_add: __ addl(laddr, rreg); break;
2307         case lir_sub: __ subl(laddr, rreg); break;
2308         default:      ShouldNotReachHere();
2309       }
2310     } else if (right->is_constant()) {
2311       jint c = right->as_constant_ptr()->as_jint();
2312       switch (code) {
2313         case lir_add: {
2314           __ incrementl(laddr, c);
2315           break;
2316         }
2317         case lir_sub: {
2318           __ decrementl(laddr, c);
2319           break;
2320         }
2321         default: ShouldNotReachHere();
2322       }
2323     } else {
2324       ShouldNotReachHere();
2325     }
2326 
2327   } else {
2328     ShouldNotReachHere();
2329   }
2330 }
2331 
2332 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2333   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2334   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2335   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2336 
2337   bool left_is_tos = (left_index == 0);
2338   bool dest_is_tos = (dest_index == 0);
2339   int non_tos_index = (left_is_tos ? right_index : left_index);
2340 
2341   switch (code) {
2342     case lir_add:
2343       if (pop_fpu_stack)       __ faddp(non_tos_index);
2344       else if (dest_is_tos)    __ fadd (non_tos_index);
2345       else                     __ fadda(non_tos_index);
2346       break;
2347 
2348     case lir_sub:
2349       if (left_is_tos) {
2350         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2351         else if (dest_is_tos)  __ fsub  (non_tos_index);
2352         else                   __ fsubra(non_tos_index);
2353       } else {
2354         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2355         else if (dest_is_tos)  __ fsubr (non_tos_index);
2356         else                   __ fsuba (non_tos_index);
2357       }
2358       break;
2359 
2360     case lir_mul_strictfp: // fall through
2361     case lir_mul:
2362       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2363       else if (dest_is_tos)    __ fmul (non_tos_index);
2364       else                     __ fmula(non_tos_index);
2365       break;
2366 
2367     case lir_div_strictfp: // fall through
2368     case lir_div:
2369       if (left_is_tos) {
2370         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2371         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2372         else                   __ fdivra(non_tos_index);
2373       } else {
2374         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2375         else if (dest_is_tos)  __ fdivr (non_tos_index);
2376         else                   __ fdiva (non_tos_index);
2377       }
2378       break;
2379 
2380     case lir_rem:
2381       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2382       __ fremr(noreg);
2383       break;
2384 
2385     default:
2386       ShouldNotReachHere();
2387   }
2388 }
2389 
2390 
2391 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2392   if (value->is_double_xmm()) {
2393     switch(code) {
2394       case lir_abs :
2395         {
2396           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2397             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2398           }
2399           __ andpd(dest->as_xmm_double_reg(),
2400                     ExternalAddress((address)double_signmask_pool));
2401         }
2402         break;
2403 
2404       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2405       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2406       default      : ShouldNotReachHere();
2407     }
2408 
2409   } else if (value->is_double_fpu()) {
2410     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2411     switch(code) {
2412       case lir_log   : __ flog() ; break;
2413       case lir_log10 : __ flog10() ; break;
2414       case lir_abs   : __ fabs() ; break;
2415       case lir_sqrt  : __ fsqrt(); break;
2416       case lir_sin   :
2417         // Should consider not saving rbx, if not necessary
2418         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2419         break;
2420       case lir_cos :
2421         // Should consider not saving rbx, if not necessary
2422         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2423         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2424         break;
2425       case lir_tan :
2426         // Should consider not saving rbx, if not necessary
2427         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2428         break;
2429       default      : ShouldNotReachHere();
2430     }
2431   } else {
2432     Unimplemented();
2433   }
2434 }
2435 
2436 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2437   // assert(left->destroys_register(), "check");
2438   if (left->is_single_cpu()) {
2439     Register reg = left->as_register();
2440     if (right->is_constant()) {
2441       int val = right->as_constant_ptr()->as_jint();
2442       switch (code) {
2443         case lir_logic_and: __ andl (reg, val); break;
2444         case lir_logic_or:  __ orl  (reg, val); break;
2445         case lir_logic_xor: __ xorl (reg, val); break;
2446         default: ShouldNotReachHere();
2447       }
2448     } else if (right->is_stack()) {
2449       // added support for stack operands
2450       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2451       switch (code) {
2452         case lir_logic_and: __ andl (reg, raddr); break;
2453         case lir_logic_or:  __ orl  (reg, raddr); break;
