1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_GraphBuilder.hpp"
  29 #include "c1/c1_IR.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "c1/c1_Optimizer.hpp"
  32 #include "utilities/bitMap.inline.hpp"
  33 
  34 
  35 // Implementation of XHandlers
  36 //
  37 // Note: This code could eventually go away if we are
  38 //       just using the ciExceptionHandlerStream.
  39 
  40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  41   ciExceptionHandlerStream s(method);
  42   while (!s.is_done()) {
  43     _list.append(new XHandler(s.handler()));
  44     s.next();
  45   }
  46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  47 }
  48 
  49 // deep copy of all XHandler contained in list
  50 XHandlers::XHandlers(XHandlers* other) :
  51   _list(other->length())
  52 {
  53   for (int i = 0; i < other->length(); i++) {
  54     _list.append(new XHandler(other->handler_at(i)));
  55   }
  56 }
  57 
  58 // Returns whether a particular exception type can be caught.  Also
  59 // returns true if klass is unloaded or any exception handler
  60 // classes are unloaded.  type_is_exact indicates whether the throw
  61 // is known to be exactly that class or it might throw a subtype.
  62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  63   // the type is unknown so be conservative
  64   if (!klass->is_loaded()) {
  65     return true;
  66   }
  67 
  68   for (int i = 0; i < length(); i++) {
  69     XHandler* handler = handler_at(i);
  70     if (handler->is_catch_all()) {
  71       // catch of ANY
  72       return true;
  73     }
  74     ciInstanceKlass* handler_klass = handler->catch_klass();
  75     // if it's unknown it might be catchable
  76     if (!handler_klass->is_loaded()) {
  77       return true;
  78     }
  79     // if the throw type is definitely a subtype of the catch type
  80     // then it can be caught.
  81     if (klass->is_subtype_of(handler_klass)) {
  82       return true;
  83     }
  84     if (!type_is_exact) {
  85       // If the type isn't exactly known then it can also be caught by
  86       // catch statements where the inexact type is a subtype of the
  87       // catch type.
  88       // given: foo extends bar extends Exception
  89       // throw bar can be caught by catch foo, catch bar, and catch
  90       // Exception, however it can't be caught by any handlers without
  91       // bar in its type hierarchy.
  92       if (handler_klass->is_subtype_of(klass)) {
  93         return true;
  94       }
  95     }
  96   }
  97 
  98   return false;
  99 }
 100 
 101 
 102 bool XHandlers::equals(XHandlers* others) const {
 103   if (others == NULL) return false;
 104   if (length() != others->length()) return false;
 105 
 106   for (int i = 0; i < length(); i++) {
 107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 108   }
 109   return true;
 110 }
 111 
 112 bool XHandler::equals(XHandler* other) const {
 113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 114 
 115   if (entry_pco() != other->entry_pco()) return false;
 116   if (scope_count() != other->scope_count()) return false;
 117   if (_desc != other->_desc) return false;
 118 
 119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 120   return true;
 121 }
 122 
 123 
 124 // Implementation of IRScope
 125 
 126 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
 127   if (entry == NULL) return NULL;
 128   assert(entry->is_set(f), "entry/flag mismatch");
 129   // create header block
 130   BlockBegin* h = new BlockBegin(entry->bci());
 131   BlockEnd* g = new Goto(entry, false);
 132   h->set_next(g, entry->bci());
 133   h->set_end(g);
 134   h->set(f);
 135   // setup header block end state
 136   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
 137   assert(s->stack_is_empty(), "must have empty stack at entry point");
 138   g->set_state(s);
 139   return h;
 140 }
 141 
 142 
 143 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 144   GraphBuilder gm(compilation, this);
 145   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 146   if (compilation->bailed_out()) return NULL;
 147   return gm.start();
 148 }
 149 
 150 
 151 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 152 : _callees(2)
 153 , _compilation(compilation)
 154 , _lock_stack_size(-1)
 155 , _requires_phi_function(method->max_locals())
 156 {
 157   _caller             = caller;
 158   _caller_bci         = caller == NULL ? -1 : caller_bci;
 159   _caller_state       = NULL; // Must be set later if needed
 160   _level              = caller == NULL ?  0 : caller->level() + 1;
 161   _method             = method;
 162   _xhandlers          = new XHandlers(method);
 163   _number_of_locks    = 0;
 164   _monitor_pairing_ok = method->has_balanced_monitors();
 165   _start              = NULL;
 166 
 167   if (osr_bci == -1) {
 168     _requires_phi_function.clear();
 169   } else {
 170         // selective creation of phi functions is not possibel in osr-methods
 171     _requires_phi_function.set_range(0, method->max_locals());
 172   }
 173 
 174   assert(method->holder()->is_loaded() , "method holder must be loaded");
 175 
 176   // build graph if monitor pairing is ok
 177   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 178 }
 179 
 180 
 181 int IRScope::max_stack() const {
 182   int my_max = method()->max_stack();
