1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIR.cpp.incl"
  27 
  28 Register LIR_OprDesc::as_register() const {
  29   return FrameMap::cpu_rnr2reg(cpu_regnr());
  30 }
  31 
  32 Register LIR_OprDesc::as_register_lo() const {
  33   return FrameMap::cpu_rnr2reg(cpu_regnrLo());
  34 }
  35 
  36 Register LIR_OprDesc::as_register_hi() const {
  37   return FrameMap::cpu_rnr2reg(cpu_regnrHi());
  38 }
  39 
  40 #if defined(X86)
  41 
  42 XMMRegister LIR_OprDesc::as_xmm_float_reg() const {
  43   return FrameMap::nr2xmmreg(xmm_regnr());
  44 }
  45 
  46 XMMRegister LIR_OprDesc::as_xmm_double_reg() const {
  47   assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation");
  48   return FrameMap::nr2xmmreg(xmm_regnrLo());
  49 }
  50 
  51 #endif // X86
  52 
  53 #if defined(SPARC) || defined(PPC)
  54 
  55 FloatRegister LIR_OprDesc::as_float_reg() const {
  56   return FrameMap::nr2floatreg(fpu_regnr());
  57 }
  58 
  59 FloatRegister LIR_OprDesc::as_double_reg() const {
  60   return FrameMap::nr2floatreg(fpu_regnrHi());
  61 }
  62 
  63 #endif
  64 
  65 #ifdef ARM
  66 
  67 FloatRegister LIR_OprDesc::as_float_reg() const {
  68   return as_FloatRegister(fpu_regnr());
  69 }
  70 
  71 FloatRegister LIR_OprDesc::as_double_reg() const {
  72   return as_FloatRegister(fpu_regnrLo());
  73 }
  74 
  75 #endif
  76 
  77 
  78 LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal();
  79 
  80 LIR_Opr LIR_OprFact::value_type(ValueType* type) {
  81   ValueTag tag = type->tag();
  82   switch (tag) {
  83   case objectTag : {
  84     ClassConstant* c = type->as_ClassConstant();
  85     if (c != NULL && !c->value()->is_loaded()) {
  86       return LIR_OprFact::oopConst(NULL);
  87     } else {
  88       return LIR_OprFact::oopConst(type->as_ObjectType()->encoding());
  89     }
  90   }
  91   case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value());
  92   case intTag    : return LIR_OprFact::intConst(type->as_IntConstant()->value());
  93   case floatTag  : return LIR_OprFact::floatConst(type->as_FloatConstant()->value());
  94   case longTag   : return LIR_OprFact::longConst(type->as_LongConstant()->value());
  95   case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value());
  96   default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
  97   }
  98 }
  99 
 100 
 101 LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) {
 102   switch (type->tag()) {
 103     case objectTag: return LIR_OprFact::oopConst(NULL);
 104     case addressTag:return LIR_OprFact::addressConst(0);
 105     case intTag:    return LIR_OprFact::intConst(0);
 106     case floatTag:  return LIR_OprFact::floatConst(0.0);
 107     case longTag:   return LIR_OprFact::longConst(0);
 108     case doubleTag: return LIR_OprFact::doubleConst(0.0);
 109     default:        ShouldNotReachHere(); return LIR_OprFact::intConst(-1);
 110   }
 111   return illegalOpr;
 112 }
 113 
 114 
 115 
 116 //---------------------------------------------------
 117 
 118 
 119 LIR_Address::Scale LIR_Address::scale(BasicType type) {
 120   int elem_size = type2aelembytes(type);
 121   switch (elem_size) {
 122   case 1: return LIR_Address::times_1;
 123   case 2: return LIR_Address::times_2;
 124   case 4: return LIR_Address::times_4;
 125   case 8: return LIR_Address::times_8;
 126   }
 127   ShouldNotReachHere();
 128   return LIR_Address::times_1;
 129 }
 130 
 131 
 132 #ifndef PRODUCT
 133 void LIR_Address::verify() const {
 134 #if defined(SPARC) || defined(PPC)
 135   assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used");
 136   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 137 #endif
 138 #ifdef ARM
 139   assert(disp() == 0 || index()->is_illegal(), "can't have both");
 140   assert(-4096 < disp() && disp() < 4096, "architecture constraint");
 141 #endif
 142 #ifdef _LP64
 143   assert(base()->is_cpu_register(), "wrong base operand");
 144   assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand");
 145   assert(base()->type() == T_OBJECT || base()->type() == T_LONG,
 146          "wrong type for addresses");
 147 #else
 148   assert(base()->is_single_cpu(), "wrong base operand");
 149   assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand");
 150   assert(base()->type() == T_OBJECT || base()->type() == T_INT,
 151          "wrong type for addresses");
 152 #endif
 153 }
 154 #endif
 155 
 156 
 157 //---------------------------------------------------
 158 
 159 char LIR_OprDesc::type_char(BasicType t) {
 160   switch (t) {
 161     case T_ARRAY:
 162       t = T_OBJECT;
 163     case T_BOOLEAN:
 164     case T_CHAR:
 165     case T_FLOAT:
 166     case T_DOUBLE:
 167     case T_BYTE:
 168     case T_SHORT:
 169     case T_INT:
 170     case T_LONG:
 171     case T_OBJECT:
 172     case T_ADDRESS:
 173     case T_VOID:
 174       return ::type2char(t);
 175 
 176     case T_ILLEGAL:
 177       return '?';
 178 
 179     default:
 180       ShouldNotReachHere();
 181       return '?';
 182   }
 183 }
 184 
 185 #ifndef PRODUCT
 186 void LIR_OprDesc::validate_type() const {
 187 
 188 #ifdef ASSERT
 189   if (!is_pointer() && !is_illegal()) {
 190     switch (as_BasicType(type_field())) {
 191     case T_LONG:
 192       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 193              size_field() == double_size, "must match");
 194       break;
 195     case T_FLOAT:
 196       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 197       assert((kind_field() == fpu_register || kind_field() == stack_value
 198              ARM_ONLY(|| kind_field() == cpu_register)
 199              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 200              size_field() == single_size, "must match");
 201       break;
 202     case T_DOUBLE:
 203       // FP return values can be also in CPU registers on ARM and PPC (softfp ABI)
 204       assert((kind_field() == fpu_register || kind_field() == stack_value
 205              ARM_ONLY(|| kind_field() == cpu_register)
 206              PPC_ONLY(|| kind_field() == cpu_register) ) &&
 207              size_field() == double_size, "must match");
 208       break;
 209     case T_BOOLEAN:
 210     case T_CHAR:
 211     case T_BYTE:
 212     case T_SHORT:
 213     case T_INT:
 214     case T_OBJECT:
 215     case T_ARRAY:
 216       assert((kind_field() == cpu_register || kind_field() == stack_value) &&
 217              size_field() == single_size, "must match");
 218       break;
 219 
 220     case T_ILLEGAL:
 221       // XXX TKR also means unknown right now
 222       // assert(is_illegal(), "must match");
 223       break;
 224 
 225     default:
 226       ShouldNotReachHere();
 227     }
 228   }
 229 #endif
 230 
 231 }
 232 #endif // PRODUCT
 233 
 234 
 235 bool LIR_OprDesc::is_oop() const {
 236   if (is_pointer()) {
 237     return pointer()->is_oop_pointer();
 238   } else {
 239     OprType t= type_field();
 240     assert(t != unknown_type, "not set");
 241     return t == object_type;
 242   }
 243 }
 244 
 245 
 246 
 247 void LIR_Op2::verify() const {
 248 #ifdef ASSERT
 249   switch (code()) {
 250     case lir_cmove:
 251       break;
 252 
 253     default:
 254       assert(!result_opr()->is_register() || !result_opr()->is_oop_register(),
 255              "can't produce oops from arith");
 256   }
 257 
 258   if (TwoOperandLIRForm) {
 259     switch (code()) {
 260     case lir_add:
 261     case lir_sub:
 262     case lir_mul:
 263     case lir_mul_strictfp:
 264     case lir_div:
 265     case lir_div_strictfp:
 266     case lir_rem:
 267     case lir_logic_and:
 268     case lir_logic_or:
 269     case lir_logic_xor:
 270     case lir_shl:
 271     case lir_shr:
 272       assert(in_opr1() == result_opr(), "opr1 and result must match");
 273       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 274       break;
 275 
 276     // special handling for lir_ushr because of write barriers