2454         case lir_logic_xor: __ xorl (reg, raddr); break;
2455         default: ShouldNotReachHere();
2456       }
2457     } else {
2458       Register rright = right->as_register();
2459       switch (code) {
2460         case lir_logic_and: __ andptr (reg, rright); break;
2461         case lir_logic_or : __ orptr  (reg, rright); break;
2462         case lir_logic_xor: __ xorptr (reg, rright); break;
2463         default: ShouldNotReachHere();
2464       }
2465     }
2466     move_regs(reg, dst->as_register());
2467   } else {
2468     Register l_lo = left->as_register_lo();
2469     Register l_hi = left->as_register_hi();
2470     if (right->is_constant()) {
2471 #ifdef _LP64
2472       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2473       switch (code) {
2474         case lir_logic_and:
2475           __ andq(l_lo, rscratch1);
2476           break;
2477         case lir_logic_or:
2478           __ orq(l_lo, rscratch1);
2479           break;
2480         case lir_logic_xor:
2481           __ xorq(l_lo, rscratch1);
2482           break;
2483         default: ShouldNotReachHere();
2484       }
2485 #else
2486       int r_lo = right->as_constant_ptr()->as_jint_lo();
2487       int r_hi = right->as_constant_ptr()->as_jint_hi();
2488       switch (code) {
2489         case lir_logic_and:
2490           __ andl(l_lo, r_lo);
2491           __ andl(l_hi, r_hi);
2492           break;
2493         case lir_logic_or:
2494           __ orl(l_lo, r_lo);
2495           __ orl(l_hi, r_hi);
2496           break;
2497         case lir_logic_xor:
2498           __ xorl(l_lo, r_lo);
2499           __ xorl(l_hi, r_hi);
2500           break;
2501         default: ShouldNotReachHere();
2502       }
2503 #endif // _LP64
2504     } else {
2505 #ifdef _LP64
2506       Register r_lo;
2507       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2508         r_lo = right->as_register();
2509       } else {
2510         r_lo = right->as_register_lo();
2511       }
2512 #else
2513       Register r_lo = right->as_register_lo();
2514       Register r_hi = right->as_register_hi();
2515       assert(l_lo != r_hi, "overwriting registers");
2516 #endif
2517       switch (code) {
2518         case lir_logic_and:
2519           __ andptr(l_lo, r_lo);
2520           NOT_LP64(__ andptr(l_hi, r_hi);)
2521           break;
2522         case lir_logic_or:
2523           __ orptr(l_lo, r_lo);
2524           NOT_LP64(__ orptr(l_hi, r_hi);)
2525           break;
2526         case lir_logic_xor:
2527           __ xorptr(l_lo, r_lo);
2528           NOT_LP64(__ xorptr(l_hi, r_hi);)
2529           break;
2530         default: ShouldNotReachHere();
2531       }
2532     }
2533 
2534     Register dst_lo = dst->as_register_lo();
2535     Register dst_hi = dst->as_register_hi();
2536 
2537 #ifdef _LP64
2538     move_regs(l_lo, dst_lo);
2539 #else
2540     if (dst_lo == l_hi) {
2541       assert(dst_hi != l_lo, "overwriting registers");
2542       move_regs(l_hi, dst_hi);
2543       move_regs(l_lo, dst_lo);
2544     } else {
2545       assert(dst_lo != l_hi, "overwriting registers");
2546       move_regs(l_lo, dst_lo);
2547       move_regs(l_hi, dst_hi);
2548     }
2549 #endif // _LP64
2550   }
2551 }
2552 
2553 
2554 // we assume that rax, and rdx can be overwritten
2555 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2556 
2557   assert(left->is_single_cpu(),   "left must be register");
2558   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2559   assert(result->is_single_cpu(), "result must be register");
2560 
2561   //  assert(left->destroys_register(), "check");
2562   //  assert(right->destroys_register(), "check");
2563 
2564   Register lreg = left->as_register();
2565   Register dreg = result->as_register();
2566 
2567   if (right->is_constant()) {
2568     int divisor = right->as_constant_ptr()->as_jint();
2569     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2570     if (code == lir_idiv) {
2571       assert(lreg == rax, "must be rax,");
2572       assert(temp->as_register() == rdx, "tmp register must be rdx");
2573       __ cdql(); // sign extend into rdx:rax
2574       if (divisor == 2) {
2575         __ subl(lreg, rdx);
2576       } else {
2577         __ andl(rdx, divisor - 1);
2578         __ addl(lreg, rdx);
2579       }
2580       __ sarl(lreg, log2_intptr(divisor));
2581       move_regs(lreg, dreg);
2582     } else if (code == lir_irem) {
2583       Label done;
2584       __ mov(dreg, lreg);
2585       __ andl(dreg, 0x80000000 | (divisor - 1));
2586       __ jcc(Assembler::positive, done);
2587       __ decrement(dreg);
2588       __ orl(dreg, ~(divisor - 1));
2589       __ increment(dreg);
2590       __ bind(done);
2591     } else {
2592       ShouldNotReachHere();
2593     }
2594   } else {
2595     Register rreg = right->as_register();
2596     assert(lreg == rax, "left register must be rax,");
2597     assert(rreg != rdx, "right register must not be rdx");
2598     assert(temp->as_register() == rdx, "tmp register must be rdx");
2599 
2600     move_regs(lreg, rax);
2601 
2602     int idivl_offset = __ corrected_idivl(rreg);
2603     add_debug_info_for_div0(idivl_offset, info);
2604     if (code == lir_irem) {
2605       move_regs(rdx, dreg); // result is in rdx
2606     } else {
2607       move_regs(rax, dreg);
2608     }
2609   }
2610 }
2611 
2612 
2613 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2614   if (opr1->is_single_cpu()) {