 183   int callee_max = 0;
 184   for (int i = 0; i < number_of_callees(); i++) {
 185     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 186   }
 187   return my_max + callee_max;
 188 }
 189 
 190 
 191 void IRScope::compute_lock_stack_size() {
 192   if (!InlineMethodsWithExceptionHandlers) {
 193     _lock_stack_size = 0;
 194     return;
 195   }
 196 
 197   // Figure out whether we have to preserve expression stack elements
 198   // for parent scopes, and if so, how many
 199   IRScope* cur_scope = this;
 200   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
 201     cur_scope = cur_scope->caller();
 202   }
 203   _lock_stack_size = (cur_scope == NULL ? 0 :
 204                       (cur_scope->caller_state() == NULL ? 0 :
 205                        cur_scope->caller_state()->stack_size()));
 206 }
 207 
 208 int IRScope::top_scope_bci() const {
 209   assert(!is_top_scope(), "no correct answer for top scope possible");
 210   const IRScope* scope = this;
 211   while (!scope->caller()->is_top_scope()) {
 212     scope = scope->caller();
 213   }
 214   return scope->caller_bci();
 215 }
 216 
 217 bool IRScopeDebugInfo::should_reexecute() {
 218   ciMethod* cur_method = scope()->method();
 219   int       cur_bci    = bci();
 220   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 221     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 222     return Interpreter::bytecode_should_reexecute(code);
 223   } else
 224     return false;
 225 }
 226 
 227 
 228 // Implementation of CodeEmitInfo
 229 
 230 // Stack must be NON-null
 231 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
 232   : _scope(stack->scope())
 233   , _bci(bci)
 234   , _scope_debug_info(NULL)
 235   , _oop_map(NULL)
 236   , _stack(stack)
 237   , _exception_handlers(exception_handlers)
 238   , _next(NULL)
 239   , _id(-1)
 240   , _is_method_handle_invoke(false) {
 241   assert(_stack != NULL, "must be non null");
 242   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
 243 }
 244 
 245 
 246 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
 247   : _scope(info->_scope)
 248   , _exception_handlers(NULL)
 249   , _bci(info->_bci)
 250   , _scope_debug_info(NULL)
 251   , _oop_map(NULL)
 252   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
 253   if (lock_stack_only) {
 254     if (info->_stack != NULL) {
 255       _stack = info->_stack->copy_locks();
 256     } else {
 257       _stack = NULL;
 258     }
 259   } else {
 260     _stack = info->_stack;
 261   }
 262 
 263   // deep copy of exception handlers
 264   if (info->_exception_handlers != NULL) {
 265     _exception_handlers = new XHandlers(info->_exception_handlers);
 266   }
 267 }
 268 
 269 
 270 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 271   // record the safepoint before recording the debug info for enclosing scopes
 272   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 273   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 274   recorder->end_safepoint(pc_offset);
 275 }
 276 
 277 
 278 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 279   assert(_oop_map != NULL, "oop map must already exist");
 280   assert(opr->is_single_cpu(), "should not call otherwise");
 281 
 282   int frame_size = frame_map()->framesize();
 283   int arg_count = frame_map()->oop_map_arg_count();
 284   VMReg name = frame_map()->regname(opr);
 285   _oop_map->set_oop(name);
 286 }
 287 
 288 
 289 
 290 
 291 // Implementation of IR
 292 
 293 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 294     _locals_size(in_WordSize(-1))
 295   , _num_loops(0) {
 296   // setup IR fields
 297   _compilation = compilation;
 298   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 299   _code        = NULL;
 300 }
 301 
 302 
 303 void IR::optimize() {
 304   Optimizer opt(this);
 305   if (!compilation()->profile_branches()) {
 306     if (DoCEE) {
 307       opt.eliminate_conditional_expressions();
 308 #ifndef PRODUCT
 309       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 310       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 311 #endif
 312     }
 313     if (EliminateBlocks) {
 314       opt.eliminate_blocks();
 315 #ifndef PRODUCT
 316       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 317       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 318 #endif
 319     }
 320   }
 321   if (EliminateNullChecks) {
 322     opt.eliminate_null_checks();
 323 #ifndef PRODUCT
 324     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 325     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 326 #endif
 327   }
 328 }
 329 
 330 
 331 static int sort_pairs(BlockPair** a, BlockPair** b) {
 332   if ((*a)->from() == (*b)->from()) {
 333     return (*a)->to()->block_id() - (*b)->to()->block_id();
 334   } else {
 335     return (*a)->from()->block_id() - (*b)->from()->block_id();
 336   }
 337 }
 338 
 339 
 340 class CriticalEdgeFinder: public BlockClosure {
 341   BlockPairList blocks;
 342   IR*       _ir;
 343 
 344  public:
 345   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 346   void block_do(BlockBegin* bb) {
 347     BlockEnd* be = bb->end();
 348     int nos = be->number_of_sux();
 349     if (nos >= 2) {
 350       for (int i = 0; i < nos; i++) {
 351         BlockBegin* sux = be->sux_at(i);