 277     case lir_ushr:
 278       assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant");
 279       assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid");
 280       break;
 281 
 282     }
 283   }
 284 #endif
 285 }
 286 
 287 
 288 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block)
 289   : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 290   , _cond(cond)
 291   , _type(type)
 292   , _label(block->label())
 293   , _block(block)
 294   , _ublock(NULL)
 295   , _stub(NULL) {
 296 }
 297 
 298 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) :
 299   LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 300   , _cond(cond)
 301   , _type(type)
 302   , _label(stub->entry())
 303   , _block(NULL)
 304   , _ublock(NULL)
 305   , _stub(stub) {
 306 }
 307 
 308 LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock)
 309   : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
 310   , _cond(cond)
 311   , _type(type)
 312   , _label(block->label())
 313   , _block(block)
 314   , _ublock(ublock)
 315   , _stub(NULL)
 316 {
 317 }
 318 
 319 void LIR_OpBranch::change_block(BlockBegin* b) {
 320   assert(_block != NULL, "must have old block");
 321   assert(_block->label() == label(), "must be equal");
 322 
 323   _block = b;
 324   _label = b->label();
 325 }
 326 
 327 void LIR_OpBranch::change_ublock(BlockBegin* b) {
 328   assert(_ublock != NULL, "must have old block");
 329   _ublock = b;
 330 }
 331 
 332 void LIR_OpBranch::negate_cond() {
 333   switch (_cond) {
 334     case lir_cond_equal:        _cond = lir_cond_notEqual;     break;
 335     case lir_cond_notEqual:     _cond = lir_cond_equal;        break;
 336     case lir_cond_less:         _cond = lir_cond_greaterEqual; break;
 337     case lir_cond_lessEqual:    _cond = lir_cond_greater;      break;
 338     case lir_cond_greaterEqual: _cond = lir_cond_less;         break;
 339     case lir_cond_greater:      _cond = lir_cond_lessEqual;    break;
 340     default: ShouldNotReachHere();
 341   }
 342 }
 343 
 344 
 345 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
 346                                  LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3,
 347                                  bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch,
 348                                  CodeStub* stub)
 349 
 350   : LIR_Op(code, result, NULL)
 351   , _object(object)
 352   , _array(LIR_OprFact::illegalOpr)
 353   , _klass(klass)
 354   , _tmp1(tmp1)
 355   , _tmp2(tmp2)
 356   , _tmp3(tmp3)
 357   , _fast_check(fast_check)
 358   , _stub(stub)
 359   , _info_for_patch(info_for_patch)
 360   , _info_for_exception(info_for_exception)
 361   , _profiled_method(NULL)
 362   , _profiled_bci(-1)
 363   , _should_profile(false)
 364 {
 365   if (code == lir_checkcast) {
 366     assert(info_for_exception != NULL, "checkcast throws exceptions");
 367   } else if (code == lir_instanceof) {
 368     assert(info_for_exception == NULL, "instanceof throws no exceptions");
 369   } else {
 370     ShouldNotReachHere();
 371   }
 372 }
 373 
 374 
 375 
 376 LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception)
 377   : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)
 378   , _object(object)
 379   , _array(array)
 380   , _klass(NULL)
 381   , _tmp1(tmp1)
 382   , _tmp2(tmp2)
 383   , _tmp3(tmp3)
 384   , _fast_check(false)
 385   , _stub(NULL)
 386   , _info_for_patch(NULL)
 387   , _info_for_exception(info_for_exception)
 388   , _profiled_method(NULL)
 389   , _profiled_bci(-1)
 390   , _should_profile(false)
 391 {
 392   if (code == lir_store_check) {
 393     _stub = new ArrayStoreExceptionStub(info_for_exception);
 394     assert(info_for_exception != NULL, "store_check throws exceptions");
 395   } else {
 396     ShouldNotReachHere();
 397   }
 398 }
 399 
 400 
 401 LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length,
 402                                  LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info)
 403   : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info)
 404   , _tmp(tmp)
 405   , _src(src)
 406   , _src_pos(src_pos)
 407   , _dst(dst)
 408   , _dst_pos(dst_pos)
 409   , _flags(flags)
 410   , _expected_type(expected_type)
 411   , _length(length) {
 412   _stub = new ArrayCopyStub(this);
 413 }
 414 
 415 
 416 //-------------------verify--------------------------
 417 
 418 void LIR_Op1::verify() const {
 419   switch(code()) {
 420   case lir_move:
 421     assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be");
 422     break;
 423   case lir_null_check:
 424     assert(in_opr()->is_register(), "must be");
 425     break;
 426   case lir_return:
 427     assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be");
 428     break;
 429   }
 430 }
 431 
 432 void LIR_OpRTCall::verify() const {
 433   assert(strcmp(Runtime1::name_for_address(addr()), "<unknown function>") != 0, "unknown function");
 434 }
 435 
 436 //-------------------visits--------------------------
 437 
 438 // complete rework of LIR instruction visitor.
 439 // The virtual calls for each instruction type is replaced by a big
 440 // switch that adds the operands for each instruction
 441 
 442 void LIR_OpVisitState::visit(LIR_Op* op) {
 443   // copy information from the LIR_Op
 444   reset();
 445   set_op(op);
 446 
 447   switch (op->code()) {
 448 
 449 // LIR_Op0
 450     case lir_word_align:               // result and info always invalid
 451     case lir_backwardbranch_target:    // result and info always invalid
 452     case lir_build_frame:              // result and info always invalid
 453     case lir_fpop_raw:                 // result and info always invalid
 454     case lir_24bit_FPU:                // result and info always invalid
 455     case lir_reset_FPU:                // result and info always invalid
 456     case lir_breakpoint:               // result and info always invalid
 457     case lir_membar:                   // result and info always invalid
 458     case lir_membar_acquire:           // result and info always invalid
 459     case lir_membar_release:           // result and info always invalid
 460     {
 461       assert(op->as_Op0() != NULL, "must be");
 462       assert(op->_info == NULL, "info not used by this instruction");
 463       assert(op->_result->is_illegal(), "not used");
 464       break;
 465     }
 466 
 467     case lir_nop:                      // may have info, result always invalid
 468     case lir_std_entry:                // may have result, info always invalid
 469     case lir_osr_entry:                // may have result, info always invalid
 470     case lir_get_thread:               // may have result, info always invalid
 471     {
 472       assert(op->as_Op0() != NULL, "must be");
 473       if (op->_info != NULL)           do_info(op->_info);
 474       if (op->_result->is_valid())     do_output(op->_result);
 475       break;
 476     }
 477 
 478 
 479 // LIR_OpLabel
 480     case lir_label:                    // result and info always invalid
 481     {
 482       assert(op->as_OpLabel() != NULL, "must be");
 483       assert(op->_info == NULL, "info not used by this instruction");
 484       assert(op->_result->is_illegal(), "not used");
 485       break;
 486     }
 487 
 488 
 489 // LIR_Op1
 490     case lir_fxch:           // input always valid, result and info always invalid
 491     case lir_fld:            // input always valid, result and info always invalid
 492     case lir_ffree:          // input always valid, result and info always invalid
 493     case lir_push:           // input always valid, result and info always invalid
 494     case lir_pop:            // input always valid, result and info always invalid
 495     case lir_return:         // input always valid, result and info always invalid
 496     case lir_leal:           // input and result always valid, info always invalid
