1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_sharedRuntime_x86_32.cpp.incl"
  27 
  28 #define __ masm->
  29 #ifdef COMPILER2
  30 UncommonTrapBlob   *SharedRuntime::_uncommon_trap_blob;
  31 #endif // COMPILER2
  32 
  33 DeoptimizationBlob *SharedRuntime::_deopt_blob;
  34 SafepointBlob      *SharedRuntime::_polling_page_safepoint_handler_blob;
  35 SafepointBlob      *SharedRuntime::_polling_page_return_handler_blob;
  36 RuntimeStub*       SharedRuntime::_wrong_method_blob;
  37 RuntimeStub*       SharedRuntime::_ic_miss_blob;
  38 RuntimeStub*       SharedRuntime::_resolve_opt_virtual_call_blob;
  39 RuntimeStub*       SharedRuntime::_resolve_virtual_call_blob;
  40 RuntimeStub*       SharedRuntime::_resolve_static_call_blob;
  41 
  42 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  43 
  44 class RegisterSaver {
  45   enum { FPU_regs_live = 8 /*for the FPU stack*/+8/*eight more for XMM registers*/ };
  46   // Capture info about frame layout
  47   enum layout {
  48                 fpu_state_off = 0,
  49                 fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
  50                 st0_off, st0H_off,
  51                 st1_off, st1H_off,
  52                 st2_off, st2H_off,
  53                 st3_off, st3H_off,
  54                 st4_off, st4H_off,
  55                 st5_off, st5H_off,
  56                 st6_off, st6H_off,
  57                 st7_off, st7H_off,
  58 
  59                 xmm0_off, xmm0H_off,
  60                 xmm1_off, xmm1H_off,
  61                 xmm2_off, xmm2H_off,
  62                 xmm3_off, xmm3H_off,
  63                 xmm4_off, xmm4H_off,
  64                 xmm5_off, xmm5H_off,
  65                 xmm6_off, xmm6H_off,
  66                 xmm7_off, xmm7H_off,
  67                 flags_off,
  68                 rdi_off,
  69                 rsi_off,
  70                 ignore_off,  // extra copy of rbp,
  71                 rsp_off,
  72                 rbx_off,
  73                 rdx_off,
  74                 rcx_off,
  75                 rax_off,
  76                 // The frame sender code expects that rbp will be in the "natural" place and
  77                 // will override any oopMap setting for it. We must therefore force the layout
  78                 // so that it agrees with the frame sender code.
  79                 rbp_off,
  80                 return_off,      // slot for return address
  81                 reg_save_size };
  82 
  83 
  84   public:
  85 
  86   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words,
  87                                      int* total_frame_words, bool verify_fpu = true);
  88   static void restore_live_registers(MacroAssembler* masm);
  89 
  90   static int rax_offset() { return rax_off; }
  91   static int rbx_offset() { return rbx_off; }
  92 
  93   // Offsets into the register save area
  94   // Used by deoptimization when it is managing result register
  95   // values on its own
  96 
  97   static int raxOffset(void) { return rax_off; }
  98   static int rdxOffset(void) { return rdx_off; }
  99   static int rbxOffset(void) { return rbx_off; }
 100   static int xmm0Offset(void) { return xmm0_off; }
 101   // This really returns a slot in the fp save area, which one is not important
 102   static int fpResultOffset(void) { return st0_off; }
 103 
 104   // During deoptimization only the result register need to be restored
 105   // all the other values have already been extracted.
 106 
 107   static void restore_result_registers(MacroAssembler* masm);
 108 
 109 };
 110 
 111 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words,
 112                                            int* total_frame_words, bool verify_fpu) {
 113 
 114   int frame_size_in_bytes =  (reg_save_size + additional_frame_words) * wordSize;
 115   int frame_words = frame_size_in_bytes / wordSize;
 116   *total_frame_words = frame_words;
 117 
 118   assert(FPUStateSizeInWords == 27, "update stack layout");
 119 
 120   // save registers, fpu state, and flags
 121   // We assume caller has already has return address slot on the stack
 122   // We push epb twice in this sequence because we want the real rbp,
 123   // to be under the return like a normal enter and we want to use pusha
 124   // We push by hand instead of pusing push
 125   __ enter();
 126   __ pusha();
 127   __ pushf();
 128   __ subptr(rsp,FPU_regs_live*sizeof(jdouble)); // Push FPU registers space
 129   __ push_FPU_state();          // Save FPU state & init
 130 
 131   if (verify_fpu) {
 132     // Some stubs may have non standard FPU control word settings so
 133     // only check and reset the value when it required to be the
 134     // standard value.  The safepoint blob in particular can be used
 135     // in methods which are using the 24 bit control word for
 136     // optimized float math.
 137 
 138 #ifdef ASSERT
 139     // Make sure the control word has the expected value
 140     Label ok;
 141     __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 142     __ jccb(Assembler::equal, ok);
 143     __ stop("corrupted control word detected");
 144     __ bind(ok);
 145 #endif
 146 
 147     // Reset the control word to guard against exceptions being unmasked
 148     // since fstp_d can cause FPU stack underflow exceptions.  Write it
 149     // into the on stack copy and then reload that to make sure that the
 150     // current and future values are correct.
 151     __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std());
 152   }
 153 
 154   __ frstor(Address(rsp, 0));
 155   if (!verify_fpu) {
 156     // Set the control word so that exceptions are masked for the
 157     // following code.
 158     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 159   }
 160 
 161   // Save the FPU registers in de-opt-able form
 162 
 163   __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0)
 164   __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1)
 165   __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2)
 166   __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3)
 167   __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4)
 168   __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5)
 169   __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6)
 170   __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7)
 171 
 172   if( UseSSE == 1 ) {           // Save the XMM state
 173     __ movflt(Address(rsp,xmm0_off*wordSize),xmm0);
 174     __ movflt(Address(rsp,xmm1_off*wordSize),xmm1);
 175     __ movflt(Address(rsp,xmm2_off*wordSize),xmm2);
 176     __ movflt(Address(rsp,xmm3_off*wordSize),xmm3);
 177     __ movflt(Address(rsp,xmm4_off*wordSize),xmm4);
 178     __ movflt(Address(rsp,xmm5_off*wordSize),xmm5);
 179     __ movflt(Address(rsp,xmm6_off*wordSize),xmm6);
 180     __ movflt(Address(rsp,xmm7_off*wordSize),xmm7);
 181   } else if( UseSSE >= 2 ) {
 182     __ movdbl(Address(rsp,xmm0_off*wordSize),xmm0);
 183     __ movdbl(Address(rsp,xmm1_off*wordSize),xmm1);
 184     __ movdbl(Address(rsp,xmm2_off*wordSize),xmm2);
 185     __ movdbl(Address(rsp,xmm3_off*wordSize),xmm3);
 186     __ movdbl(Address(rsp,xmm4_off*wordSize),xmm4);
 187     __ movdbl(Address(rsp,xmm5_off*wordSize),xmm5);
 188     __ movdbl(Address(rsp,xmm6_off*wordSize),xmm6);
 189     __ movdbl(Address(rsp,xmm7_off*wordSize),xmm7);
 190   }
 191 
 192   // Set an oopmap for the call site.  This oopmap will map all
 193   // oop-registers and debug-info registers as callee-saved.  This
 194   // will allow deoptimization at this safepoint to find all possible
 195   // debug-info recordings, as well as let GC find all oops.
 196 
 197   OopMapSet *oop_maps = new OopMapSet();
 198   OopMap* map =  new OopMap( frame_words, 0 );
 199 
 200 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words)
 201 
 202   map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg());
 203   map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg());
 204   map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg());
 205   map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg());
 206   // rbp, location is known implicitly, no oopMap
 207   map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg());
 208   map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg());
 209   map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg());
 210   map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg());
 211   map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg());
 212   map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg());
 213   map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg());
 214   map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg());
 215   map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg());
 225   // %%% This is really a waste but we'll keep things as they were for now
 226   if (true) {
 227 #define NEXTREG(x) (x)->as_VMReg()->next()
 228     map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0)));
 229     map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1)));
 230     map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2)));
 231     map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3)));
 232     map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4)));
 233     map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5)));
 234     map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6)));
 235     map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7)));
 236     map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0));
 237     map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1));
 238     map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2));
 239     map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3));
 240     map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4));
 241     map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5));
 242     map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6));
 243     map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7));
 244 #undef NEXTREG
 245 #undef STACK_OFFSET
 246   }
 247 
 248   return map;
 249 
 250 }
 251 
 252 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 253 
 254   // Recover XMM & FPU state
 255   if( UseSSE == 1 ) {
 256     __ movflt(xmm0,Address(rsp,xmm0_off*wordSize));
 257     __ movflt(xmm1,Address(rsp,xmm1_off*wordSize));
 258     __ movflt(xmm2,Address(rsp,xmm2_off*wordSize));
 259     __ movflt(xmm3,Address(rsp,xmm3_off*wordSize));
 260     __ movflt(xmm4,Address(rsp,xmm4_off*wordSize));
 261     __ movflt(xmm5,Address(rsp,xmm5_off*wordSize));
 262     __ movflt(xmm6,Address(rsp,xmm6_off*wordSize));
 263     __ movflt(xmm7,Address(rsp,xmm7_off*wordSize));
 264   } else if( UseSSE >= 2 ) {
 265     __ movdbl(xmm0,Address(rsp,xmm0_off*wordSize));
 266     __ movdbl(xmm1,Address(rsp,xmm1_off*wordSize));
 267     __ movdbl(xmm2,Address(rsp,xmm2_off*wordSize));
 268     __ movdbl(xmm3,Address(rsp,xmm3_off*wordSize));
 269     __ movdbl(xmm4,Address(rsp,xmm4_off*wordSize));
 270     __ movdbl(xmm5,Address(rsp,xmm5_off*wordSize));
 271     __ movdbl(xmm6,Address(rsp,xmm6_off*wordSize));
 272     __ movdbl(xmm7,Address(rsp,xmm7_off*wordSize));
 273   }
 274   __ pop_FPU_state();
 275   __ addptr(rsp, FPU_regs_live*sizeof(jdouble)); // Pop FPU registers
 276 
 277   __ popf();
 278   __ popa();
 279   // Get the rbp, described implicitly by the frame sender code (no oopMap)
 280   __ pop(rbp);
 281 
 282 }
 283 
 284 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 285 
 286   // Just restore result register. Only used by deoptimization. By
 287   // now any callee save register that needs to be restore to a c2
 288   // caller of the deoptee has been extracted into the vframeArray
 289   // and will be stuffed into the c2i adapter we create for later
 290   // restoration so only result registers need to be restored here.
 291   //
 292 
 293   __ frstor(Address(rsp, 0));      // Restore fpu state
 294 
 295   // Recover XMM & FPU state
 296   if( UseSSE == 1 ) {
 297     __ movflt(xmm0, Address(rsp, xmm0_off*wordSize));
 298   } else if( UseSSE >= 2 ) {
 299     __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize));
 300   }
 301   __ movptr(rax, Address(rsp, rax_off*wordSize));
 302   __ movptr(rdx, Address(rsp, rdx_off*wordSize));
 303   // Pop all of the register save are off the stack except the return address
 304   __ addptr(rsp, return_off * wordSize);
 305 }
 306 
 307 // The java_calling_convention describes stack locations as ideal slots on
 308 // a frame with no abi restrictions. Since we must observe abi restrictions
 309 // (like the placement of the register window) the slots must be biased by
 310 // the following value.
 311 static int reg2offset_in(VMReg r) {
 312   // Account for saved rbp, and return address
 313   // This should really be in_preserve_stack_slots
 314   return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size;
 315 }
 316 
 317 static int reg2offset_out(VMReg r) {
 318   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 319 }
 320 
 321 // ---------------------------------------------------------------------------
 322 // Read the array of BasicTypes from a signature, and compute where the
 323 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 324 // quantities.  Values less than SharedInfo::stack0 are registers, those above
 325 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 326 // as framesizes are fixed.
 327 // VMRegImpl::stack0 refers to the first slot 0(sp).
 328 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 329 // up to RegisterImpl::number_of_registers) are the 32-bit
 330 // integer registers.
 331 
 332 // Pass first two oop/int args in registers ECX and EDX.
 333 // Pass first two float/double args in registers XMM0 and XMM1.
 334 // Doubles have precedence, so if you pass a mix of floats and doubles
 335 // the doubles will grab the registers before the floats will.
 336 
 337 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 338 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 339 // units regardless of build. Of course for i486 there is no 64 bit build
 340 
 341 
 342 // ---------------------------------------------------------------------------
 343 // The compiled Java calling convention.
 344 // Pass first two oop/int args in registers ECX and EDX.
 345 // Pass first two float/double args in registers XMM0 and XMM1.
 346 // Doubles have precedence, so if you pass a mix of floats and doubles
 347 // the doubles will grab the registers before the floats will.
 348 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 349                                            VMRegPair *regs,
 350                                            int total_args_passed,
 351                                            int is_outgoing) {
 352   uint    stack = 0;          // Starting stack position for args on stack
 353 
 354 
 355   // Pass first two oop/int args in registers ECX and EDX.