2615     Register reg1 = opr1->as_register();
2616     if (opr2->is_single_cpu()) {
2617       // cpu register - cpu register
2618       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2619         __ cmpptr(reg1, opr2->as_register());
2620       } else {
2621         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2622         __ cmpl(reg1, opr2->as_register());
2623       }
2624     } else if (opr2->is_stack()) {
2625       // cpu register - stack
2626       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2627         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2628       } else {
2629         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2630       }
2631     } else if (opr2->is_constant()) {
2632       // cpu register - constant
2633       LIR_Const* c = opr2->as_constant_ptr();
2634       if (c->type() == T_INT) {
2635         __ cmpl(reg1, c->as_jint());
2636       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2637         // In 64bit oops are single register
2638         jobject o = c->as_jobject();
2639         if (o == NULL) {
2640           __ cmpptr(reg1, (int32_t)NULL_WORD);
2641         } else {
2642 #ifdef _LP64
2643           __ movoop(rscratch1, o);
2644           __ cmpptr(reg1, rscratch1);
2645 #else
2646           __ cmpoop(reg1, c->as_jobject());
2647 #endif // _LP64
2648         }
2649       } else {
2650         ShouldNotReachHere();
2651       }
2652       // cpu register - address
2653     } else if (opr2->is_address()) {
2654       if (op->info() != NULL) {
2655         add_debug_info_for_null_check_here(op->info());
2656       }
2657       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2658     } else {
2659       ShouldNotReachHere();
2660     }
2661 
2662   } else if(opr1->is_double_cpu()) {
2663     Register xlo = opr1->as_register_lo();
2664     Register xhi = opr1->as_register_hi();
2665     if (opr2->is_double_cpu()) {
2666 #ifdef _LP64
2667       __ cmpptr(xlo, opr2->as_register_lo());
2668 #else
2669       // cpu register - cpu register
2670       Register ylo = opr2->as_register_lo();
2671       Register yhi = opr2->as_register_hi();
2672       __ subl(xlo, ylo);
2673       __ sbbl(xhi, yhi);
2674       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2675         __ orl(xhi, xlo);
2676       }
2677 #endif // _LP64
2678     } else if (opr2->is_constant()) {
2679       // cpu register - constant 0
2680       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2681 #ifdef _LP64
2682       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2683 #else
2684       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2685       __ orl(xhi, xlo);
2686 #endif // _LP64
2687     } else {
2688       ShouldNotReachHere();
2689     }
2690 
2691   } else if (opr1->is_single_xmm()) {
2692     XMMRegister reg1 = opr1->as_xmm_float_reg();
2693     if (opr2->is_single_xmm()) {
2694       // xmm register - xmm register
2695       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2696     } else if (opr2->is_stack()) {
2697       // xmm register - stack
2698       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2699     } else if (opr2->is_constant()) {
2700       // xmm register - constant
2701       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2702     } else if (opr2->is_address()) {
2703       // xmm register - address
2704       if (op->info() != NULL) {
2705         add_debug_info_for_null_check_here(op->info());
2706       }
2707       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2708     } else {
2709       ShouldNotReachHere();
2710     }
2711 
2712   } else if (opr1->is_double_xmm()) {
2713     XMMRegister reg1 = opr1->as_xmm_double_reg();
2714     if (opr2->is_double_xmm()) {
2715       // xmm register - xmm register
2716       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2717     } else if (opr2->is_stack()) {
2718       // xmm register - stack
2719       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2720     } else if (opr2->is_constant()) {
2721       // xmm register - constant
2722       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2723     } else if (opr2->is_address()) {
2724       // xmm register - address
2725       if (op->info() != NULL) {
2726         add_debug_info_for_null_check_here(op->info());
2727       }
2728       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2729     } else {
2730       ShouldNotReachHere();
2731     }
2732 
2733   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2734     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2735     assert(opr2->is_fpu_register(), "both must be registers");
2736     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2737 
2738   } else if (opr1->is_address() && opr2->is_constant()) {
2739     LIR_Const* c = opr2->as_constant_ptr();
2740 #ifdef _LP64
2741     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2742       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2743       __ movoop(rscratch1, c->as_jobject());
2744     }
2745 #endif // LP64
2746     if (op->info() != NULL) {
2747       add_debug_info_for_null_check_here(op->info());
2748     }
2749     // special case: address - constant
2750     LIR_Address* addr = opr1->as_address_ptr();
2751     if (c->type() == T_INT) {
2752       __ cmpl(as_Address(addr), c->as_jint());
2753     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2754 #ifdef _LP64
2755       // %%% Make this explode if addr isn't reachable until we figure out a
