1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_x86.inline.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "nativeInst_x86.hpp"
  37 #include "os_share_linux.hpp"
  38 #include "prims/jniFastGetField.hpp"
  39 #include "prims/jvm.h"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/hpi.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "thread_linux.inline.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 #ifdef COMPILER1
  57 #include "c1/c1_Runtime1.hpp"
  58 #endif
  59 #ifdef COMPILER2
  60 #include "opto/runtime.hpp"
  61 #endif
  62 
  63 // do not include  precompiled  header file
  64 // put OS-includes here
  65 # include <sys/types.h>
  66 # include <sys/mman.h>
  67 # include <pthread.h>
  68 # include <signal.h>
  69 # include <errno.h>
  70 # include <dlfcn.h>
  71 # include <stdlib.h>
  72 # include <stdio.h>
  73 # include <unistd.h>
  74 # include <sys/resource.h>
  75 # include <pthread.h>
  76 # include <sys/stat.h>
  77 # include <sys/time.h>
  78 # include <sys/utsname.h>
  79 # include <sys/socket.h>
  80 # include <sys/wait.h>
  81 # include <pwd.h>
  82 # include <poll.h>
  83 # include <ucontext.h>
  84 # include <fpu_control.h>
  85 
  86 #ifdef AMD64
  87 #define REG_SP REG_RSP
  88 #define REG_PC REG_RIP
  89 #define REG_FP REG_RBP
  90 #define SPELL_REG_SP "rsp"
  91 #define SPELL_REG_FP "rbp"
  92 #else
  93 #define REG_SP REG_UESP
  94 #define REG_PC REG_EIP
  95 #define REG_FP REG_EBP
  96 #define SPELL_REG_SP "esp"
  97 #define SPELL_REG_FP "ebp"
  98 #endif // AMD64
  99 
 100 address os::current_stack_pointer() {
 101 #ifdef SPARC_WORKS
 102   register void *esp;
 103   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 104   return (address) ((char*)esp + sizeof(long)*2);
 105 #else
 106   register void *esp __asm__ (SPELL_REG_SP);
 107   return (address) esp;
 108 #endif
 109 }
 110 
 111 char* os::non_memory_address_word() {
 112   // Must never look like an address returned by reserve_memory,
 113   // even in its subfields (as defined by the CPU immediate fields,
 114   // if the CPU splits constants across multiple instructions).
 115 
 116   return (char*) -1;
 117 }
 118 
 119 void os::initialize_thread() {
 120 // Nothing to do.
 121 }
 122 
 123 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 124   return (address)uc->uc_mcontext.gregs[REG_PC];
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 129 }
 130 
 131 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 133 }
 134 
 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 136 // is currently interrupted by SIGPROF.
 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 138 // frames. Currently we don't do that on Linux, so it's the same as
 139 // os::fetch_frame_from_context().
 140 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 141   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 142 
 143   assert(thread != NULL, "just checking");
 144   assert(ret_sp != NULL, "just checking");
 145   assert(ret_fp != NULL, "just checking");
 146 
 147   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 148 }
 149 
 150 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 151                     intptr_t** ret_sp, intptr_t** ret_fp) {
 152 
 153   ExtendedPC  epc;
 154   ucontext_t* uc = (ucontext_t*)ucVoid;
 155 
 156   if (uc != NULL) {
 157     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 158     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 159     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 160   } else {
 161     // construct empty ExtendedPC for return value checking
 162     epc = ExtendedPC(NULL);
 163     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 164     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 165   }
 166 
 167   return epc;
 168 }
 169 
 170 frame os::fetch_frame_from_context(void* ucVoid) {
 171   intptr_t* sp;
 172   intptr_t* fp;
 173   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 174   return frame(sp, fp, epc.pc());
 175 }
 176 
 177 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 178 // turned off by -fomit-frame-pointer,
 179 frame os::get_sender_for_C_frame(frame* fr) {
 180   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 181 }
 182 
 183 intptr_t* _get_previous_fp() {
 184 #ifdef SPARC_WORKS
 185   register intptr_t **ebp;
 186   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 187 #else
 188   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 189 #endif
 190   return (intptr_t*) *ebp;   // we want what it points to.