 356   uint reg_arg0 = 9999;
 357   uint reg_arg1 = 9999;
 358 
 359   // Pass first two float/double args in registers XMM0 and XMM1.
 360   // Doubles have precedence, so if you pass a mix of floats and doubles
 361   // the doubles will grab the registers before the floats will.
 362   // CNC - TURNED OFF FOR non-SSE.
 363   //       On Intel we have to round all doubles (and most floats) at
 364   //       call sites by storing to the stack in any case.
 365   // UseSSE=0 ==> Don't Use ==> 9999+0
 366   // UseSSE=1 ==> Floats only ==> 9999+1
 367   // UseSSE>=2 ==> Floats or doubles ==> 9999+2
 368   enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 };
 369   uint fargs = (UseSSE>=2) ? 2 : UseSSE;
 370   uint freg_arg0 = 9999+fargs;
 371   uint freg_arg1 = 9999+fargs;
 372 
 373   // Pass doubles & longs aligned on the stack.  First count stack slots for doubles
 374   int i;
 375   for( i = 0; i < total_args_passed; i++) {
 376     if( sig_bt[i] == T_DOUBLE ) {
 377       // first 2 doubles go in registers
 378       if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i;
 379       else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i;
 380       else // Else double is passed low on the stack to be aligned.
 381         stack += 2;
 382     } else if( sig_bt[i] == T_LONG ) {
 383       stack += 2;
 384     }
 385   }
 386   int dstack = 0;             // Separate counter for placing doubles
 387 
 388   // Now pick where all else goes.
 389   for( i = 0; i < total_args_passed; i++) {
 390     // From the type and the argument number (count) compute the location
 391     switch( sig_bt[i] ) {
 392     case T_SHORT:
 393     case T_CHAR:
 394     case T_BYTE:
 395     case T_BOOLEAN:
 396     case T_INT:
 397     case T_ARRAY:
 398     case T_OBJECT:
 399     case T_ADDRESS:
 400       if( reg_arg0 == 9999 )  {
 401         reg_arg0 = i;
 402         regs[i].set1(rcx->as_VMReg());
 403       } else if( reg_arg1 == 9999 )  {
 404         reg_arg1 = i;
 405         regs[i].set1(rdx->as_VMReg());
 406       } else {
 407         regs[i].set1(VMRegImpl::stack2reg(stack++));
 408       }
 409       break;
 410     case T_FLOAT:
 411       if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) {
 412         freg_arg0 = i;
 413         regs[i].set1(xmm0->as_VMReg());
 414       } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) {
 415         freg_arg1 = i;
 416         regs[i].set1(xmm1->as_VMReg());
 417       } else {
 418         regs[i].set1(VMRegImpl::stack2reg(stack++));
 419       }
 420       break;
 421     case T_LONG:
 422       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 423       regs[i].set2(VMRegImpl::stack2reg(dstack));
 424       dstack += 2;
 425       break;
 426     case T_DOUBLE:
 427       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 428       if( freg_arg0 == (uint)i ) {
 429         regs[i].set2(xmm0->as_VMReg());
 430       } else if( freg_arg1 == (uint)i ) {
 431         regs[i].set2(xmm1->as_VMReg());
 432       } else {
 433         regs[i].set2(VMRegImpl::stack2reg(dstack));
 434         dstack += 2;
 435       }
 436       break;
 437     case T_VOID: regs[i].set_bad(); break;
 438       break;
 439     default:
 440       ShouldNotReachHere();
 441       break;
 442     }
 443   }
 444 
 445   // return value can be odd number of VMRegImpl stack slots make multiple of 2
 446   return round_to(stack, 2);
 447 }
 448 
 449 // Patch the callers callsite with entry to compiled code if it exists.
 450 static void patch_callers_callsite(MacroAssembler *masm) {
 451   Label L;
 452   __ verify_oop(rbx);
 453   __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 454   __ jcc(Assembler::equal, L);
 455   // Schedule the branch target address early.
 456   // Call into the VM to patch the caller, then jump to compiled callee
 457   // rax, isn't live so capture return address while we easily can
 458   __ movptr(rax, Address(rsp, 0));
 459   __ pusha();
 460   __ pushf();
 461 
 462   if (UseSSE == 1) {
 463     __ subptr(rsp, 2*wordSize);
 464     __ movflt(Address(rsp, 0), xmm0);
 465     __ movflt(Address(rsp, wordSize), xmm1);
 466   }
 467   if (UseSSE >= 2) {
 468     __ subptr(rsp, 4*wordSize);
 469     __ movdbl(Address(rsp, 0), xmm0);
 470     __ movdbl(Address(rsp, 2*wordSize), xmm1);
 471   }
 472 #ifdef COMPILER2
 473   // C2 may leave the stack dirty if not in SSE2+ mode
 474   if (UseSSE >= 2) {
 475     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 476   } else {
 477     __ empty_FPU_stack();
 478   }
 479 #endif /* COMPILER2 */
 480 
 481   // VM needs caller's callsite
 482   __ push(rax);
 483   // VM needs target method
 484   __ push(rbx);
 485   __ verify_oop(rbx);
 486   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 487   __ addptr(rsp, 2*wordSize);
 488 
 489   if (UseSSE == 1) {
 490     __ movflt(xmm0, Address(rsp, 0));
 491     __ movflt(xmm1, Address(rsp, wordSize));
 492     __ addptr(rsp, 2*wordSize);
 493   }
 494   if (UseSSE >= 2) {
 495     __ movdbl(xmm0, Address(rsp, 0));
 496     __ movdbl(xmm1, Address(rsp, 2*wordSize));
 497     __ addptr(rsp, 4*wordSize);
 498   }
 499 
 500   __ popf();
 501   __ popa();
 502   __ bind(L);
 503 }
 504 
 505 
 506 static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) {
 507   int next_off = st_off - Interpreter::stackElementSize;
 508   __ movdbl(Address(rsp, next_off), r);
 509 }
 510 
 511 static void gen_c2i_adapter(MacroAssembler *masm,
 512                             int total_args_passed,
 513                             int comp_args_on_stack,
 514                             const BasicType *sig_bt,
 515                             const VMRegPair *regs,
 516                             Label& skip_fixup) {
 517   // Before we get into the guts of the C2I adapter, see if we should be here
 518   // at all.  We've come from compiled code and are attempting to jump to the
 519   // interpreter, which means the caller made a static call to get here
 520   // (vcalls always get a compiled target if there is one).  Check for a
 521   // compiled target.  If there is one, we need to patch the caller's call.
 522   patch_callers_callsite(masm);
 523 
 524   __ bind(skip_fixup);
 525 
 526 #ifdef COMPILER2
 527   // C2 may leave the stack dirty if not in SSE2+ mode
 528   if (UseSSE >= 2) {
 529     __ verify_FPU(0, "c2i transition should have clean FPU stack");
 530   } else {
 531     __ empty_FPU_stack();
 532   }
 533 #endif /* COMPILER2 */
 534 
 535   // Since all args are passed on the stack, total_args_passed * interpreter_
 536   // stack_element_size  is the
 537   // space we need.
 538   int extraspace = total_args_passed * Interpreter::stackElementSize;
 539 
 540   // Get return address
 541   __ pop(rax);
 542 
 543   // set senderSP value
 544   __ movptr(rsi, rsp);
 545 
 546   __ subptr(rsp, extraspace);
 547 
 548   // Now write the args into the outgoing interpreter space
 549   for (int i = 0; i < total_args_passed; i++) {
 550     if (sig_bt[i] == T_VOID) {
 551       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 552       continue;
 553     }
 554 
 555     // st_off points to lowest address on stack.
 556     int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize;
 557     int next_off = st_off - Interpreter::stackElementSize;
 558 
 559     // Say 4 args:
 560     // i   st_off
 561     // 0   12 T_LONG
 562     // 1    8 T_VOID
 563     // 2    4 T_OBJECT
 564     // 3    0 T_BOOL
 565     VMReg r_1 = regs[i].first();
 566     VMReg r_2 = regs[i].second();
 567     if (!r_1->is_valid()) {
 568       assert(!r_2->is_valid(), "");
 569       continue;
 570     }
 571 
 572     if (r_1->is_stack()) {
 573       // memory to memory use fpu stack top
 574       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 575 
 576       if (!r_2->is_valid()) {
 577         __ movl(rdi, Address(rsp, ld_off));
 578         __ movptr(Address(rsp, st_off), rdi);
 579       } else {
 580 
 581         // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW
 582         // st_off == MSW, st_off-wordSize == LSW
 583 
 584         __ movptr(rdi, Address(rsp, ld_off));
 585         __ movptr(Address(rsp, next_off), rdi);
 586 #ifndef _LP64
 587         __ movptr(rdi, Address(rsp, ld_off + wordSize));
 588         __ movptr(Address(rsp, st_off), rdi);
 589 #else
 590 #ifdef ASSERT
 591         // Overwrite the unused slot with known junk
 592         __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 593         __ movptr(Address(rsp, st_off), rax);
 594 #endif /* ASSERT */
 595 #endif // _LP64
 596       }
 597     } else if (r_1->is_Register()) {
 598       Register r = r_1->as_Register();
 599       if (!r_2->is_valid()) {
 600         __ movl(Address(rsp, st_off), r);
 601       } else {
 602         // long/double in gpr
 603         NOT_LP64(ShouldNotReachHere());
 604         // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 605         // T_DOUBLE and T_LONG use two slots in the interpreter
 606         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 607           // long/double in gpr
 608 #ifdef ASSERT
 609           // Overwrite the unused slot with known junk
 610           LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab)));
 611           __ movptr(Address(rsp, st_off), rax);
 612 #endif /* ASSERT */
 613           __ movptr(Address(rsp, next_off), r);
 614         } else {
 615           __ movptr(Address(rsp, st_off), r);
 616         }
 617       }
 618     } else {
 619       assert(r_1->is_XMMRegister(), "");
 620       if (!r_2->is_valid()) {
 621         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 622       } else {
 623         assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type");
 624         move_c2i_double(masm, r_1->as_XMMRegister(), st_off);
 625       }
 626     }
 627   }
 628 
 629   // Schedule the branch target address early.
 630   __ movptr(rcx, Address(rbx, in_bytes(methodOopDesc::interpreter_entry_offset())));
 631   // And repush original return address
 632   __ push(rax);
 633   __ jmp(rcx);
 634 }
 635 
 636 
 637 static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) {
 638   int next_val_off = ld_off - Interpreter::stackElementSize;
 639   __ movdbl(r, Address(saved_sp, next_val_off));
 640 }
 641 
 642 static void gen_i2c_adapter(MacroAssembler *masm,
 643                             int total_args_passed,
 644                             int comp_args_on_stack,
 645                             const BasicType *sig_bt,
 646                             const VMRegPair *regs) {
 647   // we're being called from the interpreter but need to find the
 648   // compiled return entry point.  The return address on the stack
 649   // should point at it and we just need to pull the old value out.
 650   // load up the pointer to the compiled return entry point and
 651   // rewrite our return pc. The code is arranged like so:
 652   //
 653   // .word Interpreter::return_sentinel
 654   // .word address_of_compiled_return_point
 655   // return_entry_point: blah_blah_blah
 656   //
 657   // So we can find the appropriate return point by loading up the word
 658   // just prior to the current return address we have on the stack.
 659   //
 660   // We will only enter here from an interpreted frame and never from after
 661   // passing thru a c2i. Azul allowed this but we do not. If we lose the
 662   // race and use a c2i we will remain interpreted for the race loser(s).
 663   // This removes all sorts of headaches on the x86 side and also eliminates
 664   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
 665 
 666 
 667   // Note: rsi contains the senderSP on entry. We must preserve it since
 668   // we may do a i2c -> c2i transition if we lose a race where compiled
 669   // code goes non-entrant while we get args ready.
 670 
 671   // Pick up the return address
 672   __ movptr(rax, Address(rsp, 0));
 673 
 674   // If UseSSE >= 2 then no cleanup is needed on the return to the
 675   // interpreter so skip fixing up the return entry point unless
 676   // VerifyFPU is enabled.
 677   if (UseSSE < 2 || VerifyFPU) {
 678     Label skip, chk_int;
 679     // If we were called from the call stub we need to do a little bit different
 680     // cleanup than if the interpreter returned to the call stub.
 681 
 682     ExternalAddress stub_return_address(StubRoutines::_call_stub_return_address);
 683     __ cmpptr(rax, stub_return_address.addr());
 684     __ jcc(Assembler::notEqual, chk_int);
 685     assert(StubRoutines::x86::get_call_stub_compiled_return() != NULL, "must be set");
 686     __ lea(rax, ExternalAddress(StubRoutines::x86::get_call_stub_compiled_return()));
 687     __ jmp(skip);
 688 
 689     // It must be the interpreter since we never get here via a c2i (unlike Azul)
 690 
 691     __ bind(chk_int);
 692 #ifdef ASSERT
 693     {
 694       Label ok;
 695       __ cmpl(Address(rax, -2*wordSize), Interpreter::return_sentinel);
 696       __ jcc(Assembler::equal, ok);
 697       __ int3();
 698       __ bind(ok);
 699     }
 700 #endif // ASSERT
 701     __ movptr(rax, Address(rax, -wordSize));
 702     __ bind(skip);
 703   }
 704 
 705   // rax, now contains the compiled return entry point which will do an
 706   // cleanup needed for the return from compiled to interpreted.