 497     case lir_neg:            // input and result always valid, info always invalid
 498     case lir_monaddr:        // input and result always valid, info always invalid
 499     case lir_null_check:     // input and info always valid, result always invalid
 500     case lir_move:           // input and result always valid, may have info
 501     case lir_pack64:         // input and result always valid
 502     case lir_unpack64:       // input and result always valid
 503     case lir_prefetchr:      // input always valid, result and info always invalid
 504     case lir_prefetchw:      // input always valid, result and info always invalid
 505     {
 506       assert(op->as_Op1() != NULL, "must be");
 507       LIR_Op1* op1 = (LIR_Op1*)op;
 508 
 509       if (op1->_info)                  do_info(op1->_info);
 510       if (op1->_opr->is_valid())       do_input(op1->_opr);
 511       if (op1->_result->is_valid())    do_output(op1->_result);
 512 
 513       break;
 514     }
 515 
 516     case lir_safepoint:
 517     {
 518       assert(op->as_Op1() != NULL, "must be");
 519       LIR_Op1* op1 = (LIR_Op1*)op;
 520 
 521       assert(op1->_info != NULL, "");  do_info(op1->_info);
 522       if (op1->_opr->is_valid())       do_temp(op1->_opr); // safepoints on SPARC need temporary register
 523       assert(op1->_result->is_illegal(), "safepoint does not produce value");
 524 
 525       break;
 526     }
 527 
 528 // LIR_OpConvert;
 529     case lir_convert:        // input and result always valid, info always invalid
 530     {
 531       assert(op->as_OpConvert() != NULL, "must be");
 532       LIR_OpConvert* opConvert = (LIR_OpConvert*)op;
 533 
 534       assert(opConvert->_info == NULL, "must be");
 535       if (opConvert->_opr->is_valid())       do_input(opConvert->_opr);
 536       if (opConvert->_result->is_valid())    do_output(opConvert->_result);
 537 #ifdef PPC
 538       if (opConvert->_tmp1->is_valid())      do_temp(opConvert->_tmp1);
 539       if (opConvert->_tmp2->is_valid())      do_temp(opConvert->_tmp2);
 540 #endif
 541       do_stub(opConvert->_stub);
 542 
 543       break;
 544     }
 545 
 546 // LIR_OpBranch;
 547     case lir_branch:                   // may have info, input and result register always invalid
 548     case lir_cond_float_branch:        // may have info, input and result register always invalid
 549     {
 550       assert(op->as_OpBranch() != NULL, "must be");
 551       LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
 552 
 553       if (opBranch->_info != NULL)     do_info(opBranch->_info);
 554       assert(opBranch->_result->is_illegal(), "not used");
 555       if (opBranch->_stub != NULL)     opBranch->stub()->visit(this);
 556 
 557       break;
 558     }
 559 
 560 
 561 // LIR_OpAllocObj
 562     case lir_alloc_object:
 563     {
 564       assert(op->as_OpAllocObj() != NULL, "must be");
 565       LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op;
 566 
 567       if (opAllocObj->_info)                     do_info(opAllocObj->_info);
 568       if (opAllocObj->_opr->is_valid()) {        do_input(opAllocObj->_opr);
 569                                                  do_temp(opAllocObj->_opr);
 570                                         }
 571       if (opAllocObj->_tmp1->is_valid())         do_temp(opAllocObj->_tmp1);
 572       if (opAllocObj->_tmp2->is_valid())         do_temp(opAllocObj->_tmp2);
 573       if (opAllocObj->_tmp3->is_valid())         do_temp(opAllocObj->_tmp3);
 574       if (opAllocObj->_tmp4->is_valid())         do_temp(opAllocObj->_tmp4);
 575       if (opAllocObj->_result->is_valid())       do_output(opAllocObj->_result);
 576                                                  do_stub(opAllocObj->_stub);
 577       break;
 578     }
 579 
 580 
 581 // LIR_OpRoundFP;
 582     case lir_roundfp: {
 583       assert(op->as_OpRoundFP() != NULL, "must be");
 584       LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op;
 585 
 586       assert(op->_info == NULL, "info not used by this instruction");
 587       assert(opRoundFP->_tmp->is_illegal(), "not used");
 588       do_input(opRoundFP->_opr);
 589       do_output(opRoundFP->_result);
 590 
 591       break;
 592     }
 593 
 594 
 595 // LIR_Op2
 596     case lir_cmp:
 597     case lir_cmp_l2i:
 598     case lir_ucmp_fd2i:
 599     case lir_cmp_fd2i:
 600     case lir_add:
 601     case lir_sub:
 602     case lir_mul:
 603     case lir_div:
 604     case lir_rem:
 605     case lir_sqrt:
 606     case lir_abs:
 607     case lir_logic_and:
 608     case lir_logic_or:
 609     case lir_logic_xor:
 610     case lir_shl:
 611     case lir_shr:
 612     case lir_ushr:
 613     {
 614       assert(op->as_Op2() != NULL, "must be");
 615       LIR_Op2* op2 = (LIR_Op2*)op;
 616 
 617       if (op2->_info)                     do_info(op2->_info);
 618       if (op2->_opr1->is_valid())         do_input(op2->_opr1);
 619       if (op2->_opr2->is_valid())         do_input(op2->_opr2);
 620       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 621       if (op2->_result->is_valid())       do_output(op2->_result);
 622 
 623       break;
 624     }
 625 
 626     // special handling for cmove: right input operand must not be equal
 627     // to the result operand, otherwise the backend fails
 628     case lir_cmove:
 629     {
 630       assert(op->as_Op2() != NULL, "must be");
 631       LIR_Op2* op2 = (LIR_Op2*)op;
 632 
 633       assert(op2->_info == NULL && op2->_tmp->is_illegal(), "not used");
 634       assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used");
 635 
 636       do_input(op2->_opr1);
 637       do_input(op2->_opr2);
 638       do_temp(op2->_opr2);
 639       do_output(op2->_result);
 640 
 641       break;
 642     }
 643 
 644     // vspecial handling for strict operations: register input operands
 645     // as temp to guarantee that they do not overlap with other
 646     // registers
 647     case lir_mul_strictfp:
 648     case lir_div_strictfp:
 649     {
 650       assert(op->as_Op2() != NULL, "must be");
 651       LIR_Op2* op2 = (LIR_Op2*)op;
 652 
 653       assert(op2->_info == NULL, "not used");
 654       assert(op2->_opr1->is_valid(), "used");
 655       assert(op2->_opr2->is_valid(), "used");
 656       assert(op2->_result->is_valid(), "used");
 657 
 658       do_input(op2->_opr1); do_temp(op2->_opr1);
 659       do_input(op2->_opr2); do_temp(op2->_opr2);
 660       if (op2->_tmp->is_valid()) do_temp(op2->_tmp);
 661       do_output(op2->_result);
 662 
 663       break;
 664     }
 665 
 666     case lir_throw: {
 667       assert(op->as_Op2() != NULL, "must be");
 668       LIR_Op2* op2 = (LIR_Op2*)op;
 669 
 670       if (op2->_info)                     do_info(op2->_info);
 671       if (op2->_opr1->is_valid())         do_temp(op2->_opr1);
 672       if (op2->_opr2->is_valid())         do_input(op2->_opr2); // exception object is input parameter
 673       assert(op2->_result->is_illegal(), "no result");
 674 
 675       break;
 676     }
 677 
 678     case lir_unwind: {
 679       assert(op->as_Op1() != NULL, "must be");
 680       LIR_Op1* op1 = (LIR_Op1*)op;
 681 
 682       assert(op1->_info == NULL, "no info");
 683       assert(op1->_opr->is_valid(), "exception oop");         do_input(op1->_opr);
 684       assert(op1->_result->is_illegal(), "no result");
 685 
 686       break;
 687     }
 688 
 689 
 690     case lir_tan:
 691     case lir_sin:
 692     case lir_cos:
 693     case lir_log:
 694     case lir_log10: {
 695       assert(op->as_Op2() != NULL, "must be");
 696       LIR_Op2* op2 = (LIR_Op2*)op;
 697 
 698       // On x86 tan/sin/cos need two temporary fpu stack slots and
 699       // log/log10 need one so handle opr2 and tmp as temp inputs.
 700       // Register input operand as temp to guarantee that it doesn't
 701       // overlap with the input.