 191 }
 192 
 193 
 194 frame os::current_frame() {
 195   intptr_t* fp = _get_previous_fp();
 196   frame myframe((intptr_t*)os::current_stack_pointer(),
 197                 (intptr_t*)fp,
 198                 CAST_FROM_FN_PTR(address, os::current_frame));
 199   if (os::is_first_C_frame(&myframe)) {
 200     // stack is not walkable
 201     return frame(NULL, NULL, NULL);
 202   } else {
 203     return os::get_sender_for_C_frame(&myframe);
 204   }
 205 }
 206 
 207 // Utility functions
 208 
 209 // From IA32 System Programming Guide
 210 enum {
 211   trap_page_fault = 0xE
 212 };
 213 
 214 extern "C" void Fetch32PFI () ;
 215 extern "C" void Fetch32Resume () ;
 216 #ifdef AMD64
 217 extern "C" void FetchNPFI () ;
 218 extern "C" void FetchNResume () ;
 219 #endif // AMD64
 220 
 221 extern "C" int
 222 JVM_handle_linux_signal(int sig,
 223                         siginfo_t* info,
 224                         void* ucVoid,
 225                         int abort_if_unrecognized) {
 226   ucontext_t* uc = (ucontext_t*) ucVoid;
 227 
 228   Thread* t = ThreadLocalStorage::get_thread_slow();
 229 
 230   SignalHandlerMark shm(t);
 231 
 232   // Note: it's not uncommon that JNI code uses signal/sigset to install
 233   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 234   // or have a SIGILL handler when detecting CPU type). When that happens,
 235   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 236   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 237   // that do not require siginfo/ucontext first.
 238 
 239   if (sig == SIGPIPE || sig == SIGXFSZ) {
 240     // allow chained handler to go first
 241     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 242       return true;
 243     } else {
 244       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 245         char buf[64];
 246         warning("Ignoring %s - see bugs 4229104 or 646499219",
 247                 os::exception_name(sig, buf, sizeof(buf)));
 248       }
 249       return true;
 250     }
 251   }
 252 
 253   JavaThread* thread = NULL;
 254   VMThread* vmthread = NULL;
 255   if (os::Linux::signal_handlers_are_installed) {
 256     if (t != NULL ){
 257       if(t->is_Java_thread()) {
 258         thread = (JavaThread*)t;
 259       }
 260       else if(t->is_VM_thread()){
 261         vmthread = (VMThread *)t;
 262       }
 263     }
 264   }
 265 /*
 266   NOTE: does not seem to work on linux.
 267   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 268     // can't decode this kind of signal
 269     info = NULL;
 270   } else {
 271     assert(sig == info->si_signo, "bad siginfo");
 272   }
 273 */
 274   // decide if this trap can be handled by a stub
 275   address stub = NULL;
 276 
 277   address pc          = NULL;
 278 
 279   //%note os_trap_1
 280   if (info != NULL && uc != NULL && thread != NULL) {
 281     pc = (address) os::Linux::ucontext_get_pc(uc);
 282 
 283     if (pc == (address) Fetch32PFI) {
 284        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 285        return 1 ;
 286     }
 287 #ifdef AMD64
 288     if (pc == (address) FetchNPFI) {
 289        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
 290        return 1 ;
 291     }
 292 #endif // AMD64
 293 
 294     // Handle ALL stack overflow variations here
 295     if (sig == SIGSEGV) {
 296       address addr = (address) info->si_addr;
 297 
 298       // check if fault address is within thread stack
 299       if (addr < thread->stack_base() &&
 300           addr >= thread->stack_base() - thread->stack_size()) {
 301         // stack overflow
 302         if (thread->in_stack_yellow_zone(addr)) {
 303           thread->disable_stack_yellow_zone();
 304           if (thread->thread_state() == _thread_in_Java) {
 305             // Throw a stack overflow exception.  Guard pages will be reenabled
 306             // while unwinding the stack.
 307             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 308           } else {
 309             // Thread was in the vm or native code.  Return and try to finish.
 310             return 1;
 311           }
 312         } else if (thread->in_stack_red_zone(addr)) {
 313           // Fatal red zone violation.  Disable the guard pages and fall through
 314           // to handle_unexpected_exception way down below.
 315           thread->disable_stack_red_zone();
 316           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 317         } else {
 318           // Accessing stack address below sp may cause SEGV if current
 319           // thread has MAP_GROWSDOWN stack. This should only happen when
 320           // current thread was created by user code with MAP_GROWSDOWN flag
 321           // and then attached to VM. See notes in os_linux.cpp.