 707 
 708   // Must preserve original SP for loading incoming arguments because
 709   // we need to align the outgoing SP for compiled code.
 710   __ movptr(rdi, rsp);
 711 
 712   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 713   // in registers, we will occasionally have no stack args.
 714   int comp_words_on_stack = 0;
 715   if (comp_args_on_stack) {
 716     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 717     // registers are below.  By subtracting stack0, we either get a negative
 718     // number (all values in registers) or the maximum stack slot accessed.
 719     // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg);
 720     // Convert 4-byte stack slots to words.
 721     comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord;
 722     // Round up to miminum stack alignment, in wordSize
 723     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 724     __ subptr(rsp, comp_words_on_stack * wordSize);
 725   }
 726 
 727   // Align the outgoing SP
 728   __ andptr(rsp, -(StackAlignmentInBytes));
 729 
 730   // push the return address on the stack (note that pushing, rather
 731   // than storing it, yields the correct frame alignment for the callee)
 732   __ push(rax);
 733 
 734   // Put saved SP in another register
 735   const Register saved_sp = rax;
 736   __ movptr(saved_sp, rdi);
 737 
 738 
 739   // Will jump to the compiled code just as if compiled code was doing it.
 740   // Pre-load the register-jump target early, to schedule it better.
 741   __ movptr(rdi, Address(rbx, in_bytes(methodOopDesc::from_compiled_offset())));
 742 
 743   // Now generate the shuffle code.  Pick up all register args and move the
 744   // rest through the floating point stack top.
 745   for (int i = 0; i < total_args_passed; i++) {
 746     if (sig_bt[i] == T_VOID) {
 747       // Longs and doubles are passed in native word order, but misaligned
 748       // in the 32-bit build.
 749       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 750       continue;
 751     }
 752 
 753     // Pick up 0, 1 or 2 words from SP+offset.
 754 
 755     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 756             "scrambled load targets?");
 757     // Load in argument order going down.
 758     int ld_off = (total_args_passed - i) * Interpreter::stackElementSize;
 759     // Point to interpreter value (vs. tag)
 760     int next_off = ld_off - Interpreter::stackElementSize;
 761     //
 762     //
 763     //
 764     VMReg r_1 = regs[i].first();
 765     VMReg r_2 = regs[i].second();
 766     if (!r_1->is_valid()) {
 767       assert(!r_2->is_valid(), "");
 768       continue;
 769     }
 770     if (r_1->is_stack()) {
 771       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 772       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 773 
 774       // We can use rsi as a temp here because compiled code doesn't need rsi as an input
 775       // and if we end up going thru a c2i because of a miss a reasonable value of rsi
 776       // we be generated.
 777       if (!r_2->is_valid()) {
 778         // __ fld_s(Address(saved_sp, ld_off));
 779         // __ fstp_s(Address(rsp, st_off));
 780         __ movl(rsi, Address(saved_sp, ld_off));
 781         __ movptr(Address(rsp, st_off), rsi);
 782       } else {
 783         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 784         // are accessed as negative so LSW is at LOW address
 785 
 786         // ld_off is MSW so get LSW
 787         // st_off is LSW (i.e. reg.first())
 788         // __ fld_d(Address(saved_sp, next_off));
 789         // __ fstp_d(Address(rsp, st_off));
 790         //
 791         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 792         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 793         // So we must adjust where to pick up the data to match the interpreter.
 794         //
 795         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 796         // are accessed as negative so LSW is at LOW address
 797 
 798         // ld_off is MSW so get LSW
 799         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 800                            next_off : ld_off;
 801         __ movptr(rsi, Address(saved_sp, offset));
 802         __ movptr(Address(rsp, st_off), rsi);
 803 #ifndef _LP64
 804         __ movptr(rsi, Address(saved_sp, ld_off));
 805         __ movptr(Address(rsp, st_off + wordSize), rsi);
 806 #endif // _LP64
 807       }
 808     } else if (r_1->is_Register()) {  // Register argument
 809       Register r = r_1->as_Register();
 810       assert(r != rax, "must be different");
 811       if (r_2->is_valid()) {
 812         //
 813         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 814         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 815         // So we must adjust where to pick up the data to match the interpreter.
 816 
 817         const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 818                            next_off : ld_off;
 819 
 820         // this can be a misaligned move
 821         __ movptr(r, Address(saved_sp, offset));
 822 #ifndef _LP64
 823         assert(r_2->as_Register() != rax, "need another temporary register");
 824         // Remember r_1 is low address (and LSB on x86)
 825         // So r_2 gets loaded from high address regardless of the platform
 826         __ movptr(r_2->as_Register(), Address(saved_sp, ld_off));
 827 #endif // _LP64
 828       } else {
 829         __ movl(r, Address(saved_sp, ld_off));
 830       }
 831     } else {
 832       assert(r_1->is_XMMRegister(), "");
 833       if (!r_2->is_valid()) {
 834         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 835       } else {
 836         move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off);
 837       }
 838     }
 839   }
 840 
 841   // 6243940 We might end up in handle_wrong_method if
 842   // the callee is deoptimized as we race thru here. If that
 843   // happens we don't want to take a safepoint because the
 844   // caller frame will look interpreted and arguments are now
 845   // "compiled" so it is much better to make this transition
 846   // invisible to the stack walking code. Unfortunately if
 847   // we try and find the callee by normal means a safepoint
 848   // is possible. So we stash the desired callee in the thread
 849   // and the vm will find there should this case occur.
 850 
 851   __ get_thread(rax);
 852   __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx);
 853 
 854   // move methodOop to rax, in case we end up in an c2i adapter.
 855   // the c2i adapters expect methodOop in rax, (c2) because c2's
 856   // resolve stubs return the result (the method) in rax,.
 857   // I'd love to fix this.
 858   __ mov(rax, rbx);
 859 
 860   __ jmp(rdi);
 861 }
 862 
 863 // ---------------------------------------------------------------
 864 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 865                                                             int total_args_passed,
 866                                                             int comp_args_on_stack,
 867                                                             const BasicType *sig_bt,
 868                                                             const VMRegPair *regs,
 869                                                             AdapterFingerPrint* fingerprint) {
 870   address i2c_entry = __ pc();
 871 
 872   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 873 
 874   // -------------------------------------------------------------------------
 875   // Generate a C2I adapter.  On entry we know rbx, holds the methodOop during calls
 876   // to the interpreter.  The args start out packed in the compiled layout.  They
 877   // need to be unpacked into the interpreter layout.  This will almost always
 878   // require some stack space.  We grow the current (compiled) stack, then repack
 879   // the args.  We  finally end in a jump to the generic interpreter entry point.
 880   // On exit from the interpreter, the interpreter will restore our SP (lest the
 881   // compiled code, which relys solely on SP and not EBP, get sick).
 882 
 883   address c2i_unverified_entry = __ pc();
 884   Label skip_fixup;
 885 
 886   Register holder = rax;
 887   Register receiver = rcx;
 888   Register temp = rbx;
 889 
 890   {
 891 
 892     Label missed;
 893 
 894     __ verify_oop(holder);
 895     __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes()));
 896     __ verify_oop(temp);
 897 
 898     __ cmpptr(temp, Address(holder, compiledICHolderOopDesc::holder_klass_offset()));
 899     __ movptr(rbx, Address(holder, compiledICHolderOopDesc::holder_method_offset()));
 900     __ jcc(Assembler::notEqual, missed);
 901     // Method might have been compiled since the call site was patched to
 902     // interpreted if that is the case treat it as a miss so we can get
 903     // the call site corrected.
 904     __ cmpptr(Address(rbx, in_bytes(methodOopDesc::code_offset())), (int32_t)NULL_WORD);
 905     __ jcc(Assembler::equal, skip_fixup);
 906 
 907     __ bind(missed);
 908     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 909   }
 910 
 911   address c2i_entry = __ pc();
 912 
 913   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 914 
 915   __ flush();
 916   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 917 }
 918 
 919 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 920                                          VMRegPair *regs,
 921                                          int total_args_passed) {
 922 // We return the amount of VMRegImpl stack slots we need to reserve for all
 923 // the arguments NOT counting out_preserve_stack_slots.
 924 
 925   uint    stack = 0;        // All arguments on stack
 926 
 927   for( int i = 0; i < total_args_passed; i++) {
 928     // From the type and the argument number (count) compute the location
 929     switch( sig_bt[i] ) {
 930     case T_BOOLEAN:
 931     case T_CHAR:
 932     case T_FLOAT:
 933     case T_BYTE:
 934     case T_SHORT:
 935     case T_INT:
 936     case T_OBJECT:
 937     case T_ARRAY:
 938     case T_ADDRESS:
 939       regs[i].set1(VMRegImpl::stack2reg(stack++));
 940       break;
 941     case T_LONG:
 942     case T_DOUBLE: // The stack numbering is reversed from Java
 943       // Since C arguments do not get reversed, the ordering for
 944       // doubles on the stack must be opposite the Java convention
 945       assert(sig_bt[i+1] == T_VOID, "missing Half" );
 946       regs[i].set2(VMRegImpl::stack2reg(stack));
 947       stack += 2;
 948       break;
 949     case T_VOID: regs[i].set_bad(); break;
 950     default:
 951       ShouldNotReachHere();
 952       break;
 953     }
 954   }
 955   return stack;
 956 }
 957 
 958 // A simple move of integer like type
 959 static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
 960   if (src.first()->is_stack()) {
 961     if (dst.first()->is_stack()) {
 962       // stack to stack
 963       // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5);
 964       // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS);
 965       __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first())));
 966       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
 967     } else {
 968       // stack to reg
 969       __ movl2ptr(dst.first()->as_Register(),  Address(rbp, reg2offset_in(src.first())));
 970     }
 971   } else if (dst.first()->is_stack()) {
 972     // reg to stack
 973     // no need to sign extend on 64bit
 974     __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
 975   } else {
 976     if (dst.first() != src.first()) {
 977       __ mov(dst.first()->as_Register(), src.first()->as_Register());
 978     }
 979   }
 980 }
 981 
 982 // An oop arg. Must pass a handle not the oop itself
 983 static void object_move(MacroAssembler* masm,
 984                         OopMap* map,
 985                         int oop_handle_offset,
 986                         int framesize_in_slots,
 987                         VMRegPair src,
 988                         VMRegPair dst,
 989                         bool is_receiver,
 990                         int* receiver_offset) {
 991 
 992   // Because of the calling conventions we know that src can be a
 993   // register or a stack location. dst can only be a stack location.
 994 
 995   assert(dst.first()->is_stack(), "must be stack");
 996   // must pass a handle. First figure out the location we use as a handle
 997 
 998   if (src.first()->is_stack()) {
 999     // Oop is already on the stack as an argument
1000     Register rHandle = rax;
1001     Label nil;
1002     __ xorptr(rHandle, rHandle);
1003     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1004     __ jcc(Assembler::equal, nil);
1005     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1006     __ bind(nil);
1007     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1008 
1009     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1010     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1011     if (is_receiver) {
1012       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1013     }
1014   } else {
1015     // Oop is in an a register we must store it to the space we reserve
1016     // on the stack for oop_handles
1017     const Register rOop = src.first()->as_Register();
1018     const Register rHandle = rax;
1019     int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset;
1020     int offset = oop_slot*VMRegImpl::stack_slot_size;
1021     Label skip;
1022     __ movptr(Address(rsp, offset), rOop);
1023     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1024     __ xorptr(rHandle, rHandle);
1025     __ cmpptr(rOop, (int32_t)NULL_WORD);
1026     __ jcc(Assembler::equal, skip);
1027     __ lea(rHandle, Address(rsp, offset));
1028     __ bind(skip);
1029     // Store the handle parameter
1030     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1031     if (is_receiver) {
1032       *receiver_offset = offset;
1033     }
1034   }
1035 }
1036 
1037 // A float arg may have to do float reg int reg conversion
1038 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1039   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1040 
1041   // Because of the calling convention we know that src is either a stack location
1042   // or an xmm register. dst can only be a stack location.
1043 
1044   assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters");
1045 
1046   if (src.first()->is_stack()) {
1047     __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1048     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1049   } else {
1050     // reg to stack
1051     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1052   }
1053 }
1054 
1055 // A long move
1056 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1057 
1058   // The only legal possibility for a long_move VMRegPair is:
1059   // 1: two stack slots (possibly unaligned)
1060   // as neither the java  or C calling convention will use registers
1061   // for longs.
1062 
1063   if (src.first()->is_stack() && dst.first()->is_stack()) {
1064     assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack");
1065     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1066     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1067     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1068     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1069   } else {
1070     ShouldNotReachHere();
1071   }
1072 }
1073 
1074 // A double move
1075 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1076 
1077   // The only legal possibilities for a double_move VMRegPair are:
1078   // The painful thing here is that like long_move a VMRegPair might be
1079 
1080   // Because of the calling convention we know that src is either
1081   //   1: a single physical register (xmm registers only)
1082   //   2: two stack slots (possibly unaligned)
1083   // dst can only be a pair of stack slots.