 702       assert(op2->_info == NULL, "not used");
 703       assert(op2->_opr1->is_valid(), "used");
 704       do_input(op2->_opr1); do_temp(op2->_opr1);
 705 
 706       if (op2->_opr2->is_valid())         do_temp(op2->_opr2);
 707       if (op2->_tmp->is_valid())          do_temp(op2->_tmp);
 708       if (op2->_result->is_valid())       do_output(op2->_result);
 709 
 710       break;
 711     }
 712 
 713 
 714 // LIR_Op3
 715     case lir_idiv:
 716     case lir_irem: {
 717       assert(op->as_Op3() != NULL, "must be");
 718       LIR_Op3* op3= (LIR_Op3*)op;
 719 
 720       if (op3->_info)                     do_info(op3->_info);
 721       if (op3->_opr1->is_valid())         do_input(op3->_opr1);
 722 
 723       // second operand is input and temp, so ensure that second operand
 724       // and third operand get not the same register
 725       if (op3->_opr2->is_valid())         do_input(op3->_opr2);
 726       if (op3->_opr2->is_valid())         do_temp(op3->_opr2);
 727       if (op3->_opr3->is_valid())         do_temp(op3->_opr3);
 728 
 729       if (op3->_result->is_valid())       do_output(op3->_result);
 730 
 731       break;
 732     }
 733 
 734 
 735 // LIR_OpJavaCall
 736     case lir_static_call:
 737     case lir_optvirtual_call:
 738     case lir_icvirtual_call:
 739     case lir_virtual_call:
 740     case lir_dynamic_call: {
 741       LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall();
 742       assert(opJavaCall != NULL, "must be");
 743 
 744       if (opJavaCall->_receiver->is_valid())     do_input(opJavaCall->_receiver);
 745 
 746       // only visit register parameters
 747       int n = opJavaCall->_arguments->length();
 748       for (int i = 0; i < n; i++) {
 749         if (!opJavaCall->_arguments->at(i)->is_pointer()) {
 750           do_input(*opJavaCall->_arguments->adr_at(i));
 751         }
 752       }
 753 
 754       if (opJavaCall->_info)                     do_info(opJavaCall->_info);
 755       if (opJavaCall->is_method_handle_invoke()) {
 756         opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr();
 757         do_temp(opJavaCall->_method_handle_invoke_SP_save_opr);
 758       }
 759       do_call();
 760       if (opJavaCall->_result->is_valid())       do_output(opJavaCall->_result);
 761 
 762       break;
 763     }
 764 
 765 
 766 // LIR_OpRTCall
 767     case lir_rtcall: {
 768       assert(op->as_OpRTCall() != NULL, "must be");
 769       LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op;
 770 
 771       // only visit register parameters
 772       int n = opRTCall->_arguments->length();
 773       for (int i = 0; i < n; i++) {
 774         if (!opRTCall->_arguments->at(i)->is_pointer()) {
 775           do_input(*opRTCall->_arguments->adr_at(i));
 776         }
 777       }
 778       if (opRTCall->_info)                     do_info(opRTCall->_info);
 779       if (opRTCall->_tmp->is_valid())          do_temp(opRTCall->_tmp);
 780       do_call();
 781       if (opRTCall->_result->is_valid())       do_output(opRTCall->_result);
 782 
 783       break;
 784     }
 785 
 786 
 787 // LIR_OpArrayCopy
 788     case lir_arraycopy: {
 789       assert(op->as_OpArrayCopy() != NULL, "must be");
 790       LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op;
 791 
 792       assert(opArrayCopy->_result->is_illegal(), "unused");
 793       assert(opArrayCopy->_src->is_valid(), "used");          do_input(opArrayCopy->_src);     do_temp(opArrayCopy->_src);
 794       assert(opArrayCopy->_src_pos->is_valid(), "used");      do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos);
 795       assert(opArrayCopy->_dst->is_valid(), "used");          do_input(opArrayCopy->_dst);     do_temp(opArrayCopy->_dst);
 796       assert(opArrayCopy->_dst_pos->is_valid(), "used");      do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos);
 797       assert(opArrayCopy->_length->is_valid(), "used");       do_input(opArrayCopy->_length);  do_temp(opArrayCopy->_length);
 798       assert(opArrayCopy->_tmp->is_valid(), "used");          do_temp(opArrayCopy->_tmp);
 799       if (opArrayCopy->_info)                     do_info(opArrayCopy->_info);
 800 
 801       // the implementation of arraycopy always has a call into the runtime
 802       do_call();
 803 
 804       break;
 805     }
 806 
 807 
 808 // LIR_OpLock
 809     case lir_lock:
 810     case lir_unlock: {
 811       assert(op->as_OpLock() != NULL, "must be");
 812       LIR_OpLock* opLock = (LIR_OpLock*)op;
 813 
 814       if (opLock->_info)                          do_info(opLock->_info);
 815 
 816       // TODO: check if these operands really have to be temp
 817       // (or if input is sufficient). This may have influence on the oop map!
 818       assert(opLock->_lock->is_valid(), "used");  do_temp(opLock->_lock);
 819       assert(opLock->_hdr->is_valid(),  "used");  do_temp(opLock->_hdr);
 820       assert(opLock->_obj->is_valid(),  "used");  do_temp(opLock->_obj);
 821 
 822       if (opLock->_scratch->is_valid())           do_temp(opLock->_scratch);
 823       assert(opLock->_result->is_illegal(), "unused");
 824 
 825       do_stub(opLock->_stub);
 826 
 827       break;
 828     }
 829 
 830 
 831 // LIR_OpDelay
 832     case lir_delay_slot: {
 833       assert(op->as_OpDelay() != NULL, "must be");
 834       LIR_OpDelay* opDelay = (LIR_OpDelay*)op;
 835 
 836       visit(opDelay->delay_op());
 837       break;
 838     }
 839 
 840 // LIR_OpTypeCheck
 841     case lir_instanceof:
 842     case lir_checkcast:
 843     case lir_store_check: {
 844       assert(op->as_OpTypeCheck() != NULL, "must be");
 845       LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op;
 846 
 847       if (opTypeCheck->_info_for_exception)       do_info(opTypeCheck->_info_for_exception);
 848       if (opTypeCheck->_info_for_patch)           do_info(opTypeCheck->_info_for_patch);
 849       if (opTypeCheck->_object->is_valid())       do_input(opTypeCheck->_object);
 850       if (opTypeCheck->_array->is_valid())        do_input(opTypeCheck->_array);
 851       if (opTypeCheck->_tmp1->is_valid())         do_temp(opTypeCheck->_tmp1);
 852       if (opTypeCheck->_tmp2->is_valid())         do_temp(opTypeCheck->_tmp2);
 853       if (opTypeCheck->_tmp3->is_valid())         do_temp(opTypeCheck->_tmp3);
 854       if (opTypeCheck->_result->is_valid())       do_output(opTypeCheck->_result);
 855                                                   do_stub(opTypeCheck->_stub);
 856       break;
 857     }
 858 
 859 // LIR_OpCompareAndSwap
 860     case lir_cas_long:
 861     case lir_cas_obj:
 862     case lir_cas_int: {
 863       assert(op->as_OpCompareAndSwap() != NULL, "must be");
 864       LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op;
 865 
 866       assert(opCompareAndSwap->_addr->is_valid(),      "used");
 867       assert(opCompareAndSwap->_cmp_value->is_valid(), "used");
 868       assert(opCompareAndSwap->_new_value->is_valid(), "used");
 869       if (opCompareAndSwap->_info)                    do_info(opCompareAndSwap->_info);
 870                                                       do_input(opCompareAndSwap->_addr);
 871                                                       do_temp(opCompareAndSwap->_addr);
 872                                                       do_input(opCompareAndSwap->_cmp_value);
 873                                                       do_temp(opCompareAndSwap->_cmp_value);
 874                                                       do_input(opCompareAndSwap->_new_value);
 875                                                       do_temp(opCompareAndSwap->_new_value);
 876       if (opCompareAndSwap->_tmp1->is_valid())        do_temp(opCompareAndSwap->_tmp1);
 877       if (opCompareAndSwap->_tmp2->is_valid())        do_temp(opCompareAndSwap->_tmp2);
 878       if (opCompareAndSwap->_result->is_valid())      do_output(opCompareAndSwap->_result);
 879 
 880       break;
 881     }
 882 
 883 
 884 // LIR_OpAllocArray;
 885     case lir_alloc_array: {
 886       assert(op->as_OpAllocArray() != NULL, "must be");
 887       LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op;
 888 
 889       if (opAllocArray->_info)                        do_info(opAllocArray->_info);
 890       if (opAllocArray->_klass->is_valid())           do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass);
 891       if (opAllocArray->_len->is_valid())             do_input(opAllocArray->_len);   do_temp(opAllocArray->_len);
 892       if (opAllocArray->_tmp1->is_valid())            do_temp(opAllocArray->_tmp1);
 893       if (opAllocArray->_tmp2->is_valid())            do_temp(opAllocArray->_tmp2);
 894       if (opAllocArray->_tmp3->is_valid())            do_temp(opAllocArray->_tmp3);
 895       if (opAllocArray->_tmp4->is_valid())            do_temp(opAllocArray->_tmp4);
 896       if (opAllocArray->_result->is_valid())          do_output(opAllocArray->_result);
 897                                                       do_stub(opAllocArray->_stub);
 898       break;
 899     }
 900 
 901 // LIR_OpProfileCall:
 902     case lir_profile_call: {
 903       assert(op->as_OpProfileCall() != NULL, "must be");
 904       LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op;
 905 
 906       if (opProfileCall->_recv->is_valid())              do_temp(opProfileCall->_recv);
 907       assert(opProfileCall->_mdo->is_valid(), "used");   do_temp(opProfileCall->_mdo);
