1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 
  45 
  46 #ifndef PRODUCT
  47 
  48   static LinearScanStatistic _stat_before_alloc;
  49   static LinearScanStatistic _stat_after_asign;
  50   static LinearScanStatistic _stat_final;
  51 
  52   static LinearScanTimers _total_timer;
  53 
  54   // helper macro for short definition of timer
  55   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  56 
  57   // helper macro for short definition of trace-output inside code
  58   #define TRACE_LINEAR_SCAN(level, code)       \
  59     if (TraceLinearScanLevel >= level) {       \
  60       code;                                    \
  61     }
  62 
  63 #else
  64 
  65   #define TIME_LINEAR_SCAN(timer_name)
  66   #define TRACE_LINEAR_SCAN(level, code)
  67 
  68 #endif
  69 
  70 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  71 #ifdef _LP64
  72 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
  73 #else
  74 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
  75 #endif
  76 
  77 
  78 // Implementation of LinearScan
  79 
  80 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  81  : _compilation(ir->compilation())
  82  , _ir(ir)
  83  , _gen(gen)
  84  , _frame_map(frame_map)
  85  , _num_virtual_regs(gen->max_virtual_register_number())
  86  , _has_fpu_registers(false)
  87  , _num_calls(-1)
  88  , _max_spills(0)
  89  , _unused_spill_slot(-1)
  90  , _intervals(0)   // initialized later with correct length
  91  , _new_intervals_from_allocation(new IntervalList())
  92  , _sorted_intervals(NULL)
  93  , _lir_ops(0)     // initialized later with correct length
  94  , _block_of_op(0) // initialized later with correct length
  95  , _has_info(0)
  96  , _has_call(0)
  97  , _scope_value_cache(0) // initialized later with correct length
  98  , _interval_in_loop(0, 0) // initialized later with correct length
  99  , _cached_blocks(*ir->linear_scan_order())
 100 #ifdef X86
 101  , _fpu_stack_allocator(NULL)
 102 #endif
 103 {
 104   assert(this->ir() != NULL,          "check if valid");
 105   assert(this->compilation() != NULL, "check if valid");
 106   assert(this->gen() != NULL,         "check if valid");
 107   assert(this->frame_map() != NULL,   "check if valid");
 108 }
 109 
 110 
 111 // ********** functions for converting LIR-Operands to register numbers
 112 //
 113 // Emulate a flat register file comprising physical integer registers,
 114 // physical floating-point registers and virtual registers, in that order.
 115 // Virtual registers already have appropriate numbers, since V0 is
 116 // the number of physical registers.
 117 // Returns -1 for hi word if opr is a single word operand.
 118 //
 119 // Note: the inverse operation (calculating an operand for register numbers)
 120 //       is done in calc_operand_for_interval()
 121 
 122 int LinearScan::reg_num(LIR_Opr opr) {
 123   assert(opr->is_register(), "should not call this otherwise");
 124 
 125   if (opr->is_virtual_register()) {
 126     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 127     return opr->vreg_number();
 128   } else if (opr->is_single_cpu()) {
 129     return opr->cpu_regnr();
 130   } else if (opr->is_double_cpu()) {
 131     return opr->cpu_regnrLo();
 132 #ifdef X86
 133   } else if (opr->is_single_xmm()) {
 134     return opr->fpu_regnr() + pd_first_xmm_reg;
 135   } else if (opr->is_double_xmm()) {
 136     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 137 #endif
 138   } else if (opr->is_single_fpu()) {
 139     return opr->fpu_regnr() + pd_first_fpu_reg;
 140   } else if (opr->is_double_fpu()) {
 141     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 142   } else {
 143     ShouldNotReachHere();
 144     return -1;
 145   }
 146 }
 147 
 148 int LinearScan::reg_numHi(LIR_Opr opr) {
 149   assert(opr->is_register(), "should not call this otherwise");
 150 
 151   if (opr->is_virtual_register()) {
 152     return -1;
 153   } else if (opr->is_single_cpu()) {
 154     return -1;
 155   } else if (opr->is_double_cpu()) {
 156     return opr->cpu_regnrHi();
 157 #ifdef X86
 158   } else if (opr->is_single_xmm()) {
 159     return -1;
 160   } else if (opr->is_double_xmm()) {
 161     return -1;
 162 #endif
 163   } else if (opr->is_single_fpu()) {
 164     return -1;
 165   } else if (opr->is_double_fpu()) {
 166     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 167   } else {
 168     ShouldNotReachHere();
 169     return -1;
 170   }
 171 }
 172 
 173 
 174 // ********** functions for classification of intervals
 175 
 176 bool LinearScan::is_precolored_interval(const Interval* i) {
 177   return i->reg_num() < LinearScan::nof_regs;
 178 }
 179 
 180 bool LinearScan::is_virtual_interval(const Interval* i) {
 181   return i->reg_num() >= LIR_OprDesc::vreg_base;
 182 }
 183 
 184 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 185   return i->reg_num() < LinearScan::nof_cpu_regs;
 186 }
 187 
 188 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 189 #if defined(__SOFTFP__) || defined(E500V2)
 190   return i->reg_num() >= LIR_OprDesc::vreg_base;
 191 #else
 192   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 193 #endif // __SOFTFP__ or E500V2
 194 }
 195 
 196 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 197   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 198 }
 199 
 200 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 201 #if defined(__SOFTFP__) || defined(E500V2)
 202   return false;
 203 #else
 204   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 205 #endif // __SOFTFP__ or E500V2
 206 }
 207 
 208 bool LinearScan::is_in_fpu_register(const Interval* i) {
 209   // fixed intervals not needed for FPU stack allocation
 210   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 211 }
 212 
 213 bool LinearScan::is_oop_interval(const Interval* i) {
 214   // fixed intervals never contain oops
 215   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 216 }
 217 
 218 
 219 // ********** General helper functions
 220 
 221 // compute next unused stack index that can be used for spilling
 222 int LinearScan::allocate_spill_slot(bool double_word) {
 223   int spill_slot;
 224   if (double_word) {
 225     if ((_max_spills & 1) == 1) {
 226       // alignment of double-word values
 227       // the hole because of the alignment is filled with the next single-word value
 228       assert(_unused_spill_slot == -1, "wasting a spill slot");
 229       _unused_spill_slot = _max_spills;
 230       _max_spills++;
 231     }
 232     spill_slot = _max_spills;
 233     _max_spills += 2;
 234 
 235   } else if (_unused_spill_slot != -1) {
 236     // re-use hole that was the result of a previous double-word alignment
 237     spill_slot = _unused_spill_slot;
 238     _unused_spill_slot = -1;
 239 
 240   } else {
 241     spill_slot = _max_spills;
 242     _max_spills++;
 243   }
 244 
 245   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 246 
 247   // the class OopMapValue uses only 11 bits for storing the name of the
 248   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 249   // that is not reported in product builds. Prevent this by checking the
 250   // spill slot here (altough this value and the later used location name
 251   // are slightly different)
 252   if (result > 2000) {
 253     bailout("too many stack slots used");
 254   }
 255 
 256   return result;
 257 }
 258 
 259 void LinearScan::assign_spill_slot(Interval* it) {
 260   // assign the canonical spill slot of the parent (if a part of the interval
 261   // is already spilled) or allocate a new spill slot
 262   if (it->canonical_spill_slot() >= 0) {
 263     it->assign_reg(it->canonical_spill_slot());
 264   } else {
 265     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 266     it->set_canonical_spill_slot(spill);
 267     it->assign_reg(spill);
 268   }
 269 }
 270 
 271 void LinearScan::propagate_spill_slots() {
 272   if (!frame_map()->finalize_frame(max_spills())) {
 273     bailout("frame too large");
 274   }
 275 }
 276 
 277 // create a new interval with a predefined reg_num
 278 // (only used for parent intervals that are created during the building phase)
 279 Interval* LinearScan::create_interval(int reg_num) {
 280   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 281 
 282   Interval* interval = new Interval(reg_num);
 283   _intervals.at_put(reg_num, interval);
 284 
 285   // assign register number for precolored intervals
 286   if (reg_num < LIR_OprDesc::vreg_base) {
 287     interval->assign_reg(reg_num);
 288   }
 289   return interval;
 290 }
 291 
 292 // assign a new reg_num to the interval and append it to the list of intervals
 293 // (only used for child intervals that are created during register allocation)
 294 void LinearScan::append_interval(Interval* it) {
 295   it->set_reg_num(_intervals.length());
 296   _intervals.append(it);
 297   _new_intervals_from_allocation->append(it);
 298 }
 299 
 300 // copy the vreg-flags if an interval is split
 301 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 302   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 303     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 304   }
 305   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 306     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 307   }
 308 
 309   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 310   //       intervals (only the very beginning of the interval must be in memory)
 311 }
 312 
 313 
 314 // ********** spill move optimization
 315 // eliminate moves from register to stack if stack slot is known to be correct
 316 
 317 // called during building of intervals
 318 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 319   assert(interval->is_split_parent(), "can only be called for split parents");
 320 
 321   switch (interval->spill_state()) {
 322     case noDefinitionFound:
 323       assert(interval->spill_definition_pos() == -1, "must no be set before");
 324       interval->set_spill_definition_pos(def_pos);
 325       interval->set_spill_state(oneDefinitionFound);
 326       break;
 327 
 328     case oneDefinitionFound:
 329       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 330       if (def_pos < interval->spill_definition_pos() - 2) {
 331         // second definition found, so no spill optimization possible for this interval
 332         interval->set_spill_state(noOptimization);
 333       } else {
 334         // two consecutive definitions (because of two-operand LIR form)
 335         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 336       }
 337       break;
 338 
 339     case noOptimization:
 340       // nothing to do
 341       break;
 342 
 343     default:
 344       assert(false, "other states not allowed at this time");
 345   }
 346 }
 347 
 348 // called during register allocation
 349 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 350   switch (interval->spill_state()) {
 351     case oneDefinitionFound: {
 352       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 353       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 354 
 355       if (def_loop_depth < spill_loop_depth) {
 356         // the loop depth of the spilling position is higher then the loop depth
 357         // at the definition of the interval -> move write to memory out of loop
 358         // by storing at definitin of the interval
 359         interval->set_spill_state(storeAtDefinition);
 360       } else {
 361         // the interval is currently spilled only once, so for now there is no
 362         // reason to store the interval at the definition
 363         interval->set_spill_state(oneMoveInserted);
 364       }
 365       break;
 366     }
 367 
 368     case oneMoveInserted: {
 369       // the interval is spilled more then once, so it is better to store it to
 370       // memory at the definition
 371       interval->set_spill_state(storeAtDefinition);
 372       break;
 373     }
 374 
 375     case storeAtDefinition:
 376     case startInMemory:
 377     case noOptimization:
 378     case noDefinitionFound:
 379       // nothing to do
 380       break;
 381 
 382     default:
 383       assert(false, "other states not allowed at this time");
 384   }
 385 }
 386 
 387 
 388 bool LinearScan::must_store_at_definition(const Interval* i) {
 389   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 390 }
 391 
 392 // called once before asignment of register numbers
 393 void LinearScan::eliminate_spill_moves() {
 394   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 395   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 396 
 397   // collect all intervals that must be stored after their definion.
 398   // the list is sorted by Interval::spill_definition_pos
 399   Interval* interval;
 400   Interval* temp_list;
 401   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 402 
 403 #ifdef ASSERT
 404   Interval* prev = NULL;
 405   Interval* temp = interval;
 406   while (temp != Interval::end()) {
 407     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 408     if (prev != NULL) {
 409       assert(temp->from() >= prev->from(), "intervals not sorted");
 410       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 411     }
 412 
 413     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 414     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 415     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 416 
 417     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 418 
 419     temp = temp->next();
 420   }
 421 #endif
 422 
 423   LIR_InsertionBuffer insertion_buffer;
 424   int num_blocks = block_count();
 425   for (int i = 0; i < num_blocks; i++) {
 426     BlockBegin* block = block_at(i);
 427     LIR_OpList* instructions = block->lir()->instructions_list();
 428     int         num_inst = instructions->length();
 429     bool        has_new = false;
 430 
 431     // iterate all instructions of the block. skip the first because it is always a label
 432     for (int j = 1; j < num_inst; j++) {
 433       LIR_Op* op = instructions->at(j);
 434       int op_id = op->id();
 435 
 436       if (op_id == -1) {
 437         // remove move from register to stack if the stack slot is guaranteed to be correct.
 438         // only moves that have been inserted by LinearScan can be removed.
 439         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 440         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 441         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 442 
 443         LIR_Op1* op1 = (LIR_Op1*)op;
 444         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 445 
 446         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 447           // move target is a stack slot that is always correct, so eliminate instruction
 448           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 449           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 450         }
 451 
 452       } else {
 453         // insert move from register to stack just after the beginning of the interval
 454         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 455         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 456 
 457         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 458           if (!has_new) {
 459             // prepare insertion buffer (appended when all instructions of the block are processed)
 460             insertion_buffer.init(block->lir());
 461             has_new = true;
 462           }
 463 
 464           LIR_Opr from_opr = operand_for_interval(interval);
 465           LIR_Opr to_opr = canonical_spill_opr(interval);
 466           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 467           assert(to_opr->is_stack(), "to operand must be a stack slot");
 468 
 469           insertion_buffer.move(j, from_opr, to_opr);
 470           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 471 
 472           interval = interval->next();
 473         }
 474       }
 475     } // end of instruction iteration
 476 
 477     if (has_new) {
 478       block->lir()->append(&insertion_buffer);
 479     }
 480   } // end of block iteration
 481 
 482   assert(interval == Interval::end(), "missed an interval");
 483 }
 484 
 485 
 486 // ********** Phase 1: number all instructions in all blocks
 487 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 488 
 489 void LinearScan::number_instructions() {
 490   {
 491     // dummy-timer to measure the cost of the timer itself
 492     // (this time is then subtracted from all other timers to get the real value)
 493     TIME_LINEAR_SCAN(timer_do_nothing);
 494   }
 495   TIME_LINEAR_SCAN(timer_number_instructions);
 496 
 497   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 498   int num_blocks = block_count();
 499   int num_instructions = 0;
 500   int i;
 501   for (i = 0; i < num_blocks; i++) {
 502     num_instructions += block_at(i)->lir()->instructions_list()->length();
 503   }
 504 
 505   // initialize with correct length
 506   _lir_ops = LIR_OpArray(num_instructions);
 507   _block_of_op = BlockBeginArray(num_instructions);
 508 
 509   int op_id = 0;
 510   int idx = 0;
 511 
 512   for (i = 0; i < num_blocks; i++) {
 513     BlockBegin* block = block_at(i);
 514     block->set_first_lir_instruction_id(op_id);
 515     LIR_OpList* instructions = block->lir()->instructions_list();
 516 
 517     int num_inst = instructions->length();
 518     for (int j = 0; j < num_inst; j++) {
 519       LIR_Op* op = instructions->at(j);
 520       op->set_id(op_id);
 521 
 522       _lir_ops.at_put(idx, op);
 523       _block_of_op.at_put(idx, block);
 524       assert(lir_op_with_id(op_id) == op, "must match");
 525 
 526       idx++;
 527       op_id += 2; // numbering of lir_ops by two
 528     }
 529     block->set_last_lir_instruction_id(op_id - 2);
 530   }
 531   assert(idx == num_instructions, "must match");
 532   assert(idx * 2 == op_id, "must match");
 533 
 534   _has_call = BitMap(num_instructions); _has_call.clear();
 535   _has_info = BitMap(num_instructions); _has_info.clear();
 536 }
 537 
 538 
 539 // ********** Phase 2: compute local live sets separately for each block
 540 // (sets live_gen and live_kill for each block)
 541 
 542 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 543   LIR_Opr opr = value->operand();
 544   Constant* con = value->as_Constant();
 545 
 546   // check some asumptions about debug information
 547   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 548   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 549   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 550 
 551   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 552     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 553     int reg = opr->vreg_number();
 554     if (!live_kill.at(reg)) {
 555       live_gen.set_bit(reg);
 556       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 557     }
 558   }
 559 }
 560 
 561 
 562 void LinearScan::compute_local_live_sets() {
 563   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 564 
 565   int  num_blocks = block_count();
 566   int  live_size = live_set_size();
 567   bool local_has_fpu_registers = false;
 568   int  local_num_calls = 0;
 569   LIR_OpVisitState visitor;
 570 
 571   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 572   local_interval_in_loop.clear();
 573 
 574   // iterate all blocks
 575   for (int i = 0; i < num_blocks; i++) {
 576     BlockBegin* block = block_at(i);
 577 
 578     BitMap live_gen(live_size);  live_gen.clear();
 579     BitMap live_kill(live_size); live_kill.clear();
 580 
 581     if (block->is_set(BlockBegin::exception_entry_flag)) {
 582       // Phi functions at the begin of an exception handler are
 583       // implicitly defined (= killed) at the beginning of the block.