 352         if (sux->number_of_preds() >= 2) {
 353           blocks.append(new BlockPair(bb, sux));
 354         }
 355       }
 356     }
 357   }
 358 
 359   void split_edges() {
 360     BlockPair* last_pair = NULL;
 361     blocks.sort(sort_pairs);
 362     for (int i = 0; i < blocks.length(); i++) {
 363       BlockPair* pair = blocks.at(i);
 364       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 365       BlockBegin* from = pair->from();
 366       BlockBegin* to = pair->to();
 367       BlockBegin* split = from->insert_block_between(to);
 368 #ifndef PRODUCT
 369       if ((PrintIR || PrintIR1) && Verbose) {
 370         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 371                       from->block_id(), to->block_id(), split->block_id());
 372       }
 373 #endif
 374       last_pair = pair;
 375     }
 376   }
 377 };
 378 
 379 void IR::split_critical_edges() {
 380   CriticalEdgeFinder cef(this);
 381 
 382   iterate_preorder(&cef);
 383   cef.split_edges();
 384 }
 385 
 386 
 387 class UseCountComputer: public ValueVisitor, BlockClosure {
 388  private:
 389   void visit(Value* n) {
 390     // Local instructions and Phis for expression stack values at the
 391     // start of basic blocks are not added to the instruction list
 392     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
 393         (*n)->as_Phi() == NULL) {
 394       assert(false, "a node was not appended to the graph");
 395       Compilation::current()->bailout("a node was not appended to the graph");
 396     }
 397     // use n's input if not visited before
 398     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 399       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 400       //       b) if the instruction has uses, it was touched before
 401       //       => in both cases we don't need to update n's values
 402       uses_do(n);
 403     }
 404     // use n
 405     (*n)->_use_count++;
 406   }
 407 
 408   Values* worklist;
 409   int depth;
 410   enum {
 411     max_recurse_depth = 20
 412   };
 413 
 414   void uses_do(Value* n) {
 415     depth++;
 416     if (depth > max_recurse_depth) {
 417       // don't allow the traversal to recurse too deeply
 418       worklist->push(*n);
 419     } else {
 420       (*n)->input_values_do(this);
 421       // special handling for some instructions
 422       if ((*n)->as_BlockEnd() != NULL) {
 423         // note on BlockEnd:
 424         //   must 'use' the stack only if the method doesn't
 425         //   terminate, however, in those cases stack is empty
 426         (*n)->state_values_do(this);
 427       }
 428     }
 429     depth--;
 430   }
 431 
 432   void block_do(BlockBegin* b) {
 433     depth = 0;
 434     // process all pinned nodes as the roots of expression trees
 435     for (Instruction* n = b; n != NULL; n = n->next()) {
 436       if (n->is_pinned()) uses_do(&n);
 437     }
 438     assert(depth == 0, "should have counted back down");
 439 
 440     // now process any unpinned nodes which recursed too deeply
 441     while (worklist->length() > 0) {
 442       Value t = worklist->pop();
 443       if (!t->is_pinned()) {
 444         // compute the use count
 445         uses_do(&t);
 446 
 447         // pin the instruction so that LIRGenerator doesn't recurse
 448         // too deeply during it's evaluation.
 449         t->pin();
 450       }
 451     }
 452     assert(depth == 0, "should have counted back down");
 453   }
 454 
 455   UseCountComputer() {
 456     worklist = new Values();
 457     depth = 0;
 458   }
 459 
 460  public:
 461   static void compute(BlockList* blocks) {
 462     UseCountComputer ucc;
 463     blocks->iterate_backward(&ucc);
 464   }
 465 };
 466 
 467 
 468 // helper macro for short definition of trace-output inside code
 469 #ifndef PRODUCT
 470   #define TRACE_LINEAR_SCAN(level, code)       \
 471     if (TraceLinearScanLevel >= level) {       \
 472       code;                                    \
 473     }
 474 #else
 475   #define TRACE_LINEAR_SCAN(level, code)
 476 #endif
 477 
 478 class ComputeLinearScanOrder : public StackObj {
 479  private:
 480   int        _max_block_id;        // the highest block_id of a block
 481   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 482   int        _num_loops;           // total number of loops
 483   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 484 
 485   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 486 
 487   BitMap     _visited_blocks;      // used for recursive processing of blocks
 488   BitMap     _active_blocks;       // used for recursive processing of blocks
 489   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 490   intArray   _forward_branches;    // number of incoming forward branches for each block
 491   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 492   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 493   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 494 
 495   Compilation* _compilation;
 496 
 497   // accessors for _visited_blocks and _active_blocks
 498   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 499   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 500   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 501   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 502   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 503   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 504 