 908       assert(opProfileCall->_tmp1->is_valid(), "used");  do_temp(opProfileCall->_tmp1);
 909       break;
 910     }
 911   default:
 912     ShouldNotReachHere();
 913   }
 914 }
 915 
 916 
 917 void LIR_OpVisitState::do_stub(CodeStub* stub) {
 918   if (stub != NULL) {
 919     stub->visit(this);
 920   }
 921 }
 922 
 923 XHandlers* LIR_OpVisitState::all_xhandler() {
 924   XHandlers* result = NULL;
 925 
 926   int i;
 927   for (i = 0; i < info_count(); i++) {
 928     if (info_at(i)->exception_handlers() != NULL) {
 929       result = info_at(i)->exception_handlers();
 930       break;
 931     }
 932   }
 933 
 934 #ifdef ASSERT
 935   for (i = 0; i < info_count(); i++) {
 936     assert(info_at(i)->exception_handlers() == NULL ||
 937            info_at(i)->exception_handlers() == result,
 938            "only one xhandler list allowed per LIR-operation");
 939   }
 940 #endif
 941 
 942   if (result != NULL) {
 943     return result;
 944   } else {
 945     return new XHandlers();
 946   }
 947 
 948   return result;
 949 }
 950 
 951 
 952 #ifdef ASSERT
 953 bool LIR_OpVisitState::no_operands(LIR_Op* op) {
 954   visit(op);
 955 
 956   return opr_count(inputMode) == 0 &&
 957          opr_count(outputMode) == 0 &&
 958          opr_count(tempMode) == 0 &&
 959          info_count() == 0 &&
 960          !has_call() &&
 961          !has_slow_case();
 962 }
 963 #endif
 964 
 965 //---------------------------------------------------
 966 
 967 
 968 void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) {
 969   masm->emit_call(this);
 970 }
 971 
 972 void LIR_OpRTCall::emit_code(LIR_Assembler* masm) {
 973   masm->emit_rtcall(this);
 974 }
 975 
 976 void LIR_OpLabel::emit_code(LIR_Assembler* masm) {
 977   masm->emit_opLabel(this);
 978 }
 979 
 980 void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) {
 981   masm->emit_arraycopy(this);
 982   masm->emit_code_stub(stub());
 983 }
 984 
 985 void LIR_Op0::emit_code(LIR_Assembler* masm) {
 986   masm->emit_op0(this);
 987 }
 988 
 989 void LIR_Op1::emit_code(LIR_Assembler* masm) {
 990   masm->emit_op1(this);
 991 }
 992 
 993 void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) {
 994   masm->emit_alloc_obj(this);
 995   masm->emit_code_stub(stub());
 996 }
 997 
 998 void LIR_OpBranch::emit_code(LIR_Assembler* masm) {
 999   masm->emit_opBranch(this);
1000   if (stub()) {
1001     masm->emit_code_stub(stub());
1002   }
1003 }
1004 
1005 void LIR_OpConvert::emit_code(LIR_Assembler* masm) {
1006   masm->emit_opConvert(this);
1007   if (stub() != NULL) {
1008     masm->emit_code_stub(stub());
1009   }
1010 }
1011 
1012 void LIR_Op2::emit_code(LIR_Assembler* masm) {
1013   masm->emit_op2(this);
1014 }
1015 
1016 void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) {
1017   masm->emit_alloc_array(this);
1018   masm->emit_code_stub(stub());
1019 }
1020 
1021 void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) {
1022   masm->emit_opTypeCheck(this);
1023   if (stub()) {
1024     masm->emit_code_stub(stub());
1025   }
1026 }
1027 
1028 void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) {
1029   masm->emit_compare_and_swap(this);
1030 }
1031 
1032 void LIR_Op3::emit_code(LIR_Assembler* masm) {
1033   masm->emit_op3(this);
1034 }
1035 
1036 void LIR_OpLock::emit_code(LIR_Assembler* masm) {
1037   masm->emit_lock(this);
1038   if (stub()) {
1039     masm->emit_code_stub(stub());
1040   }
1041 }
1042 
1043 
1044 void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
1045   masm->emit_delay(this);
1046 }
1047 
1048 void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) {
1049   masm->emit_profile_call(this);
1050 }
1051 
1052 // LIR_List
1053 LIR_List::LIR_List(Compilation* compilation, BlockBegin* block)
1054   : _operations(8)
1055   , _compilation(compilation)
1056 #ifndef PRODUCT
1057   , _block(block)
1058 #endif
1059 #ifdef ASSERT
1060   , _file(NULL)
1061   , _line(0)
1062 #endif
1063 { }
1064 
1065 
1066 #ifdef ASSERT
1067 void LIR_List::set_file_and_line(const char * file, int line) {
1068   const char * f = strrchr(file, '/');
1069   if (f == NULL) f = strrchr(file, '\\');
1070   if (f == NULL) {
1071     f = file;
1072   } else {
1073     f++;
1074   }
1075   _file = f;
1076   _line = line;
1077 }
1078 #endif
1079 
1080 
1081 void LIR_List::append(LIR_InsertionBuffer* buffer) {
1082   assert(this == buffer->lir_list(), "wrong lir list");
1083   const int n = _operations.length();
1084 
1085   if (buffer->number_of_ops() > 0) {
1086     // increase size of instructions list
1087     _operations.at_grow(n + buffer->number_of_ops() - 1, NULL);
1088     // insert ops from buffer into instructions list
1089     int op_index = buffer->number_of_ops() - 1;
1090     int ip_index = buffer->number_of_insertion_points() - 1;
1091     int from_index = n - 1;
1092     int to_index = _operations.length() - 1;
1093     for (; ip_index >= 0; ip_index --) {
1094       int index = buffer->index_at(ip_index);
1095       // make room after insertion point
1096       while (index < from_index) {
1097         _operations.at_put(to_index --, _operations.at(from_index --));
1098       }
1099       // insert ops from buffer
1100       for (int i = buffer->count_at(ip_index); i > 0; i --) {
1101         _operations.at_put(to_index --, buffer->op_at(op_index --));
1102       }
1103     }
1104   }
1105 
1106   buffer->finish();
1107 }
1108 
1109 
1110 void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) {
1111   append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),  reg, T_OBJECT, lir_patch_normal, info));
1112 }
1113 
1114 
1115 void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1116   append(new LIR_Op1(
1117             lir_move,
1118             LIR_OprFact::address(addr),
1119             src,
1120             addr->type(),
1121             patch_code,
1122             info));
1123 }
1124 
1125 
1126 void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1127   append(new LIR_Op1(
1128             lir_move,
1129             LIR_OprFact::address(address),
1130             dst,
1131             address->type(),
1132             patch_code,
1133             info, lir_move_volatile));
1134 }
1135 
1136 void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1137   append(new LIR_Op1(
1138             lir_move,
1139             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1140             dst,
1141             type,
1142             patch_code,
1143             info, lir_move_volatile));
1144 }
1145 
1146 
1147 void LIR_List::prefetch(LIR_Address* addr, bool is_store) {
1148   append(new LIR_Op1(
1149             is_store ? lir_prefetchw : lir_prefetchr,
1150             LIR_OprFact::address(addr)));
1151 }
1152 
1153 
1154 void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1155   append(new LIR_Op1(
1156             lir_move,
1157             LIR_OprFact::intConst(v),
1158             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1159             type,
1160             patch_code,
1161             info));
1162 }
1163 
1164 
1165 void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1166   append(new LIR_Op1(
1167             lir_move,
1168             LIR_OprFact::oopConst(o),
1169             LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)),
1170             type,
1171             patch_code,
1172             info));
1173 }
1174 
1175 
1176 void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1177   append(new LIR_Op1(
1178             lir_move,
1179             src,
1180             LIR_OprFact::address(addr),
1181             addr->type(),
1182             patch_code,
1183             info));
1184 }
1185 
1186 
1187 void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1188   append(new LIR_Op1(
1189             lir_move,
1190             src,
1191             LIR_OprFact::address(addr),
1192             addr->type(),
1193             patch_code,
1194             info,
1195             lir_move_volatile));
1196 }
1197 
1198 void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) {
1199   append(new LIR_Op1(
1200             lir_move,
1201             src,
1202             LIR_OprFact::address(new LIR_Address(base, offset, type)),
1203             type,
1204             patch_code,
1205             info, lir_move_volatile));
1206 }
1207 
1208 
1209 void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1210   append(new LIR_Op3(
1211                     lir_idiv,
1212                     left,
1213                     right,
1214                     tmp,
1215                     res,
1216                     info));
1217 }
1218 
1219 
1220 void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1221   append(new LIR_Op3(
1222                     lir_idiv,
1223                     left,
1224                     LIR_OprFact::intConst(right),
1225                     tmp,
1226                     res,
1227                     info));
1228 }
1229 
1230 
1231 void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1232   append(new LIR_Op3(
1233                     lir_irem,
1234                     left,
1235                     right,
1236                     tmp,
1237                     res,
1238                     info));
1239 }
1240 
1241 
1242 void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) {
1243   append(new LIR_Op3(
1244                     lir_irem,
1245                     left,
1246                     LIR_OprFact::intConst(right),