 584       for_each_phi_fun(block, phi,
 585         live_kill.set_bit(phi->operand()->vreg_number())
 586       );
 587     }
 588 
 589     LIR_OpList* instructions = block->lir()->instructions_list();
 590     int num_inst = instructions->length();
 591 
 592     // iterate all instructions of the block. skip the first because it is always a label
 593     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 594     for (int j = 1; j < num_inst; j++) {
 595       LIR_Op* op = instructions->at(j);
 596 
 597       // visit operation to collect all operands
 598       visitor.visit(op);
 599 
 600       if (visitor.has_call()) {
 601         _has_call.set_bit(op->id() >> 1);
 602         local_num_calls++;
 603       }
 604       if (visitor.info_count() > 0) {
 605         _has_info.set_bit(op->id() >> 1);
 606       }
 607 
 608       // iterate input operands of instruction
 609       int k, n, reg;
 610       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 611       for (k = 0; k < n; k++) {
 612         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 613         assert(opr->is_register(), "visitor should only return register operands");
 614 
 615         if (opr->is_virtual_register()) {
 616           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 617           reg = opr->vreg_number();
 618           if (!live_kill.at(reg)) {
 619             live_gen.set_bit(reg);
 620             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 621           }
 622           if (block->loop_index() >= 0) {
 623             local_interval_in_loop.set_bit(reg, block->loop_index());
 624           }
 625           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 626         }
 627 
 628 #ifdef ASSERT
 629         // fixed intervals are never live at block boundaries, so
 630         // they need not be processed in live sets.
 631         // this is checked by these assertions to be sure about it.
 632         // the entry block may have incoming values in registers, which is ok.
 633         if (!opr->is_virtual_register() && block != ir()->start()) {
 634           reg = reg_num(opr);
 635           if (is_processed_reg_num(reg)) {
 636             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 637           }
 638           reg = reg_numHi(opr);
 639           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 640             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 641           }
 642         }
 643 #endif
 644       }
 645 
 646       // Add uses of live locals from interpreter's point of view for proper debug information generation
 647       n = visitor.info_count();
 648       for (k = 0; k < n; k++) {
 649         CodeEmitInfo* info = visitor.info_at(k);
 650         ValueStack* stack = info->stack();
 651         for_each_state_value(stack, value,
 652           set_live_gen_kill(value, op, live_gen, live_kill)
 653         );
 654       }
 655 
 656       // iterate temp operands of instruction
 657       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 658       for (k = 0; k < n; k++) {
 659         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 660         assert(opr->is_register(), "visitor should only return register operands");
 661 
 662         if (opr->is_virtual_register()) {
 663           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 664           reg = opr->vreg_number();
 665           live_kill.set_bit(reg);
 666           if (block->loop_index() >= 0) {
 667             local_interval_in_loop.set_bit(reg, block->loop_index());
 668           }
 669           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 670         }
 671 
 672 #ifdef ASSERT
 673         // fixed intervals are never live at block boundaries, so
 674         // they need not be processed in live sets
 675         // process them only in debug mode so that this can be checked
 676         if (!opr->is_virtual_register()) {
 677           reg = reg_num(opr);
 678           if (is_processed_reg_num(reg)) {
 679             live_kill.set_bit(reg_num(opr));
 680           }
 681           reg = reg_numHi(opr);
 682           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 683             live_kill.set_bit(reg);
 684           }
 685         }
 686 #endif
 687       }
 688 
 689       // iterate output operands of instruction
 690       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 691       for (k = 0; k < n; k++) {
 692         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 693         assert(opr->is_register(), "visitor should only return register operands");
 694 
 695         if (opr->is_virtual_register()) {
 696           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 697           reg = opr->vreg_number();
 698           live_kill.set_bit(reg);
 699           if (block->loop_index() >= 0) {
 700             local_interval_in_loop.set_bit(reg, block->loop_index());
 701           }
 702           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 703         }
 704 
 705 #ifdef ASSERT
 706         // fixed intervals are never live at block boundaries, so
 707         // they need not be processed in live sets
 708         // process them only in debug mode so that this can be checked
 709         if (!opr->is_virtual_register()) {
 710           reg = reg_num(opr);
 711           if (is_processed_reg_num(reg)) {
 712             live_kill.set_bit(reg_num(opr));
 713           }
 714           reg = reg_numHi(opr);
 715           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 716             live_kill.set_bit(reg);
 717           }
 718         }
 719 #endif
 720       }
 721     } // end of instruction iteration
 722 
 723     block->set_live_gen (live_gen);
 724     block->set_live_kill(live_kill);
 725     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 726     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 727 
 728     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 729     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 730   } // end of block iteration
 731 
 732   // propagate local calculated information into LinearScan object
 733   _has_fpu_registers = local_has_fpu_registers;
 734   compilation()->set_has_fpu_code(local_has_fpu_registers);
 735 
 736   _num_calls = local_num_calls;
 737   _interval_in_loop = local_interval_in_loop;
 738 }
 739 
 740 
 741 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 742 // (sets live_in and live_out for each block)
 743 
 744 void LinearScan::compute_global_live_sets() {
 745   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 746 
 747   int  num_blocks = block_count();
 748   bool change_occurred;
 749   bool change_occurred_in_block;
 750   int  iteration_count = 0;
 751   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 752 
 753   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 754   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 755   // Exception handlers must be processed because not all live values are
 756   // present in the state array, e.g. because of global value numbering
 757   do {
 758     change_occurred = false;
 759 
 760     // iterate all blocks in reverse order
 761     for (int i = num_blocks - 1; i >= 0; i--) {
 762       BlockBegin* block = block_at(i);
 763 
 764       change_occurred_in_block = false;
 765 
 766       // live_out(block) is the union of live_in(sux), for successors sux of block
 767       int n = block->number_of_sux();
 768       int e = block->number_of_exception_handlers();
 769       if (n + e > 0) {
 770         // block has successors
 771         if (n > 0) {
 772           live_out.set_from(block->sux_at(0)->live_in());
 773           for (int j = 1; j < n; j++) {
 774             live_out.set_union(block->sux_at(j)->live_in());
 775           }
 776         } else {
 777           live_out.clear();
 778         }
 779         for (int j = 0; j < e; j++) {
 780           live_out.set_union(block->exception_handler_at(j)->live_in());
 781         }
 782 
 783         if (!block->live_out().is_same(live_out)) {
 784           // A change occurred.  Swap the old and new live out sets to avoid copying.
 785           BitMap temp = block->live_out();
 786           block->set_live_out(live_out);
 787           live_out = temp;
 788 
 789           change_occurred = true;
 790           change_occurred_in_block = true;
 791         }
 792       }
 793 
 794       if (iteration_count == 0 || change_occurred_in_block) {
 795         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 796         // note: live_in has to be computed only in first iteration or if live_out has changed!
 797         BitMap live_in = block->live_in();
 798         live_in.set_from(block->live_out());
 799         live_in.set_difference(block->live_kill());
 800         live_in.set_union(block->live_gen());
 801       }
 802 
 803 #ifndef PRODUCT
 804       if (TraceLinearScanLevel >= 4) {
 805         char c = ' ';
 806         if (iteration_count == 0 || change_occurred_in_block) {
 807           c = '*';
 808         }
 809         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 810         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 811       }
 812 #endif
 813     }
 814     iteration_count++;
 815 
 816     if (change_occurred && iteration_count > 50) {
 817       BAILOUT("too many iterations in compute_global_live_sets");
 818     }
 819   } while (change_occurred);
 820 
 821 
 822 #ifdef ASSERT
 823   // check that fixed intervals are not live at block boundaries
 824   // (live set must be empty at fixed intervals)
 825   for (int i = 0; i < num_blocks; i++) {
 826     BlockBegin* block = block_at(i);
 827     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 828       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 829       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 830       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 831     }
 832   }
 833 #endif
 834 
 835   // check that the live_in set of the first block is empty
 836   BitMap live_in_args(ir()->start()->live_in().size());
 837   live_in_args.clear();
 838   if (!ir()->start()->live_in().is_same(live_in_args)) {
 839 #ifdef ASSERT
 840     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 841     tty->print_cr("affected registers:");
 842     print_bitmap(ir()->start()->live_in());
 843 
 844     // print some additional information to simplify debugging
 845     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 846       if (ir()->start()->live_in().at(i)) {
 847         Instruction* instr = gen()->instruction_for_vreg(i);
 848         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 849 
 850         for (int j = 0; j < num_blocks; j++) {
 851           BlockBegin* block = block_at(j);
 852           if (block->live_gen().at(i)) {
 853             tty->print_cr("  used in block B%d", block->block_id());
 854           }
 855           if (block->live_kill().at(i)) {
 856             tty->print_cr("  defined in block B%d", block->block_id());
 857           }
 858         }
 859       }
 860     }
 861 
 862 #endif
 863     // when this fails, virtual registers are used before they are defined.
 864     assert(false, "live_in set of first block must be empty");
 865     // bailout of if this occurs in product mode.
 866     bailout("live_in set of first block not empty");
 867   }
 868 }
 869 
 870 
 871 // ********** Phase 4: build intervals
 872 // (fills the list _intervals)
 873 
 874 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 875   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 876   LIR_Opr opr = value->operand();
 877   Constant* con = value->as_Constant();
 878 
 879   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 880     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 881     add_use(opr, from, to, use_kind);
 882   }
 883 }
 884 
 885 
 886 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 887   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 888   assert(opr->is_register(), "should not be called otherwise");
 889 
 890   if (opr->is_virtual_register()) {
 891     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 892     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 893 
 894   } else {
 895     int reg = reg_num(opr);
 896     if (is_processed_reg_num(reg)) {
 897       add_def(reg, def_pos, use_kind, opr->type_register());
 898     }
 899     reg = reg_numHi(opr);
 900     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 901       add_def(reg, def_pos, use_kind, opr->type_register());
 902     }
 903   }
 904 }
 905 
 906 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 907   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 908   assert(opr->is_register(), "should not be called otherwise");
 909 
 910   if (opr->is_virtual_register()) {
 911     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 912     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 913 
 914   } else {
 915     int reg = reg_num(opr);
 916     if (is_processed_reg_num(reg)) {
 917       add_use(reg, from, to, use_kind, opr->type_register());
 918     }
 919     reg = reg_numHi(opr);
 920     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 921       add_use(reg, from, to, use_kind, opr->type_register());
 922     }
 923   }
 924 }
 925 
 926 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 927   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 928   assert(opr->is_register(), "should not be called otherwise");
 929 
 930   if (opr->is_virtual_register()) {
 931     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 932     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 933 
 934   } else {
 935     int reg = reg_num(opr);
 936     if (is_processed_reg_num(reg)) {
 937       add_temp(reg, temp_pos, use_kind, opr->type_register());
 938     }
 939     reg = reg_numHi(opr);
 940     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 941       add_temp(reg, temp_pos, use_kind, opr->type_register());
 942     }
 943   }
 944 }
 945 
 946 
 947 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 948   Interval* interval = interval_at(reg_num);
 949   if (interval != NULL) {
 950     assert(interval->reg_num() == reg_num, "wrong interval");
 951 
 952     if (type != T_ILLEGAL) {
 953       interval->set_type(type);
 954     }
 955 
 956     Range* r = interval->first();
 957     if (r->from() <= def_pos) {
 958       // Update the starting point (when a range is first created for a use, its
 959       // start is the beginning of the current block until a def is encountered.)
 960       r->set_from(def_pos);
 961       interval->add_use_pos(def_pos, use_kind);
 962 
 963     } else {
 964       // Dead value - make vacuous interval
 965       // also add use_kind for dead intervals
 966       interval->add_range(def_pos, def_pos + 1);
 967       interval->add_use_pos(def_pos, use_kind);
 968       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 969     }
 970 
 971   } else {
 972     // Dead value - make vacuous interval
 973     // also add use_kind for dead intervals
 974     interval = create_interval(reg_num);
 975     if (type != T_ILLEGAL) {
 976       interval->set_type(type);
 977     }
 978 
 979     interval->add_range(def_pos, def_pos + 1);
 980     interval->add_use_pos(def_pos, use_kind);
 981     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 982   }
 983 
 984   change_spill_definition_pos(interval, def_pos);
 985   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 986         // detection of method-parameters and roundfp-results
 987         // TODO: move this directly to position where use-kind is computed
 988     interval->set_spill_state(startInMemory);
 989   }
 990 }
 991 
 992 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 993   Interval* interval = interval_at(reg_num);
 994   if (interval == NULL) {
 995     interval = create_interval(reg_num);
 996   }
 997   assert(interval->reg_num() == reg_num, "wrong interval");
 998 
 999   if (type != T_ILLEGAL) {
1000     interval->set_type(type);
1001   }
1002 
1003   interval->add_range(from, to);
1004   interval->add_use_pos(to, use_kind);
1005 }
1006 
1007 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1008   Interval* interval = interval_at(reg_num);
1009   if (interval == NULL) {
1010     interval = create_interval(reg_num);
1011   }
1012   assert(interval->reg_num() == reg_num, "wrong interval");
1013 
1014   if (type != T_ILLEGAL) {
1015     interval->set_type(type);
1016   }
1017 
1018   interval->add_range(temp_pos, temp_pos + 1);
1019   interval->add_use_pos(temp_pos, use_kind);
1020 }
1021 
1022 
1023 // the results of this functions are used for optimizing spilling and reloading
1024 // if the functions return shouldHaveRegister and the interval is spilled,
1025 // it is not reloaded to a register.
1026 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1027   if (op->code() == lir_move) {
1028     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1029     LIR_Op1* move = (LIR_Op1*)op;
1030     LIR_Opr res = move->result_opr();
1031     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1032 
1033     if (result_in_memory) {
1034       // Begin of an interval with must_start_in_memory set.
1035       // This interval will always get a stack slot first, so return noUse.