 505   // accessors for _forward_branches
 506   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 507   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 508 
 509   // accessors for _loop_map
 510   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 511   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 512   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 513 
 514   // count edges between blocks
 515   void count_edges(BlockBegin* cur, BlockBegin* parent);
 516 
 517   // loop detection
 518   void mark_loops();
 519   void clear_non_natural_loops(BlockBegin* start_block);
 520   void assign_loop_depth(BlockBegin* start_block);
 521 
 522   // computation of final block order
 523   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 524   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 525   int  compute_weight(BlockBegin* cur);
 526   bool ready_for_processing(BlockBegin* cur);
 527   void sort_into_work_list(BlockBegin* b);
 528   void append_block(BlockBegin* cur);
 529   void compute_order(BlockBegin* start_block);
 530 
 531   // fixup of dominators for non-natural loops
 532   bool compute_dominators_iter();
 533   void compute_dominators();
 534 
 535   // debug functions
 536   NOT_PRODUCT(void print_blocks();)
 537   DEBUG_ONLY(void verify();)
 538 
 539   Compilation* compilation() const { return _compilation; }
 540  public:
 541   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
 542 
 543   // accessors for final result
 544   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 545   int        num_loops() const            { return _num_loops; }
 546 };
 547 
 548 
 549 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
 550   _max_block_id(BlockBegin::number_of_blocks()),
 551   _num_blocks(0),
 552   _num_loops(0),
 553   _iterative_dominators(false),
 554   _visited_blocks(_max_block_id),
 555   _active_blocks(_max_block_id),
 556   _dominator_blocks(_max_block_id),
 557   _forward_branches(_max_block_id, 0),
 558   _loop_end_blocks(8),
 559   _work_list(8),
 560   _linear_scan_order(NULL), // initialized later with correct size
 561   _loop_map(0, 0),          // initialized later with correct size
 562   _compilation(c)
 563 {
 564   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 565 
 566   init_visited();
 567   count_edges(start_block, NULL);
 568 
 569   if (compilation()->is_profiling()) {
 570     compilation()->method()->method_data()->set_compilation_stats(_num_loops, _num_blocks);
 571   }
 572 
 573   if (_num_loops > 0) {
 574     mark_loops();
 575     clear_non_natural_loops(start_block);
 576     assign_loop_depth(start_block);
 577   }
 578 
 579   compute_order(start_block);
 580   compute_dominators();
 581 
 582   NOT_PRODUCT(print_blocks());
 583   DEBUG_ONLY(verify());
 584 }
 585 
 586 
 587 // Traverse the CFG:
 588 // * count total number of blocks
 589 // * count all incoming edges and backward incoming edges
 590 // * number loop header blocks
 591 // * create a list with all loop end blocks
 592 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 593   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 594   assert(cur->dominator() == NULL, "dominator already initialized");
 595 
 596   if (is_active(cur)) {
 597     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 598     assert(is_visited(cur), "block must be visisted when block is active");
 599     assert(parent != NULL, "must have parent");
 600 
 601     cur->set(BlockBegin::linear_scan_loop_header_flag);
 602     cur->set(BlockBegin::backward_branch_target_flag);
 603 
 604     parent->set(BlockBegin::linear_scan_loop_end_flag);
 605 
 606     // When a loop header is also the start of an exception handler, then the backward branch is
 607     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 608     // loop must be excluded here from processing.
 609     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 610       // Make sure that dominators are correct in this weird situation
 611       _iterative_dominators = true;
 612       return;
 613     }
 614     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 615            "loop end blocks must have one successor (critical edges are split)");
 616 
 617     _loop_end_blocks.append(parent);
 618     return;
 619   }
 620 
 621   // increment number of incoming forward branches
 622   inc_forward_branches(cur);
 623 
 624   if (is_visited(cur)) {
 625     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 626     return;
 627   }
 628 
 629   _num_blocks++;
 630   set_visited(cur);
 631   set_active(cur);
 632 
 633   // recursive call for all successors
 634   int i;
 635   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 636     count_edges(cur->sux_at(i), cur);
 637   }
 638   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 639     count_edges(cur->exception_handler_at(i), cur);
 640   }
 641 
 642   clear_active(cur);
 643 
 644   // Each loop has a unique number.
 645   // When multiple loops are nested, assign_loop_depth assumes that the
 646   // innermost loop has the lowest number. This is guaranteed by setting
 647   // the loop number after the recursive calls for the successors above
 648   // have returned.