 322           if (thread->osthread()->expanding_stack() == 0) {
 323              thread->osthread()->set_expanding_stack();
 324              if (os::Linux::manually_expand_stack(thread, addr)) {
 325                thread->osthread()->clear_expanding_stack();
 326                return 1;
 327              }
 328              thread->osthread()->clear_expanding_stack();
 329           } else {
 330              fatal("recursive segv. expanding stack.");
 331           }
 332         }
 333       }
 334     }
 335 
 336     if (thread->thread_state() == _thread_in_Java) {
 337       // Java thread running in Java code => find exception handler if any
 338       // a fault inside compiled code, the interpreter, or a stub
 339 
 340       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 341         stub = SharedRuntime::get_poll_stub(pc);
 342       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 343         // BugId 4454115: A read from a MappedByteBuffer can fault
 344         // here if the underlying file has been truncated.
 345         // Do not crash the VM in such a case.
 346         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 347         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 348         if (nm != NULL && nm->has_unsafe_access()) {
 349           stub = StubRoutines::handler_for_unsafe_access();
 350         }
 351       }
 352       else
 353 
 354 #ifdef AMD64
 355       if (sig == SIGFPE  &&
 356           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 357         stub =
 358           SharedRuntime::
 359           continuation_for_implicit_exception(thread,
 360                                               pc,
 361                                               SharedRuntime::
 362                                               IMPLICIT_DIVIDE_BY_ZERO);
 363 #else
 364       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 365         // HACK: si_code does not work on linux 2.2.12-20!!!
 366         int op = pc[0];
 367         if (op == 0xDB) {
 368           // FIST
 369           // TODO: The encoding of D2I in i486.ad can cause an exception
 370           // prior to the fist instruction if there was an invalid operation
 371           // pending. We want to dismiss that exception. From the win_32
 372           // side it also seems that if it really was the fist causing
 373           // the exception that we do the d2i by hand with different
 374           // rounding. Seems kind of weird.
 375           // NOTE: that we take the exception at the NEXT floating point instruction.
 376           assert(pc[0] == 0xDB, "not a FIST opcode");
 377           assert(pc[1] == 0x14, "not a FIST opcode");
 378           assert(pc[2] == 0x24, "not a FIST opcode");
 379           return true;
 380         } else if (op == 0xF7) {
 381           // IDIV
 382           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 383         } else {
 384           // TODO: handle more cases if we are using other x86 instructions
 385           //   that can generate SIGFPE signal on linux.
 386           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 387           fatal("please update this code.");
 388         }
 389 #endif // AMD64
 390       } else if (sig == SIGSEGV &&
 391                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 392           // Determination of interpreter/vtable stub/compiled code null exception
 393           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 394       }
 395     } else if (thread->thread_state() == _thread_in_vm &&
 396                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 397                thread->doing_unsafe_access()) {
 398         stub = StubRoutines::handler_for_unsafe_access();
 399     }
 400 
 401     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 402     // and the heap gets shrunk before the field access.
 403     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 404       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 405       if (addr != (address)-1) {
 406         stub = addr;
 407       }
 408     }
 409 
 410     // Check to see if we caught the safepoint code in the
 411     // process of write protecting the memory serialization page.
 412     // It write enables the page immediately after protecting it
 413     // so we can just return to retry the write.
 414     if ((sig == SIGSEGV) &&
 415         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 416       // Block current thread until the memory serialize page permission restored.
 417       os::block_on_serialize_page_trap();
 418       return true;
 419     }
 420   }
 421 
 422 #ifndef AMD64
 423   // Execution protection violation
 424   //
 425   // This should be kept as the last step in the triage.  We don't
 426   // have a dedicated trap number for a no-execute fault, so be
 427   // conservative and allow other handlers the first shot.
 428   //
 429   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 430   // this si_code is so generic that it is almost meaningless; and
 431   // the si_code for this condition may change in the future.
 432   // Furthermore, a false-positive should be harmless.
 433   if (UnguardOnExecutionViolation > 0 &&
 434       (sig == SIGSEGV || sig == SIGBUS) &&
 435       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 436     int page_size = os::vm_page_size();
 437     address addr = (address) info->si_addr;
 438     address pc = os::Linux::ucontext_get_pc(uc);
 439     // Make sure the pc and the faulting address are sane.
 440     //
 441     // If an instruction spans a page boundary, and the page containing
 442     // the beginning of the instruction is executable but the following
 443     // page is not, the pc and the faulting address might be slightly
 444     // different - we still want to unguard the 2nd page in this case.
 445     //
 446     // 15 bytes seems to be a (very) safe value for max instruction size.