1084 
1085   assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args");
1086 
1087   if (src.first()->is_stack()) {
1088     // source is all stack
1089     __ movptr(rax, Address(rbp, reg2offset_in(src.first())));
1090     NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second()))));
1091     __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1092     NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx));
1093   } else {
1094     // reg to stack
1095     // No worries about stack alignment
1096     __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1097   }
1098 }
1099 
1100 
1101 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1102   // We always ignore the frame_slots arg and just use the space just below frame pointer
1103   // which by this time is free to use
1104   switch (ret_type) {
1105   case T_FLOAT:
1106     __ fstp_s(Address(rbp, -wordSize));
1107     break;
1108   case T_DOUBLE:
1109     __ fstp_d(Address(rbp, -2*wordSize));
1110     break;
1111   case T_VOID:  break;
1112   case T_LONG:
1113     __ movptr(Address(rbp, -wordSize), rax);
1114     NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx));
1115     break;
1116   default: {
1117     __ movptr(Address(rbp, -wordSize), rax);
1118     }
1119   }
1120 }
1121 
1122 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1123   // We always ignore the frame_slots arg and just use the space just below frame pointer
1124   // which by this time is free to use
1125   switch (ret_type) {
1126   case T_FLOAT:
1127     __ fld_s(Address(rbp, -wordSize));
1128     break;
1129   case T_DOUBLE:
1130     __ fld_d(Address(rbp, -2*wordSize));
1131     break;
1132   case T_LONG:
1133     __ movptr(rax, Address(rbp, -wordSize));
1134     NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize)));
1135     break;
1136   case T_VOID:  break;
1137   default: {
1138     __ movptr(rax, Address(rbp, -wordSize));
1139     }
1140   }
1141 }
1142 
1143 // ---------------------------------------------------------------------------
1144 // Generate a native wrapper for a given method.  The method takes arguments
1145 // in the Java compiled code convention, marshals them to the native
1146 // convention (handlizes oops, etc), transitions to native, makes the call,
1147 // returns to java state (possibly blocking), unhandlizes any result and
1148 // returns.
1149 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1150                                                 methodHandle method,
1151                                                 int total_in_args,
1152                                                 int comp_args_on_stack,
1153                                                 BasicType *in_sig_bt,
1154                                                 VMRegPair *in_regs,
1155                                                 BasicType ret_type) {
1156 
1157   // An OopMap for lock (and class if static)
1158   OopMapSet *oop_maps = new OopMapSet();
1159 
1160   // We have received a description of where all the java arg are located
1161   // on entry to the wrapper. We need to convert these args to where
1162   // the jni function will expect them. To figure out where they go
1163   // we convert the java signature to a C signature by inserting
1164   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1165 
1166   int total_c_args = total_in_args + 1;
1167   if (method->is_static()) {
1168     total_c_args++;
1169   }
1170 
1171   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1172   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair,   total_c_args);
1173 
1174   int argc = 0;
1175   out_sig_bt[argc++] = T_ADDRESS;
1176   if (method->is_static()) {
1177     out_sig_bt[argc++] = T_OBJECT;
1178   }
1179 
1180   int i;
1181   for (i = 0; i < total_in_args ; i++ ) {
1182     out_sig_bt[argc++] = in_sig_bt[i];
1183   }
1184 
1185 
1186   // Now figure out where the args must be stored and how much stack space
1187   // they require (neglecting out_preserve_stack_slots but space for storing
1188   // the 1st six register arguments). It's weird see int_stk_helper.
1189   //
1190   int out_arg_slots;
1191   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1192 
1193   // Compute framesize for the wrapper.  We need to handlize all oops in
1194   // registers a max of 2 on x86.
1195 
1196   // Calculate the total number of stack slots we will need.
1197 
1198   // First count the abi requirement plus all of the outgoing args
1199   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1200 
1201   // Now the space for the inbound oop handle area
1202 
1203   int oop_handle_offset = stack_slots;
1204   stack_slots += 2*VMRegImpl::slots_per_word;
1205 
1206   // Now any space we need for handlizing a klass if static method
1207 
1208   int klass_slot_offset = 0;
1209   int klass_offset = -1;
1210   int lock_slot_offset = 0;
1211   bool is_static = false;
1212   int oop_temp_slot_offset = 0;
1213 
1214   if (method->is_static()) {
1215     klass_slot_offset = stack_slots;
1216     stack_slots += VMRegImpl::slots_per_word;
1217     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1218     is_static = true;
1219   }
1220 
1221   // Plus a lock if needed
1222 
1223   if (method->is_synchronized()) {
1224     lock_slot_offset = stack_slots;
1225     stack_slots += VMRegImpl::slots_per_word;
1226   }
1227 
1228   // Now a place (+2) to save return values or temp during shuffling
1229   // + 2 for return address (which we own) and saved rbp,
1230   stack_slots += 4;
1231 
1232   // Ok The space we have allocated will look like:
1233   //
1234   //
1235   // FP-> |                     |
1236   //      |---------------------|
1237   //      | 2 slots for moves   |
1238   //      |---------------------|
1239   //      | lock box (if sync)  |
1240   //      |---------------------| <- lock_slot_offset  (-lock_slot_rbp_offset)
1241   //      | klass (if static)   |
1242   //      |---------------------| <- klass_slot_offset
1243   //      | oopHandle area      |
1244   //      |---------------------| <- oop_handle_offset (a max of 2 registers)
1245   //      | outbound memory     |
1246   //      | based arguments     |
1247   //      |                     |
1248   //      |---------------------|
1249   //      |                     |
1250   // SP-> | out_preserved_slots |
1251   //
1252   //
1253   // ****************************************************************************
1254   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1255   // arguments off of the stack after the jni call. Before the call we can use
1256   // instructions that are SP relative. After the jni call we switch to FP
1257   // relative instructions instead of re-adjusting the stack on windows.
1258   // ****************************************************************************
1259 
1260 
1261   // Now compute actual number of stack words we need rounding to make
1262   // stack properly aligned.
1263   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1264 
1265   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1266 
1267   intptr_t start = (intptr_t)__ pc();
1268 
1269   // First thing make an ic check to see if we should even be here
1270 
1271   // We are free to use all registers as temps without saving them and
1272   // restoring them except rbp,. rbp, is the only callee save register
1273   // as far as the interpreter and the compiler(s) are concerned.
1274 
1275 
1276   const Register ic_reg = rax;
1277   const Register receiver = rcx;
1278   Label hit;
1279   Label exception_pending;
1280 
1281 
1282   __ verify_oop(receiver);
1283   __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
1284   __ jcc(Assembler::equal, hit);
1285 
1286   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1287 
1288   // verified entry must be aligned for code patching.
1289   // and the first 5 bytes must be in the same cache line
1290   // if we align at 8 then we will be sure 5 bytes are in the same line
1291   __ align(8);
1292 
1293   __ bind(hit);
1294 
1295   int vep_offset = ((intptr_t)__ pc()) - start;
1296 
1297 #ifdef COMPILER1
1298   if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) {
1299     // Object.hashCode can pull the hashCode from the header word
1300     // instead of doing a full VM transition once it's been computed.
1301     // Since hashCode is usually polymorphic at call sites we can't do
1302     // this optimization at the call site without a lot of work.
1303     Label slowCase;
1304     Register receiver = rcx;
1305     Register result = rax;
1306     __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes()));
1307 
1308     // check if locked
1309     __ testptr(result, markOopDesc::unlocked_value);
1310     __ jcc (Assembler::zero, slowCase);
1311 
1312     if (UseBiasedLocking) {
1313       // Check if biased and fall through to runtime if so
1314       __ testptr(result, markOopDesc::biased_lock_bit_in_place);
1315       __ jcc (Assembler::notZero, slowCase);
1316     }
1317 
1318     // get hash
1319     __ andptr(result, markOopDesc::hash_mask_in_place);
1320     // test if hashCode exists
1321     __ jcc  (Assembler::zero, slowCase);
1322     __ shrptr(result, markOopDesc::hash_shift);
1323     __ ret(0);
1324     __ bind (slowCase);
1325   }
1326 #endif // COMPILER1
1327 
1328   // The instruction at the verified entry point must be 5 bytes or longer
1329   // because it can be patched on the fly by make_non_entrant. The stack bang
1330   // instruction fits that requirement.
1331 
1332   // Generate stack overflow check
1333 
1334   if (UseStackBanging) {
1335     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1336   } else {
1337     // need a 5 byte instruction to allow MT safe patching to non-entrant
1338     __ fat_nop();
1339   }
1340 
1341   // Generate a new frame for the wrapper.
1342   __ enter();
1343   // -2 because return address is already present and so is saved rbp,
1344   __ subptr(rsp, stack_size - 2*wordSize);
1345 
1346   // Frame is now completed as far a size and linkage.
1347 
1348   int frame_complete = ((intptr_t)__ pc()) - start;
1349 
1350   // Calculate the difference between rsp and rbp,. We need to know it
1351   // after the native call because on windows Java Natives will pop
1352   // the arguments and it is painful to do rsp relative addressing
1353   // in a platform independent way. So after the call we switch to
1354   // rbp, relative addressing.
1355 
1356   int fp_adjustment = stack_size - 2*wordSize;
1357 
1358 #ifdef COMPILER2
1359   // C2 may leave the stack dirty if not in SSE2+ mode
1360   if (UseSSE >= 2) {
1361     __ verify_FPU(0, "c2i transition should have clean FPU stack");
1362   } else {
1363     __ empty_FPU_stack();
1364   }
1365 #endif /* COMPILER2 */
1366 
1367   // Compute the rbp, offset for any slots used after the jni call
1368 
1369   int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1370   int oop_temp_slot_rbp_offset = (oop_temp_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment;
1371 
1372   // We use rdi as a thread pointer because it is callee save and
1373   // if we load it once it is usable thru the entire wrapper
1374   const Register thread = rdi;
1375 
1376   // We use rsi as the oop handle for the receiver/klass
1377   // It is callee save so it survives the call to native
1378 
1379   const Register oop_handle_reg = rsi;
1380 
1381   __ get_thread(thread);
1382 
1383 
1384   //
1385   // We immediately shuffle the arguments so that any vm call we have to
1386   // make from here on out (sync slow path, jvmti, etc.) we will have
1387   // captured the oops from our caller and have a valid oopMap for
1388   // them.
1389 
1390   // -----------------
1391   // The Grand Shuffle
1392   //
1393   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
1394   // and, if static, the class mirror instead of a receiver.  This pretty much
1395   // guarantees that register layout will not match (and x86 doesn't use reg
1396   // parms though amd does).  Since the native abi doesn't use register args
1397   // and the java conventions does we don't have to worry about collisions.
1398   // All of our moved are reg->stack or stack->stack.
1399   // We ignore the extra arguments during the shuffle and handle them at the
1400   // last moment. The shuffle is described by the two calling convention
1401   // vectors we have in our possession. We simply walk the java vector to
1402   // get the source locations and the c vector to get the destinations.
1403 
1404   int c_arg = method->is_static() ? 2 : 1 ;
1405 
1406   // Record rsp-based slot for receiver on stack for non-static methods
1407   int receiver_offset = -1;
1408 
1409   // This is a trick. We double the stack slots so we can claim
1410   // the oops in the caller's frame. Since we are sure to have
1411   // more args than the caller doubling is enough to make
1412   // sure we can capture all the incoming oop args from the
1413   // caller.
1414   //
1415   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1416 
1417   // Mark location of rbp,
1418   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg());
1419 
1420   // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx
1421   // Are free to temporaries if we have to do  stack to steck moves.
1422   // All inbound args are referenced based on rbp, and all outbound args via rsp.
1423 
1424   for (i = 0; i < total_in_args ; i++, c_arg++ ) {
1425     switch (in_sig_bt[i]) {
1426       case T_ARRAY:
1427       case T_OBJECT:
1428         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1429                     ((i == 0) && (!is_static)),
1430                     &receiver_offset);
1431         break;
1432       case T_VOID:
1433         break;
1434 
1435       case T_FLOAT:
1436         float_move(masm, in_regs[i], out_regs[c_arg]);
1437           break;
1438 
1439       case T_DOUBLE:
1440         assert( i + 1 < total_in_args &&
1441                 in_sig_bt[i + 1] == T_VOID &&
1442                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1443         double_move(masm, in_regs[i], out_regs[c_arg]);
1444         break;
1445 
1446       case T_LONG :
1447         long_move(masm, in_regs[i], out_regs[c_arg]);
1448         break;
1449 
1450       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1451 
1452       default:
1453         simple_move32(masm, in_regs[i], out_regs[c_arg]);
1454     }
1455   }
1456 
1457   // Pre-load a static method's oop into rsi.  Used both by locking code and
1458   // the normal JNI call code.