1247                     tmp,
1248                     res,
1249                     info));
1250 }
1251 
1252 
1253 void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
1254   append(new LIR_Op2(
1255                     lir_cmp,
1256                     condition,
1257                     LIR_OprFact::address(new LIR_Address(base, disp, T_INT)),
1258                     LIR_OprFact::intConst(c),
1259                     info));
1260 }
1261 
1262 
1263 void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) {
1264   append(new LIR_Op2(
1265                     lir_cmp,
1266                     condition,
1267                     reg,
1268                     LIR_OprFact::address(addr),
1269                     info));
1270 }
1271 
1272 void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1273                                int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) {
1274   append(new LIR_OpAllocObj(
1275                            klass,
1276                            dst,
1277                            t1,
1278                            t2,
1279                            t3,
1280                            t4,
1281                            header_size,
1282                            object_size,
1283                            init_check,
1284                            stub));
1285 }
1286 
1287 void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) {
1288   append(new LIR_OpAllocArray(
1289                            klass,
1290                            len,
1291                            dst,
1292                            t1,
1293                            t2,
1294                            t3,
1295                            t4,
1296                            type,
1297                            stub));
1298 }
1299 
1300 void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1301  append(new LIR_Op2(
1302                     lir_shl,
1303                     value,
1304                     count,
1305                     dst,
1306                     tmp));
1307 }
1308 
1309 void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1310  append(new LIR_Op2(
1311                     lir_shr,
1312                     value,
1313                     count,
1314                     dst,
1315                     tmp));
1316 }
1317 
1318 
1319 void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) {
1320  append(new LIR_Op2(
1321                     lir_ushr,
1322                     value,
1323                     count,
1324                     dst,
1325                     tmp));
1326 }
1327 
1328 void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) {
1329   append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i,
1330                      left,
1331                      right,
1332                      dst));
1333 }
1334 
1335 void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) {
1336   append(new LIR_OpLock(
1337                     lir_lock,
1338                     hdr,
1339                     obj,
1340                     lock,
1341                     scratch,
1342                     stub,
1343                     info));
1344 }
1345 
1346 void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) {
1347   append(new LIR_OpLock(
1348                     lir_unlock,
1349                     hdr,
1350                     obj,
1351                     lock,
1352                     scratch,
1353                     stub,
1354                     NULL));
1355 }
1356 
1357 
1358 void check_LIR() {
1359   // cannot do the proper checking as PRODUCT and other modes return different results
1360   // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table");
1361 }
1362 
1363 
1364 
1365 void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1366                           LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1367                           CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1368                           ciMethod* profiled_method, int profiled_bci) {
1369   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass,
1370                                            tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub);
1371   if (profiled_method != NULL) {
1372     c->set_profiled_method(profiled_method);
1373     c->set_profiled_bci(profiled_bci);
1374     c->set_should_profile(true);
1375   }
1376   append(c);
1377 }
1378 
1379 void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) {
1380   LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL);
1381   if (profiled_method != NULL) {
1382     c->set_profiled_method(profiled_method);
1383     c->set_profiled_bci(profiled_bci);
1384     c->set_should_profile(true);
1385   }
1386   append(c);
1387 }
1388 
1389 
1390 void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception) {
1391   append(new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception));
1392 }
1393 
1394 
1395 void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1396                         LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1397   append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result));
1398 }
1399 
1400 void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1401                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1402   append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result));
1403 }
1404 
1405 void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1406                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result) {
1407   append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result));
1408 }
1409 
1410 
1411 #ifdef PRODUCT
1412 
1413 void print_LIR(BlockList* blocks) {
1414 }
1415 
1416 #else
1417 // LIR_OprDesc
1418 void LIR_OprDesc::print() const {
1419   print(tty);
1420 }
1421 
1422 void LIR_OprDesc::print(outputStream* out) const {
1423   if (is_illegal()) {
1424     return;
1425   }
1426 
1427   out->print("[");
1428   if (is_pointer()) {
1429     pointer()->print_value_on(out);
1430   } else if (is_single_stack()) {
1431     out->print("stack:%d", single_stack_ix());
1432   } else if (is_double_stack()) {
1433     out->print("dbl_stack:%d",double_stack_ix());
1434   } else if (is_virtual()) {
1435     out->print("R%d", vreg_number());
1436   } else if (is_single_cpu()) {
1437     out->print(as_register()->name());
1438   } else if (is_double_cpu()) {
1439     out->print(as_register_hi()->name());
1440     out->print(as_register_lo()->name());
1441 #if defined(X86)
1442   } else if (is_single_xmm()) {
1443     out->print(as_xmm_float_reg()->name());
1444   } else if (is_double_xmm()) {
1445     out->print(as_xmm_double_reg()->name());
1446   } else if (is_single_fpu()) {
1447     out->print("fpu%d", fpu_regnr());
1448   } else if (is_double_fpu()) {
1449     out->print("fpu%d", fpu_regnrLo());
1450 #elif defined(ARM)
1451   } else if (is_single_fpu()) {
1452     out->print("s%d", fpu_regnr());
1453   } else if (is_double_fpu()) {
1454     out->print("d%d", fpu_regnrLo() >> 1);
1455 #else
1456   } else if (is_single_fpu()) {
1457     out->print(as_float_reg()->name());
1458   } else if (is_double_fpu()) {
1459     out->print(as_double_reg()->name());
1460 #endif
1461 
1462   } else if (is_illegal()) {
1463     out->print("-");
1464   } else {
1465     out->print("Unknown Operand");
1466   }
1467   if (!is_illegal()) {
1468     out->print("|%c", type_char());
1469   }
1470   if (is_register() && is_last_use()) {
1471     out->print("(last_use)");
1472   }
1473   out->print("]");
1474 }
1475 
1476 
1477 // LIR_Address
1478 void LIR_Const::print_value_on(outputStream* out) const {
1479   switch (type()) {
1480     case T_ADDRESS:out->print("address:%d",as_jint());          break;
1481     case T_INT:    out->print("int:%d",   as_jint());           break;
1482     case T_LONG:   out->print("lng:%lld", as_jlong());          break;
1483     case T_FLOAT:  out->print("flt:%f",   as_jfloat());         break;
1484     case T_DOUBLE: out->print("dbl:%f",   as_jdouble());        break;
1485     case T_OBJECT: out->print("obj:0x%x", as_jobject());        break;
1486     default:       out->print("%3d:0x%x",type(), as_jdouble()); break;
1487   }
1488 }
1489 
1490 // LIR_Address
1491 void LIR_Address::print_value_on(outputStream* out) const {
1492   out->print("Base:"); _base->print(out);
1493   if (!_index->is_illegal()) {
1494     out->print(" Index:"); _index->print(out);
1495     switch (scale()) {
1496     case times_1: break;
1497     case times_2: out->print(" * 2"); break;
1498     case times_4: out->print(" * 4"); break;
1499     case times_8: out->print(" * 8"); break;
1500     }
1501   }
1502   out->print(" Disp: %d", _disp);
1503 }
1504 
1505 // debug output of block header without InstructionPrinter
1506 //       (because phi functions are not necessary for LIR)
1507 static void print_block(BlockBegin* x) {
1508   // print block id
1509   BlockEnd* end = x->end();
1510   tty->print("B%d ", x->block_id());
1511 
1512   // print flags
1513   if (x->is_set(BlockBegin::std_entry_flag))               tty->print("std ");
1514   if (x->is_set(BlockBegin::osr_entry_flag))               tty->print("osr ");
1515   if (x->is_set(BlockBegin::exception_entry_flag))         tty->print("ex ");
1516   if (x->is_set(BlockBegin::subroutine_entry_flag))        tty->print("jsr ");
1517   if (x->is_set(BlockBegin::backward_branch_target_flag))  tty->print("bb ");