2756       // better strategy by giving noreg as the temp for as_Address
2757       __ cmpptr(rscratch1, as_Address(addr, noreg));
2758 #else
2759       __ cmpoop(as_Address(addr), c->as_jobject());
2760 #endif // _LP64
2761     } else {
2762       ShouldNotReachHere();
2763     }
2764 
2765   } else {
2766     ShouldNotReachHere();
2767   }
2768 }
2769 
2770 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2771   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2772     if (left->is_single_xmm()) {
2773       assert(right->is_single_xmm(), "must match");
2774       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2775     } else if (left->is_double_xmm()) {
2776       assert(right->is_double_xmm(), "must match");
2777       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2778 
2779     } else {
2780       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2781       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2782 
2783       assert(left->fpu() == 0, "left must be on TOS");
2784       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2785                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2786     }
2787   } else {
2788     assert(code == lir_cmp_l2i, "check");
2789 #ifdef _LP64
2790     Label done;
2791     Register dest = dst->as_register();
2792     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2793     __ movl(dest, -1);
2794     __ jccb(Assembler::less, done);
2795     __ set_byte_if_not_zero(dest);
2796     __ movzbl(dest, dest);
2797     __ bind(done);
2798 #else
2799     __ lcmp2int(left->as_register_hi(),
2800                 left->as_register_lo(),
2801                 right->as_register_hi(),
2802                 right->as_register_lo());
2803     move_regs(left->as_register_hi(), dst->as_register());
2804 #endif // _LP64
2805   }
2806 }
2807 
2808 
2809 void LIR_Assembler::align_call(LIR_Code code) {
2810   if (os::is_MP()) {
2811     // make sure that the displacement word of the call ends up word aligned
2812     int offset = __ offset();
2813     switch (code) {
2814       case lir_static_call:
2815       case lir_optvirtual_call:
2816       case lir_dynamic_call:
2817         offset += NativeCall::displacement_offset;
2818         break;
2819       case lir_icvirtual_call:
2820         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2821       break;
2822       case lir_virtual_call:  // currently, sparc-specific for niagara
2823       default: ShouldNotReachHere();
2824     }
2825     while (offset++ % BytesPerWord != 0) {
2826       __ nop();
2827     }
2828   }
2829 }
2830 
2831 
2832 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2833   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2834          "must be aligned");
2835   __ call(AddressLiteral(op->addr(), rtype));
2836   add_call_info(code_offset(), op->info());
2837 }
2838 
2839 
2840 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2841   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2842   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2843   assert(!os::is_MP() ||
2844          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2845          "must be aligned");
2846   __ call(AddressLiteral(op->addr(), rh));
2847   add_call_info(code_offset(), op->info());
2848 }
2849 
2850 
2851 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2852 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2853   ShouldNotReachHere();
2854 }
2855 
2856 
2857 void LIR_Assembler::emit_static_call_stub() {
2858   address call_pc = __ pc();
2859   address stub = __ start_a_stub(call_stub_size);
2860   if (stub == NULL) {
2861     bailout("static call stub overflow");
2862     return;
2863   }
2864 
2865   int start = __ offset();
2866   if (os::is_MP()) {
2867     // make sure that the displacement word of the call ends up word aligned
2868     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2869     while (offset++ % BytesPerWord != 0) {
2870       __ nop();
2871     }
2872   }
2873   __ relocate(static_stub_Relocation::spec(call_pc));
2874   __ movoop(rbx, (jobject)NULL);
2875   // must be set to -1 at code generation time
2876   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2877   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2878   __ jump(RuntimeAddress(__ pc()));
2879 
2880   assert(__ offset() - start <= call_stub_size, "stub too big");
2881   __ end_a_stub();
2882 }
2883 
2884 
2885 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2886   assert(exceptionOop->as_register() == rax, "must match");
2887   assert(exceptionPC->as_register() == rdx, "must match");
2888 
2889   // exception object is not added to oop map by LinearScan
2890   // (LinearScan assumes that no oops are in fixed registers)
2891   info->add_register_oop(exceptionOop);
2892   Runtime1::StubID unwind_id;
2893 
2894   // get current pc information
2895   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2896   int pc_for_athrow_offset = __ offset();
2897   InternalAddress pc_for_athrow(__ pc());
2898   __ lea(exceptionPC->as_register(), pc_for_athrow);
2899   add_call_info(pc_for_athrow_offset, info); // for exception handler
2900 
2901   __ verify_not_null_oop(rax);
2902   // search an exception handler (rax: exception oop, rdx: throwing pc)
2903   if (compilation()->has_fpu_code()) {
2904     unwind_id = Runtime1::handle_exception_id;
2905   } else {