1459   if (method->is_static()) {
1460 
1461     //  load opp into a register
1462     __ movoop(oop_handle_reg, JNIHandles::make_local(Klass::cast(method->method_holder())->java_mirror()));
1463 
1464     // Now handlize the static class mirror it's known not-null.
1465     __ movptr(Address(rsp, klass_offset), oop_handle_reg);
1466     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1467 
1468     // Now get the handle
1469     __ lea(oop_handle_reg, Address(rsp, klass_offset));
1470     // store the klass handle as second argument
1471     __ movptr(Address(rsp, wordSize), oop_handle_reg);
1472   }
1473 
1474   // Change state to native (we save the return address in the thread, since it might not
1475   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1476   // points into the right code segment. It does not have to be the correct return pc.
1477   // We use the same pc/oopMap repeatedly when we call out
1478 
1479   intptr_t the_pc = (intptr_t) __ pc();
1480   oop_maps->add_gc_map(the_pc - start, map);
1481 
1482   __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc);
1483 
1484 
1485   // We have all of the arguments setup at this point. We must not touch any register
1486   // argument registers at this point (what if we save/restore them there are no oop?
1487 
1488   {
1489     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1490     __ movoop(rax, JNIHandles::make_local(method()));
1491     __ call_VM_leaf(
1492          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1493          thread, rax);
1494   }
1495 
1496   // RedefineClasses() tracing support for obsolete method entry
1497   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1498     __ movoop(rax, JNIHandles::make_local(method()));
1499     __ call_VM_leaf(
1500          CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1501          thread, rax);
1502   }
1503 
1504   // These are register definitions we need for locking/unlocking
1505   const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
1506   const Register obj_reg  = rcx;  // Will contain the oop
1507   const Register lock_reg = rdx;  // Address of compiler lock object (BasicLock)
1508 
1509   Label slow_path_lock;
1510   Label lock_done;
1511 
1512   // Lock a synchronized method
1513   if (method->is_synchronized()) {
1514 
1515 
1516     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1517 
1518     // Get the handle (the 2nd argument)
1519     __ movptr(oop_handle_reg, Address(rsp, wordSize));
1520 
1521     // Get address of the box
1522 
1523     __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset));
1524 
1525     // Load the oop from the handle
1526     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1527 
1528     if (UseBiasedLocking) {
1529       // Note that oop_handle_reg is trashed during this call
1530       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock);
1531     }
1532 
1533     // Load immediate 1 into swap_reg %rax,
1534     __ movptr(swap_reg, 1);
1535 
1536     // Load (object->mark() | 1) into swap_reg %rax,
1537     __ orptr(swap_reg, Address(obj_reg, 0));
1538 
1539     // Save (object->mark() | 1) into BasicLock's displaced header
1540     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1541 
1542     if (os::is_MP()) {
1543       __ lock();
1544     }
1545 
1546     // src -> dest iff dest == rax, else rax, <- dest
1547     // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg)
1548     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
1549     __ jcc(Assembler::equal, lock_done);
1550 
1551     // Test if the oopMark is an obvious stack pointer, i.e.,
1552     //  1) (mark & 3) == 0, and
1553     //  2) rsp <= mark < mark + os::pagesize()
1554     // These 3 tests can be done by evaluating the following
1555     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
1556     // assuming both stack pointer and pagesize have their
1557     // least significant 2 bits clear.
1558     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
1559 
1560     __ subptr(swap_reg, rsp);
1561     __ andptr(swap_reg, 3 - os::vm_page_size());
1562 
1563     // Save the test result, for recursive case, the result is zero
1564     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
1565     __ jcc(Assembler::notEqual, slow_path_lock);
1566     // Slow path will re-enter here
1567     __ bind(lock_done);
1568 
1569     if (UseBiasedLocking) {
1570       // Re-fetch oop_handle_reg as we trashed it above
1571       __ movptr(oop_handle_reg, Address(rsp, wordSize));
1572     }
1573   }
1574 
1575 
1576   // Finally just about ready to make the JNI call
1577 
1578 
1579   // get JNIEnv* which is first argument to native
1580 
1581   __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset())));
1582   __ movptr(Address(rsp, 0), rdx);
1583 
1584   // Now set thread in native
1585   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native);
1586 
1587   __ call(RuntimeAddress(method->native_function()));
1588 
1589   // WARNING - on Windows Java Natives use pascal calling convention and pop the
1590   // arguments off of the stack. We could just re-adjust the stack pointer here
1591   // and continue to do SP relative addressing but we instead switch to FP
1592   // relative addressing.
1593 
1594   // Unpack native results.
1595   switch (ret_type) {
1596   case T_BOOLEAN: __ c2bool(rax);            break;
1597   case T_CHAR   : __ andptr(rax, 0xFFFF);    break;
1598   case T_BYTE   : __ sign_extend_byte (rax); break;
1599   case T_SHORT  : __ sign_extend_short(rax); break;
1600   case T_INT    : /* nothing to do */        break;
1601   case T_DOUBLE :
1602   case T_FLOAT  :
1603     // Result is in st0 we'll save as needed
1604     break;
1605   case T_ARRAY:                 // Really a handle
1606   case T_OBJECT:                // Really a handle
1607       break; // can't de-handlize until after safepoint check
1608   case T_VOID: break;
1609   case T_LONG: break;
1610   default       : ShouldNotReachHere();
1611   }
1612 
1613   // Switch thread to "native transition" state before reading the synchronization state.
1614   // This additional state is necessary because reading and testing the synchronization
1615   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1616   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1617   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1618   //     Thread A is resumed to finish this native method, but doesn't block here since it
1619   //     didn't see any synchronization is progress, and escapes.
1620   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
1621 
1622   if(os::is_MP()) {
1623     if (UseMembar) {
1624       // Force this write out before the read below
1625       __ membar(Assembler::Membar_mask_bits(
1626            Assembler::LoadLoad | Assembler::LoadStore |
1627            Assembler::StoreLoad | Assembler::StoreStore));
1628     } else {
1629       // Write serialization page so VM thread can do a pseudo remote membar.
1630       // We use the current thread pointer to calculate a thread specific
1631       // offset to write to within the page. This minimizes bus traffic
1632       // due to cache line collision.
1633       __ serialize_memory(thread, rcx);
1634     }
1635   }
1636 
1637   if (AlwaysRestoreFPU) {
1638     // Make sure the control word is correct.
1639     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1640   }
1641 
1642   // check for safepoint operation in progress and/or pending suspend requests
1643   { Label Continue;
1644 
1645     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
1646              SafepointSynchronize::_not_synchronized);
1647 
1648     Label L;
1649     __ jcc(Assembler::notEqual, L);
1650     __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0);
1651     __ jcc(Assembler::equal, Continue);
1652     __ bind(L);
1653 
1654     // Don't use call_VM as it will see a possible pending exception and forward it
1655     // and never return here preventing us from clearing _last_native_pc down below.
1656     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
1657     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
1658     // by hand.
1659     //
1660     save_native_result(masm, ret_type, stack_slots);
1661     __ push(thread);
1662     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address,
1663                                             JavaThread::check_special_condition_for_native_trans)));
1664     __ increment(rsp, wordSize);
1665     // Restore any method result value
1666     restore_native_result(masm, ret_type, stack_slots);
1667 
1668     __ bind(Continue);
1669   }
1670 
1671   // change thread state
1672   __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java);
1673 
1674   Label reguard;
1675   Label reguard_done;
1676   __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
1677   __ jcc(Assembler::equal, reguard);
1678 
1679   // slow path reguard  re-enters here
1680   __ bind(reguard_done);
1681 
1682   // Handle possible exception (will unlock if necessary)
1683 
1684   // native result if any is live
1685 
1686   // Unlock
1687   Label slow_path_unlock;
1688   Label unlock_done;
1689   if (method->is_synchronized()) {
1690 
1691     Label done;
1692 
1693     // Get locked oop from the handle we passed to jni
1694     __ movptr(obj_reg, Address(oop_handle_reg, 0));
1695 
1696     if (UseBiasedLocking) {
1697       __ biased_locking_exit(obj_reg, rbx, done);
1698     }
1699 
1700     // Simple recursive lock?
1701 
1702     __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD);
1703     __ jcc(Assembler::equal, done);
1704 
1705     // Must save rax, if if it is live now because cmpxchg must use it
1706     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1707       save_native_result(masm, ret_type, stack_slots);
1708     }
1709 
1710     //  get old displaced header
1711     __ movptr(rbx, Address(rbp, lock_slot_rbp_offset));
1712 
1713     // get address of the stack lock
1714     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1715 
1716     // Atomic swap old header if oop still contains the stack lock
1717     if (os::is_MP()) {
1718     __ lock();
1719     }
1720 
1721     // src -> dest iff dest == rax, else rax, <- dest
1722     // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg)
1723     __ cmpxchgptr(rbx, Address(obj_reg, 0));
1724     __ jcc(Assembler::notEqual, slow_path_unlock);
1725 
1726     // slow path re-enters here
1727     __ bind(unlock_done);
1728     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1729       restore_native_result(masm, ret_type, stack_slots);
1730     }
1731 
1732     __ bind(done);
1733 
1734   }
1735 
1736   {
1737     SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0);
1738     // Tell dtrace about this method exit
1739     save_native_result(masm, ret_type, stack_slots);
1740     __ movoop(rax, JNIHandles::make_local(method()));
1741     __ call_VM_leaf(
1742          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1743          thread, rax);
1744     restore_native_result(masm, ret_type, stack_slots);
1745   }
1746 
1747   // We can finally stop using that last_Java_frame we setup ages ago
1748 
1749   __ reset_last_Java_frame(thread, false, true);
1750 
1751   // Unpack oop result
1752   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
1753       Label L;
1754       __ cmpptr(rax, (int32_t)NULL_WORD);
1755       __ jcc(Assembler::equal, L);
1756       __ movptr(rax, Address(rax, 0));
1757       __ bind(L);
1758       __ verify_oop(rax);
1759   }
1760 
1761   // reset handle block
1762   __ movptr(rcx, Address(thread, JavaThread::active_handles_offset()));
1763 
1764   __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD);
1765 
1766   // Any exception pending?
1767   __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1768   __ jcc(Assembler::notEqual, exception_pending);
1769 
1770 
1771   // no exception, we're almost done
1772 
1773   // check that only result value is on FPU stack
1774   __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit");
1775 
1776   // Fixup floating pointer results so that result looks like a return from a compiled method
1777   if (ret_type == T_FLOAT) {
1778     if (UseSSE >= 1) {
1779       // Pop st0 and store as float and reload into xmm register
1780       __ fstp_s(Address(rbp, -4));
1781       __ movflt(xmm0, Address(rbp, -4));
1782     }
1783   } else if (ret_type == T_DOUBLE) {
1784     if (UseSSE >= 2) {
1785       // Pop st0 and store as double and reload into xmm register
1786       __ fstp_d(Address(rbp, -8));
1787       __ movdbl(xmm0, Address(rbp, -8));
1788     }
1789   }
1790 
1791   // Return
1792 
1793   __ leave();
1794   __ ret(0);
1795 
1796   // Unexpected paths are out of line and go here
1797 
1798   // Slow path locking & unlocking
1799   if (method->is_synchronized()) {
1800 
1801     // BEGIN Slow path lock
1802 
1803     __ bind(slow_path_lock);
1804 
1805     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
1806     // args are (oop obj, BasicLock* lock, JavaThread* thread)
1807     __ push(thread);
1808     __ push(lock_reg);
1809     __ push(obj_reg);
1810     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C)));
1811     __ addptr(rsp, 3*wordSize);
1812 
1813 #ifdef ASSERT
1814     { Label L;
1815     __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
1816     __ jcc(Assembler::equal, L);
1817     __ stop("no pending exception allowed on exit from monitorenter");
1818     __ bind(L);
1819     }
1820 #endif
1821     __ jmp(lock_done);
1822 
1823     // END Slow path lock
1824 
1825     // BEGIN Slow path unlock
1826     __ bind(slow_path_unlock);
1827 
1828     // Slow path unlock
1829 
1830     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1831       save_native_result(masm, ret_type, stack_slots);
1832     }
1833     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
1834 
1835     __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1836     __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD);
1837 
1838 
1839     // should be a peal
1840     // +wordSize because of the push above
1841     __ lea(rax, Address(rbp, lock_slot_rbp_offset));
1842     __ push(rax);
1843 
1844     __ push(obj_reg);
1845     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
1846     __ addptr(rsp, 2*wordSize);
1847 #ifdef ASSERT
1848     {
1849       Label L;
1850       __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
1851       __ jcc(Assembler::equal, L);
1852       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
1853       __ bind(L);
1854     }
1855 #endif /* ASSERT */
1856 
1857     __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset())));
1858 
1859     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
1860       restore_native_result(masm, ret_type, stack_slots);
1861     }
1862     __ jmp(unlock_done);
1863     // END Slow path unlock
1864 
1865   }
1866 
1867   // SLOW PATH Reguard the stack if needed
1868 
1869   __ bind(reguard);
1870   save_native_result(masm, ret_type, stack_slots);
1871   {
1872     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
1873   }
1874   restore_native_result(masm, ret_type, stack_slots);
1875   __ jmp(reguard_done);
1876 
1877 
1878   // BEGIN EXCEPTION PROCESSING
1879 
1880   // Forward  the exception
1881   __ bind(exception_pending);
1882 
1883   // remove possible return value from FPU register stack
1884   __ empty_FPU_stack();
1885 
1886   // pop our frame
1887   __ leave();
1888   // and forward the exception
1889   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
1890 
1891   __ flush();
1892 
1893   nmethod *nm = nmethod::new_native_nmethod(method,
1894                                             masm->code(),
1895                                             vep_offset,
1896                                             frame_complete,
1897                                             stack_slots / VMRegImpl::slots_per_word,
1898                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
1899                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
1900                                             oop_maps);
1901   return nm;
1902 
1903 }
1904 
1905 #ifdef HAVE_DTRACE_H
1906 // ---------------------------------------------------------------------------
1907 // Generate a dtrace nmethod for a given signature.  The method takes arguments
1908 // in the Java compiled code convention, marshals them to the native
1909 // abi and then leaves nops at the position you would expect to call a native
1910 // function. When the probe is enabled the nops are replaced with a trap
1911 // instruction that dtrace inserts and the trace will cause a notification
1912 // to dtrace.