1518   if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh ");
1519   if (x->is_set(BlockBegin::linear_scan_loop_end_flag))    tty->print("le ");
1520 
1521   // print block bci range
1522   tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->bci()));
1523 
1524   // print predecessors and successors
1525   if (x->number_of_preds() > 0) {
1526     tty->print("preds: ");
1527     for (int i = 0; i < x->number_of_preds(); i ++) {
1528       tty->print("B%d ", x->pred_at(i)->block_id());
1529     }
1530   }
1531 
1532   if (x->number_of_sux() > 0) {
1533     tty->print("sux: ");
1534     for (int i = 0; i < x->number_of_sux(); i ++) {
1535       tty->print("B%d ", x->sux_at(i)->block_id());
1536     }
1537   }
1538 
1539   // print exception handlers
1540   if (x->number_of_exception_handlers() > 0) {
1541     tty->print("xhandler: ");
1542     for (int i = 0; i < x->number_of_exception_handlers();  i++) {
1543       tty->print("B%d ", x->exception_handler_at(i)->block_id());
1544     }
1545   }
1546 
1547   tty->cr();
1548 }
1549 
1550 void print_LIR(BlockList* blocks) {
1551   tty->print_cr("LIR:");
1552   int i;
1553   for (i = 0; i < blocks->length(); i++) {
1554     BlockBegin* bb = blocks->at(i);
1555     print_block(bb);
1556     tty->print("__id_Instruction___________________________________________"); tty->cr();
1557     bb->lir()->print_instructions();
1558   }
1559 }
1560 
1561 void LIR_List::print_instructions() {
1562   for (int i = 0; i < _operations.length(); i++) {
1563     _operations.at(i)->print(); tty->cr();
1564   }
1565   tty->cr();
1566 }
1567 
1568 // LIR_Ops printing routines
1569 // LIR_Op
1570 void LIR_Op::print_on(outputStream* out) const {
1571   if (id() != -1 || PrintCFGToFile) {
1572     out->print("%4d ", id());
1573   } else {
1574     out->print("     ");
1575   }
1576   out->print(name()); out->print(" ");
1577   print_instr(out);
1578   if (info() != NULL) out->print(" [bci:%d]", info()->bci());
1579 #ifdef ASSERT
1580   if (Verbose && _file != NULL) {
1581     out->print(" (%s:%d)", _file, _line);
1582   }
1583 #endif
1584 }
1585 
1586 const char * LIR_Op::name() const {
1587   const char* s = NULL;
1588   switch(code()) {
1589      // LIR_Op0
1590      case lir_membar:                s = "membar";        break;
1591      case lir_membar_acquire:        s = "membar_acquire"; break;
1592      case lir_membar_release:        s = "membar_release"; break;
1593      case lir_word_align:            s = "word_align";    break;
1594      case lir_label:                 s = "label";         break;
1595      case lir_nop:                   s = "nop";           break;
1596      case lir_backwardbranch_target: s = "backbranch";    break;
1597      case lir_std_entry:             s = "std_entry";     break;
1598      case lir_osr_entry:             s = "osr_entry";     break;
1599      case lir_build_frame:           s = "build_frm";     break;
1600      case lir_fpop_raw:              s = "fpop_raw";      break;
1601      case lir_24bit_FPU:             s = "24bit_FPU";     break;
1602      case lir_reset_FPU:             s = "reset_FPU";     break;
1603      case lir_breakpoint:            s = "breakpoint";    break;
1604      case lir_get_thread:            s = "get_thread";    break;
1605      // LIR_Op1
1606      case lir_fxch:                  s = "fxch";          break;
1607      case lir_fld:                   s = "fld";           break;
1608      case lir_ffree:                 s = "ffree";         break;
1609      case lir_push:                  s = "push";          break;
1610      case lir_pop:                   s = "pop";           break;
1611      case lir_null_check:            s = "null_check";    break;
1612      case lir_return:                s = "return";        break;
1613      case lir_safepoint:             s = "safepoint";     break;
1614      case lir_neg:                   s = "neg";           break;
1615      case lir_leal:                  s = "leal";          break;
1616      case lir_branch:                s = "branch";        break;
1617      case lir_cond_float_branch:     s = "flt_cond_br";   break;
1618      case lir_move:                  s = "move";          break;
1619      case lir_roundfp:               s = "roundfp";       break;
1620      case lir_rtcall:                s = "rtcall";        break;
1621      case lir_throw:                 s = "throw";         break;
1622      case lir_unwind:                s = "unwind";        break;
1623      case lir_convert:               s = "convert";       break;
1624      case lir_alloc_object:          s = "alloc_obj";     break;
1625      case lir_monaddr:               s = "mon_addr";      break;
1626      case lir_pack64:                s = "pack64";        break;
1627      case lir_unpack64:              s = "unpack64";      break;
1628      // LIR_Op2
1629      case lir_cmp:                   s = "cmp";           break;
1630      case lir_cmp_l2i:               s = "cmp_l2i";       break;
1631      case lir_ucmp_fd2i:             s = "ucomp_fd2i";    break;
1632      case lir_cmp_fd2i:              s = "comp_fd2i";     break;
1633      case lir_cmove:                 s = "cmove";         break;
1634      case lir_add:                   s = "add";           break;
1635      case lir_sub:                   s = "sub";           break;
1636      case lir_mul:                   s = "mul";           break;
1637      case lir_mul_strictfp:          s = "mul_strictfp";  break;
1638      case lir_div:                   s = "div";           break;
1639      case lir_div_strictfp:          s = "div_strictfp";  break;
1640      case lir_rem:                   s = "rem";           break;
1641      case lir_abs:                   s = "abs";           break;
1642      case lir_sqrt:                  s = "sqrt";          break;
1643      case lir_sin:                   s = "sin";           break;
1644      case lir_cos:                   s = "cos";           break;
1645      case lir_tan:                   s = "tan";           break;
1646      case lir_log:                   s = "log";           break;
1647      case lir_log10:                 s = "log10";         break;
1648      case lir_logic_and:             s = "logic_and";     break;
1649      case lir_logic_or:              s = "logic_or";      break;
1650      case lir_logic_xor:             s = "logic_xor";     break;
1651      case lir_shl:                   s = "shift_left";    break;
1652      case lir_shr:                   s = "shift_right";   break;
1653      case lir_ushr:                  s = "ushift_right";  break;
1654      case lir_alloc_array:           s = "alloc_array";   break;
1655      // LIR_Op3
1656      case lir_idiv:                  s = "idiv";          break;
1657      case lir_irem:                  s = "irem";          break;
1658      // LIR_OpJavaCall
1659      case lir_static_call:           s = "static";        break;
1660      case lir_optvirtual_call:       s = "optvirtual";    break;
1661      case lir_icvirtual_call:        s = "icvirtual";     break;
1662      case lir_virtual_call:          s = "virtual";       break;
1663      case lir_dynamic_call:          s = "dynamic";       break;
1664      // LIR_OpArrayCopy
1665      case lir_arraycopy:             s = "arraycopy";     break;
1666      // LIR_OpLock
1667      case lir_lock:                  s = "lock";          break;
1668      case lir_unlock:                s = "unlock";        break;
1669      // LIR_OpDelay
1670      case lir_delay_slot:            s = "delay";         break;
1671      // LIR_OpTypeCheck
1672      case lir_instanceof:            s = "instanceof";    break;
1673      case lir_checkcast:             s = "checkcast";     break;
1674      case lir_store_check:           s = "store_check";   break;
1675      // LIR_OpCompareAndSwap
1676      case lir_cas_long:              s = "cas_long";      break;
1677      case lir_cas_obj:               s = "cas_obj";      break;
1678      case lir_cas_int:               s = "cas_int";      break;
1679      // LIR_OpProfileCall
1680      case lir_profile_call:          s = "profile_call";  break;
1681      case lir_none:                  ShouldNotReachHere();break;
1682     default:                         s = "illegal_op";    break;
1683   }
1684   return s;
1685 }
1686 
1687 // LIR_OpJavaCall
1688 void LIR_OpJavaCall::print_instr(outputStream* out) const {
1689   out->print("call: ");
1690   out->print("[addr: 0x%x]", address());
1691   if (receiver()->is_valid()) {
1692     out->print(" [recv: ");   receiver()->print(out);   out->print("]");
1693   }
1694   if (result_opr()->is_valid()) {
1695     out->print(" [result: "); result_opr()->print(out); out->print("]");
1696   }
1697 }
1698 
1699 // LIR_OpLabel
1700 void LIR_OpLabel::print_instr(outputStream* out) const {
1701   out->print("[label:0x%x]", _label);
1702 }
1703 
1704 // LIR_OpArrayCopy
1705 void LIR_OpArrayCopy::print_instr(outputStream* out) const {
1706   src()->print(out);     out->print(" ");
1707   src_pos()->print(out); out->print(" ");
1708   dst()->print(out);     out->print(" ");
1709   dst_pos()->print(out); out->print(" ");
1710   length()->print(out);  out->print(" ");
1711   tmp()->print(out);     out->print(" ");
1712 }
1713 
1714 // LIR_OpCompareAndSwap
1715 void LIR_OpCompareAndSwap::print_instr(outputStream* out) const {
1716   addr()->print(out);      out->print(" ");
1717   cmp_value()->print(out); out->print(" ");
1718   new_value()->print(out); out->print(" ");