1036       return noUse;
1037 
1038     } else if (move->in_opr()->is_stack()) {
1039       // method argument (condition must be equal to handle_method_arguments)
1040       return noUse;
1041 
1042     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1043       // Move from register to register
1044       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1045         // special handling of phi-function moves inside osr-entry blocks
1046         // input operand must have a register instead of output operand (leads to better register allocation)
1047         return shouldHaveRegister;
1048       }
1049     }
1050   }
1051 
1052   if (opr->is_virtual() &&
1053       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1054     // result is a stack-slot, so prevent immediate reloading
1055     return noUse;
1056   }
1057 
1058   // all other operands require a register
1059   return mustHaveRegister;
1060 }
1061 
1062 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1063   if (op->code() == lir_move) {
1064     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1065     LIR_Op1* move = (LIR_Op1*)op;
1066     LIR_Opr res = move->result_opr();
1067     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1068 
1069     if (result_in_memory) {
1070       // Move to an interval with must_start_in_memory set.
1071       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1072       return mustHaveRegister;
1073 
1074     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1075       // Move from register to register
1076       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1077         // special handling of phi-function moves inside osr-entry blocks
1078         // input operand must have a register instead of output operand (leads to better register allocation)
1079         return mustHaveRegister;
1080       }
1081 
1082       // The input operand is not forced to a register (moves from stack to register are allowed),
1083       // but it is faster if the input operand is in a register
1084       return shouldHaveRegister;
1085     }
1086   }
1087 
1088 
1089 #ifdef X86
1090   if (op->code() == lir_cmove) {
1091     // conditional moves can handle stack operands
1092     assert(op->result_opr()->is_register(), "result must always be in a register");
1093     return shouldHaveRegister;
1094   }
1095 
1096   // optimizations for second input operand of arithmehtic operations on Intel
1097   // this operand is allowed to be on the stack in some cases
1098   BasicType opr_type = opr->type_register();
1099   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1100     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1101       // SSE float instruction (T_DOUBLE only supported with SSE2)
1102       switch (op->code()) {
1103         case lir_cmp:
1104         case lir_add:
1105         case lir_sub:
1106         case lir_mul:
1107         case lir_div:
1108         {
1109           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1110           LIR_Op2* op2 = (LIR_Op2*)op;
1111           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1112             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1113             return shouldHaveRegister;
1114           }
1115         }
1116       }
1117     } else {
1118       // FPU stack float instruction
1119       switch (op->code()) {
1120         case lir_add:
1121         case lir_sub:
1122         case lir_mul:
1123         case lir_div:
1124         {
1125           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1126           LIR_Op2* op2 = (LIR_Op2*)op;
1127           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1128             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1129             return shouldHaveRegister;
1130           }
1131         }
1132       }
1133     }
1134 
1135   } else if (opr_type != T_LONG) {
1136     // integer instruction (note: long operands must always be in register)
1137     switch (op->code()) {
1138       case lir_cmp:
1139       case lir_add:
1140       case lir_sub:
1141       case lir_logic_and:
1142       case lir_logic_or:
1143       case lir_logic_xor:
1144       {
1145         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1146         LIR_Op2* op2 = (LIR_Op2*)op;
1147         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1148           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1149           return shouldHaveRegister;
1150         }
1151       }
1152     }
1153   }
1154 #endif // X86
1155 
1156   // all other operands require a register
1157   return mustHaveRegister;
1158 }
1159 
1160 
1161 void LinearScan::handle_method_arguments(LIR_Op* op) {
1162   // special handling for method arguments (moves from stack to virtual register):
1163   // the interval gets no register assigned, but the stack slot.
1164   // it is split before the first use by the register allocator.
1165 
1166   if (op->code() == lir_move) {
1167     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1168     LIR_Op1* move = (LIR_Op1*)op;
1169 
1170     if (move->in_opr()->is_stack()) {
1171 #ifdef ASSERT
1172       int arg_size = compilation()->method()->arg_size();
1173       LIR_Opr o = move->in_opr();
1174       if (o->is_single_stack()) {
1175         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1176       } else if (o->is_double_stack()) {
1177         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1178       } else {
1179         ShouldNotReachHere();
1180       }
1181 
1182       assert(move->id() > 0, "invalid id");
1183       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1184       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1185 
1186       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1187 #endif
1188 
1189       Interval* interval = interval_at(reg_num(move->result_opr()));
1190 
1191       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1192       interval->set_canonical_spill_slot(stack_slot);
1193       interval->assign_reg(stack_slot);
1194     }
1195   }
1196 }
1197 
1198 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1199   // special handling for doubleword move from memory to register:
1200   // in this case the registers of the input address and the result
1201   // registers must not overlap -> add a temp range for the input registers
1202   if (op->code() == lir_move) {
1203     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1204     LIR_Op1* move = (LIR_Op1*)op;
1205 
1206     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1207       LIR_Address* address = move->in_opr()->as_address_ptr();
1208       if (address != NULL) {
1209         if (address->base()->is_valid()) {
1210           add_temp(address->base(), op->id(), noUse);
1211         }
1212         if (address->index()->is_valid()) {
1213           add_temp(address->index(), op->id(), noUse);
1214         }
1215       }
1216     }
1217   }
1218 }
1219 
1220 void LinearScan::add_register_hints(LIR_Op* op) {
1221   switch (op->code()) {
1222     case lir_move:      // fall through
1223     case lir_convert: {
1224       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1225       LIR_Op1* move = (LIR_Op1*)op;
1226 
1227       LIR_Opr move_from = move->in_opr();
1228       LIR_Opr move_to = move->result_opr();
1229 
1230       if (move_to->is_register() && move_from->is_register()) {
1231         Interval* from = interval_at(reg_num(move_from));
1232         Interval* to = interval_at(reg_num(move_to));
1233         if (from != NULL && to != NULL) {
1234           to->set_register_hint(from);
1235           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1236         }
1237       }
1238       break;
1239     }
1240     case lir_cmove: {
1241       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1242       LIR_Op2* cmove = (LIR_Op2*)op;
1243 
1244       LIR_Opr move_from = cmove->in_opr1();
1245       LIR_Opr move_to = cmove->result_opr();
1246 
1247       if (move_to->is_register() && move_from->is_register()) {
1248         Interval* from = interval_at(reg_num(move_from));
1249         Interval* to = interval_at(reg_num(move_to));
1250         if (from != NULL && to != NULL) {
1251           to->set_register_hint(from);
1252           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1253         }
1254       }
1255       break;
1256     }
1257   }
1258 }
1259 
1260 
1261 void LinearScan::build_intervals() {
1262   TIME_LINEAR_SCAN(timer_build_intervals);
1263 
1264   // initialize interval list with expected number of intervals
1265   // (32 is added to have some space for split children without having to resize the list)
1266   _intervals = IntervalList(num_virtual_regs() + 32);
1267   // initialize all slots that are used by build_intervals
1268   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1269 
1270   // create a list with all caller-save registers (cpu, fpu, xmm)
1271   // when an instruction is a call, a temp range is created for all these registers
1272   int num_caller_save_registers = 0;
1273   int caller_save_registers[LinearScan::nof_regs];
1274 
1275   int i;
1276   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
1277     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1278     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1279     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1280     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1281   }
1282 
1283   // temp ranges for fpu registers are only created when the method has
1284   // virtual fpu operands. Otherwise no allocation for fpu registers is
1285   // perfomed and so the temp ranges would be useless
1286   if (has_fpu_registers()) {
1287 #ifdef X86
1288     if (UseSSE < 2) {
1289 #endif
1290       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1291         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1292         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1293         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1294         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1295       }
1296 #ifdef X86
1297     }
1298     if (UseSSE > 0) {
1299       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1300         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1301         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1302         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1303         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1304       }
1305     }
1306 #endif
1307   }
1308   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1309 
1310 
1311   LIR_OpVisitState visitor;
1312 
1313   // iterate all blocks in reverse order
1314   for (i = block_count() - 1; i >= 0; i--) {
1315     BlockBegin* block = block_at(i);
1316     LIR_OpList* instructions = block->lir()->instructions_list();
1317     int         block_from =   block->first_lir_instruction_id();
1318     int         block_to =     block->last_lir_instruction_id();
1319 
1320     assert(block_from == instructions->at(0)->id(), "must be");
1321     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1322 
1323     // Update intervals for registers live at the end of this block;
1324     BitMap live = block->live_out();
1325     int size = (int)live.size();
1326     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1327       assert(live.at(number), "should not stop here otherwise");
1328       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1329       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1330 
1331       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1332 
1333       // add special use positions for loop-end blocks when the
1334       // interval is used anywhere inside this loop.  It's possible
1335       // that the block was part of a non-natural loop, so it might
1336       // have an invalid loop index.
1337       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1338           block->loop_index() != -1 &&
1339           is_interval_in_loop(number, block->loop_index())) {
1340         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1341       }
1342     }
1343 
1344     // iterate all instructions of the block in reverse order.
1345     // skip the first instruction because it is always a label
1346     // definitions of intervals are processed before uses
1347     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1348     for (int j = instructions->length() - 1; j >= 1; j--) {
1349       LIR_Op* op = instructions->at(j);
1350       int op_id = op->id();
1351 
1352       // visit operation to collect all operands
1353       visitor.visit(op);
1354 
1355       // add a temp range for each register if operation destroys caller-save registers
1356       if (visitor.has_call()) {
1357         for (int k = 0; k < num_caller_save_registers; k++) {
1358           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1359         }
1360         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1361       }
1362 
1363       // Add any platform dependent temps
1364       pd_add_temps(op);
1365 
1366       // visit definitions (output and temp operands)
1367       int k, n;
1368       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1369       for (k = 0; k < n; k++) {
1370         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1371         assert(opr->is_register(), "visitor should only return register operands");
1372         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1373       }
1374 
1375       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1376       for (k = 0; k < n; k++) {
1377         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1378         assert(opr->is_register(), "visitor should only return register operands");
1379         add_temp(opr, op_id, mustHaveRegister);
1380       }
1381 
1382       // visit uses (input operands)
1383       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1384       for (k = 0; k < n; k++) {
1385         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1386         assert(opr->is_register(), "visitor should only return register operands");
1387         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1388       }
1389 
1390       // Add uses of live locals from interpreter's point of view for proper
1391       // debug information generation
1392       // Treat these operands as temp values (if the life range is extended
1393       // to a call site, the value would be in a register at the call otherwise)
1394       n = visitor.info_count();
1395       for (k = 0; k < n; k++) {
1396         CodeEmitInfo* info = visitor.info_at(k);
1397         ValueStack* stack = info->stack();
1398         for_each_state_value(stack, value,
1399           add_use(value, block_from, op_id + 1, noUse);
1400         );
1401       }
1402 
1403       // special steps for some instructions (especially moves)
1404       handle_method_arguments(op);
1405       handle_doubleword_moves(op);
1406       add_register_hints(op);
1407 
1408     } // end of instruction iteration
1409   } // end of block iteration
1410 
1411 
1412   // add the range [0, 1[ to all fixed intervals
1413   // -> the register allocator need not handle unhandled fixed intervals
1414   for (int n = 0; n < LinearScan::nof_regs; n++) {
1415     Interval* interval = interval_at(n);
1416     if (interval != NULL) {
1417       interval->add_range(0, 1);
1418     }
1419   }
1420 }
1421 
1422 
1423 // ********** Phase 5: actual register allocation
1424 
1425 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1426   if (*a != NULL) {
1427     if (*b != NULL) {
1428       return (*a)->from() - (*b)->from();
1429     } else {
1430       return -1;
1431     }
1432   } else {
1433     if (*b != NULL) {
1434       return 1;
1435     } else {
1436       return 0;
1437     }
1438   }
1439 }
1440 
1441 #ifndef PRODUCT
1442 bool LinearScan::is_sorted(IntervalArray* intervals) {
1443   int from = -1;
1444   int i, j;
1445   for (i = 0; i < intervals->length(); i ++) {
1446     Interval* it = intervals->at(i);
1447     if (it != NULL) {
1448       if (from > it->from()) {
1449         assert(false, "");
1450         return false;
1451       }
1452       from = it->from();
1453     }
1454   }
1455 
1456   // check in both directions if sorted list and unsorted list contain same intervals
1457   for (i = 0; i < interval_count(); i++) {
1458     if (interval_at(i) != NULL) {
1459       int num_found = 0;
1460       for (j = 0; j < intervals->length(); j++) {
1461         if (interval_at(i) == intervals->at(j)) {
1462           num_found++;
1463         }
1464       }
1465       assert(num_found == 1, "lists do not contain same intervals");
1466     }
1467   }
1468   for (j = 0; j < intervals->length(); j++) {
1469     int num_found = 0;
1470     for (i = 0; i < interval_count(); i++) {
1471       if (interval_at(i) == intervals->at(j)) {
1472         num_found++;
1473       }
1474     }
1475     assert(num_found == 1, "lists do not contain same intervals");
1476   }
1477 
1478   return true;
1479 }
1480 #endif
1481 
1482 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1483   if (*prev != NULL) {
1484     (*prev)->set_next(interval);
1485   } else {
1486     *first = interval;
1487   }
1488   *prev = interval;
1489 }
1490 
1491 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1492   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1493 
1494   *list1 = *list2 = Interval::end();
1495 
1496   Interval* list1_prev = NULL;
1497   Interval* list2_prev = NULL;
1498   Interval* v;
1499 
1500   const int n = _sorted_intervals->length();
1501   for (int i = 0; i < n; i++) {
1502     v = _sorted_intervals->at(i);
1503     if (v == NULL) continue;
1504 
1505     if (is_list1(v)) {
1506       add_to_list(list1, &list1_prev, v);
1507     } else if (is_list2 == NULL || is_list2(v)) {
1508       add_to_list(list2, &list2_prev, v);
1509     }
1510   }
1511 
1512   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1513   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1514 
1515   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1516   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1517 }
1518 
1519 
1520 void LinearScan::sort_intervals_before_allocation() {
1521   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1522 
1523   IntervalList* unsorted_list = &_intervals;
1524   int unsorted_len = unsorted_list->length();
1525   int sorted_len = 0;
1526   int unsorted_idx;
1527   int sorted_idx = 0;
1528   int sorted_from_max = -1;
1529 
1530   // calc number of items for sorted list (sorted list must not contain NULL values)
1531   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1532     if (unsorted_list->at(unsorted_idx) != NULL) {
1533       sorted_len++;
1534     }
1535   }
1536   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1537 
1538   // special sorting algorithm: the original interval-list is almost sorted,
1539   // only some intervals are swapped. So this is much faster than a complete QuickSort
1540   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1541     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1542 
1543     if (cur_interval != NULL) {
1544       int cur_from = cur_interval->from();
1545 
1546       if (sorted_from_max <= cur_from) {
1547         sorted_list->at_put(sorted_idx++, cur_interval);
1548         sorted_from_max = cur_interval->from();
1549       } else {
1550         // the asumption that the intervals are already sorted failed,
1551         // so this interval must be sorted in manually
1552         int j;
1553         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1554           sorted_list->at_put(j + 1, sorted_list->at(j));
1555         }
1556         sorted_list->at_put(j + 1, cur_interval);
1557         sorted_idx++;
1558       }
1559     }
1560   }
1561   _sorted_intervals = sorted_list;
1562 }
1563 
1564 void LinearScan::sort_intervals_after_allocation() {
1565   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1566 
1567   IntervalArray* old_list      = _sorted_intervals;
1568   IntervalList*  new_list      = _new_intervals_from_allocation;
1569   int old_len = old_list->length();
1570   int new_len = new_list->length();
1571 
1572   if (new_len == 0) {
1573     // no intervals have been added during allocation, so sorted list is already up to date
1574     return;
1575   }
1576 
1577   // conventional sort-algorithm for new intervals
1578   new_list->sort(interval_cmp);
1579 
1580   // merge old and new list (both already sorted) into one combined list
1581   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1582   int old_idx = 0;
1583   int new_idx = 0;
1584 
1585   while (old_idx + new_idx < old_len + new_len) {
1586     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1587       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1588       old_idx++;
1589     } else {
1590       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1591       new_idx++;
1592     }
1593   }
1594 
1595   _sorted_intervals = combined_list;
1596 }
1597 
1598 
1599 void LinearScan::allocate_registers() {
1600   TIME_LINEAR_SCAN(timer_allocate_registers);
1601 
1602   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1603   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1604 
1605   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
1606   if (has_fpu_registers()) {
1607     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1608 #ifdef ASSERT
1609   } else {
1610     // fpu register allocation is omitted because no virtual fpu registers are present
1611     // just check this again...