2906     unwind_id = Runtime1::handle_exception_nofpu_id;
2907   }
2908   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2909 
2910   // enough room for two byte trap
2911   __ nop();
2912 }
2913 
2914 
2915 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2916   assert(exceptionOop->as_register() == rax, "must match");
2917 
2918   __ jmp(_unwind_handler_entry);
2919 }
2920 
2921 
2922 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2923 
2924   // optimized version for linear scan:
2925   // * count must be already in ECX (guaranteed by LinearScan)
2926   // * left and dest must be equal
2927   // * tmp must be unused
2928   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2929   assert(left == dest, "left and dest must be equal");
2930   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2931 
2932   if (left->is_single_cpu()) {
2933     Register value = left->as_register();
2934     assert(value != SHIFT_count, "left cannot be ECX");
2935 
2936     switch (code) {
2937       case lir_shl:  __ shll(value); break;
2938       case lir_shr:  __ sarl(value); break;
2939       case lir_ushr: __ shrl(value); break;
2940       default: ShouldNotReachHere();
2941     }
2942   } else if (left->is_double_cpu()) {
2943     Register lo = left->as_register_lo();
2944     Register hi = left->as_register_hi();
2945     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2946 #ifdef _LP64
2947     switch (code) {
2948       case lir_shl:  __ shlptr(lo);        break;
2949       case lir_shr:  __ sarptr(lo);        break;
2950       case lir_ushr: __ shrptr(lo);        break;
2951       default: ShouldNotReachHere();
2952     }
2953 #else
2954 
2955     switch (code) {
2956       case lir_shl:  __ lshl(hi, lo);        break;
2957       case lir_shr:  __ lshr(hi, lo, true);  break;
2958       case lir_ushr: __ lshr(hi, lo, false); break;
2959       default: ShouldNotReachHere();
2960     }
2961 #endif // LP64
2962   } else {
2963     ShouldNotReachHere();
2964   }
2965 }
2966 
2967 
2968 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2969   if (dest->is_single_cpu()) {
2970     // first move left into dest so that left is not destroyed by the shift
2971     Register value = dest->as_register();
2972     count = count & 0x1F; // Java spec
2973 
2974     move_regs(left->as_register(), value);
2975     switch (code) {
2976       case lir_shl:  __ shll(value, count); break;
2977       case lir_shr:  __ sarl(value, count); break;
2978       case lir_ushr: __ shrl(value, count); break;
2979       default: ShouldNotReachHere();
2980     }
2981   } else if (dest->is_double_cpu()) {
2982 #ifndef _LP64
2983     Unimplemented();
2984 #else
2985     // first move left into dest so that left is not destroyed by the shift
2986     Register value = dest->as_register_lo();
2987     count = count & 0x1F; // Java spec
2988 
2989     move_regs(left->as_register_lo(), value);
2990     switch (code) {
2991       case lir_shl:  __ shlptr(value, count); break;
2992       case lir_shr:  __ sarptr(value, count); break;
2993       case lir_ushr: __ shrptr(value, count); break;
2994       default: ShouldNotReachHere();
2995     }
2996 #endif // _LP64
2997   } else {
2998     ShouldNotReachHere();
2999   }
3000 }
3001 
3002 
3003 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3004   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3005   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3006   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3007   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3008 }
3009 
3010 
3011 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3012   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3013   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3014   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3015   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3016 }
3017 
3018 
3019 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3020   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3021   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3022   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3023   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3024 }
3025 
3026 
3027 // This code replaces a call to arraycopy; no exception may
3028 // be thrown in this code, they must be thrown in the System.arraycopy
3029 // activation frame; we could save some checks if this would not be the case
3030 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3031   ciArrayKlass* default_type = op->expected_type();
3032   Register src = op->src()->as_register();
3033   Register dst = op->dst()->as_register();
3034   Register src_pos = op->src_pos()->as_register();
3035   Register dst_pos = op->dst_pos()->as_register();
3036   Register length  = op->length()->as_register();
3037   Register tmp = op->tmp()->as_register();
3038 
3039   CodeStub* stub = op->stub();
3040   int flags = op->flags();
3041   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3042   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3043 
3044   // if we don't know anything or it's an object array, just go through the generic arraycopy
3045   if (default_type == NULL) {
3046     Label done;
3047     // save outgoing arguments on stack in case call to System.arraycopy is needed
3048     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3049     // for interpreter calling conventions. Now we have to do it in new style conventions.