1719   tmp1()->print(out);      out->print(" ");
1720   tmp2()->print(out);      out->print(" ");
1721 
1722 }
1723 
1724 // LIR_Op0
1725 void LIR_Op0::print_instr(outputStream* out) const {
1726   result_opr()->print(out);
1727 }
1728 
1729 // LIR_Op1
1730 const char * LIR_Op1::name() const {
1731   if (code() == lir_move) {
1732     switch (move_kind()) {
1733     case lir_move_normal:
1734       return "move";
1735     case lir_move_unaligned:
1736       return "unaligned move";
1737     case lir_move_volatile:
1738       return "volatile_move";
1739     default:
1740       ShouldNotReachHere();
1741     return "illegal_op";
1742     }
1743   } else {
1744     return LIR_Op::name();
1745   }
1746 }
1747 
1748 
1749 void LIR_Op1::print_instr(outputStream* out) const {
1750   _opr->print(out);         out->print(" ");
1751   result_opr()->print(out); out->print(" ");
1752   print_patch_code(out, patch_code());
1753 }
1754 
1755 
1756 // LIR_Op1
1757 void LIR_OpRTCall::print_instr(outputStream* out) const {
1758   intx a = (intx)addr();
1759   out->print(Runtime1::name_for_address(addr()));
1760   out->print(" ");
1761   tmp()->print(out);
1762 }
1763 
1764 void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) {
1765   switch(code) {
1766     case lir_patch_none:                                 break;
1767     case lir_patch_low:    out->print("[patch_low]");    break;
1768     case lir_patch_high:   out->print("[patch_high]");   break;
1769     case lir_patch_normal: out->print("[patch_normal]"); break;
1770     default: ShouldNotReachHere();
1771   }
1772 }
1773 
1774 // LIR_OpBranch
1775 void LIR_OpBranch::print_instr(outputStream* out) const {
1776   print_condition(out, cond());             out->print(" ");
1777   if (block() != NULL) {
1778     out->print("[B%d] ", block()->block_id());
1779   } else if (stub() != NULL) {
1780     out->print("[");
1781     stub()->print_name(out);
1782     out->print(": 0x%x]", stub());
1783     if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->bci());
1784   } else {
1785     out->print("[label:0x%x] ", label());
1786   }
1787   if (ublock() != NULL) {
1788     out->print("unordered: [B%d] ", ublock()->block_id());
1789   }
1790 }
1791 
1792 void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) {
1793   switch(cond) {
1794     case lir_cond_equal:           out->print("[EQ]");      break;
1795     case lir_cond_notEqual:        out->print("[NE]");      break;
1796     case lir_cond_less:            out->print("[LT]");      break;
1797     case lir_cond_lessEqual:       out->print("[LE]");      break;
1798     case lir_cond_greaterEqual:    out->print("[GE]");      break;
1799     case lir_cond_greater:         out->print("[GT]");      break;
1800     case lir_cond_belowEqual:      out->print("[BE]");      break;
1801     case lir_cond_aboveEqual:      out->print("[AE]");      break;
1802     case lir_cond_always:          out->print("[AL]");      break;
1803     default:                       out->print("[%d]",cond); break;
1804   }
1805 }
1806 
1807 // LIR_OpConvert
1808 void LIR_OpConvert::print_instr(outputStream* out) const {
1809   print_bytecode(out, bytecode());
1810   in_opr()->print(out);                  out->print(" ");
1811   result_opr()->print(out);              out->print(" ");
1812 #ifdef PPC
1813   if(tmp1()->is_valid()) {
1814     tmp1()->print(out); out->print(" ");
1815     tmp2()->print(out); out->print(" ");
1816   }
1817 #endif
1818 }
1819 
1820 void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) {
1821   switch(code) {
1822     case Bytecodes::_d2f: out->print("[d2f] "); break;
1823     case Bytecodes::_d2i: out->print("[d2i] "); break;
1824     case Bytecodes::_d2l: out->print("[d2l] "); break;
1825     case Bytecodes::_f2d: out->print("[f2d] "); break;
1826     case Bytecodes::_f2i: out->print("[f2i] "); break;
1827     case Bytecodes::_f2l: out->print("[f2l] "); break;
1828     case Bytecodes::_i2b: out->print("[i2b] "); break;
1829     case Bytecodes::_i2c: out->print("[i2c] "); break;
1830     case Bytecodes::_i2d: out->print("[i2d] "); break;
1831     case Bytecodes::_i2f: out->print("[i2f] "); break;
1832     case Bytecodes::_i2l: out->print("[i2l] "); break;
1833     case Bytecodes::_i2s: out->print("[i2s] "); break;
1834     case Bytecodes::_l2i: out->print("[l2i] "); break;
1835     case Bytecodes::_l2f: out->print("[l2f] "); break;
1836     case Bytecodes::_l2d: out->print("[l2d] "); break;
1837     default:
1838       out->print("[?%d]",code);
1839     break;
1840   }
1841 }
1842 
1843 void LIR_OpAllocObj::print_instr(outputStream* out) const {
1844   klass()->print(out);                      out->print(" ");
1845   obj()->print(out);                        out->print(" ");
1846   tmp1()->print(out);                       out->print(" ");
1847   tmp2()->print(out);                       out->print(" ");
1848   tmp3()->print(out);                       out->print(" ");
1849   tmp4()->print(out);                       out->print(" ");
1850   out->print("[hdr:%d]", header_size()); out->print(" ");
1851   out->print("[obj:%d]", object_size()); out->print(" ");
1852   out->print("[lbl:0x%x]", stub()->entry());
1853 }
1854 
1855 void LIR_OpRoundFP::print_instr(outputStream* out) const {
1856   _opr->print(out);         out->print(" ");
1857   tmp()->print(out);        out->print(" ");
1858   result_opr()->print(out); out->print(" ");
1859 }
1860 
1861 // LIR_Op2
1862 void LIR_Op2::print_instr(outputStream* out) const {
1863   if (code() == lir_cmove) {
1864     print_condition(out, condition());         out->print(" ");
1865   }
1866   in_opr1()->print(out);    out->print(" ");
1867   in_opr2()->print(out);    out->print(" ");
1868   if (tmp_opr()->is_valid()) { tmp_opr()->print(out);    out->print(" "); }
1869   result_opr()->print(out);
1870 }
1871 
1872 void LIR_OpAllocArray::print_instr(outputStream* out) const {
1873   klass()->print(out);                   out->print(" ");
1874   len()->print(out);                     out->print(" ");
1875   obj()->print(out);                     out->print(" ");
1876   tmp1()->print(out);                    out->print(" ");
1877   tmp2()->print(out);                    out->print(" ");
1878   tmp3()->print(out);                    out->print(" ");
1879   tmp4()->print(out);                    out->print(" ");
1880   out->print("[type:0x%x]", type());     out->print(" ");
1881   out->print("[label:0x%x]", stub()->entry());
1882 }
1883 
1884 
1885 void LIR_OpTypeCheck::print_instr(outputStream* out) const {
1886   object()->print(out);                  out->print(" ");
1887   if (code() == lir_store_check) {
1888     array()->print(out);                 out->print(" ");
1889   }
1890   if (code() != lir_store_check) {
1891     klass()->print_name_on(out);         out->print(" ");
1892     if (fast_check())                 out->print("fast_check ");
1893   }
1894   tmp1()->print(out);                    out->print(" ");
1895   tmp2()->print(out);                    out->print(" ");
1896   tmp3()->print(out);                    out->print(" ");
1897   result_opr()->print(out);              out->print(" ");
1898   if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->bci());
1899 }
1900 
1901 
1902 // LIR_Op3
1903 void LIR_Op3::print_instr(outputStream* out) const {
1904   in_opr1()->print(out);    out->print(" ");
1905   in_opr2()->print(out);    out->print(" ");
1906   in_opr3()->print(out);    out->print(" ");
1907   result_opr()->print(out);
1908 }
1909 
1910 
1911 void LIR_OpLock::print_instr(outputStream* out) const {
1912   hdr_opr()->print(out);   out->print(" ");
1913   obj_opr()->print(out);   out->print(" ");
1914   lock_opr()->print(out);  out->print(" ");
1915   if (_scratch->is_valid()) {
1916     _scratch->print(out);  out->print(" ");
1917   }
1918   out->print("[lbl:0x%x]", stub()->entry());
1919 }
1920 
1921 
1922 void LIR_OpDelay::print_instr(outputStream* out) const {
1923   _op->print_on(out);
1924 }
1925 
1926 
1927 // LIR_OpProfileCall
1928 void LIR_OpProfileCall::print_instr(outputStream* out) const {
1929   profiled_method()->name()->print_symbol_on(out);
1930   out->print(".");
1931   profiled_method()->holder()->name()->print_symbol_on(out);
1932   out->print(" @ %d ", profiled_bci());
1933   mdo()->print(out);           out->print(" ");
1934   recv()->print(out);          out->print(" ");
1935   tmp1()->print(out);          out->print(" ");
1936 }
1937 
1938 #endif // PRODUCT
1939 
1940 // Implementation of LIR_InsertionBuffer
1941 
1942 void LIR_InsertionBuffer::append(int index, LIR_Op* op) {
1943   assert(_index_and_count.length() % 2 == 0, "must have a count for each index");
1944 
1945   int i = number_of_insertion_points() - 1;
1946   if (i < 0 || index_at(i) < index) {
1947     append_new(index, 1);
1948   } else {
1949     assert(index_at(i) == index, "can append LIR_Ops in ascending order only");
1950     assert(count_at(i) > 0, "check");
1951     set_count_at(i, count_at(i) + 1);
1952   }
1953   _ops.push(op);
1954 
1955   DEBUG_ONLY(verify());
1956 }
1957 
1958 #ifdef ASSERT
1959 void LIR_InsertionBuffer::verify() {
1960   int sum = 0;
1961   int prev_idx = -1;
1962 
1963   for (int i = 0; i < number_of_insertion_points(); i++) {
1964     assert(prev_idx < index_at(i), "index must be ordered ascending");
1965     sum += count_at(i);
1966   }
1967   assert(sum == number_of_ops(), "wrong total sum");
1968 }
1969 #endif