 649   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 650     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 651     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 652 
 653     cur->set_loop_index(_num_loops);
 654     _num_loops++;
 655   }
 656 
 657   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 658 }
 659 
 660 
 661 void ComputeLinearScanOrder::mark_loops() {
 662   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 663 
 664   _loop_map = BitMap2D(_num_loops, _max_block_id);
 665   _loop_map.clear();
 666 
 667   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 668     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 669     BlockBegin* loop_start = loop_end->sux_at(0);
 670     int         loop_idx   = loop_start->loop_index();
 671 
 672     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 673     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 674     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 675     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 676     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 677     assert(_work_list.is_empty(), "work list must be empty before processing");
 678 
 679     // add the end-block of the loop to the working list
 680     _work_list.push(loop_end);
 681     set_block_in_loop(loop_idx, loop_end);
 682     do {
 683       BlockBegin* cur = _work_list.pop();
 684 
 685       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 686       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 687 
 688       // recursive processing of all predecessors ends when start block of loop is reached
 689       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 690         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 691           BlockBegin* pred = cur->pred_at(j);
 692 
 693           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 694             // this predecessor has not been processed yet, so add it to work list
 695             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 696             _work_list.push(pred);
 697             set_block_in_loop(loop_idx, pred);
 698           }
 699         }
 700       }
 701     } while (!_work_list.is_empty());
 702   }
 703 }
 704 
 705 
 706 // check for non-natural loops (loops where the loop header does not dominate
 707 // all other loop blocks = loops with mulitple entries).
 708 // such loops are ignored
 709 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 710   for (int i = _num_loops - 1; i >= 0; i--) {
 711     if (is_block_in_loop(i, start_block)) {
 712       // loop i contains the entry block of the method
 713       // -> this is not a natural loop, so ignore it
 714       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 715 
 716       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 717         clear_block_in_loop(i, block_id);
 718       }
 719       _iterative_dominators = true;
 720     }
 721   }
 722 }
 723 
 724 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 725   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 726   init_visited();
 727 
 728   assert(_work_list.is_empty(), "work list must be empty before processing");
 729   _work_list.append(start_block);
 730 
 731   do {
 732     BlockBegin* cur = _work_list.pop();
 733 
 734     if (!is_visited(cur)) {
 735       set_visited(cur);
 736       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 737 
 738       // compute loop-depth and loop-index for the block
 739       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 740       int i;
 741       int loop_depth = 0;
 742       int min_loop_idx = -1;
 743       for (i = _num_loops - 1; i >= 0; i--) {
 744         if (is_block_in_loop(i, cur)) {
 745           loop_depth++;
 746           min_loop_idx = i;
 747         }
 748       }
 749       cur->set_loop_depth(loop_depth);
 750       cur->set_loop_index(min_loop_idx);
 751 
 752       // append all unvisited successors to work list
 753       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 754         _work_list.append(cur->sux_at(i));
 755       }
 756       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 757         _work_list.append(cur->exception_handler_at(i));
 758       }
 759     }
 760   } while (!_work_list.is_empty());
 761 }
 762 
 763 
 764 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 765   assert(a != NULL && b != NULL, "must have input blocks");
 766 
 767   _dominator_blocks.clear();
 768   while (a != NULL) {
 769     _dominator_blocks.set_bit(a->block_id());
 770     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 771     a = a->dominator();
 772   }
 773   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 774     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 775     b = b->dominator();
 776   }
 777 
 778   assert(b != NULL, "could not find dominator");
 779   return b;
 780 }
 781 
 782 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 783   if (cur->dominator() == NULL) {
 784     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 785     cur->set_dominator(parent);
 786 
 787   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 788     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 789     assert(cur->number_of_preds() > 1, "");
 790     cur->set_dominator(common_dominator(cur->dominator(), parent));
 791   }
 792 }
 793 
 794 
 795 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 796   BlockBegin* single_sux = NULL;
 797   if (cur->number_of_sux() == 1) {
 798     single_sux = cur->sux_at(0);
 799   }
 800 
 801   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 802   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 803 
 804   // general macro for short definition of weight flags
 805   // the first instance of INC_WEIGHT_IF has the highest priority
 806   int cur_bit = 15;
 807   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 808 
 809   // this is necessery for the (very rare) case that two successing blocks have
 810   // the same loop depth, but a different loop index (can happen for endless loops
 811   // with exception handlers)
 812   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 813 
 814   // loop end blocks (blocks that end with a backward branch) are added
 815   // after all other blocks of the loop.
 816   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 817 
 818   // critical edge split blocks are prefered because than they have a bigger
 819   // proability to be completely empty
 820   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 821 
 822   // exceptions should not be thrown in normal control flow, so these blocks
 823   // are added as late as possible
 824   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 825   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 826 
 827   // exceptions handlers are added as late as possible
 828   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 829 
 830   // guarantee that weight is > 0
 831   weight |= 1;
 832 
 833   #undef INC_WEIGHT_IF
 834   assert(cur_bit >= 0, "too many flags");
 835   assert(weight > 0, "weight cannot become negative");
 836 
 837   return weight;
 838 }
 839 
 840 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 841   // Discount the edge just traveled.