1612     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
1613     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1614 #endif
1615   }
1616 
1617   // allocate cpu registers
1618   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1619   cpu_lsw.walk();
1620   cpu_lsw.finish_allocation();
1621 
1622   if (has_fpu_registers()) {
1623     // allocate fpu registers
1624     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1625     fpu_lsw.walk();
1626     fpu_lsw.finish_allocation();
1627   }
1628 }
1629 
1630 
1631 // ********** Phase 6: resolve data flow
1632 // (insert moves at edges between blocks if intervals have been split)
1633 
1634 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1635 // instead of returning NULL
1636 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1637   Interval* result = interval->split_child_at_op_id(op_id, mode);
1638   if (result != NULL) {
1639     return result;
1640   }
1641 
1642   assert(false, "must find an interval, but do a clean bailout in product mode");
1643   result = new Interval(LIR_OprDesc::vreg_base);
1644   result->assign_reg(0);
1645   result->set_type(T_INT);
1646   BAILOUT_("LinearScan: interval is NULL", result);
1647 }
1648 
1649 
1650 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1651   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1652   assert(interval_at(reg_num) != NULL, "no interval found");
1653 
1654   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1655 }
1656 
1657 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1658   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1659   assert(interval_at(reg_num) != NULL, "no interval found");
1660 
1661   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1662 }
1663 
1664 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1665   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1666   assert(interval_at(reg_num) != NULL, "no interval found");
1667 
1668   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1669 }
1670 
1671 
1672 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1673   DEBUG_ONLY(move_resolver.check_empty());
1674 
1675   const int num_regs = num_virtual_regs();
1676   const int size = live_set_size();
1677   const BitMap live_at_edge = to_block->live_in();
1678 
1679   // visit all registers where the live_at_edge bit is set
1680   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1681     assert(r < num_regs, "live information set for not exisiting interval");
1682     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1683 
1684     Interval* from_interval = interval_at_block_end(from_block, r);
1685     Interval* to_interval = interval_at_block_begin(to_block, r);
1686 
1687     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1688       // need to insert move instruction
1689       move_resolver.add_mapping(from_interval, to_interval);
1690     }
1691   }
1692 }
1693 
1694 
1695 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1696   if (from_block->number_of_sux() <= 1) {
1697     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1698 
1699     LIR_OpList* instructions = from_block->lir()->instructions_list();
1700     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1701     if (branch != NULL) {
1702       // insert moves before branch
1703       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1704       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1705     } else {
1706       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1707     }
1708 
1709   } else {
1710     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1711 #ifdef ASSERT
1712     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1713 
1714     // because the number of predecessor edges matches the number of
1715     // successor edges, blocks which are reached by switch statements
1716     // may have be more than one predecessor but it will be guaranteed
1717     // that all predecessors will be the same.
1718     for (int i = 0; i < to_block->number_of_preds(); i++) {
1719       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1720     }
1721 #endif
1722 
1723     move_resolver.set_insert_position(to_block->lir(), 0);
1724   }
1725 }
1726 
1727 
1728 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1729 void LinearScan::resolve_data_flow() {
1730   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1731 
1732   int num_blocks = block_count();
1733   MoveResolver move_resolver(this);
1734   BitMap block_completed(num_blocks);  block_completed.clear();
1735   BitMap already_resolved(num_blocks); already_resolved.clear();
1736 
1737   int i;
1738   for (i = 0; i < num_blocks; i++) {
1739     BlockBegin* block = block_at(i);
1740 
1741     // check if block has only one predecessor and only one successor
1742     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1743       LIR_OpList* instructions = block->lir()->instructions_list();
1744       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1745       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1746       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1747 
1748       // check if block is empty (only label and branch)
1749       if (instructions->length() == 2) {
1750         BlockBegin* pred = block->pred_at(0);
1751         BlockBegin* sux = block->sux_at(0);
1752 
1753         // prevent optimization of two consecutive blocks
1754         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1755           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1756           block_completed.set_bit(block->linear_scan_number());
1757 
1758           // directly resolve between pred and sux (without looking at the empty block between)
1759           resolve_collect_mappings(pred, sux, move_resolver);
1760           if (move_resolver.has_mappings()) {
1761             move_resolver.set_insert_position(block->lir(), 0);
1762             move_resolver.resolve_and_append_moves();
1763           }
1764         }
1765       }
1766     }
1767   }
1768 
1769 
1770   for (i = 0; i < num_blocks; i++) {
1771     if (!block_completed.at(i)) {
1772       BlockBegin* from_block = block_at(i);
1773       already_resolved.set_from(block_completed);
1774 
1775       int num_sux = from_block->number_of_sux();
1776       for (int s = 0; s < num_sux; s++) {
1777         BlockBegin* to_block = from_block->sux_at(s);
1778 
1779         // check for duplicate edges between the same blocks (can happen with switch blocks)
1780         if (!already_resolved.at(to_block->linear_scan_number())) {
1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1782           already_resolved.set_bit(to_block->linear_scan_number());
1783 
1784           // collect all intervals that have been split between from_block and to_block
1785           resolve_collect_mappings(from_block, to_block, move_resolver);
1786           if (move_resolver.has_mappings()) {
1787             resolve_find_insert_pos(from_block, to_block, move_resolver);
1788             move_resolver.resolve_and_append_moves();
1789           }
1790         }
1791       }
1792     }
1793   }
1794 }
1795 
1796 
1797 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1798   if (interval_at(reg_num) == NULL) {
1799     // if a phi function is never used, no interval is created -> ignore this
1800     return;
1801   }
1802 
1803   Interval* interval = interval_at_block_begin(block, reg_num);
1804   int reg = interval->assigned_reg();
1805   int regHi = interval->assigned_regHi();
1806 
1807   if ((reg < nof_regs && interval->always_in_memory()) ||
1808       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1809     // the interval is split to get a short range that is located on the stack
1810     // in the following two cases:
1811     // * the interval started in memory (e.g. method parameter), but is currently in a register
1812     //   this is an optimization for exception handling that reduces the number of moves that
1813     //   are necessary for resolving the states when an exception uses this exception handler
1814     // * the interval would be on the fpu stack at the begin of the exception handler
1815     //   this is not allowed because of the complicated fpu stack handling on Intel
1816 
1817     // range that will be spilled to memory
1818     int from_op_id = block->first_lir_instruction_id();
1819     int to_op_id = from_op_id + 1;  // short live range of length 1
1820     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1821            "no split allowed between exception entry and first instruction");
1822 
1823     if (interval->from() != from_op_id) {
1824       // the part before from_op_id is unchanged
1825       interval = interval->split(from_op_id);
1826       interval->assign_reg(reg, regHi);
1827       append_interval(interval);
1828     }
1829     assert(interval->from() == from_op_id, "must be true now");
1830 
1831     Interval* spilled_part = interval;
1832     if (interval->to() != to_op_id) {
1833       // the part after to_op_id is unchanged
1834       spilled_part = interval->split_from_start(to_op_id);
1835       append_interval(spilled_part);
1836       move_resolver.add_mapping(spilled_part, interval);
1837     }
1838     assign_spill_slot(spilled_part);
1839 
1840     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1841   }
1842 }
1843 
1844 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1845   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1846   DEBUG_ONLY(move_resolver.check_empty());
1847 
1848   // visit all registers where the live_in bit is set
1849   int size = live_set_size();
1850   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1851     resolve_exception_entry(block, r, move_resolver);
1852   }
1853 
1854   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1855   for_each_phi_fun(block, phi,
1856     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1857   );
1858 
1859   if (move_resolver.has_mappings()) {
1860     // insert moves after first instruction
1861     move_resolver.set_insert_position(block->lir(), 1);
1862     move_resolver.resolve_and_append_moves();
1863   }
1864 }
1865 
1866 
1867 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1868   if (interval_at(reg_num) == NULL) {
1869     // if a phi function is never used, no interval is created -> ignore this
1870     return;
1871   }
1872 
1873   // the computation of to_interval is equal to resolve_collect_mappings,
1874   // but from_interval is more complicated because of phi functions
1875   BlockBegin* to_block = handler->entry_block();
1876   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1877 
1878   if (phi != NULL) {
1879     // phi function of the exception entry block
1880     // no moves are created for this phi function in the LIR_Generator, so the
1881     // interval at the throwing instruction must be searched using the operands
1882     // of the phi function
1883     Value from_value = phi->operand_at(handler->phi_operand());
1884 
1885     // with phi functions it can happen that the same from_value is used in
1886     // multiple mappings, so notify move-resolver that this is allowed
1887     move_resolver.set_multiple_reads_allowed();
1888 
1889     Constant* con = from_value->as_Constant();
1890     if (con != NULL && !con->is_pinned()) {
1891       // unpinned constants may have no register, so add mapping from constant to interval
1892       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1893     } else {
1894       // search split child at the throwing op_id
1895       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1896       move_resolver.add_mapping(from_interval, to_interval);
1897     }
1898 
1899   } else {
1900     // no phi function, so use reg_num also for from_interval
1901     // search split child at the throwing op_id
1902     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1903     if (from_interval != to_interval) {
1904       // optimization to reduce number of moves: when to_interval is on stack and
1905       // the stack slot is known to be always correct, then no move is necessary
1906       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1907         move_resolver.add_mapping(from_interval, to_interval);
1908       }
1909     }
1910   }
1911 }
1912 
1913 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1914   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1915 
1916   DEBUG_ONLY(move_resolver.check_empty());
1917   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1918   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1919   assert(handler->entry_code() == NULL, "code already present");
1920 
1921   // visit all registers where the live_in bit is set
1922   BlockBegin* block = handler->entry_block();
1923   int size = live_set_size();
1924   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1925     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1926   }
1927 
1928   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1929   for_each_phi_fun(block, phi,
1930     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1931   );
1932 
1933   if (move_resolver.has_mappings()) {
1934     LIR_List* entry_code = new LIR_List(compilation());
1935     move_resolver.set_insert_position(entry_code, 0);
1936     move_resolver.resolve_and_append_moves();
1937 
1938     entry_code->jump(handler->entry_block());
1939     handler->set_entry_code(entry_code);
1940   }
1941 }
1942 
1943 
1944 void LinearScan::resolve_exception_handlers() {
1945   MoveResolver move_resolver(this);
1946   LIR_OpVisitState visitor;
1947   int num_blocks = block_count();
1948 
1949   int i;
1950   for (i = 0; i < num_blocks; i++) {
1951     BlockBegin* block = block_at(i);
1952     if (block->is_set(BlockBegin::exception_entry_flag)) {
1953       resolve_exception_entry(block, move_resolver);
1954     }
1955   }
1956 
1957   for (i = 0; i < num_blocks; i++) {
1958     BlockBegin* block = block_at(i);
1959     LIR_List* ops = block->lir();
1960     int num_ops = ops->length();
1961 
1962     // iterate all instructions of the block. skip the first because it is always a label
1963     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1964     for (int j = 1; j < num_ops; j++) {
1965       LIR_Op* op = ops->at(j);
1966       int op_id = op->id();
1967 
1968       if (op_id != -1 && has_info(op_id)) {
1969         // visit operation to collect all operands
1970         visitor.visit(op);
1971         assert(visitor.info_count() > 0, "should not visit otherwise");
1972 
1973         XHandlers* xhandlers = visitor.all_xhandler();
1974         int n = xhandlers->length();
1975         for (int k = 0; k < n; k++) {
1976           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
1977         }
1978 
1979 #ifdef ASSERT
1980       } else {
1981         visitor.visit(op);
1982         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
1983 #endif
1984       }
1985     }
1986   }
1987 }
1988 
1989 
1990 // ********** Phase 7: assign register numbers back to LIR
1991 // (includes computation of debug information and oop maps)
1992 
1993 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
1994   VMReg reg = interval->cached_vm_reg();
1995   if (!reg->is_valid() ) {
1996     reg = vm_reg_for_operand(operand_for_interval(interval));
1997     interval->set_cached_vm_reg(reg);
1998   }
1999   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2000   return reg;
2001 }
2002 
2003 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2004   assert(opr->is_oop(), "currently only implemented for oop operands");
2005   return frame_map()->regname(opr);
2006 }
2007 
2008 
2009 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2010   LIR_Opr opr = interval->cached_opr();
2011   if (opr->is_illegal()) {
2012     opr = calc_operand_for_interval(interval);
2013     interval->set_cached_opr(opr);
2014   }
2015 
2016   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2017   return opr;
2018 }
2019 
2020 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2021   int assigned_reg = interval->assigned_reg();
2022   BasicType type = interval->type();
2023 
2024   if (assigned_reg >= nof_regs) {
2025     // stack slot
2026     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2027     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2028 
2029   } else {
2030     // register
2031     switch (type) {
2032       case T_OBJECT: {
2033         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2034         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2035         return LIR_OprFact::single_cpu_oop(assigned_reg);
2036       }
2037 
2038 #ifdef __SOFTFP__
2039       case T_FLOAT:  // fall through
2040 #endif // __SOFTFP__
2041       case T_INT: {
2042         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2043         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2044         return LIR_OprFact::single_cpu(assigned_reg);
2045       }
2046 
2047 #ifdef __SOFTFP__
2048       case T_DOUBLE:  // fall through
2049 #endif // __SOFTFP__
2050       case T_LONG: {
2051         int assigned_regHi = interval->assigned_regHi();
2052         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2053         assert(num_physical_regs(T_LONG) == 1 ||
2054                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2055 
2056         assert(assigned_reg != assigned_regHi, "invalid allocation");
2057         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2058                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2059         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2060         if (requires_adjacent_regs(T_LONG)) {
2061           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2062         }
2063 
2064 #ifdef _LP64
2065         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2066 #else
2067 #if defined(SPARC) || defined(PPC)
2068         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2069 #else
2070         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2071 #endif // SPARC
2072 #endif // LP64
2073       }
2074 
2075 #ifndef __SOFTFP__
2076       case T_FLOAT: {
2077 #ifdef X86
2078         if (UseSSE >= 1) {
2079           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2080           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2081           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2082         }
2083 #endif
2084 
2085         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2086         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2087         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2088       }
2089 
2090       case T_DOUBLE: {
2091 #ifdef X86
2092         if (UseSSE >= 2) {
2093           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2094           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2095           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2096         }
2097 #endif
2098 
2099 #ifdef SPARC
2100         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2101         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2102         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2103         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2104 #elif defined(ARM)
2105         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2106         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2107         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2108         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2109 #else
2110         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2111         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2112         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2113 #endif
2114         return result;
2115       }
2116 #endif // __SOFTFP__
2117 
2118       default: {
2119         ShouldNotReachHere();
2120         return LIR_OprFact::illegalOpr;
2121       }
2122     }
2123   }
2124 }
2125 
2126 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2127   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2128   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2129 }
2130 
2131 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2132   assert(opr->is_virtual(), "should not call this otherwise");
2133 
2134   Interval* interval = interval_at(opr->vreg_number());
2135   assert(interval != NULL, "interval must exist");
2136 
2137   if (op_id != -1) {
2138 #ifdef ASSERT
2139     BlockBegin* block = block_of_op_with_id(op_id);
2140     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2141       // check if spill moves could have been appended at the end of this block, but
2142       // before the branch instruction. So the split child information for this branch would
2143       // be incorrect.