 447     bool pc_is_near_addr =
 448       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 449     bool instr_spans_page_boundary =
 450       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 451                        (intptr_t) page_size) > 0);
 452 
 453     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 454       static volatile address last_addr =
 455         (address) os::non_memory_address_word();
 456 
 457       // In conservative mode, don't unguard unless the address is in the VM
 458       if (addr != last_addr &&
 459           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 460 
 461         // Set memory to RWX and retry
 462         address page_start =
 463           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 464         bool res = os::protect_memory((char*) page_start, page_size,
 465                                       os::MEM_PROT_RWX);
 466 
 467         if (PrintMiscellaneous && Verbose) {
 468           char buf[256];
 469           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 470                        "at " INTPTR_FORMAT
 471                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 472                        page_start, (res ? "success" : "failed"), errno);
 473           tty->print_raw_cr(buf);
 474         }
 475         stub = pc;
 476 
 477         // Set last_addr so if we fault again at the same address, we don't end
 478         // up in an endless loop.
 479         //
 480         // There are two potential complications here.  Two threads trapping at
 481         // the same address at the same time could cause one of the threads to
 482         // think it already unguarded, and abort the VM.  Likely very rare.
 483         //
 484         // The other race involves two threads alternately trapping at
 485         // different addresses and failing to unguard the page, resulting in
 486         // an endless loop.  This condition is probably even more unlikely than
 487         // the first.
 488         //
 489         // Although both cases could be avoided by using locks or thread local
 490         // last_addr, these solutions are unnecessary complication: this
 491         // handler is a best-effort safety net, not a complete solution.  It is
 492         // disabled by default and should only be used as a workaround in case
 493         // we missed any no-execute-unsafe VM code.
 494 
 495         last_addr = addr;
 496       }
 497     }
 498   }
 499 #endif // !AMD64
 500 
 501   if (stub != NULL) {
 502     // save all thread context in case we need to restore it
 503     if (thread != NULL) thread->set_saved_exception_pc(pc);
 504 
 505     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 506     return true;
 507   }
 508 
 509   // signal-chaining
 510   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 511      return true;
 512   }
 513 
 514   if (!abort_if_unrecognized) {
 515     // caller wants another chance, so give it to him
 516     return false;
 517   }
 518 
 519   if (pc == NULL && uc != NULL) {
 520     pc = os::Linux::ucontext_get_pc(uc);
 521   }
 522 
 523   // unmask current signal
 524   sigset_t newset;
 525   sigemptyset(&newset);
 526   sigaddset(&newset, sig);
 527   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 528 
 529   VMError err(t, sig, pc, info, ucVoid);
 530   err.report_and_die();
 531 
 532   ShouldNotReachHere();
 533 }
 534 
 535 void os::Linux::init_thread_fpu_state(void) {
 536 #ifndef AMD64
 537   // set fpu to 53 bit precision
 538   set_fpu_control_word(0x27f);
 539 #endif // !AMD64
 540 }
 541 
 542 int os::Linux::get_fpu_control_word(void) {
 543 #ifdef AMD64
 544   return 0;
 545 #else
 546   int fpu_control;
 547   _FPU_GETCW(fpu_control);
 548   return fpu_control & 0xffff;
 549 #endif // AMD64
 550 }
 551 
 552 void os::Linux::set_fpu_control_word(int fpu_control) {
 553 #ifndef AMD64
 554   _FPU_SETCW(fpu_control);
 555 #endif // !AMD64
 556 }
 557 
 558 // Check that the linux kernel version is 2.4 or higher since earlier
 559 // versions do not support SSE without patches.
 560 bool os::supports_sse() {
 561 #ifdef AMD64
 562   return true;
 563 #else
 564   struct utsname uts;
 565   if( uname(&uts) != 0 ) return false; // uname fails?
 566   char *minor_string;
 567   int major = strtol(uts.release,&minor_string,10);
 568   int minor = strtol(minor_string+1,NULL,10);
 569   bool result = (major > 2 || (major==2 && minor >= 4));
 570 #ifndef PRODUCT
 571   if (PrintMiscellaneous && Verbose) {
 572     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 573                major,minor, result ? "DOES" : "does NOT");
 574   }
 575 #endif
 576   return result;
 577 #endif // AMD64
 578 }
 579 
 580 bool os::is_allocatable(size_t bytes) {
 581 #ifdef AMD64
 582   // unused on amd64?