 842   // When the number drops to zero, all forward branches were processed
 843   if (dec_forward_branches(cur) != 0) {
 844     return false;
 845   }
 846 
 847   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 848   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 849   return true;
 850 }
 851 
 852 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 853   assert(_work_list.index_of(cur) == -1, "block already in work list");
 854 
 855   int cur_weight = compute_weight(cur);
 856 
 857   // the linear_scan_number is used to cache the weight of a block
 858   cur->set_linear_scan_number(cur_weight);
 859 
 860 #ifndef PRODUCT
 861   if (StressLinearScan) {
 862     _work_list.insert_before(0, cur);
 863     return;
 864   }
 865 #endif
 866 
 867   _work_list.append(NULL); // provide space for new element
 868 
 869   int insert_idx = _work_list.length() - 1;
 870   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 871     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 872     insert_idx--;
 873   }
 874   _work_list.at_put(insert_idx, cur);
 875 
 876   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 877   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 878 
 879 #ifdef ASSERT
 880   for (int i = 0; i < _work_list.length(); i++) {
 881     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 882     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 883   }
 884 #endif
 885 }
 886 
 887 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 888   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 889   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 890 
 891   // currently, the linear scan order and code emit order are equal.
 892   // therefore the linear_scan_number and the weight of a block must also
 893   // be equal.
 894   cur->set_linear_scan_number(_linear_scan_order->length());
 895   _linear_scan_order->append(cur);
 896 }
 897 
 898 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 899   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 900 
 901   // the start block is always the first block in the linear scan order
 902   _linear_scan_order = new BlockList(_num_blocks);
 903   append_block(start_block);
 904 
 905   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 906   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 907   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 908 
 909   BlockBegin* sux_of_osr_entry = NULL;
 910   if (osr_entry != NULL) {
 911     // special handling for osr entry:
 912     // ignore the edge between the osr entry and its successor for processing
 913     // the osr entry block is added manually below
 914     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 915     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 916 
 917     sux_of_osr_entry = osr_entry->sux_at(0);
 918     dec_forward_branches(sux_of_osr_entry);
 919 
 920     compute_dominator(osr_entry, start_block);
 921     _iterative_dominators = true;
 922   }
 923   compute_dominator(std_entry, start_block);
 924 
 925   // start processing with standard entry block
 926   assert(_work_list.is_empty(), "list must be empty before processing");
 927 
 928   if (ready_for_processing(std_entry)) {
 929     sort_into_work_list(std_entry);
 930   } else {
 931     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 932   }
 933 
 934   do {
 935     BlockBegin* cur = _work_list.pop();
 936 
 937     if (cur == sux_of_osr_entry) {
 938       // the osr entry block is ignored in normal processing, it is never added to the
 939       // work list. Instead, it is added as late as possible manually here.
 940       append_block(osr_entry);
 941       compute_dominator(cur, osr_entry);
 942     }
 943     append_block(cur);
 944 
 945     int i;
 946     int num_sux = cur->number_of_sux();
 947     // changed loop order to get "intuitive" order of if- and else-blocks
 948     for (i = 0; i < num_sux; i++) {
 949       BlockBegin* sux = cur->sux_at(i);
 950       compute_dominator(sux, cur);
 951       if (ready_for_processing(sux)) {
 952         sort_into_work_list(sux);
 953       }
 954     }
 955     num_sux = cur->number_of_exception_handlers();
 956     for (i = 0; i < num_sux; i++) {
 957       BlockBegin* sux = cur->exception_handler_at(i);
 958       compute_dominator(sux, cur);
 959       if (ready_for_processing(sux)) {
 960         sort_into_work_list(sux);
 961       }
 962     }
 963   } while (_work_list.length() > 0);
 964 }
 965 
 966 
 967 bool ComputeLinearScanOrder::compute_dominators_iter() {
 968   bool changed = false;
 969   int num_blocks = _linear_scan_order->length();
 970 
 971   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 972   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 973   for (int i = 1; i < num_blocks; i++) {
 974     BlockBegin* block = _linear_scan_order->at(i);
 975 
 976     BlockBegin* dominator = block->pred_at(0);
 977     int num_preds = block->number_of_preds();
 978     for (int i = 1; i < num_preds; i++) {
 979       dominator = common_dominator(dominator, block->pred_at(i));
 980     }
 981 
 982     if (dominator != block->dominator()) {
 983       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 984 
 985       block->set_dominator(dominator);
 986       changed = true;
 987     }
 988   }
 989   return changed;
 990 }
 991 
 992 void ComputeLinearScanOrder::compute_dominators() {
 993   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 994 
 995   // iterative computation of dominators is only required for methods with non-natural loops
 996   // and OSR-methods. For all other methods, the dominators computed when generating the
 997   // linear scan block order are correct.