2144       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2145       if (branch != NULL) {
2146         if (block->live_out().at(opr->vreg_number())) {
2147           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2148           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2149         }
2150       }
2151     }
2152 #endif
2153 
2154     // operands are not changed when an interval is split during allocation,
2155     // so search the right interval here
2156     interval = split_child_at_op_id(interval, op_id, mode);
2157   }
2158 
2159   LIR_Opr res = operand_for_interval(interval);
2160 
2161 #ifdef X86
2162   // new semantic for is_last_use: not only set on definite end of interval,
2163   // but also before hole
2164   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2165   // last use information is completely correct
2166   // information is only needed for fpu stack allocation
2167   if (res->is_fpu_register()) {
2168     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2169       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2170       res = res->make_last_use();
2171     }
2172   }
2173 #endif
2174 
2175   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2176 
2177   return res;
2178 }
2179 
2180 
2181 #ifdef ASSERT
2182 // some methods used to check correctness of debug information
2183 
2184 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2185   if (values == NULL) {
2186     return;
2187   }
2188 
2189   for (int i = 0; i < values->length(); i++) {
2190     ScopeValue* value = values->at(i);
2191 
2192     if (value->is_location()) {
2193       Location location = ((LocationValue*)value)->location();
2194       assert(location.where() == Location::on_stack, "value is in register");
2195     }
2196   }
2197 }
2198 
2199 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2200   if (values == NULL) {
2201     return;
2202   }
2203 
2204   for (int i = 0; i < values->length(); i++) {
2205     MonitorValue* value = values->at(i);
2206 
2207     if (value->owner()->is_location()) {
2208       Location location = ((LocationValue*)value->owner())->location();
2209       assert(location.where() == Location::on_stack, "owner is in register");
2210     }
2211     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2212   }
2213 }
2214 
2215 void assert_equal(Location l1, Location l2) {
2216   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2217 }
2218 
2219 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2220   if (v1->is_location()) {
2221     assert(v2->is_location(), "");
2222     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2223   } else if (v1->is_constant_int()) {
2224     assert(v2->is_constant_int(), "");
2225     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2226   } else if (v1->is_constant_double()) {
2227     assert(v2->is_constant_double(), "");
2228     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2229   } else if (v1->is_constant_long()) {
2230     assert(v2->is_constant_long(), "");
2231     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2232   } else if (v1->is_constant_oop()) {
2233     assert(v2->is_constant_oop(), "");
2234     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2235   } else {
2236     ShouldNotReachHere();
2237   }
2238 }
2239 
2240 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2241   assert_equal(m1->owner(), m2->owner());
2242   assert_equal(m1->basic_lock(), m2->basic_lock());
2243 }
2244 
2245 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2246   assert(d1->scope() == d2->scope(), "not equal");
2247   assert(d1->bci() == d2->bci(), "not equal");
2248 
2249   if (d1->locals() != NULL) {
2250     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2251     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2252     for (int i = 0; i < d1->locals()->length(); i++) {
2253       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2254     }
2255   } else {
2256     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2257   }
2258 
2259   if (d1->expressions() != NULL) {
2260     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2261     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2262     for (int i = 0; i < d1->expressions()->length(); i++) {
2263       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2264     }
2265   } else {
2266     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2267   }
2268 
2269   if (d1->monitors() != NULL) {
2270     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2271     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2272     for (int i = 0; i < d1->monitors()->length(); i++) {
2273       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2274     }
2275   } else {
2276     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2277   }
2278 
2279   if (d1->caller() != NULL) {
2280     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2281     assert_equal(d1->caller(), d2->caller());
2282   } else {
2283     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2284   }
2285 }
2286 
2287 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2288   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2289     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
2290     switch (code) {
2291       case Bytecodes::_ifnull    : // fall through
2292       case Bytecodes::_ifnonnull : // fall through
2293       case Bytecodes::_ifeq      : // fall through
2294       case Bytecodes::_ifne      : // fall through
2295       case Bytecodes::_iflt      : // fall through
2296       case Bytecodes::_ifge      : // fall through
2297       case Bytecodes::_ifgt      : // fall through
2298       case Bytecodes::_ifle      : // fall through
2299       case Bytecodes::_if_icmpeq : // fall through
2300       case Bytecodes::_if_icmpne : // fall through
2301       case Bytecodes::_if_icmplt : // fall through
2302       case Bytecodes::_if_icmpge : // fall through
2303       case Bytecodes::_if_icmpgt : // fall through
2304       case Bytecodes::_if_icmple : // fall through
2305       case Bytecodes::_if_acmpeq : // fall through
2306       case Bytecodes::_if_acmpne :
2307         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2308         break;
2309     }
2310   }
2311 }
2312 
2313 #endif // ASSERT
2314 
2315 
2316 IntervalWalker* LinearScan::init_compute_oop_maps() {
2317   // setup lists of potential oops for walking
2318   Interval* oop_intervals;
2319   Interval* non_oop_intervals;
2320 
2321   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2322 
2323   // intervals that have no oops inside need not to be processed
2324   // to ensure a walking until the last instruction id, add a dummy interval
2325   // with a high operation id
2326   non_oop_intervals = new Interval(any_reg);
2327   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2328 
2329   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2330 }
2331 
2332 
2333 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2334   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2335 
2336   // walk before the current operation -> intervals that start at
2337   // the operation (= output operands of the operation) are not
2338   // included in the oop map
2339   iw->walk_before(op->id());
2340 
2341   int frame_size = frame_map()->framesize();
2342   int arg_count = frame_map()->oop_map_arg_count();
2343   OopMap* map = new OopMap(frame_size, arg_count);
2344 
2345   // Check if this is a patch site.
2346   bool is_patch_info = false;
2347   if (op->code() == lir_move) {
2348     assert(!is_call_site, "move must not be a call site");
2349     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2350     LIR_Op1* move = (LIR_Op1*)op;
2351 
2352     is_patch_info = move->patch_code() != lir_patch_none;
2353   }
2354 
2355   // Iterate through active intervals
2356   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2357     int assigned_reg = interval->assigned_reg();
2358 
2359     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2360     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2361     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2362 
2363     // Check if this range covers the instruction. Intervals that
2364     // start or end at the current operation are not included in the
2365     // oop map, except in the case of patching moves.  For patching
2366     // moves, any intervals which end at this instruction are included
2367     // in the oop map since we may safepoint while doing the patch
2368     // before we've consumed the inputs.
2369     if (is_patch_info || op->id() < interval->current_to()) {
2370 
2371       // caller-save registers must not be included into oop-maps at calls
2372       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2373 
2374       VMReg name = vm_reg_for_interval(interval);
2375       map->set_oop(name);
2376 
2377       // Spill optimization: when the stack value is guaranteed to be always correct,
2378       // then it must be added to the oop map even if the interval is currently in a register
2379       if (interval->always_in_memory() &&
2380           op->id() > interval->spill_definition_pos() &&
2381           interval->assigned_reg() != interval->canonical_spill_slot()) {
2382         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2383         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2384         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2385 
2386         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2387       }
2388     }
2389   }
2390 
2391   // add oops from lock stack
2392   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2393   int locks_count = info->stack()->locks_size();
2394   for (int i = 0; i < locks_count; i++) {
2395     map->set_oop(frame_map()->monitor_object_regname(i));
2396   }
2397 
2398   return map;
2399 }
2400 
2401 
2402 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2403   assert(visitor.info_count() > 0, "no oop map needed");
2404 
2405   // compute oop_map only for first CodeEmitInfo
2406   // because it is (in most cases) equal for all other infos of the same operation
2407   CodeEmitInfo* first_info = visitor.info_at(0);
2408   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2409 
2410   for (int i = 0; i < visitor.info_count(); i++) {
2411     CodeEmitInfo* info = visitor.info_at(i);
2412     OopMap* oop_map = first_oop_map;
2413 
2414     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2415       // this info has a different number of locks then the precomputed oop map
2416       // (possible for lock and unlock instructions) -> compute oop map with
2417       // correct lock information
2418       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2419     }
2420 
2421     if (info->_oop_map == NULL) {
2422       info->_oop_map = oop_map;
2423     } else {
2424       // a CodeEmitInfo can not be shared between different LIR-instructions
2425       // because interval splitting can occur anywhere between two instructions
2426       // and so the oop maps must be different
2427       // -> check if the already set oop_map is exactly the one calculated for this operation
2428       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2429     }
2430   }
2431 }
2432 
2433 
2434 // frequently used constants
2435 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
2436 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
2437 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
2438 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
2439 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
2440 LocationValue         _illegal_value = LocationValue(Location());
2441 
2442 void LinearScan::init_compute_debug_info() {
2443   // cache for frequently used scope values
2444   // (cpu registers and stack slots)
2445   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2446 }
2447 
2448 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2449   Location loc;
2450   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2451     bailout("too large frame");
2452   }
2453   ScopeValue* object_scope_value = new LocationValue(loc);
2454 
2455   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2456     bailout("too large frame");
2457   }
2458   return new MonitorValue(object_scope_value, loc);
2459 }
2460 
2461 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2462   Location loc;
2463   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2464     bailout("too large frame");
2465   }
2466   return new LocationValue(loc);
2467 }
2468 
2469 
2470 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2471   assert(opr->is_constant(), "should not be called otherwise");
2472 
2473   LIR_Const* c = opr->as_constant_ptr();
2474   BasicType t = c->type();
2475   switch (t) {
2476     case T_OBJECT: {
2477       jobject value = c->as_jobject();
2478       if (value == NULL) {
2479         scope_values->append(&_oop_null_scope_value);
2480       } else {
2481         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2482       }
2483       return 1;
2484     }
2485 
2486     case T_INT: // fall through
2487     case T_FLOAT: {
2488       int value = c->as_jint_bits();
2489       switch (value) {
2490         case -1: scope_values->append(&_int_m1_scope_value); break;
2491         case 0:  scope_values->append(&_int_0_scope_value); break;
2492         case 1:  scope_values->append(&_int_1_scope_value); break;
2493         case 2:  scope_values->append(&_int_2_scope_value); break;
2494         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2495       }
2496       return 1;
2497     }
2498 
2499     case T_LONG: // fall through
2500     case T_DOUBLE: {
2501 #ifdef _LP64
2502       scope_values->append(&_int_0_scope_value);
2503       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2504 #else
2505       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2506         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2507         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2508       } else {
2509         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2510         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2511       }
2512 #endif
2513       return 2;
2514     }
2515 
2516     case T_ADDRESS: {
2517 #ifdef _LP64
2518       scope_values->append(new ConstantLongValue(c->as_jint()));
2519 #else
2520       scope_values->append(new ConstantIntValue(c->as_jint()));
2521 #endif
2522       return 1;
2523     }
2524 
2525     default:
2526       ShouldNotReachHere();
2527       return -1;
2528   }
2529 }
2530 
2531 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2532   if (opr->is_single_stack()) {
2533     int stack_idx = opr->single_stack_ix();
2534     bool is_oop = opr->is_oop_register();
2535     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2536 
2537     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2538     if (sv == NULL) {
2539       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2540       sv = location_for_name(stack_idx, loc_type);
2541       _scope_value_cache.at_put(cache_idx, sv);
2542     }
2543 
2544     // check if cached value is correct
2545     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2546 
2547     scope_values->append(sv);
2548     return 1;
2549 
2550   } else if (opr->is_single_cpu()) {
2551     bool is_oop = opr->is_oop_register();
2552     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2553     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2554 
2555     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2556     if (sv == NULL) {
2557       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2558       VMReg rname = frame_map()->regname(opr);
2559       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2560       _scope_value_cache.at_put(cache_idx, sv);
2561     }
2562 
2563     // check if cached value is correct
2564     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2565 
2566     scope_values->append(sv);
2567     return 1;
2568 
2569 #ifdef X86
2570   } else if (opr->is_single_xmm()) {
2571     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2572     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2573 
2574     scope_values->append(sv);
2575     return 1;
2576 #endif
2577 
2578   } else if (opr->is_single_fpu()) {
2579 #ifdef X86
2580     // the exact location of fpu stack values is only known
2581     // during fpu stack allocation, so the stack allocator object
2582     // must be present
2583     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2584     assert(_fpu_stack_allocator != NULL, "must be present");
2585     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2586 #endif
2587 
2588     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2589     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2590     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2591 
2592     scope_values->append(sv);
2593     return 1;
2594 
2595   } else {
2596     // double-size operands
2597 
2598     ScopeValue* first;
2599     ScopeValue* second;
2600 
2601     if (opr->is_double_stack()) {
2602 #ifdef _LP64
2603       Location loc1;
2604       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2605       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2606         bailout("too large frame");
2607       }
2608       // Does this reverse on x86 vs. sparc?
2609       first =  new LocationValue(loc1);
2610       second = &_int_0_scope_value;
2611 #else
2612       Location loc1, loc2;
2613       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2614         bailout("too large frame");
2615       }
2616       first =  new LocationValue(loc1);
2617       second = new LocationValue(loc2);
2618 #endif // _LP64
2619 
2620     } else if (opr->is_double_cpu()) {
2621 #ifdef _LP64
2622       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2623       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2624       second = &_int_0_scope_value;
2625 #else
2626       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2627       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2628 
2629       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2630         // lo/hi and swapped relative to first and second, so swap them
2631         VMReg tmp = rname_first;
2632         rname_first = rname_second;
2633         rname_second = tmp;
2634       }
2635 
2636       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2637       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2638 #endif //_LP64
2639 
2640 
2641 #ifdef X86
2642     } else if (opr->is_double_xmm()) {
2643       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2644       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2645 #  ifdef _LP64
2646       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2647       second = &_int_0_scope_value;
2648 #  else
2649       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2650       // %%% This is probably a waste but we'll keep things as they were for now
2651       if (true) {
2652         VMReg rname_second = rname_first->next();
2653         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2654       }
2655 #  endif
2656 #endif
2657 
2658     } else if (opr->is_double_fpu()) {
2659       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2660       // the double as float registers in the native ordering. On X86,
2661       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2662       // the low-order word of the double and fpu_regnrLo + 1 is the
2663       // name for the other half.  *first and *second must represent the
2664       // least and most significant words, respectively.
2665 
2666 #ifdef X86
2667       // the exact location of fpu stack values is only known
2668       // during fpu stack allocation, so the stack allocator object
2669       // must be present
2670       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2671       assert(_fpu_stack_allocator != NULL, "must be present");
2672       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2673 
2674       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2675 #endif
2676 #ifdef SPARC
2677       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2678 #endif
2679 #ifdef ARM
2680       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2681 #endif
2682 #ifdef PPC
2683       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2684 #endif
2685 
2686       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2687 #ifdef _LP64
2688       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2689       second = &_int_0_scope_value;
2690 #else
2691       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2692       // %%% This is probably a waste but we'll keep things as they were for now
2693       if (true) {
2694         VMReg rname_second = rname_first->next();
2695         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2696       }
2697 #endif
2698 
2699     } else {
2700       ShouldNotReachHere();
2701       first = NULL;
2702       second = NULL;
2703     }
2704 
2705     assert(first != NULL && second != NULL, "must be set");
2706     // The convention the interpreter uses is that the second local
2707     // holds the first raw word of the native double representation.