 583   return true;
 584 #else
 585 
 586   if (bytes < 2 * G) {
 587     return true;
 588   }
 589 
 590   char* addr = reserve_memory(bytes, NULL);
 591 
 592   if (addr != NULL) {
 593     release_memory(addr, bytes);
 594   }
 595 
 596   return addr != NULL;
 597 #endif // AMD64
 598 }
 599 
 600 ////////////////////////////////////////////////////////////////////////////////
 601 // thread stack
 602 
 603 #ifdef AMD64
 604 size_t os::Linux::min_stack_allowed  = 64 * K;
 605 
 606 // amd64: pthread on amd64 is always in floating stack mode
 607 bool os::Linux::supports_variable_stack_size() {  return true; }
 608 #else
 609 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 610 
 611 #ifdef __GNUC__
 612 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 613 #endif
 614 
 615 // Test if pthread library can support variable thread stack size. LinuxThreads
 616 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 617 // in floating stack mode and NPTL support variable stack size.
 618 bool os::Linux::supports_variable_stack_size() {
 619   if (os::Linux::is_NPTL()) {
 620      // NPTL, yes
 621      return true;
 622 
 623   } else {
 624     // Note: We can't control default stack size when creating a thread.
 625     // If we use non-default stack size (pthread_attr_setstacksize), both
 626     // floating stack and non-floating stack LinuxThreads will return the
 627     // same value. This makes it impossible to implement this function by
 628     // detecting thread stack size directly.
 629     //
 630     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 631     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 632     // %gs (either as LDT selector or GDT selector, depending on kernel)
 633     // to access thread specific data.
 634     //
 635     // Note that %gs is a reserved glibc register since early 2001, so
 636     // applications are not allowed to change its value (Ulrich Drepper from
 637     // Redhat confirmed that all known offenders have been modified to use
 638     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 639     // a native application that plays with %gs, we might see non-zero %gs
 640     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 641     // return true and skip _thread_safety_check(), so we may not be able to
 642     // detect stack-heap collisions. But otherwise it's harmless.
 643     //
 644 #ifdef __GNUC__
 645     return (GET_GS() != 0);
 646 #else
 647     return false;
 648 #endif
 649   }
 650 }
 651 #endif // AMD64
 652 
 653 // return default stack size for thr_type
 654 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 655   // default stack size (compiler thread needs larger stack)
 656 #ifdef AMD64
 657   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 658 #else
 659   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 660 #endif // AMD64
 661   return s;
 662 }
 663 
 664 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 665   // Creating guard page is very expensive. Java thread has HotSpot
 666   // guard page, only enable glibc guard page for non-Java threads.
 667   return (thr_type == java_thread ? 0 : page_size());
 668 }
 669 
 670 // Java thread:
 671 //
 672 //   Low memory addresses
 673 //    +------------------------+
 674 //    |                        |\  JavaThread created by VM does not have glibc
 675 //    |    glibc guard page    | - guard, attached Java thread usually has
 676 //    |                        |/  1 page glibc guard.
 677 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 678 //    |                        |\
 679 //    |  HotSpot Guard Pages   | - red and yellow pages
 680 //    |                        |/
 681 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 682 //    |                        |\
 683 //    |      Normal Stack      | -
 684 //    |                        |/
 685 // P2 +------------------------+ Thread::stack_base()
 686 //
 687 // Non-Java thread:
 688 //
 689 //   Low memory addresses
 690 //    +------------------------+
 691 //    |                        |\
 692 //    |  glibc guard page      | - usually 1 page
 693 //    |                        |/
 694 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 695 //    |                        |\
 696 //    |      Normal Stack      | -
 697 //    |                        |/
 698 // P2 +------------------------+ Thread::stack_base()
 699 //
 700 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 701 //    pthread_attr_getstack()
 702 
 703 static void current_stack_region(address * bottom, size_t * size) {
 704   if (os::Linux::is_initial_thread()) {
 705      // initial thread needs special handling because pthread_getattr_np()
 706      // may return bogus value.