 998   if (_iterative_dominators) {
 999     do {
1000       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1001     } while (compute_dominators_iter());
1002   }
1003 
1004   // check that dominators are correct
1005   assert(!compute_dominators_iter(), "fix point not reached");
1006 }
1007 
1008 
1009 #ifndef PRODUCT
1010 void ComputeLinearScanOrder::print_blocks() {
1011   if (TraceLinearScanLevel >= 2) {
1012     tty->print_cr("----- loop information:");
1013     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1014       BlockBegin* cur = _linear_scan_order->at(block_idx);
1015 
1016       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1017       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1018         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1019       }
1020       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1021     }
1022   }
1023 
1024   if (TraceLinearScanLevel >= 1) {
1025     tty->print_cr("----- linear-scan block order:");
1026     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1027       BlockBegin* cur = _linear_scan_order->at(block_idx);
1028       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1029 
1030       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1031       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1032       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1033       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1034 
1035       if (cur->dominator() != NULL) {
1036         tty->print("    dom: B%d ", cur->dominator()->block_id());
1037       } else {
1038         tty->print("    dom: NULL ");
1039       }
1040 
1041       if (cur->number_of_preds() > 0) {
1042         tty->print("    preds: ");
1043         for (int j = 0; j < cur->number_of_preds(); j++) {
1044           BlockBegin* pred = cur->pred_at(j);
1045           tty->print("B%d ", pred->block_id());
1046         }
1047       }
1048       if (cur->number_of_sux() > 0) {
1049         tty->print("    sux: ");
1050         for (int j = 0; j < cur->number_of_sux(); j++) {
1051           BlockBegin* sux = cur->sux_at(j);
1052           tty->print("B%d ", sux->block_id());
1053         }
1054       }
1055       if (cur->number_of_exception_handlers() > 0) {
1056         tty->print("    ex: ");
1057         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1058           BlockBegin* ex = cur->exception_handler_at(j);
1059           tty->print("B%d ", ex->block_id());
1060         }
1061       }
1062       tty->cr();
1063     }
1064   }
1065 }
1066 #endif
1067 
1068 #ifdef ASSERT
1069 void ComputeLinearScanOrder::verify() {
1070   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1071 
1072   if (StressLinearScan) {
1073     // blocks are scrambled when StressLinearScan is used
1074     return;
1075   }
1076 
1077   // check that all successors of a block have a higher linear-scan-number
1078   // and that all predecessors of a block have a lower linear-scan-number
1079   // (only backward branches of loops are ignored)
1080   int i;
1081   for (i = 0; i < _linear_scan_order->length(); i++) {
1082     BlockBegin* cur = _linear_scan_order->at(i);
1083 
1084     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1085     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1086 
1087     int j;
1088     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1089       BlockBegin* sux = cur->sux_at(j);
1090 
1091       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1092       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1093         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1094       }
1095       if (cur->loop_depth() == sux->loop_depth()) {
1096         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1097       }
1098     }
1099 
1100     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1101       BlockBegin* pred = cur->pred_at(j);
1102 
1103       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1104       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1105         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1106       }
1107       if (cur->loop_depth() == pred->loop_depth()) {
1108         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1109       }
1110 
1111       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1112     }
1113 
1114     // check dominator
1115     if (i == 0) {
1116       assert(cur->dominator() == NULL, "first block has no dominator");
1117     } else {
1118       assert(cur->dominator() != NULL, "all but first block must have dominator");
1119     }
1120     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1121   }
1122 
1123   // check that all loops are continuous
1124   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1125     int block_idx = 0;
1126     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1127 
1128     // skip blocks before the loop
1129     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1130       block_idx++;
1131     }
1132     // skip blocks of loop
1133     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1134       block_idx++;
1135     }
1136     // after the first non-loop block, there must not be another loop-block
1137     while (block_idx < _num_blocks) {
1138       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1139       block_idx++;
1140     }
1141   }
1142 }
1143 #endif
1144 
1145 
1146 void IR::compute_code() {
1147   assert(is_valid(), "IR must be valid");
1148 
1149   ComputeLinearScanOrder compute_order(compilation(), start());
1150   _num_loops = compute_order.num_loops();
1151   _code = compute_order.linear_scan_order();
1152 }
1153 
1154 
1155 void IR::compute_use_counts() {
1156   // make sure all values coming out of this block get evaluated.