2708     // This is actually reasonable, since locals and stack arrays
2709     // grow downwards in all implementations.
2710     // (If, on some machine, the interpreter's Java locals or stack
2711     // were to grow upwards, the embedded doubles would be word-swapped.)
2712     scope_values->append(second);
2713     scope_values->append(first);
2714     return 2;
2715   }
2716 }
2717 
2718 
2719 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2720   if (value != NULL) {
2721     LIR_Opr opr = value->operand();
2722     Constant* con = value->as_Constant();
2723 
2724     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2725     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2726 
2727     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2728       // Unpinned constants may have a virtual operand for a part of the lifetime
2729       // or may be illegal when it was optimized away,
2730       // so always use a constant operand
2731       opr = LIR_OprFact::value_type(con->type());
2732     }
2733     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2734 
2735     if (opr->is_virtual()) {
2736       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2737 
2738       BlockBegin* block = block_of_op_with_id(op_id);
2739       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2740         // generating debug information for the last instruction of a block.
2741         // if this instruction is a branch, spill moves are inserted before this branch
2742         // and so the wrong operand would be returned (spill moves at block boundaries are not
2743         // considered in the live ranges of intervals)
2744         // Solution: use the first op_id of the branch target block instead.
2745         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2746           if (block->live_out().at(opr->vreg_number())) {
2747             op_id = block->sux_at(0)->first_lir_instruction_id();
2748             mode = LIR_OpVisitState::outputMode;
2749           }
2750         }
2751       }
2752 
2753       // Get current location of operand
2754       // The operand must be live because debug information is considered when building the intervals
2755       // if the interval is not live, color_lir_opr will cause an assertion failure
2756       opr = color_lir_opr(opr, op_id, mode);
2757       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2758 
2759       // Append to ScopeValue array
2760       return append_scope_value_for_operand(opr, scope_values);
2761 
2762     } else {
2763       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2764       assert(opr->is_constant(), "operand must be constant");
2765 
2766       return append_scope_value_for_constant(opr, scope_values);
2767     }
2768   } else {
2769     // append a dummy value because real value not needed
2770     scope_values->append(&_illegal_value);
2771     return 1;
2772   }
2773 }
2774 
2775 
2776 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
2777   IRScopeDebugInfo* caller_debug_info = NULL;
2778   int stack_begin, locks_begin;
2779 
2780   ValueStack* caller_state = cur_scope->caller_state();
2781   if (caller_state != NULL) {
2782     // process recursively to compute outermost scope first
2783     stack_begin = caller_state->stack_size();
2784     locks_begin = caller_state->locks_size();
2785     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
2786   } else {
2787     stack_begin = 0;
2788     locks_begin = 0;
2789   }
2790 
2791   // initialize these to null.
2792   // If we don't need deopt info or there are no locals, expressions or monitors,
2793   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2794   GrowableArray<ScopeValue*>*   locals      = NULL;
2795   GrowableArray<ScopeValue*>*   expressions = NULL;
2796   GrowableArray<MonitorValue*>* monitors    = NULL;
2797 
2798   // describe local variable values
2799   int nof_locals = cur_scope->method()->max_locals();
2800   if (nof_locals > 0) {
2801     locals = new GrowableArray<ScopeValue*>(nof_locals);
2802 
2803     int pos = 0;
2804     while (pos < nof_locals) {
2805       assert(pos < cur_state->locals_size(), "why not?");
2806 
2807       Value local = cur_state->local_at(pos);
2808       pos += append_scope_value(op_id, local, locals);
2809 
2810       assert(locals->length() == pos, "must match");
2811     }
2812     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2813     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2814   }
2815 
2816 
2817   // describe expression stack
2818   //
2819   // When we inline methods containing exception handlers, the
2820   // "lock_stacks" are changed to preserve expression stack values
2821   // in caller scopes when exception handlers are present. This
2822   // can cause callee stacks to be smaller than caller stacks.
2823   if (stack_end > innermost_state->stack_size()) {
2824     stack_end = innermost_state->stack_size();
2825   }
2826 
2827 
2828 
2829   int nof_stack = stack_end - stack_begin;
2830   if (nof_stack > 0) {
2831     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2832 
2833     int pos = stack_begin;
2834     while (pos < stack_end) {
2835       Value expression = innermost_state->stack_at_inc(pos);
2836       append_scope_value(op_id, expression, expressions);
2837 
2838       assert(expressions->length() + stack_begin == pos, "must match");
2839     }
2840   }
2841 
2842   // describe monitors
2843   assert(locks_begin <= locks_end, "error in scope iteration");
2844   int nof_locks = locks_end - locks_begin;
2845   if (nof_locks > 0) {
2846     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2847     for (int i = locks_begin; i < locks_end; i++) {
2848       monitors->append(location_for_monitor_index(i));
2849     }
2850   }
2851 
2852   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
2853 }
2854 
2855 
2856 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2857   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2858 
2859   IRScope* innermost_scope = info->scope();
2860   ValueStack* innermost_state = info->stack();
2861 
2862   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2863 
2864   int stack_end = innermost_state->stack_size();
2865   int locks_end = innermost_state->locks_size();
2866 
2867   DEBUG_ONLY(check_stack_depth(info, stack_end));
2868 
2869   if (info->_scope_debug_info == NULL) {
2870     // compute debug information
2871     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
2872   } else {
2873     // debug information already set. Check that it is correct from the current point of view
2874     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
2875   }
2876 }
2877 
2878 
2879 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2880   LIR_OpVisitState visitor;
2881   int num_inst = instructions->length();
2882   bool has_dead = false;
2883 
2884   for (int j = 0; j < num_inst; j++) {
2885     LIR_Op* op = instructions->at(j);
2886     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2887       has_dead = true;
2888       continue;
2889     }
2890     int op_id = op->id();
2891 
2892     // visit instruction to get list of operands
2893     visitor.visit(op);
2894 
2895     // iterate all modes of the visitor and process all virtual operands
2896     for_each_visitor_mode(mode) {
2897       int n = visitor.opr_count(mode);
2898       for (int k = 0; k < n; k++) {
2899         LIR_Opr opr = visitor.opr_at(mode, k);
2900         if (opr->is_virtual_register()) {
2901           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2902         }
2903       }
2904     }
2905 
2906     if (visitor.info_count() > 0) {
2907       // exception handling
2908       if (compilation()->has_exception_handlers()) {
2909         XHandlers* xhandlers = visitor.all_xhandler();
2910         int n = xhandlers->length();
2911         for (int k = 0; k < n; k++) {
2912           XHandler* handler = xhandlers->handler_at(k);
2913           if (handler->entry_code() != NULL) {
2914             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2915           }
2916         }
2917       } else {
2918         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2919       }
2920 
2921       // compute oop map
2922       assert(iw != NULL, "needed for compute_oop_map");
2923       compute_oop_map(iw, visitor, op);
2924 
2925       // compute debug information
2926       if (!use_fpu_stack_allocation()) {
2927         // compute debug information if fpu stack allocation is not needed.
2928         // when fpu stack allocation is needed, the debug information can not
2929         // be computed here because the exact location of fpu operands is not known
2930         // -> debug information is created inside the fpu stack allocator
2931         int n = visitor.info_count();
2932         for (int k = 0; k < n; k++) {
2933           compute_debug_info(visitor.info_at(k), op_id);
2934         }
2935       }
2936     }
2937 
2938 #ifdef ASSERT
2939     // make sure we haven't made the op invalid.
2940     op->verify();
2941 #endif
2942 
2943     // remove useless moves
2944     if (op->code() == lir_move) {
2945       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2946       LIR_Op1* move = (LIR_Op1*)op;
2947       LIR_Opr src = move->in_opr();
2948       LIR_Opr dst = move->result_opr();
2949       if (dst == src ||
2950           !dst->is_pointer() && !src->is_pointer() &&
2951           src->is_same_register(dst)) {
2952         instructions->at_put(j, NULL);
2953         has_dead = true;
2954       }
2955     }
2956   }
2957 
2958   if (has_dead) {
2959     // iterate all instructions of the block and remove all null-values.
2960     int insert_point = 0;
2961     for (int j = 0; j < num_inst; j++) {
2962       LIR_Op* op = instructions->at(j);
2963       if (op != NULL) {
2964         if (insert_point != j) {
2965           instructions->at_put(insert_point, op);
2966         }
2967         insert_point++;
2968       }
2969     }
2970     instructions->truncate(insert_point);
2971   }
2972 }
2973 
2974 void LinearScan::assign_reg_num() {
2975   TIME_LINEAR_SCAN(timer_assign_reg_num);
2976 
2977   init_compute_debug_info();
2978   IntervalWalker* iw = init_compute_oop_maps();
2979 
2980   int num_blocks = block_count();
2981   for (int i = 0; i < num_blocks; i++) {
2982     BlockBegin* block = block_at(i);
2983     assign_reg_num(block->lir()->instructions_list(), iw);
2984   }
2985 }
2986 
2987 
2988 void LinearScan::do_linear_scan() {
2989   NOT_PRODUCT(_total_timer.begin_method());
2990 
2991   number_instructions();
2992 
2993   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
2994 
2995   compute_local_live_sets();
2996   compute_global_live_sets();
2997   CHECK_BAILOUT();
2998 
2999   build_intervals();
3000   CHECK_BAILOUT();
3001   sort_intervals_before_allocation();
3002 
3003   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3004   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3005 
3006   allocate_registers();
3007   CHECK_BAILOUT();
3008 
3009   resolve_data_flow();
3010   if (compilation()->has_exception_handlers()) {
3011     resolve_exception_handlers();
3012   }
3013   // fill in number of spill slots into frame_map
3014   propagate_spill_slots();
3015   CHECK_BAILOUT();
3016 
3017   NOT_PRODUCT(print_intervals("After Register Allocation"));
3018   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3019 
3020   sort_intervals_after_allocation();
3021 
3022   DEBUG_ONLY(verify());
3023 
3024   eliminate_spill_moves();
3025   assign_reg_num();
3026   CHECK_BAILOUT();
3027 
3028   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3029   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3030 
3031   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3032 
3033     if (use_fpu_stack_allocation()) {
3034       allocate_fpu_stack(); // Only has effect on Intel
3035       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3036     }
3037   }
3038 
3039   { TIME_LINEAR_SCAN(timer_optimize_lir);
3040 
3041     EdgeMoveOptimizer::optimize(ir()->code());
3042     ControlFlowOptimizer::optimize(ir()->code());
3043     // check that cfg is still correct after optimizations
3044     ir()->verify();
3045   }
3046 
3047   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3048   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3049   NOT_PRODUCT(_total_timer.end_method(this));
3050 }
3051 
3052 
3053 // ********** Printing functions
3054 
3055 #ifndef PRODUCT
3056 
3057 void LinearScan::print_timers(double total) {
3058   _total_timer.print(total);
3059 }
3060 
3061 void LinearScan::print_statistics() {
3062   _stat_before_alloc.print("before allocation");
3063   _stat_after_asign.print("after assignment of register");
3064   _stat_final.print("after optimization");
3065 }
3066 
3067 void LinearScan::print_bitmap(BitMap& b) {
3068   for (unsigned int i = 0; i < b.size(); i++) {
3069     if (b.at(i)) tty->print("%d ", i);
3070   }
3071   tty->cr();
3072 }
3073 
3074 void LinearScan::print_intervals(const char* label) {
3075   if (TraceLinearScanLevel >= 1) {
3076     int i;
3077     tty->cr();
3078     tty->print_cr("%s", label);
3079 
3080     for (i = 0; i < interval_count(); i++) {
3081       Interval* interval = interval_at(i);
3082       if (interval != NULL) {
3083         interval->print();
3084       }
3085     }
3086 
3087     tty->cr();
3088     tty->print_cr("--- Basic Blocks ---");
3089     for (i = 0; i < block_count(); i++) {
3090       BlockBegin* block = block_at(i);
3091       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3092     }
3093     tty->cr();
3094     tty->cr();
3095   }
3096 
3097   if (PrintCFGToFile) {
3098     CFGPrinter::print_intervals(&_intervals, label);
3099   }
3100 }
3101 
3102 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3103   if (TraceLinearScanLevel >= level) {
3104     tty->cr();
3105     tty->print_cr("%s", label);
3106     print_LIR(ir()->linear_scan_order());
3107     tty->cr();
3108   }
3109 
3110   if (level == 1 && PrintCFGToFile) {
3111     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3112   }
3113 }
3114 
3115 #endif //PRODUCT
3116 
3117 
3118 // ********** verification functions for allocation
3119 // (check that all intervals have a correct register and that no registers are overwritten)
3120 #ifdef ASSERT
3121 
3122 void LinearScan::verify() {
3123   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3124   verify_intervals();
3125 
3126   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3127   verify_no_oops_in_fixed_intervals();
3128 
3129   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3130   verify_constants();
3131 
3132   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3133   verify_registers();
3134 
3135   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3136 }
3137 
3138 void LinearScan::verify_intervals() {
3139   int len = interval_count();
3140   bool has_error = false;
3141 
3142   for (int i = 0; i < len; i++) {
3143     Interval* i1 = interval_at(i);
3144     if (i1 == NULL) continue;
3145 
3146     i1->check_split_children();
3147 
3148     if (i1->reg_num() != i) {
3149       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3150       has_error = true;
3151     }
3152 
3153     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3154       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3155       has_error = true;
3156     }
3157 
3158     if (i1->assigned_reg() == any_reg) {
3159       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3160       has_error = true;
3161     }
3162 
3163     if (i1->assigned_reg() == i1->assigned_regHi()) {
3164       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3165       has_error = true;
3166     }
3167 
3168     if (!is_processed_reg_num(i1->assigned_reg())) {
3169       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3170       has_error = true;
3171     }
3172 
3173     if (i1->first() == Range::end()) {
3174       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3175       has_error = true;
3176     }
3177 
3178     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3179       if (r->from() >= r->to()) {
3180         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3181         has_error = true;
3182       }
3183     }
3184 
3185     for (int j = i + 1; j < len; j++) {
3186       Interval* i2 = interval_at(j);
3187       if (i2 == NULL) continue;
3188 
3189       // special intervals that are created in MoveResolver
3190       // -> ignore them because the range information has no meaning there
3191       if (i1->from() == 1 && i1->to() == 2) continue;
3192       if (i2->from() == 1 && i2->to() == 2) continue;
3193 
3194       int r1 = i1->assigned_reg();
3195       int r1Hi = i1->assigned_regHi();
3196       int r2 = i2->assigned_reg();
3197       int r2Hi = i2->assigned_regHi();
3198       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3199         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3200         i1->print(); tty->cr();
3201         i2->print(); tty->cr();
3202         has_error = true;
3203       }
3204     }
3205   }
3206 
3207   assert(has_error == false, "register allocation invalid");
3208 }
3209 
3210 
3211 void LinearScan::verify_no_oops_in_fixed_intervals() {
3212   Interval* fixed_intervals;
3213   Interval* other_intervals;
3214   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3215 
3216   // to ensure a walking until the last instruction id, add a dummy interval
3217   // with a high operation id
3218   other_intervals = new Interval(any_reg);
3219   other_intervals->add_range(max_jint - 2, max_jint - 1);
3220   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3221 
3222   LIR_OpVisitState visitor;
3223   for (int i = 0; i < block_count(); i++) {
3224     BlockBegin* block = block_at(i);
3225 
3226     LIR_OpList* instructions = block->lir()->instructions_list();
3227 
3228     for (int j = 0; j < instructions->length(); j++) {
3229       LIR_Op* op = instructions->at(j);
3230       int op_id = op->id();
3231 
3232       visitor.visit(op);
3233 
3234       if (visitor.info_count() > 0) {
3235         iw->walk_before(op->id());
3236         bool check_live = true;
3237         if (op->code() == lir_move) {
3238           LIR_Op1* move = (LIR_Op1*)op;
3239           check_live = (move->patch_code() == lir_patch_none);
3240         }
3241         LIR_OpBranch* branch = op->as_OpBranch();
3242         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3243           // Don't bother checking the stub in this case since the
3244           // exception stub will never return to normal control flow.