1913 //
1914 // The probes are only able to take primitive types and java/lang/String as
1915 // arguments.  No other java types are allowed. Strings are converted to utf8
1916 // strings so that from dtrace point of view java strings are converted to C
1917 // strings. There is an arbitrary fixed limit on the total space that a method
1918 // can use for converting the strings. (256 chars per string in the signature).
1919 // So any java string larger then this is truncated.
1920 
1921 nmethod *SharedRuntime::generate_dtrace_nmethod(
1922     MacroAssembler *masm, methodHandle method) {
1923 
1924   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
1925   // be single threaded in this method.
1926   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
1927 
1928   // Fill in the signature array, for the calling-convention call.
1929   int total_args_passed = method->size_of_parameters();
1930 
1931   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
1932   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
1933 
1934   // The signature we are going to use for the trap that dtrace will see
1935   // java/lang/String is converted. We drop "this" and any other object
1936   // is converted to NULL.  (A one-slot java/lang/Long object reference
1937   // is converted to a two-slot long, which is why we double the allocation).
1938   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
1939   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
1940 
1941   int i=0;
1942   int total_strings = 0;
1943   int first_arg_to_pass = 0;
1944   int total_c_args = 0;
1945 
1946   if( !method->is_static() ) {  // Pass in receiver first
1947     in_sig_bt[i++] = T_OBJECT;
1948     first_arg_to_pass = 1;
1949   }
1950 
1951   // We need to convert the java args to where a native (non-jni) function
1952   // would expect them. To figure out where they go we convert the java
1953   // signature to a C signature.
1954 
1955   SignatureStream ss(method->signature());
1956   for ( ; !ss.at_return_type(); ss.next()) {
1957     BasicType bt = ss.type();
1958     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
1959     out_sig_bt[total_c_args++] = bt;
1960     if( bt == T_OBJECT) {
1961       symbolOop s = ss.as_symbol_or_null();
1962       if (s == vmSymbols::java_lang_String()) {
1963         total_strings++;
1964         out_sig_bt[total_c_args-1] = T_ADDRESS;
1965       } else if (s == vmSymbols::java_lang_Boolean() ||
1966                  s == vmSymbols::java_lang_Character() ||
1967                  s == vmSymbols::java_lang_Byte() ||
1968                  s == vmSymbols::java_lang_Short() ||
1969                  s == vmSymbols::java_lang_Integer() ||
1970                  s == vmSymbols::java_lang_Float()) {
1971         out_sig_bt[total_c_args-1] = T_INT;
1972       } else if (s == vmSymbols::java_lang_Long() ||
1973                  s == vmSymbols::java_lang_Double()) {
1974         out_sig_bt[total_c_args-1] = T_LONG;
1975         out_sig_bt[total_c_args++] = T_VOID;
1976       }
1977     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
1978       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
1979       out_sig_bt[total_c_args++] = T_VOID;
1980     }
1981   }
1982 
1983   assert(i==total_args_passed, "validly parsed signature");
1984 
1985   // Now get the compiled-Java layout as input arguments
1986   int comp_args_on_stack;
1987   comp_args_on_stack = SharedRuntime::java_calling_convention(
1988       in_sig_bt, in_regs, total_args_passed, false);
1989 
1990   // Now figure out where the args must be stored and how much stack space
1991   // they require (neglecting out_preserve_stack_slots).
1992 
1993   int out_arg_slots;
1994   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args);
1995 
1996   // Calculate the total number of stack slots we will need.
1997 
1998   // First count the abi requirement plus all of the outgoing args
1999   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2000 
2001   // Now space for the string(s) we must convert
2002 
2003   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2004   for (i = 0; i < total_strings ; i++) {
2005     string_locs[i] = stack_slots;
2006     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2007   }
2008 
2009   // + 2 for return address (which we own) and saved rbp,
2010 
2011   stack_slots += 2;
2012 
2013   // Ok The space we have allocated will look like:
2014   //
2015   //
2016   // FP-> |                     |
2017   //      |---------------------|
2018   //      | string[n]           |
2019   //      |---------------------| <- string_locs[n]
2020   //      | string[n-1]         |
2021   //      |---------------------| <- string_locs[n-1]
2022   //      | ...                 |
2023   //      | ...                 |
2024   //      |---------------------| <- string_locs[1]
2025   //      | string[0]           |
2026   //      |---------------------| <- string_locs[0]
2027   //      | outbound memory     |
2028   //      | based arguments     |
2029   //      |                     |
2030   //      |---------------------|
2031   //      |                     |
2032   // SP-> | out_preserved_slots |
2033   //
2034   //
2035 
2036   // Now compute actual number of stack words we need rounding to make
2037   // stack properly aligned.
2038   stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word);
2039 
2040   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2041 
2042   intptr_t start = (intptr_t)__ pc();
2043 
2044   // First thing make an ic check to see if we should even be here
2045 
2046   // We are free to use all registers as temps without saving them and
2047   // restoring them except rbp. rbp, is the only callee save register
2048   // as far as the interpreter and the compiler(s) are concerned.
2049 
2050   const Register ic_reg = rax;
2051   const Register receiver = rcx;
2052   Label hit;
2053   Label exception_pending;
2054 
2055 
2056   __ verify_oop(receiver);
2057   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2058   __ jcc(Assembler::equal, hit);
2059 
2060   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2061 
2062   // verified entry must be aligned for code patching.
2063   // and the first 5 bytes must be in the same cache line
2064   // if we align at 8 then we will be sure 5 bytes are in the same line
2065   __ align(8);
2066 
2067   __ bind(hit);
2068 
2069   int vep_offset = ((intptr_t)__ pc()) - start;
2070 
2071 
2072   // The instruction at the verified entry point must be 5 bytes or longer
2073   // because it can be patched on the fly by make_non_entrant. The stack bang
2074   // instruction fits that requirement.
2075 
2076   // Generate stack overflow check
2077 
2078 
2079   if (UseStackBanging) {
2080     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2081       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2082     } else {
2083       __ movl(rax, stack_size);
2084       __ bang_stack_size(rax, rbx);
2085     }
2086   } else {
2087     // need a 5 byte instruction to allow MT safe patching to non-entrant
2088     __ fat_nop();
2089   }
2090 
2091   assert(((int)__ pc() - start - vep_offset) >= 5,
2092          "valid size for make_non_entrant");
2093 
2094   // Generate a new frame for the wrapper.
2095   __ enter();
2096 
2097   // -2 because return address is already present and so is saved rbp,
2098   if (stack_size - 2*wordSize != 0) {
2099     __ subl(rsp, stack_size - 2*wordSize);
2100   }
2101 
2102   // Frame is now completed as far a size and linkage.
2103 
2104   int frame_complete = ((intptr_t)__ pc()) - start;
2105 
2106   // First thing we do store all the args as if we are doing the call.
2107   // Since the C calling convention is stack based that ensures that
2108   // all the Java register args are stored before we need to convert any
2109   // string we might have.
2110 
2111   int sid = 0;
2112   int c_arg, j_arg;
2113   int string_reg = 0;
2114 
2115   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2116        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2117 
2118     VMRegPair src = in_regs[j_arg];
2119     VMRegPair dst = out_regs[c_arg];
2120     assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID,
2121            "stack based abi assumed");
2122 
2123     switch (in_sig_bt[j_arg]) {
2124 
2125       case T_ARRAY:
2126       case T_OBJECT:
2127         if (out_sig_bt[c_arg] == T_ADDRESS) {
2128           // Any register based arg for a java string after the first
2129           // will be destroyed by the call to get_utf so we store
2130           // the original value in the location the utf string address
2131           // will eventually be stored.
2132           if (src.first()->is_reg()) {
2133             if (string_reg++ != 0) {
2134               simple_move32(masm, src, dst);
2135             }
2136           }
2137         } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2138           // need to unbox a one-word value
2139           Register in_reg = rax;
2140           if ( src.first()->is_reg() ) {
2141             in_reg = src.first()->as_Register();
2142           } else {
2143             simple_move32(masm, src, in_reg->as_VMReg());
2144           }
2145           Label skipUnbox;
2146           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2147           if ( out_sig_bt[c_arg] == T_LONG ) {
2148             __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD);
2149           }
2150           __ testl(in_reg, in_reg);
2151           __ jcc(Assembler::zero, skipUnbox);
2152           assert(dst.first()->is_stack() &&
2153                  (!dst.second()->is_valid() || dst.second()->is_stack()),
2154                  "value(s) must go into stack slots");
2155 
2156           BasicType bt = out_sig_bt[c_arg];
2157           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2158           if ( bt == T_LONG ) {
2159             __ movl(rbx, Address(in_reg,
2160                                  box_offset + VMRegImpl::stack_slot_size));
2161             __ movl(Address(rsp, reg2offset_out(dst.second())), rbx);
2162           }
2163           __ movl(in_reg,  Address(in_reg, box_offset));
2164           __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg);
2165           __ bind(skipUnbox);
2166         } else {
2167           // Convert the arg to NULL
2168           __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD);
2169         }
2170         if (out_sig_bt[c_arg] == T_LONG) {
2171           assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2172           ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2173         }
2174         break;
2175 
2176       case T_VOID:
2177         break;
2178 
2179       case T_FLOAT:
2180         float_move(masm, src, dst);
2181         break;
2182 
2183       case T_DOUBLE:
2184         assert( j_arg + 1 < total_args_passed &&
2185                 in_sig_bt[j_arg + 1] == T_VOID, "bad arg list");
2186         double_move(masm, src, dst);
2187         break;
2188 
2189       case T_LONG :
2190         long_move(masm, src, dst);
2191         break;
2192 
2193       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2194 
2195       default:
2196         simple_move32(masm, src, dst);
2197     }
2198   }
2199 
2200   // Now we must convert any string we have to utf8
2201   //
2202 
2203   for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ;
2204        sid < total_strings ; j_arg++, c_arg++ ) {
2205 
2206     if (out_sig_bt[c_arg] == T_ADDRESS) {
2207 
2208       Address utf8_addr = Address(
2209           rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
2210       __ leal(rax, utf8_addr);
2211 
2212       // The first string we find might still be in the original java arg
2213       // register
2214       VMReg orig_loc = in_regs[j_arg].first();
2215       Register string_oop;
2216 
2217       // This is where the argument will eventually reside
2218       Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first()));
2219 
2220       if (sid == 1 && orig_loc->is_reg()) {
2221         string_oop = orig_loc->as_Register();
2222         assert(string_oop != rax, "smashed arg");
2223       } else {
2224 
2225         if (orig_loc->is_reg()) {
2226           // Get the copy of the jls object
2227           __ movl(rcx, dest);
2228         } else {
2229           // arg is still in the original location
2230           __ movl(rcx, Address(rbp, reg2offset_in(orig_loc)));
2231         }
2232         string_oop = rcx;
2233 
2234       }
2235       Label nullString;
2236       __ movl(dest, NULL_WORD);
2237       __ testl(string_oop, string_oop);
2238       __ jcc(Assembler::zero, nullString);
2239 
2240       // Now we can store the address of the utf string as the argument
2241       __ movl(dest, rax);
2242 
2243       // And do the conversion
2244       __ call_VM_leaf(CAST_FROM_FN_PTR(
2245              address, SharedRuntime::get_utf), string_oop, rax);
2246       __ bind(nullString);
2247     }
2248 
2249     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
2250       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2251       ++c_arg; // Move over the T_VOID To keep the loop indices in sync
2252     }
2253   }
2254 
2255 
2256   // Ok now we are done. Need to place the nop that dtrace wants in order to
2257   // patch in the trap
2258 
2259   int patch_offset = ((intptr_t)__ pc()) - start;
2260 
2261   __ nop();
2262 
2263 
2264   // Return
2265 
2266   __ leave();
2267   __ ret(0);
2268 
2269   __ flush();
2270 
2271   nmethod *nm = nmethod::new_dtrace_nmethod(
2272       method, masm->code(), vep_offset, patch_offset, frame_complete,
2273       stack_slots / VMRegImpl::slots_per_word);
2274   return nm;
2275 
2276 }
2277 
2278 #endif // HAVE_DTRACE_H
2279 
2280 // this function returns the adjust size (in number of words) to a c2i adapter
2281 // activation for use during deoptimization
2282 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2283   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2284 }
2285 
2286 
2287 uint SharedRuntime::out_preserve_stack_slots() {
2288   return 0;
2289 }
2290 
2291 
2292 //------------------------------generate_deopt_blob----------------------------
2293 void SharedRuntime::generate_deopt_blob() {
2294   // allocate space for the code
2295   ResourceMark rm;
2296   // setup code generation tools
2297   CodeBuffer   buffer("deopt_blob", 1024, 1024);
2298   MacroAssembler* masm = new MacroAssembler(&buffer);
2299   int frame_size_in_words;
2300   OopMap* map = NULL;
2301   // Account for the extra args we place on the stack
2302   // by the time we call fetch_unroll_info
2303   const int additional_words = 2; // deopt kind, thread
2304 
2305   OopMapSet *oop_maps = new OopMapSet();
2306 
2307   // -------------
2308   // This code enters when returning to a de-optimized nmethod.  A return
2309   // address has been pushed on the the stack, and return values are in
2310   // registers.