 707      *bottom = os::Linux::initial_thread_stack_bottom();
 708      *size   = os::Linux::initial_thread_stack_size();
 709   } else {
 710      pthread_attr_t attr;
 711 
 712      int rslt = pthread_getattr_np(pthread_self(), &attr);
 713 
 714      // JVM needs to know exact stack location, abort if it fails
 715      if (rslt != 0) {
 716        if (rslt == ENOMEM) {
 717          vm_exit_out_of_memory(0, "pthread_getattr_np");
 718        } else {
 719          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 720        }
 721      }
 722 
 723      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 724          fatal("Can not locate current stack attributes!");
 725      }
 726 
 727      pthread_attr_destroy(&attr);
 728 
 729   }
 730   assert(os::current_stack_pointer() >= *bottom &&
 731          os::current_stack_pointer() < *bottom + *size, "just checking");
 732 }
 733 
 734 address os::current_stack_base() {
 735   address bottom;
 736   size_t size;
 737   current_stack_region(&bottom, &size);
 738   return (bottom + size);
 739 }
 740 
 741 size_t os::current_stack_size() {
 742   // stack size includes normal stack and HotSpot guard pages
 743   address bottom;
 744   size_t size;
 745   current_stack_region(&bottom, &size);
 746   return size;
 747 }
 748 
 749 /////////////////////////////////////////////////////////////////////////////
 750 // helper functions for fatal error handler
 751 
 752 void os::print_context(outputStream *st, void *context) {
 753   if (context == NULL) return;
 754 
 755   ucontext_t *uc = (ucontext_t*)context;
 756   st->print_cr("Registers:");
 757 
 758   // this is horrendously verbose but the layout of the registers in the
 759   // context does not match how we defined our abstract Register set, so
 760   // we can't just iterate through the gregs area
 761 
 762 #ifdef AMD64
 763   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 764   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 765   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 766   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 767   st->cr();
 768   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 769   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 770   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 771   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 772   st->cr();
 773   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 774   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 775   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 776   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 777   st->cr();
 778   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 779   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 780   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 781   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 782   st->cr();
 783   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 784   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 785   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 786   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 787   st->cr();
 788   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 789 
 790   st->cr();
 791   st->cr();
 792 
 793   st->print_cr("Register to memory mapping:");
 794   st->cr();
 795 
 796   // this is only for the "general purpose" registers
 797 
 798   st->print_cr("RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 799   print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 800   st->cr();
 801   st->print_cr("RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 802   print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 803   st->cr();
 804   st->print_cr("RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 805   print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 806   st->cr();
 807   st->print_cr("RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 808   print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 809   st->cr();
 810   st->print_cr("RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 811   print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 812   st->cr();
 813   st->print_cr("RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 814   print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 815   st->cr();
 816   st->print_cr("RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 817   print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 818   st->cr();
 819   st->print_cr("RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 820   print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 821   st->cr();
 822   st->print_cr("R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 823   print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 824   st->cr();
 825   st->print_cr("R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 826   print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 827   st->cr();
 828   st->print_cr("R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 829   print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 830   st->cr();
 831   st->print_cr("R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 832   print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 833   st->cr();
 834   st->print_cr("R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 835   print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 836   st->cr();
 837   st->print_cr("R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 838   print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 839   st->cr();
 840   st->print_cr("R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 841   print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 842   st->cr();
 843   st->print_cr("R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 844   print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 845 
 846 #else
 847   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 848   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 849   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 850   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 851   st->cr();
 852   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 853   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 854   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 855   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 856   st->cr();
 857   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 858   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 859   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 860 
 861   st->cr();
 862   st->cr();
 863 
 864   st->print_cr("Register to memory mapping:");
 865   st->cr();
 866 
 867   // this is only for the "general purpose" registers
 868 
 869   st->print_cr("EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 870   print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 871   st->cr();
 872   st->print_cr("EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 873   print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 874   st->cr();
 875   st->print_cr("ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 876   print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 877   st->cr();
 878   st->print_cr("EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 879   print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 880   st->cr();
 881   st->print_cr("ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESP]);
 882   print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 883   st->cr();
 884   st->print_cr("EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 885   print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 886   st->cr();
 887   st->print_cr("ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 888   print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 889   st->cr();
 890   st->print_cr("EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 891   print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 892 
 893 #endif // AMD64
 894   st->cr();
 895   st->cr();
 896 
 897   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 898   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 899   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 900   st->cr();
 901 
 902   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 903   // point to garbage if entry point in an nmethod is corrupted. Leave
 904   // this at the end, and hope for the best.
 905   address pc = os::Linux::ucontext_get_pc(uc);
 906   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 907   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
 908 }
 909 
 910 void os::setup_fpu() {
 911 #ifndef AMD64
 912   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 913   __asm__ volatile (  "fldcw (%0)" :
 914                       : "r" (fpu_cntrl) : "memory");
 915 #endif // !AMD64
 916 }