3245           check_live = false;
3246         }
3247 
3248         // Make sure none of the fixed registers is live across an
3249         // oopmap since we can't handle that correctly.
3250         if (check_live) {
3251           for (Interval* interval = iw->active_first(fixedKind);
3252                interval != Interval::end();
3253                interval = interval->next()) {
3254             if (interval->current_to() > op->id() + 1) {
3255               // This interval is live out of this op so make sure
3256               // that this interval represents some value that's
3257               // referenced by this op either as an input or output.
3258               bool ok = false;
3259               for_each_visitor_mode(mode) {
3260                 int n = visitor.opr_count(mode);
3261                 for (int k = 0; k < n; k++) {
3262                   LIR_Opr opr = visitor.opr_at(mode, k);
3263                   if (opr->is_fixed_cpu()) {
3264                     if (interval_at(reg_num(opr)) == interval) {
3265                       ok = true;
3266                       break;
3267                     }
3268                     int hi = reg_numHi(opr);
3269                     if (hi != -1 && interval_at(hi) == interval) {
3270                       ok = true;
3271                       break;
3272                     }
3273                   }
3274                 }
3275               }
3276               assert(ok, "fixed intervals should never be live across an oopmap point");
3277             }
3278           }
3279         }
3280       }
3281 
3282       // oop-maps at calls do not contain registers, so check is not needed
3283       if (!visitor.has_call()) {
3284 
3285         for_each_visitor_mode(mode) {
3286           int n = visitor.opr_count(mode);
3287           for (int k = 0; k < n; k++) {
3288             LIR_Opr opr = visitor.opr_at(mode, k);
3289 
3290             if (opr->is_fixed_cpu() && opr->is_oop()) {
3291               // operand is a non-virtual cpu register and contains an oop
3292               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3293 
3294               Interval* interval = interval_at(reg_num(opr));
3295               assert(interval != NULL, "no interval");
3296 
3297               if (mode == LIR_OpVisitState::inputMode) {
3298                 if (interval->to() >= op_id + 1) {
3299                   assert(interval->to() < op_id + 2 ||
3300                          interval->has_hole_between(op_id, op_id + 2),
3301                          "oop input operand live after instruction");
3302                 }
3303               } else if (mode == LIR_OpVisitState::outputMode) {
3304                 if (interval->from() <= op_id - 1) {
3305                   assert(interval->has_hole_between(op_id - 1, op_id),
3306                          "oop input operand live after instruction");
3307                 }
3308               }
3309             }
3310           }
3311         }
3312       }
3313     }
3314   }
3315 }
3316 
3317 
3318 void LinearScan::verify_constants() {
3319   int num_regs = num_virtual_regs();
3320   int size = live_set_size();
3321   int num_blocks = block_count();
3322 
3323   for (int i = 0; i < num_blocks; i++) {
3324     BlockBegin* block = block_at(i);
3325     BitMap live_at_edge = block->live_in();
3326 
3327     // visit all registers where the live_at_edge bit is set
3328     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3329       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3330 
3331       Value value = gen()->instruction_for_vreg(r);
3332 
3333       assert(value != NULL, "all intervals live across block boundaries must have Value");
3334       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3335       assert(value->operand()->vreg_number() == r, "register number must match");
3336       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3337     }
3338   }
3339 }
3340 
3341 
3342 class RegisterVerifier: public StackObj {
3343  private:
3344   LinearScan*   _allocator;
3345   BlockList     _work_list;      // all blocks that must be processed
3346   IntervalsList _saved_states;   // saved information of previous check
3347 
3348   // simplified access to methods of LinearScan
3349   Compilation*  compilation() const              { return _allocator->compilation(); }
3350   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3351   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3352 
3353   // currently, only registers are processed
3354   int           state_size()                     { return LinearScan::nof_regs; }
3355 
3356   // accessors
3357   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3358   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3359   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3360 
3361   // helper functions
3362   IntervalList* copy(IntervalList* input_state);
3363   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3364   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3365 
3366   void process_block(BlockBegin* block);
3367   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3368   void process_successor(BlockBegin* block, IntervalList* input_state);
3369   void process_operations(LIR_List* ops, IntervalList* input_state);
3370 
3371  public:
3372   RegisterVerifier(LinearScan* allocator)
3373     : _allocator(allocator)
3374     , _work_list(16)
3375     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3376   { }
3377 
3378   void verify(BlockBegin* start);
3379 };
3380 
3381 
3382 // entry function from LinearScan that starts the verification
3383 void LinearScan::verify_registers() {
3384   RegisterVerifier verifier(this);
3385   verifier.verify(block_at(0));
3386 }
3387 
3388 
3389 void RegisterVerifier::verify(BlockBegin* start) {
3390   // setup input registers (method arguments) for first block
3391   IntervalList* input_state = new IntervalList(state_size(), NULL);
3392   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3393   for (int n = 0; n < args->length(); n++) {
3394     LIR_Opr opr = args->at(n);
3395     if (opr->is_register()) {
3396       Interval* interval = interval_at(reg_num(opr));
3397 
3398       if (interval->assigned_reg() < state_size()) {
3399         input_state->at_put(interval->assigned_reg(), interval);
3400       }
3401       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3402         input_state->at_put(interval->assigned_regHi(), interval);
3403       }
3404     }
3405   }
3406 
3407   set_state_for_block(start, input_state);
3408   add_to_work_list(start);
3409 
3410   // main loop for verification
3411   do {
3412     BlockBegin* block = _work_list.at(0);
3413     _work_list.remove_at(0);
3414 
3415     process_block(block);
3416   } while (!_work_list.is_empty());
3417 }
3418 
3419 void RegisterVerifier::process_block(BlockBegin* block) {
3420   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3421 
3422   // must copy state because it is modified
3423   IntervalList* input_state = copy(state_for_block(block));
3424 
3425   if (TraceLinearScanLevel >= 4) {
3426     tty->print_cr("Input-State of intervals:");
3427     tty->print("    ");
3428     for (int i = 0; i < state_size(); i++) {
3429       if (input_state->at(i) != NULL) {
3430         tty->print(" %4d", input_state->at(i)->reg_num());
3431       } else {
3432         tty->print("   __");
3433       }
3434     }
3435     tty->cr();
3436     tty->cr();
3437   }
3438 
3439   // process all operations of the block
3440   process_operations(block->lir(), input_state);
3441 
3442   // iterate all successors
3443   for (int i = 0; i < block->number_of_sux(); i++) {
3444     process_successor(block->sux_at(i), input_state);
3445   }
3446 }
3447 
3448 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3449   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3450 
3451   // must copy state because it is modified
3452   input_state = copy(input_state);
3453 
3454   if (xhandler->entry_code() != NULL) {
3455     process_operations(xhandler->entry_code(), input_state);
3456   }
3457   process_successor(xhandler->entry_block(), input_state);
3458 }
3459 
3460 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3461   IntervalList* saved_state = state_for_block(block);
3462 
3463   if (saved_state != NULL) {
3464     // this block was already processed before.
3465     // check if new input_state is consistent with saved_state
3466 
3467     bool saved_state_correct = true;
3468     for (int i = 0; i < state_size(); i++) {
3469       if (input_state->at(i) != saved_state->at(i)) {
3470         // current input_state and previous saved_state assume a different
3471         // interval in this register -> assume that this register is invalid
3472         if (saved_state->at(i) != NULL) {
3473           // invalidate old calculation only if it assumed that
3474           // register was valid. when the register was already invalid,
3475           // then the old calculation was correct.
3476           saved_state_correct = false;
3477           saved_state->at_put(i, NULL);
3478 
3479           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3480         }
3481       }
3482     }
3483 
3484     if (saved_state_correct) {
3485       // already processed block with correct input_state
3486       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3487     } else {
3488       // must re-visit this block
3489       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3490       add_to_work_list(block);
3491     }
3492 
3493   } else {
3494     // block was not processed before, so set initial input_state
3495     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3496 
3497     set_state_for_block(block, copy(input_state));
3498     add_to_work_list(block);
3499   }
3500 }
3501 
3502 
3503 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3504   IntervalList* copy_state = new IntervalList(input_state->length());
3505   copy_state->push_all(input_state);
3506   return copy_state;
3507 }
3508 
3509 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3510   if (reg != LinearScan::any_reg && reg < state_size()) {
3511     if (interval != NULL) {
3512       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3513     } else if (input_state->at(reg) != NULL) {
3514       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3515     }
3516 
3517     input_state->at_put(reg, interval);
3518   }
3519 }
3520 
3521 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3522   if (reg != LinearScan::any_reg && reg < state_size()) {
3523     if (input_state->at(reg) != interval) {
3524       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3525       return true;
3526     }
3527   }
3528   return false;
3529 }
3530 
3531 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3532   // visit all instructions of the block
3533   LIR_OpVisitState visitor;
3534   bool has_error = false;
3535 
3536   for (int i = 0; i < ops->length(); i++) {
3537     LIR_Op* op = ops->at(i);
3538     visitor.visit(op);
3539 
3540     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3541 
3542     // check if input operands are correct
3543     int j;
3544     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3545     for (j = 0; j < n; j++) {
3546       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3547       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3548         Interval* interval = interval_at(reg_num(opr));
3549         if (op->id() != -1) {
3550           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3551         }
3552 
3553         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3554         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3555 
3556         // When an operand is marked with is_last_use, then the fpu stack allocator
3557         // removes the register from the fpu stack -> the register contains no value
3558         if (opr->is_last_use()) {
3559           state_put(input_state, interval->assigned_reg(),   NULL);
3560           state_put(input_state, interval->assigned_regHi(), NULL);
3561         }
3562       }
3563     }
3564 
3565     // invalidate all caller save registers at calls
3566     if (visitor.has_call()) {
3567       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
3568         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3569       }
3570       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3571         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3572       }
3573 
3574 #ifdef X86
3575       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3576         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3577       }
3578 #endif
3579     }
3580 
3581     // process xhandler before output and temp operands
3582     XHandlers* xhandlers = visitor.all_xhandler();
3583     n = xhandlers->length();
3584     for (int k = 0; k < n; k++) {
3585       process_xhandler(xhandlers->handler_at(k), input_state);
3586     }
3587 
3588     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3589     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3590     for (j = 0; j < n; j++) {
3591       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3592       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3593         Interval* interval = interval_at(reg_num(opr));
3594         if (op->id() != -1) {
3595           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3596         }
3597 
3598         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3599         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3600       }
3601     }
3602 
3603     // set output operands
3604     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3605     for (j = 0; j < n; j++) {
3606       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3607       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3608         Interval* interval = interval_at(reg_num(opr));
3609         if (op->id() != -1) {
3610           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3611         }
3612 
3613         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3614         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3615       }
3616     }
3617   }
3618   assert(has_error == false, "Error in register allocation");
3619 }
3620 
3621 #endif // ASSERT
3622 
3623 
3624 
3625 // **** Implementation of MoveResolver ******************************
3626 
3627 MoveResolver::MoveResolver(LinearScan* allocator) :
3628   _allocator(allocator),
3629   _multiple_reads_allowed(false),
3630   _mapping_from(8),
3631   _mapping_from_opr(8),
3632   _mapping_to(8),
3633   _insert_list(NULL),
3634   _insert_idx(-1),
3635   _insertion_buffer()
3636 {
3637   for (int i = 0; i < LinearScan::nof_regs; i++) {
3638     _register_blocked[i] = 0;
3639   }
3640   DEBUG_ONLY(check_empty());
3641 }
3642 
3643 
3644 #ifdef ASSERT
3645 
3646 void MoveResolver::check_empty() {
3647   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3648   for (int i = 0; i < LinearScan::nof_regs; i++) {
3649     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3650   }
3651   assert(_multiple_reads_allowed == false, "must have default value");
3652 }
3653 
3654 void MoveResolver::verify_before_resolve() {
3655   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3656   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3657   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3658 
3659   int i, j;
3660   if (!_multiple_reads_allowed) {
3661     for (i = 0; i < _mapping_from.length(); i++) {
3662       for (j = i + 1; j < _mapping_from.length(); j++) {
3663         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3664       }
3665     }
3666   }
3667 
3668   for (i = 0; i < _mapping_to.length(); i++) {
3669     for (j = i + 1; j < _mapping_to.length(); j++) {
3670       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3671     }
3672   }
3673 
3674 
3675   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3676   used_regs.clear();
3677   if (!_multiple_reads_allowed) {
3678     for (i = 0; i < _mapping_from.length(); i++) {
3679       Interval* it = _mapping_from.at(i);
3680       if (it != NULL) {
3681         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3682         used_regs.set_bit(it->assigned_reg());
3683 
3684         if (it->assigned_regHi() != LinearScan::any_reg) {
3685           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3686           used_regs.set_bit(it->assigned_regHi());
3687         }
3688       }
3689     }
3690   }
3691 
3692   used_regs.clear();
3693   for (i = 0; i < _mapping_to.length(); i++) {
3694     Interval* it = _mapping_to.at(i);
3695     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3696     used_regs.set_bit(it->assigned_reg());
3697 
3698     if (it->assigned_regHi() != LinearScan::any_reg) {
3699       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3700       used_regs.set_bit(it->assigned_regHi());
3701     }
3702   }
3703 
3704   used_regs.clear();
3705   for (i = 0; i < _mapping_from.length(); i++) {
3706     Interval* it = _mapping_from.at(i);
3707     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3708       used_regs.set_bit(it->assigned_reg());
3709     }
3710   }
3711   for (i = 0; i < _mapping_to.length(); i++) {
3712     Interval* it = _mapping_to.at(i);
3713     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3714   }
3715 }
3716 
3717 #endif // ASSERT
3718 
3719 
3720 // mark assigned_reg and assigned_regHi of the interval as blocked
3721 void MoveResolver::block_registers(Interval* it) {
3722   int reg = it->assigned_reg();
3723   if (reg < LinearScan::nof_regs) {
3724     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3725     set_register_blocked(reg, 1);
3726   }
3727   reg = it->assigned_regHi();
3728   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3729     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3730     set_register_blocked(reg, 1);
3731   }
3732 }
3733 
3734 // mark assigned_reg and assigned_regHi of the interval as unblocked
3735 void MoveResolver::unblock_registers(Interval* it) {
3736   int reg = it->assigned_reg();
3737   if (reg < LinearScan::nof_regs) {
3738     assert(register_blocked(reg) > 0, "register already marked as unused");
3739     set_register_blocked(reg, -1);
3740   }
3741   reg = it->assigned_regHi();
3742   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3743     assert(register_blocked(reg) > 0, "register already marked as unused");
3744     set_register_blocked(reg, -1);
3745   }
3746 }
3747 
3748 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3749 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3750   int from_reg = -1;
3751   int from_regHi = -1;
3752   if (from != NULL) {
3753     from_reg = from->assigned_reg();
3754     from_regHi = from->assigned_regHi();
3755   }
3756 
3757   int reg = to->assigned_reg();
3758   if (reg < LinearScan::nof_regs) {
3759     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3760       return false;
3761     }
3762   }
3763   reg = to->assigned_regHi();
3764   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3765     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3766       return false;
3767     }
3768   }
3769 
3770   return true;
3771 }
3772 
3773 
3774 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3775   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3776   _insertion_buffer.init(list);
3777 }
3778 
3779 void MoveResolver::append_insertion_buffer() {
3780   if (_insertion_buffer.initialized()) {
3781     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3782   }
3783   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3784 
3785   _insert_list = NULL;
3786   _insert_idx = -1;
3787 }
3788 
3789 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3790   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3791   assert(from_interval->type() == to_interval->type(), "move between different types");
3792   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3793   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3794 
3795   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3796   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3797 
3798   if (!_multiple_reads_allowed) {
3799     // the last_use flag is an optimization for FPU stack allocation. When the same
3800     // input interval is used in more than one move, then it is too difficult to determine
3801     // if this move is really the last use.