2311   // If we are doing a normal deopt then we were called from the patched
2312   // nmethod from the point we returned to the nmethod. So the return
2313   // address on the stack is wrong by NativeCall::instruction_size
2314   // We will adjust the value to it looks like we have the original return
2315   // address on the stack (like when we eagerly deoptimized).
2316   // In the case of an exception pending with deoptimized then we enter
2317   // with a return address on the stack that points after the call we patched
2318   // into the exception handler. We have the following register state:
2319   //    rax,: exception
2320   //    rbx,: exception handler
2321   //    rdx: throwing pc
2322   // So in this case we simply jam rdx into the useless return address and
2323   // the stack looks just like we want.
2324   //
2325   // At this point we need to de-opt.  We save the argument return
2326   // registers.  We call the first C routine, fetch_unroll_info().  This
2327   // routine captures the return values and returns a structure which
2328   // describes the current frame size and the sizes of all replacement frames.
2329   // The current frame is compiled code and may contain many inlined
2330   // functions, each with their own JVM state.  We pop the current frame, then
2331   // push all the new frames.  Then we call the C routine unpack_frames() to
2332   // populate these frames.  Finally unpack_frames() returns us the new target
2333   // address.  Notice that callee-save registers are BLOWN here; they have
2334   // already been captured in the vframeArray at the time the return PC was
2335   // patched.
2336   address start = __ pc();
2337   Label cont;
2338 
2339   // Prolog for non exception case!
2340 
2341   // Save everything in sight.
2342 
2343   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2344   // Normal deoptimization
2345   __ push(Deoptimization::Unpack_deopt);
2346   __ jmp(cont);
2347 
2348   int reexecute_offset = __ pc() - start;
2349 
2350   // Reexecute case
2351   // return address is the pc describes what bci to do re-execute at
2352 
2353   // No need to update map as each call to save_live_registers will produce identical oopmap
2354   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2355 
2356   __ push(Deoptimization::Unpack_reexecute);
2357   __ jmp(cont);
2358 
2359   int exception_offset = __ pc() - start;
2360 
2361   // Prolog for exception case
2362 
2363   // all registers are dead at this entry point, except for rax, and
2364   // rdx which contain the exception oop and exception pc
2365   // respectively.  Set them in TLS and fall thru to the
2366   // unpack_with_exception_in_tls entry point.
2367 
2368   __ get_thread(rdi);
2369   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx);
2370   __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax);
2371 
2372   int exception_in_tls_offset = __ pc() - start;
2373 
2374   // new implementation because exception oop is now passed in JavaThread
2375 
2376   // Prolog for exception case
2377   // All registers must be preserved because they might be used by LinearScan
2378   // Exceptiop oop and throwing PC are passed in JavaThread
2379   // tos: stack at point of call to method that threw the exception (i.e. only
2380   // args are on the stack, no return address)
2381 
2382   // make room on stack for the return address
2383   // It will be patched later with the throwing pc. The correct value is not
2384   // available now because loading it from memory would destroy registers.
2385   __ push(0);
2386 
2387   // Save everything in sight.
2388 
2389   // No need to update map as each call to save_live_registers will produce identical oopmap
2390   (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2391 
2392   // Now it is safe to overwrite any register
2393 
2394   // store the correct deoptimization type
2395   __ push(Deoptimization::Unpack_exception);
2396 
2397   // load throwing pc from JavaThread and patch it as the return address
2398   // of the current frame. Then clear the field in JavaThread
2399   __ get_thread(rdi);
2400   __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset()));
2401   __ movptr(Address(rbp, wordSize), rdx);
2402   __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD);
2403 
2404 #ifdef ASSERT
2405   // verify that there is really an exception oop in JavaThread
2406   __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset()));
2407   __ verify_oop(rax);
2408 
2409   // verify that there is no pending exception
2410   Label no_pending_exception;
2411   __ movptr(rax, Address(rdi, Thread::pending_exception_offset()));
2412   __ testptr(rax, rax);
2413   __ jcc(Assembler::zero, no_pending_exception);
2414   __ stop("must not have pending exception here");
2415   __ bind(no_pending_exception);
2416 #endif
2417 
2418   __ bind(cont);
2419 
2420   // Compiled code leaves the floating point stack dirty, empty it.
2421   __ empty_FPU_stack();
2422 
2423 
2424   // Call C code.  Need thread and this frame, but NOT official VM entry
2425   // crud.  We cannot block on this call, no GC can happen.
2426   __ get_thread(rcx);
2427   __ push(rcx);
2428   // fetch_unroll_info needs to call last_java_frame()
2429   __ set_last_Java_frame(rcx, noreg, noreg, NULL);
2430 
2431   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2432 
2433   // Need to have an oopmap that tells fetch_unroll_info where to
2434   // find any register it might need.
2435 
2436   oop_maps->add_gc_map( __ pc()-start, map);
2437 
2438   // Discard arg to fetch_unroll_info
2439   __ pop(rcx);
2440 
2441   __ get_thread(rcx);
2442   __ reset_last_Java_frame(rcx, false, false);
2443 
2444   // Load UnrollBlock into EDI
2445   __ mov(rdi, rax);
2446 
2447   // Move the unpack kind to a safe place in the UnrollBlock because
2448   // we are very short of registers
2449 
2450   Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes());
2451   // retrieve the deopt kind from where we left it.
2452   __ pop(rax);
2453   __ movl(unpack_kind, rax);                      // save the unpack_kind value
2454 
2455    Label noException;
2456   __ cmpl(rax, Deoptimization::Unpack_exception);   // Was exception pending?
2457   __ jcc(Assembler::notEqual, noException);
2458   __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset()));
2459   __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset()));
2460   __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD);
2461   __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD);
2462 
2463   __ verify_oop(rax);
2464 
2465   // Overwrite the result registers with the exception results.
2466   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2467   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2468 
2469   __ bind(noException);
2470 
2471   // Stack is back to only having register save data on the stack.
2472   // Now restore the result registers. Everything else is either dead or captured
2473   // in the vframeArray.
2474 
2475   RegisterSaver::restore_result_registers(masm);
2476 
2477   // Non standard control word may be leaked out through a safepoint blob, and we can
2478   // deopt at a poll point with the non standard control word. However, we should make
2479   // sure the control word is correct after restore_result_registers.
2480   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
2481 
2482   // All of the register save area has been popped of the stack. Only the
2483   // return address remains.
2484 
2485   // Pop all the frames we must move/replace.
2486   //
2487   // Frame picture (youngest to oldest)
2488   // 1: self-frame (no frame link)
2489   // 2: deopting frame  (no frame link)
2490   // 3: caller of deopting frame (could be compiled/interpreted).
2491   //
2492   // Note: by leaving the return address of self-frame on the stack
2493   // and using the size of frame 2 to adjust the stack
2494   // when we are done the return to frame 3 will still be on the stack.
2495 
2496   // Pop deoptimized frame
2497   __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2498 
2499   // sp should be pointing at the return address to the caller (3)
2500 
2501   // Stack bang to make sure there's enough room for these interpreter frames.
2502   if (UseStackBanging) {
2503     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2504     __ bang_stack_size(rbx, rcx);
2505   }
2506 
2507   // Load array of frame pcs into ECX
2508   __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2509 
2510   __ pop(rsi); // trash the old pc
2511 
2512   // Load array of frame sizes into ESI
2513   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2514 
2515   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2516 
2517   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2518   __ movl(counter, rbx);
2519 
2520   // Pick up the initial fp we should save
2521   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2522 
2523   // Now adjust the caller's stack to make up for the extra locals
2524   // but record the original sp so that we can save it in the skeletal interpreter
2525   // frame and the stack walking of interpreter_sender will get the unextended sp
2526   // value and not the "real" sp value.
2527 
2528   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2529   __ movptr(sp_temp, rsp);
2530   __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2531   __ subptr(rsp, rbx);
2532 
2533   // Push interpreter frames in a loop
2534   Label loop;
2535   __ bind(loop);
2536   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2537 #ifdef CC_INTERP
2538   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2539 #ifdef ASSERT
2540   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2541   __ push(0xDEADDEAD);
2542 #else /* ASSERT */
2543   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2544 #endif /* ASSERT */
2545 #else /* CC_INTERP */
2546   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2547 #endif /* CC_INTERP */
2548   __ pushptr(Address(rcx, 0));          // save return address
2549   __ enter();                           // save old & set new rbp,
2550   __ subptr(rsp, rbx);                  // Prolog!
2551   __ movptr(rbx, sp_temp);              // sender's sp
2552 #ifdef CC_INTERP
2553   __ movptr(Address(rbp,
2554                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2555           rbx); // Make it walkable
2556 #else /* CC_INTERP */
2557   // This value is corrected by layout_activation_impl
2558   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
2559   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2560 #endif /* CC_INTERP */
2561   __ movptr(sp_temp, rsp);              // pass to next frame
2562   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2563   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2564   __ decrementl(counter);             // decrement counter
2565   __ jcc(Assembler::notZero, loop);
2566   __ pushptr(Address(rcx, 0));          // save final return address
2567 
2568   // Re-push self-frame
2569   __ enter();                           // save old & set new rbp,
2570 
2571   //  Return address and rbp, are in place
2572   // We'll push additional args later. Just allocate a full sized
2573   // register save area
2574   __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize);
2575 
2576   // Restore frame locals after moving the frame
2577   __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax);
2578   __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx);
2579   __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize));   // Pop float stack and store in local
2580   if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2581   if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0);
2582 
2583   // Set up the args to unpack_frame
2584 
2585   __ pushl(unpack_kind);                     // get the unpack_kind value
2586   __ get_thread(rcx);
2587   __ push(rcx);
2588 
2589   // set last_Java_sp, last_Java_fp
2590   __ set_last_Java_frame(rcx, noreg, rbp, NULL);
2591 
2592   // Call C code.  Need thread but NOT official VM entry
2593   // crud.  We cannot block on this call, no GC can happen.  Call should
2594   // restore return values to their stack-slots with the new SP.
2595   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2596   // Set an oopmap for the call site
2597   oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 ));
2598 
2599   // rax, contains the return result type
2600   __ push(rax);
2601 
2602   __ get_thread(rcx);
2603   __ reset_last_Java_frame(rcx, false, false);
2604 
2605   // Collect return values
2606   __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize));
2607   __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize));
2608 
2609   // Clear floating point stack before returning to interpreter
2610   __ empty_FPU_stack();
2611 
2612   // Check if we should push the float or double return value.
2613   Label results_done, yes_double_value;
2614   __ cmpl(Address(rsp, 0), T_DOUBLE);
2615   __ jcc (Assembler::zero, yes_double_value);
2616   __ cmpl(Address(rsp, 0), T_FLOAT);
2617   __ jcc (Assembler::notZero, results_done);
2618 
2619   // return float value as expected by interpreter
2620   if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2621   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2622   __ jmp(results_done);
2623 
2624   // return double value as expected by interpreter
2625   __ bind(yes_double_value);
2626   if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize));
2627   else            __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize));
2628 
2629   __ bind(results_done);
2630 
2631   // Pop self-frame.
2632   __ leave();                              // Epilog!
2633 
2634   // Jump to interpreter
2635   __ ret(0);
2636 
2637   // -------------
2638   // make sure all code is generated
2639   masm->flush();
2640 
2641   _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2642   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2643 }
2644 
2645 
2646 #ifdef COMPILER2
2647 //------------------------------generate_uncommon_trap_blob--------------------
2648 void SharedRuntime::generate_uncommon_trap_blob() {
2649   // allocate space for the code
2650   ResourceMark rm;
2651   // setup code generation tools
2652   CodeBuffer   buffer("uncommon_trap_blob", 512, 512);
2653   MacroAssembler* masm = new MacroAssembler(&buffer);
2654 
2655   enum frame_layout {
2656     arg0_off,      // thread                     sp + 0 // Arg location for
2657     arg1_off,      // unloaded_class_index       sp + 1 // calling C
2658     // The frame sender code expects that rbp will be in the "natural" place and
2659     // will override any oopMap setting for it. We must therefore force the layout
2660     // so that it agrees with the frame sender code.