3050     // For the moment until C1 gets the new register allocator I just force all the
3051     // args to the right place (except the register args) and then on the back side
3052     // reload the register args properly if we go slow path. Yuck
3053 
3054     // These are proper for the calling convention
3055 
3056     store_parameter(length, 2);
3057     store_parameter(dst_pos, 1);
3058     store_parameter(dst, 0);
3059 
3060     // these are just temporary placements until we need to reload
3061     store_parameter(src_pos, 3);
3062     store_parameter(src, 4);
3063     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3064 
3065     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3066 
3067     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3068 #ifdef _LP64
3069     // The arguments are in java calling convention so we can trivially shift them to C
3070     // convention
3071     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3072     __ mov(c_rarg0, j_rarg0);
3073     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3074     __ mov(c_rarg1, j_rarg1);
3075     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3076     __ mov(c_rarg2, j_rarg2);
3077     assert_different_registers(c_rarg3, j_rarg4);
3078     __ mov(c_rarg3, j_rarg3);
3079 #ifdef _WIN64
3080     // Allocate abi space for args but be sure to keep stack aligned
3081     __ subptr(rsp, 6*wordSize);
3082     store_parameter(j_rarg4, 4);
3083     __ call(RuntimeAddress(entry));
3084     __ addptr(rsp, 6*wordSize);
3085 #else
3086     __ mov(c_rarg4, j_rarg4);
3087     __ call(RuntimeAddress(entry));
3088 #endif // _WIN64
3089 #else
3090     __ push(length);
3091     __ push(dst_pos);
3092     __ push(dst);
3093     __ push(src_pos);
3094     __ push(src);
3095     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3096 
3097 #endif // _LP64
3098 
3099     __ cmpl(rax, 0);
3100     __ jcc(Assembler::equal, *stub->continuation());
3101 
3102     // Reload values from the stack so they are where the stub
3103     // expects them.
3104     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3105     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3106     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3107     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3108     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3109     __ jmp(*stub->entry());
3110 
3111     __ bind(*stub->continuation());
3112     return;
3113   }
3114 
3115   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3116 
3117   int elem_size = type2aelembytes(basic_type);
3118   int shift_amount;
3119   Address::ScaleFactor scale;
3120 
3121   switch (elem_size) {
3122     case 1 :
3123       shift_amount = 0;
3124       scale = Address::times_1;
3125       break;
3126     case 2 :
3127       shift_amount = 1;
3128       scale = Address::times_2;
3129       break;
3130     case 4 :
3131       shift_amount = 2;
3132       scale = Address::times_4;
3133       break;
3134     case 8 :
3135       shift_amount = 3;
3136       scale = Address::times_8;
3137       break;
3138     default:
3139       ShouldNotReachHere();
3140   }
3141 
3142   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3143   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3144   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3145   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3146 
3147   // length and pos's are all sign extended at this point on 64bit
3148 
3149   // test for NULL
3150   if (flags & LIR_OpArrayCopy::src_null_check) {
3151     __ testptr(src, src);
3152     __ jcc(Assembler::zero, *stub->entry());
3153   }
3154   if (flags & LIR_OpArrayCopy::dst_null_check) {
3155     __ testptr(dst, dst);
3156     __ jcc(Assembler::zero, *stub->entry());
3157   }
3158 
3159   // check if negative
3160   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3161     __ testl(src_pos, src_pos);
3162     __ jcc(Assembler::less, *stub->entry());
3163   }
3164   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3165     __ testl(dst_pos, dst_pos);
3166     __ jcc(Assembler::less, *stub->entry());
3167   }
3168   if (flags & LIR_OpArrayCopy::length_positive_check) {
3169     __ testl(length, length);
3170     __ jcc(Assembler::less, *stub->entry());
3171   }
3172 
3173   if (flags & LIR_OpArrayCopy::src_range_check) {
3174     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3175     __ cmpl(tmp, src_length_addr);
3176     __ jcc(Assembler::above, *stub->entry());
3177   }
3178   if (flags & LIR_OpArrayCopy::dst_range_check) {
3179     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3180     __ cmpl(tmp, dst_length_addr);
3181     __ jcc(Assembler::above, *stub->entry());
3182   }
3183 
3184   if (flags & LIR_OpArrayCopy::type_check) {
3185     __ movptr(tmp, src_klass_addr);
3186     __ cmpptr(tmp, dst_klass_addr);
3187     __ jcc(Assembler::notEqual, *stub->entry());
3188   }
3189 
3190 #ifdef ASSERT
3191   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3192     // Sanity check the known type with the incoming class.  For the
3193     // primitive case the types must match exactly with src.klass and
3194     // dst.klass each exactly matching the default type.  For the
3195     // object array case, if no type check is needed then either the
3196     // dst type is exactly the expected type and the src type is a
3197     // subtype which we can't check or src is the same array as dst
3198     // but not necessarily exactly of type default_type.