1157   int num_blocks = _code->length();
1158   for (int i = 0; i < num_blocks; i++) {
1159     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1160   }
1161 
1162   // compute use counts
1163   UseCountComputer::compute(_code);
1164 }
1165 
1166 
1167 void IR::iterate_preorder(BlockClosure* closure) {
1168   assert(is_valid(), "IR must be valid");
1169   start()->iterate_preorder(closure);
1170 }
1171 
1172 
1173 void IR::iterate_postorder(BlockClosure* closure) {
1174   assert(is_valid(), "IR must be valid");
1175   start()->iterate_postorder(closure);
1176 }
1177 
1178 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1179   linear_scan_order()->iterate_forward(closure);
1180 }
1181 
1182 
1183 #ifndef PRODUCT
1184 class BlockPrinter: public BlockClosure {
1185  private:
1186   InstructionPrinter* _ip;
1187   bool                _cfg_only;
1188   bool                _live_only;
1189 
1190  public:
1191   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1192     _ip       = ip;
1193     _cfg_only = cfg_only;
1194     _live_only = live_only;
1195   }
1196 
1197   virtual void block_do(BlockBegin* block) {
1198     if (_cfg_only) {
1199       _ip->print_instr(block); tty->cr();
1200     } else {
1201       block->print_block(*_ip, _live_only);
1202     }
1203   }
1204 };
1205 
1206 
1207 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1208   ttyLocker ttyl;
1209   InstructionPrinter ip(!cfg_only);
1210   BlockPrinter bp(&ip, cfg_only, live_only);
1211   start->iterate_preorder(&bp);
1212   tty->cr();
1213 }
1214 
1215 void IR::print(bool cfg_only, bool live_only) {
1216   if (is_valid()) {
1217     print(start(), cfg_only, live_only);
1218   } else {
1219     tty->print_cr("invalid IR");
1220   }
1221 }
1222 
1223 
1224 define_array(BlockListArray, BlockList*)
1225 define_stack(BlockListList, BlockListArray)
1226 
1227 class PredecessorValidator : public BlockClosure {
1228  private:
1229   BlockListList* _predecessors;
1230   BlockList*     _blocks;
1231 
1232   static int cmp(BlockBegin** a, BlockBegin** b) {
1233     return (*a)->block_id() - (*b)->block_id();
1234   }
1235 
1236  public:
1237   PredecessorValidator(IR* hir) {
1238     ResourceMark rm;
1239     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1240     _blocks = new BlockList();
1241 
1242     int i;
1243     hir->start()->iterate_preorder(this);
1244     if (hir->code() != NULL) {
1245       assert(hir->code()->length() == _blocks->length(), "must match");
1246       for (i = 0; i < _blocks->length(); i++) {
1247         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1248       }
1249     }
1250 
1251     for (i = 0; i < _blocks->length(); i++) {
1252       BlockBegin* block = _blocks->at(i);
1253       BlockList* preds = _predecessors->at(block->block_id());
1254       if (preds == NULL) {
1255         assert(block->number_of_preds() == 0, "should be the same");
1256         continue;
1257       }
1258 
1259       // clone the pred list so we can mutate it
1260       BlockList* pred_copy = new BlockList();
1261       int j;
1262       for (j = 0; j < block->number_of_preds(); j++) {
1263         pred_copy->append(block->pred_at(j));
1264       }
1265       // sort them in the same order
1266       preds->sort(cmp);
1267       pred_copy->sort(cmp);
1268       int length = MIN2(preds->length(), block->number_of_preds());
1269       for (j = 0; j < block->number_of_preds(); j++) {
1270         assert(preds->at(j) == pred_copy->at(j), "must match");
1271       }
1272 
1273       assert(preds->length() == block->number_of_preds(), "should be the same");
1274     }
1275   }
1276 
1277   virtual void block_do(BlockBegin* block) {
1278     _blocks->append(block);
1279     BlockEnd* be = block->end();
1280     int n = be->number_of_sux();
1281     int i;
1282     for (i = 0; i < n; i++) {
1283       BlockBegin* sux = be->sux_at(i);
1284       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1285 
1286       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1287       if (preds == NULL) {
1288         preds = new BlockList();
1289         _predecessors->at_put(sux->block_id(), preds);
1290       }
1291       preds->append(block);
1292     }
1293 
1294     n = block->number_of_exception_handlers();
1295     for (i = 0; i < n; i++) {
1296       BlockBegin* sux = block->exception_handler_at(i);
1297       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1298 
1299       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1300       if (preds == NULL) {
1301         preds = new BlockList();
1302         _predecessors->at_put(sux->block_id(), preds);
1303       }
1304       preds->append(block);
1305     }
1306   }
1307 };
1308 
1309 void IR::verify() {
1310 #ifdef ASSERT
1311   PredecessorValidator pv(this);
1312 #endif
1313 }
1314 
1315 #endif // PRODUCT
1316 
1317 void SubstitutionResolver::visit(Value* v) {
1318   Value v0 = *v;
1319   if (v0) {
1320     Value vs = v0->subst();
1321     if (vs != v0) {
1322       *v = v0->subst();
1323     }
1324   }
1325 }
1326 
1327 #ifdef ASSERT
1328 class SubstitutionChecker: public ValueVisitor {
1329   void visit(Value* v) {
1330     Value v0 = *v;
1331     if (v0) {
1332       Value vs = v0->subst();
1333       assert(vs == v0, "missed substitution");
1334     }
1335   }
1336 };
1337 #endif
1338 
1339 
1340 void SubstitutionResolver::block_do(BlockBegin* block) {
1341   Instruction* last = NULL;
1342   for (Instruction* n = block; n != NULL;) {
1343     n->values_do(this);
1344     // need to remove this instruction from the instruction stream
1345     if (n->subst() != n) {
1346       assert(last != NULL, "must have last");
1347       last->set_next(n->next(), n->next()->bci());
1348     } else {
1349       last = n;
1350     }
1351     n = last->next();
1352   }
1353 
1354 #ifdef ASSERT
1355   SubstitutionChecker check_substitute;
1356   if (block->state()) block->state()->values_do(&check_substitute);
1357   block->block_values_do(&check_substitute);
1358   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1359 #endif
1360 }