2661     rbp_off,       // callee saved register      sp + 2
2662     return_off,    // slot for return address    sp + 3
2663     framesize
2664   };
2665 
2666   address start = __ pc();
2667   // Push self-frame.
2668   __ subptr(rsp, return_off*wordSize);     // Epilog!
2669 
2670   // rbp, is an implicitly saved callee saved register (i.e. the calling
2671   // convention will save restore it in prolog/epilog) Other than that
2672   // there are no callee save registers no that adapter frames are gone.
2673   __ movptr(Address(rsp, rbp_off*wordSize), rbp);
2674 
2675   // Clear the floating point exception stack
2676   __ empty_FPU_stack();
2677 
2678   // set last_Java_sp
2679   __ get_thread(rdx);
2680   __ set_last_Java_frame(rdx, noreg, noreg, NULL);
2681 
2682   // Call C code.  Need thread but NOT official VM entry
2683   // crud.  We cannot block on this call, no GC can happen.  Call should
2684   // capture callee-saved registers as well as return values.
2685   __ movptr(Address(rsp, arg0_off*wordSize), rdx);
2686   // argument already in ECX
2687   __ movl(Address(rsp, arg1_off*wordSize),rcx);
2688   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2689 
2690   // Set an oopmap for the call site
2691   OopMapSet *oop_maps = new OopMapSet();
2692   OopMap* map =  new OopMap( framesize, 0 );
2693   // No oopMap for rbp, it is known implicitly
2694 
2695   oop_maps->add_gc_map( __ pc()-start, map);
2696 
2697   __ get_thread(rcx);
2698 
2699   __ reset_last_Java_frame(rcx, false, false);
2700 
2701   // Load UnrollBlock into EDI
2702   __ movptr(rdi, rax);
2703 
2704   // Pop all the frames we must move/replace.
2705   //
2706   // Frame picture (youngest to oldest)
2707   // 1: self-frame (no frame link)
2708   // 2: deopting frame  (no frame link)
2709   // 3: caller of deopting frame (could be compiled/interpreted).
2710 
2711   // Pop self-frame.  We have no frame, and must rely only on EAX and ESP.
2712   __ addptr(rsp,(framesize-1)*wordSize);     // Epilog!
2713 
2714   // Pop deoptimized frame
2715   __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2716   __ addptr(rsp, rcx);
2717 
2718   // sp should be pointing at the return address to the caller (3)
2719 
2720   // Stack bang to make sure there's enough room for these interpreter frames.
2721   if (UseStackBanging) {
2722     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2723     __ bang_stack_size(rbx, rcx);
2724   }
2725 
2726 
2727   // Load array of frame pcs into ECX
2728   __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2729 
2730   __ pop(rsi); // trash the pc
2731 
2732   // Load array of frame sizes into ESI
2733   __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2734 
2735   Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes());
2736 
2737   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2738   __ movl(counter, rbx);
2739 
2740   // Pick up the initial fp we should save
2741   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_fp_offset_in_bytes()));
2742 
2743   // Now adjust the caller's stack to make up for the extra locals
2744   // but record the original sp so that we can save it in the skeletal interpreter
2745   // frame and the stack walking of interpreter_sender will get the unextended sp
2746   // value and not the "real" sp value.
2747 
2748   Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes());
2749   __ movptr(sp_temp, rsp);
2750   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes()));
2751   __ subptr(rsp, rbx);
2752 
2753   // Push interpreter frames in a loop
2754   Label loop;
2755   __ bind(loop);
2756   __ movptr(rbx, Address(rsi, 0));      // Load frame size
2757 #ifdef CC_INTERP
2758   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
2759 #ifdef ASSERT
2760   __ push(0xDEADDEAD);                  // Make a recognizable pattern
2761   __ push(0xDEADDEAD);                  // (parm to RecursiveInterpreter...)
2762 #else /* ASSERT */
2763   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
2764 #endif /* ASSERT */
2765 #else /* CC_INTERP */
2766   __ subptr(rbx, 2*wordSize);           // we'll push pc and rbp, by hand
2767 #endif /* CC_INTERP */
2768   __ pushptr(Address(rcx, 0));          // save return address
2769   __ enter();                           // save old & set new rbp,
2770   __ subptr(rsp, rbx);                  // Prolog!
2771   __ movptr(rbx, sp_temp);              // sender's sp
2772 #ifdef CC_INTERP
2773   __ movptr(Address(rbp,
2774                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
2775           rbx); // Make it walkable
2776 #else /* CC_INTERP */
2777   // This value is corrected by layout_activation_impl
2778   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD );
2779   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable
2780 #endif /* CC_INTERP */
2781   __ movptr(sp_temp, rsp);              // pass to next frame
2782   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
2783   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
2784   __ decrementl(counter);             // decrement counter
2785   __ jcc(Assembler::notZero, loop);
2786   __ pushptr(Address(rcx, 0));            // save final return address
2787 
2788   // Re-push self-frame
2789   __ enter();                           // save old & set new rbp,
2790   __ subptr(rsp, (framesize-2) * wordSize);   // Prolog!
2791 
2792 
2793   // set last_Java_sp, last_Java_fp
2794   __ get_thread(rdi);
2795   __ set_last_Java_frame(rdi, noreg, rbp, NULL);
2796 
2797   // Call C code.  Need thread but NOT official VM entry
2798   // crud.  We cannot block on this call, no GC can happen.  Call should
2799   // restore return values to their stack-slots with the new SP.
2800   __ movptr(Address(rsp,arg0_off*wordSize),rdi);
2801   __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap);
2802   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2803   // Set an oopmap for the call site
2804   oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) );
2805 
2806   __ get_thread(rdi);
2807   __ reset_last_Java_frame(rdi, true, false);
2808 
2809   // Pop self-frame.
2810   __ leave();     // Epilog!
2811 
2812   // Jump to interpreter
2813   __ ret(0);
2814 
2815   // -------------
2816   // make sure all code is generated
2817   masm->flush();
2818 
2819    _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize);
2820 }
2821 #endif // COMPILER2
2822 
2823 //------------------------------generate_handler_blob------
2824 //
2825 // Generate a special Compile2Runtime blob that saves all registers,
2826 // setup oopmap, and calls safepoint code to stop the compiled code for
2827 // a safepoint.
2828 //
2829 static SafepointBlob* generate_handler_blob(address call_ptr, bool cause_return) {
2830 
2831   // Account for thread arg in our frame
2832   const int additional_words = 1;
2833   int frame_size_in_words;
2834 
2835   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2836 
2837   ResourceMark rm;
2838   OopMapSet *oop_maps = new OopMapSet();
2839   OopMap* map;
2840 
2841   // allocate space for the code
2842   // setup code generation tools
2843   CodeBuffer   buffer("handler_blob", 1024, 512);
2844   MacroAssembler* masm = new MacroAssembler(&buffer);
2845 
2846   const Register java_thread = rdi; // callee-saved for VC++
2847   address start   = __ pc();
2848   address call_pc = NULL;
2849 
2850   // If cause_return is true we are at a poll_return and there is
2851   // the return address on the stack to the caller on the nmethod
2852   // that is safepoint. We can leave this return on the stack and
2853   // effectively complete the return and safepoint in the caller.
2854   // Otherwise we push space for a return address that the safepoint
2855   // handler will install later to make the stack walking sensible.
2856   if( !cause_return )
2857     __ push(rbx);                // Make room for return address (or push it again)
2858 
2859   map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false);
2860 
2861   // The following is basically a call_VM. However, we need the precise
2862   // address of the call in order to generate an oopmap. Hence, we do all the
2863   // work ourselves.
2864 
2865   // Push thread argument and setup last_Java_sp
2866   __ get_thread(java_thread);
2867   __ push(java_thread);
2868   __ set_last_Java_frame(java_thread, noreg, noreg, NULL);
2869 
2870   // if this was not a poll_return then we need to correct the return address now.
2871   if( !cause_return ) {
2872     __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset()));
2873     __ movptr(Address(rbp, wordSize), rax);
2874   }
2875 
2876   // do the call
2877   __ call(RuntimeAddress(call_ptr));
2878 
2879   // Set an oopmap for the call site.  This oopmap will map all
2880   // oop-registers and debug-info registers as callee-saved.  This
2881   // will allow deoptimization at this safepoint to find all possible
2882   // debug-info recordings, as well as let GC find all oops.
2883 
2884   oop_maps->add_gc_map( __ pc() - start, map);
2885 
2886   // Discard arg
2887   __ pop(rcx);
2888 
2889   Label noException;
2890 
2891   // Clear last_Java_sp again
2892   __ get_thread(java_thread);
2893   __ reset_last_Java_frame(java_thread, false, false);
2894 
2895   __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2896   __ jcc(Assembler::equal, noException);
2897 
2898   // Exception pending
2899 
2900   RegisterSaver::restore_live_registers(masm);
2901 
2902   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2903 
2904   __ bind(noException);
2905 
2906   // Normal exit, register restoring and exit
2907   RegisterSaver::restore_live_registers(masm);
2908 
2909   __ ret(0);
2910 
2911   // make sure all code is generated
2912   masm->flush();
2913 
2914   // Fill-out other meta info
2915   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2916 }
2917 
2918 //
2919 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2920 //
2921 // Generate a stub that calls into vm to find out the proper destination
2922 // of a java call. All the argument registers are live at this point
2923 // but since this is generic code we don't know what they are and the caller
2924 // must do any gc of the args.
2925 //
2926 static RuntimeStub* generate_resolve_blob(address destination, const char* name) {
2927   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2928 
2929   // allocate space for the code
2930   ResourceMark rm;
2931 
2932   CodeBuffer buffer(name, 1000, 512);
2933   MacroAssembler* masm                = new MacroAssembler(&buffer);
2934 
2935   int frame_size_words;
2936   enum frame_layout {
2937                 thread_off,
2938                 extra_words };
2939 
2940   OopMapSet *oop_maps = new OopMapSet();
2941   OopMap* map = NULL;
2942 
2943   int start = __ offset();
2944 
2945   map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words);
2946 
2947   int frame_complete = __ offset();
2948 
2949   const Register thread = rdi;
2950   __ get_thread(rdi);
2951 
2952   __ push(thread);
2953   __ set_last_Java_frame(thread, noreg, rbp, NULL);
2954 
2955   __ call(RuntimeAddress(destination));
2956 
2957 
2958   // Set an oopmap for the call site.
2959   // We need this not only for callee-saved registers, but also for volatile
2960   // registers that the compiler might be keeping live across a safepoint.
2961 
2962   oop_maps->add_gc_map( __ offset() - start, map);
2963 
2964   // rax, contains the address we are going to jump to assuming no exception got installed
2965 
2966   __ addptr(rsp, wordSize);
2967 
2968   // clear last_Java_sp
2969   __ reset_last_Java_frame(thread, true, false);
2970   // check for pending exceptions
2971   Label pending;
2972   __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2973   __ jcc(Assembler::notEqual, pending);
2974 
2975   // get the returned methodOop
2976   __ movptr(rbx, Address(thread, JavaThread::vm_result_offset()));
2977   __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx);
2978 
2979   __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax);
2980 
2981   RegisterSaver::restore_live_registers(masm);
2982 
2983   // We are back the the original state on entry and ready to go.
2984 
2985   __ jmp(rax);
2986 
2987   // Pending exception after the safepoint
2988 
2989   __ bind(pending);
2990 
2991   RegisterSaver::restore_live_registers(masm);
2992 
2993   // exception pending => remove activation and forward to exception handler
2994 
2995   __ get_thread(thread);
2996   __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
2997   __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
2998   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2999 
3000   // -------------
3001   // make sure all code is generated
3002   masm->flush();
3003 
3004   // return the  blob
3005   // frame_size_words or bytes??
3006   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true);
3007 }
3008 
3009 void SharedRuntime::generate_stubs() {
3010 
3011   _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),
3012                                         "wrong_method_stub");
3013 
3014   _ic_miss_blob      = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),
3015                                         "ic_miss_stub");
3016 
3017   _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),
3018                                         "resolve_opt_virtual_call");
3019 
3020   _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),
3021                                         "resolve_virtual_call");
3022 
3023   _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),
3024                                         "resolve_static_call");
3025 
3026   _polling_page_safepoint_handler_blob =
3027     generate_handler_blob(CAST_FROM_FN_PTR(address,
3028                    SafepointSynchronize::handle_polling_page_exception), false);
3029 
3030   _polling_page_return_handler_blob =
3031     generate_handler_blob(CAST_FROM_FN_PTR(address,
3032                    SafepointSynchronize::handle_polling_page_exception), true);
3033 
3034   generate_deopt_blob();
3035 #ifdef COMPILER2
3036   generate_uncommon_trap_blob();
3037 #endif // COMPILER2
3038 }