3199     Label known_ok, halt;
3200     __ movoop(tmp, default_type->constant_encoding());
3201     if (basic_type != T_OBJECT) {
3202       __ cmpptr(tmp, dst_klass_addr);
3203       __ jcc(Assembler::notEqual, halt);
3204       __ cmpptr(tmp, src_klass_addr);
3205       __ jcc(Assembler::equal, known_ok);
3206     } else {
3207       __ cmpptr(tmp, dst_klass_addr);
3208       __ jcc(Assembler::equal, known_ok);
3209       __ cmpptr(src, dst);
3210       __ jcc(Assembler::equal, known_ok);
3211     }
3212     __ bind(halt);
3213     __ stop("incorrect type information in arraycopy");
3214     __ bind(known_ok);
3215   }
3216 #endif
3217 
3218   if (shift_amount > 0 && basic_type != T_OBJECT) {
3219     __ shlptr(length, shift_amount);
3220   }
3221 
3222 #ifdef _LP64
3223   assert_different_registers(c_rarg0, dst, dst_pos, length);
3224   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3225   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3226   assert_different_registers(c_rarg1, length);
3227   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3228   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3229   __ mov(c_rarg2, length);
3230 
3231 #else
3232   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3233   store_parameter(tmp, 0);
3234   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3235   store_parameter(tmp, 1);
3236   store_parameter(length, 2);
3237 #endif // _LP64
3238   if (basic_type == T_OBJECT) {
3239     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3240   } else {
3241     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3242   }
3243 
3244   __ bind(*stub->continuation());
3245 }
3246 
3247 
3248 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3249   Register obj = op->obj_opr()->as_register();  // may not be an oop
3250   Register hdr = op->hdr_opr()->as_register();
3251   Register lock = op->lock_opr()->as_register();
3252   if (!UseFastLocking) {
3253     __ jmp(*op->stub()->entry());
3254   } else if (op->code() == lir_lock) {
3255     Register scratch = noreg;
3256     if (UseBiasedLocking) {
3257       scratch = op->scratch_opr()->as_register();
3258     }
3259     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3260     // add debug info for NullPointerException only if one is possible
3261     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3262     if (op->info() != NULL) {
3263       add_debug_info_for_null_check(null_check_offset, op->info());
3264     }
3265     // done
3266   } else if (op->code() == lir_unlock) {
3267     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3268     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3269   } else {
3270     Unimplemented();
3271   }
3272   __ bind(*op->stub()->continuation());
3273 }
3274 
3275 
3276 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3277   ciMethod* method = op->profiled_method();
3278   int bci          = op->profiled_bci();
3279 
3280   // Update counter for all call types
3281   ciMethodData* md = method->method_data();
3282   if (md == NULL) {
3283     bailout("out of memory building methodDataOop");
3284     return;
3285   }
3286   ciProfileData* data = md->bci_to_data(bci);
3287   assert(data->is_CounterData(), "need CounterData for calls");
3288   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3289   Register mdo  = op->mdo()->as_register();
3290   __ movoop(mdo, md->constant_encoding());
3291   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3292   Bytecodes::Code bc = method->java_code_at_bci(bci);
3293   // Perform additional virtual call profiling for invokevirtual and
3294   // invokeinterface bytecodes
3295   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3296       C1ProfileVirtualCalls) {
3297     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3298     Register recv = op->recv()->as_register();
3299     assert_different_registers(mdo, recv);
3300     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3301     ciKlass* known_klass = op->known_holder();
3302     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3303       // We know the type that will be seen at this call site; we can
3304       // statically update the methodDataOop rather than needing to do
3305       // dynamic tests on the receiver type
3306 
3307       // NOTE: we should probably put a lock around this search to
3308       // avoid collisions by concurrent compilations
3309       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3310       uint i;
3311       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3312         ciKlass* receiver = vc_data->receiver(i);
3313         if (known_klass->equals(receiver)) {
3314           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3315           __ addptr(data_addr, DataLayout::counter_increment);
3316           return;
3317         }
3318       }
3319 
3320       // Receiver type not found in profile data; select an empty slot
3321 
3322       // Note that this is less efficient than it should be because it
3323       // always does a write to the receiver part of the
3324       // VirtualCallData rather than just the first time
3325       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3326         ciKlass* receiver = vc_data->receiver(i);
3327         if (receiver == NULL) {
3328           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3329           __ movoop(recv_addr, known_klass->constant_encoding());
3330           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3331           __ addptr(data_addr, DataLayout::counter_increment);
3332           return;
3333         }
3334       }
3335     } else {
3336       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3337       Label update_done;
3338       type_profile_helper(mdo, md, data, recv, &update_done);
3339       // Receiver did not match any saved receiver and there is no empty row for it.
3340       // Increment total counter to indicate polymorphic case.
3341       __ addptr(counter_addr, DataLayout::counter_increment);
3342 
3343       __ bind(update_done);
3344     }
3345   } else {
3346     // Static call
3347     __ addptr(counter_addr, DataLayout::counter_increment);
3348   }
3349 }
3350 
3351 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3352   Unimplemented();
3353 }
3354 
3355 
3356 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3357   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3358 }
3359 
3360 
3361 void LIR_Assembler::align_backward_branch_target() {
3362   __ align(BytesPerWord);
3363 }
3364 
3365 
3366 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3367   if (left->is_single_cpu()) {
3368     __ negl(left->as_register());
3369     move_regs(left->as_register(), dest->as_register());
3370 
3371   } else if (left->is_double_cpu()) {
3372     Register lo = left->as_register_lo();
3373 #ifdef _LP64
3374     Register dst = dest->as_register_lo();
3375     __ movptr(dst, lo);
3376     __ negptr(dst);
3377 #else
3378     Register hi = left->as_register_hi();
3379     __ lneg(hi, lo);
3380     if (dest->as_register_lo() == hi) {
3381       assert(dest->as_register_hi() != lo, "destroying register");
3382       move_regs(hi, dest->as_register_hi());
3383       move_regs(lo, dest->as_register_lo());
3384     } else {
3385       move_regs(lo, dest->as_register_lo());
3386       move_regs(hi, dest->as_register_hi());
3387     }
3388 #endif // _LP64
3389 
3390   } else if (dest->is_single_xmm()) {
3391     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3392       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3393     }
3394     __ xorps(dest->as_xmm_float_reg(),
3395              ExternalAddress((address)float_signflip_pool));
3396 
3397   } else if (dest->is_double_xmm()) {
3398     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3399       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3400     }
3401     __ xorpd(dest->as_xmm_double_reg(),
3402              ExternalAddress((address)double_signflip_pool));
3403 
3404   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3405     assert(left->fpu() == 0, "arg must be on TOS");
3406     assert(dest->fpu() == 0, "dest must be TOS");
3407     __ fchs();
3408 
3409   } else {
3410     ShouldNotReachHere();
3411   }
3412 }
3413 
3414 
3415 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3416   assert(addr->is_address() && dest->is_register(), "check");
3417   Register reg;
3418   reg = dest->as_pointer_register();
3419   __ lea(reg, as_Address(addr->as_address_ptr()));
3420 }
3421 
3422 
3423 
3424 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3425   assert(!tmp->is_valid(), "don't need temporary");
3426   __ call(RuntimeAddress(dest));
3427   if (info != NULL) {
3428     add_call_info_here(info);
3429   }
3430 }
3431 
3432 
3433 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3434   assert(type == T_LONG, "only for volatile long fields");
3435 
3436   if (info != NULL) {
3437     add_debug_info_for_null_check_here(info);
3438   }
3439 
3440   if (src->is_double_xmm()) {
3441     if (dest->is_double_cpu()) {
3442 #ifdef _LP64
3443       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3444 #else
3445       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3446       __ psrlq(src->as_xmm_double_reg(), 32);
3447       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3448 #endif // _LP64
3449     } else if (dest->is_double_stack()) {
3450       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3451     } else if (dest->is_address()) {
3452       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3453     } else {
3454       ShouldNotReachHere();
3455     }
3456 
3457   } else if (dest->is_double_xmm()) {
3458     if (src->is_double_stack()) {
3459       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3460     } else if (src->is_address()) {
3461       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3462     } else {
3463       ShouldNotReachHere();
3464     }
3465 
3466   } else if (src->is_double_fpu()) {
3467     assert(src->fpu_regnrLo() == 0, "must be TOS");
3468     if (dest->is_double_stack()) {
3469       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3470     } else if (dest->is_address()) {
3471       __ fistp_d(as_Address(dest->as_address_ptr()));
3472     } else {
3473       ShouldNotReachHere();
3474     }
3475 
3476   } else if (dest->is_double_fpu()) {
3477     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3478     if (src->is_double_stack()) {
3479       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3480     } else if (src->is_address()) {
3481       __ fild_d(as_Address(src->as_address_ptr()));
3482     } else {
3483       ShouldNotReachHere();
3484     }
3485   } else {
3486     ShouldNotReachHere();
3487   }
3488 }
3489 
3490 
3491 void LIR_Assembler::membar() {
3492   // QQQ sparc TSO uses this,
3493   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3494 }
3495 
3496 void LIR_Assembler::membar_acquire() {
3497   // No x86 machines currently require load fences
3498   // __ load_fence();
3499 }
3500 
3501 void LIR_Assembler::membar_release() {
3502   // No x86 machines currently require store fences
3503   // __ store_fence();
3504 }
3505 
3506 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3507   assert(result_reg->is_register(), "check");
3508 #ifdef _LP64
3509   // __ get_thread(result_reg->as_register_lo());
3510   __ mov(result_reg->as_register(), r15_thread);
3511 #else
3512   __ get_thread(result_reg->as_register());
3513 #endif // _LP64
3514 }
3515 
3516 
3517 void LIR_Assembler::peephole(LIR_List*) {
3518   // do nothing for now
3519 }
3520 
3521 
3522 #undef __