3802     from_opr = from_opr->make_last_use();
3803   }
3804   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3805 
3806   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3807 }
3808 
3809 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3810   assert(from_opr->type() == to_interval->type(), "move between different types");
3811   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3812   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3813 
3814   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3815   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3816 
3817   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3818 }
3819 
3820 
3821 void MoveResolver::resolve_mappings() {
3822   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3823   DEBUG_ONLY(verify_before_resolve());
3824 
3825   // Block all registers that are used as input operands of a move.
3826   // When a register is blocked, no move to this register is emitted.
3827   // This is necessary for detecting cycles in moves.
3828   int i;
3829   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3830     Interval* from_interval = _mapping_from.at(i);
3831     if (from_interval != NULL) {
3832       block_registers(from_interval);
3833     }
3834   }
3835 
3836   int spill_candidate = -1;
3837   while (_mapping_from.length() > 0) {
3838     bool processed_interval = false;
3839 
3840     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3841       Interval* from_interval = _mapping_from.at(i);
3842       Interval* to_interval = _mapping_to.at(i);
3843 
3844       if (save_to_process_move(from_interval, to_interval)) {
3845         // this inverval can be processed because target is free
3846         if (from_interval != NULL) {
3847           insert_move(from_interval, to_interval);
3848           unblock_registers(from_interval);
3849         } else {
3850           insert_move(_mapping_from_opr.at(i), to_interval);
3851         }
3852         _mapping_from.remove_at(i);
3853         _mapping_from_opr.remove_at(i);
3854         _mapping_to.remove_at(i);
3855 
3856         processed_interval = true;
3857       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3858         // this interval cannot be processed now because target is not free
3859         // it starts in a register, so it is a possible candidate for spilling
3860         spill_candidate = i;
3861       }
3862     }
3863 
3864     if (!processed_interval) {
3865       // no move could be processed because there is a cycle in the move list
3866       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3867       assert(spill_candidate != -1, "no interval in register for spilling found");
3868 
3869       // create a new spill interval and assign a stack slot to it
3870       Interval* from_interval = _mapping_from.at(spill_candidate);
3871       Interval* spill_interval = new Interval(-1);
3872       spill_interval->set_type(from_interval->type());
3873 
3874       // add a dummy range because real position is difficult to calculate
3875       // Note: this range is a special case when the integrity of the allocation is checked
3876       spill_interval->add_range(1, 2);
3877 
3878       //       do not allocate a new spill slot for temporary interval, but
3879       //       use spill slot assigned to from_interval. Otherwise moves from
3880       //       one stack slot to another can happen (not allowed by LIR_Assembler
3881       int spill_slot = from_interval->canonical_spill_slot();
3882       if (spill_slot < 0) {
3883         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3884         from_interval->set_canonical_spill_slot(spill_slot);
3885       }
3886       spill_interval->assign_reg(spill_slot);
3887       allocator()->append_interval(spill_interval);
3888 
3889       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3890 
3891       // insert a move from register to stack and update the mapping
3892       insert_move(from_interval, spill_interval);
3893       _mapping_from.at_put(spill_candidate, spill_interval);
3894       unblock_registers(from_interval);
3895     }
3896   }
3897 
3898   // reset to default value
3899   _multiple_reads_allowed = false;
3900 
3901   // check that all intervals have been processed
3902   DEBUG_ONLY(check_empty());
3903 }
3904 
3905 
3906 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3907   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3908   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3909 
3910   create_insertion_buffer(insert_list);
3911   _insert_list = insert_list;
3912   _insert_idx = insert_idx;
3913 }
3914 
3915 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3916   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3917 
3918   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3919     // insert position changed -> resolve current mappings
3920     resolve_mappings();
3921   }
3922 
3923   if (insert_list != _insert_list) {
3924     // block changed -> append insertion_buffer because it is
3925     // bound to a specific block and create a new insertion_buffer
3926     append_insertion_buffer();
3927     create_insertion_buffer(insert_list);
3928   }
3929 
3930   _insert_list = insert_list;
3931   _insert_idx = insert_idx;
3932 }
3933 
3934 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3935   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3936 
3937   _mapping_from.append(from_interval);
3938   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3939   _mapping_to.append(to_interval);
3940 }
3941 
3942 
3943 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3944   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3945   assert(from_opr->is_constant(), "only for constants");
3946 
3947   _mapping_from.append(NULL);
3948   _mapping_from_opr.append(from_opr);
3949   _mapping_to.append(to_interval);
3950 }
3951 
3952 void MoveResolver::resolve_and_append_moves() {
3953   if (has_mappings()) {
3954     resolve_mappings();
3955   }
3956   append_insertion_buffer();
3957 }
3958 
3959 
3960 
3961 // **** Implementation of Range *************************************
3962 
3963 Range::Range(int from, int to, Range* next) :
3964   _from(from),
3965   _to(to),
3966   _next(next)
3967 {
3968 }
3969 
3970 // initialize sentinel
3971 Range* Range::_end = NULL;
3972 void Range::initialize(Arena* arena) {
3973   _end = new (arena) Range(max_jint, max_jint, NULL);
3974 }
3975 
3976 int Range::intersects_at(Range* r2) const {
3977   const Range* r1 = this;
3978 
3979   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
3980   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
3981 
3982   do {
3983     if (r1->from() < r2->from()) {
3984       if (r1->to() <= r2->from()) {
3985         r1 = r1->next(); if (r1 == _end) return -1;
3986       } else {
3987         return r2->from();
3988       }
3989     } else if (r2->from() < r1->from()) {
3990       if (r2->to() <= r1->from()) {
3991         r2 = r2->next(); if (r2 == _end) return -1;
3992       } else {
3993         return r1->from();
3994       }
3995     } else { // r1->from() == r2->from()
3996       if (r1->from() == r1->to()) {
3997         r1 = r1->next(); if (r1 == _end) return -1;
3998       } else if (r2->from() == r2->to()) {
3999         r2 = r2->next(); if (r2 == _end) return -1;
4000       } else {
4001         return r1->from();
4002       }
4003     }
4004   } while (true);
4005 }
4006 
4007 #ifndef PRODUCT
4008 void Range::print(outputStream* out) const {
4009   out->print("[%d, %d[ ", _from, _to);
4010 }
4011 #endif
4012 
4013 
4014 
4015 // **** Implementation of Interval **********************************
4016 
4017 // initialize sentinel
4018 Interval* Interval::_end = NULL;
4019 void Interval::initialize(Arena* arena) {
4020   Range::initialize(arena);
4021   _end = new (arena) Interval(-1);
4022 }
4023 
4024 Interval::Interval(int reg_num) :
4025   _reg_num(reg_num),
4026   _type(T_ILLEGAL),
4027   _first(Range::end()),
4028   _use_pos_and_kinds(12),
4029   _current(Range::end()),
4030   _next(_end),
4031   _state(invalidState),
4032   _assigned_reg(LinearScan::any_reg),
4033   _assigned_regHi(LinearScan::any_reg),
4034   _cached_to(-1),
4035   _cached_opr(LIR_OprFact::illegalOpr),
4036   _cached_vm_reg(VMRegImpl::Bad()),
4037   _split_children(0),
4038   _canonical_spill_slot(-1),
4039   _insert_move_when_activated(false),
4040   _register_hint(NULL),
4041   _spill_state(noDefinitionFound),
4042   _spill_definition_pos(-1)
4043 {
4044   _split_parent = this;
4045   _current_split_child = this;
4046 }
4047 
4048 int Interval::calc_to() {
4049   assert(_first != Range::end(), "interval has no range");
4050 
4051   Range* r = _first;
4052   while (r->next() != Range::end()) {
4053     r = r->next();
4054   }
4055   return r->to();
4056 }
4057 
4058 
4059 #ifdef ASSERT
4060 // consistency check of split-children
4061 void Interval::check_split_children() {
4062   if (_split_children.length() > 0) {
4063     assert(is_split_parent(), "only split parents can have children");
4064 
4065     for (int i = 0; i < _split_children.length(); i++) {
4066       Interval* i1 = _split_children.at(i);
4067 
4068       assert(i1->split_parent() == this, "not a split child of this interval");
4069       assert(i1->type() == type(), "must be equal for all split children");
4070       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4071 
4072       for (int j = i + 1; j < _split_children.length(); j++) {
4073         Interval* i2 = _split_children.at(j);
4074 
4075         assert(i1->reg_num() != i2->reg_num(), "same register number");
4076 
4077         if (i1->from() < i2->from()) {
4078           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4079         } else {
4080           assert(i2->from() < i1->from(), "intervals start at same op_id");
4081           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4082         }
4083       }
4084     }
4085   }
4086 }
4087 #endif // ASSERT
4088 
4089 Interval* Interval::register_hint(bool search_split_child) const {
4090   if (!search_split_child) {
4091     return _register_hint;
4092   }
4093 
4094   if (_register_hint != NULL) {
4095     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4096 
4097     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4098       return _register_hint;
4099 
4100     } else if (_register_hint->_split_children.length() > 0) {
4101       // search the first split child that has a register assigned
4102       int len = _register_hint->_split_children.length();
4103       for (int i = 0; i < len; i++) {
4104         Interval* cur = _register_hint->_split_children.at(i);
4105 
4106         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4107           return cur;
4108         }
4109       }
4110     }
4111   }
4112 
4113   // no hint interval found that has a register assigned
4114   return NULL;
4115 }
4116 
4117 
4118 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4119   assert(is_split_parent(), "can only be called for split parents");
4120   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4121 
4122   Interval* result;
4123   if (_split_children.length() == 0) {
4124     result = this;
4125   } else {
4126     result = NULL;
4127     int len = _split_children.length();
4128 
4129     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4130     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4131 
4132     int i;
4133     for (i = 0; i < len; i++) {
4134       Interval* cur = _split_children.at(i);
4135       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4136         if (i > 0) {
4137           // exchange current split child to start of list (faster access for next call)
4138           _split_children.at_put(i, _split_children.at(0));
4139           _split_children.at_put(0, cur);
4140         }
4141 
4142         // interval found
4143         result = cur;
4144         break;
4145       }
4146     }
4147 
4148 #ifdef ASSERT
4149     for (i = 0; i < len; i++) {
4150       Interval* tmp = _split_children.at(i);
4151       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4152         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4153         result->print();
4154         tmp->print();
4155         assert(false, "two valid result intervals found");
4156       }
4157     }
4158 #endif
4159   }
4160 
4161   assert(result != NULL, "no matching interval found");
4162   assert(result->covers(op_id, mode), "op_id not covered by interval");
4163 
4164   return result;
4165 }
4166 
4167 
4168 // returns the last split child that ends before the given op_id
4169 Interval* Interval::split_child_before_op_id(int op_id) {
4170   assert(op_id >= 0, "invalid op_id");
4171 
4172   Interval* parent = split_parent();
4173   Interval* result = NULL;
4174 
4175   int len = parent->_split_children.length();
4176   assert(len > 0, "no split children available");
4177 
4178   for (int i = len - 1; i >= 0; i--) {
4179     Interval* cur = parent->_split_children.at(i);
4180     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4181       result = cur;
4182     }
4183   }
4184 
4185   assert(result != NULL, "no split child found");
4186   return result;
4187 }
4188 
4189 
4190 // checks if op_id is covered by any split child
4191 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4192   assert(is_split_parent(), "can only be called for split parents");
4193   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4194 
4195   if (_split_children.length() == 0) {
4196     // simple case if interval was not split
4197     return covers(op_id, mode);
4198 
4199   } else {
4200     // extended case: check all split children
4201     int len = _split_children.length();
4202     for (int i = 0; i < len; i++) {
4203       Interval* cur = _split_children.at(i);
4204       if (cur->covers(op_id, mode)) {
4205         return true;
4206       }
4207     }
4208     return false;
4209   }
4210 }
4211 
4212 
4213 // Note: use positions are sorted descending -> first use has highest index
4214 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4215   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4216 
4217   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4218     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4219       return _use_pos_and_kinds.at(i);
4220     }
4221   }
4222   return max_jint;
4223 }
4224 
4225 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4226   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4227 
4228   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4229     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4230       return _use_pos_and_kinds.at(i);
4231     }
4232   }
4233   return max_jint;
4234 }
4235 
4236 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4237   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4238 
4239   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4240     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4241       return _use_pos_and_kinds.at(i);
4242     }
4243   }
4244   return max_jint;
4245 }
4246 
4247 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4248   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4249 
4250   int prev = 0;
4251   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4252     if (_use_pos_and_kinds.at(i) > from) {
4253       return prev;
4254     }
4255     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4256       prev = _use_pos_and_kinds.at(i);
4257     }
4258   }
4259   return prev;
4260 }
4261 
4262 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4263   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4264 
4265   // do not add use positions for precolored intervals because
4266   // they are never used
4267   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4268 #ifdef ASSERT
4269     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4270     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4271       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4272       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4273       if (i > 0) {
4274         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4275       }
4276     }
4277 #endif
4278 
4279     // Note: add_use is called in descending order, so list gets sorted
4280     //       automatically by just appending new use positions
4281     int len = _use_pos_and_kinds.length();
4282     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4283       _use_pos_and_kinds.append(pos);
4284       _use_pos_and_kinds.append(use_kind);
4285     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4286       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4287       _use_pos_and_kinds.at_put(len - 1, use_kind);
4288     }
4289   }
4290 }
4291 
4292 void Interval::add_range(int from, int to) {
4293   assert(from < to, "invalid range");
4294   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4295   assert(from <= first()->to(), "not inserting at begin of interval");
4296 
4297   if (first()->from() <= to) {
4298     // join intersecting ranges
4299     first()->set_from(MIN2(from, first()->from()));
4300     first()->set_to  (MAX2(to,   first()->to()));
4301   } else {
4302     // insert new range
4303     _first = new Range(from, to, first());
4304   }
4305 }
4306 
4307 Interval* Interval::new_split_child() {
4308   // allocate new interval
4309   Interval* result = new Interval(-1);
4310   result->set_type(type());
4311 
4312   Interval* parent = split_parent();
4313   result->_split_parent = parent;
4314   result->set_register_hint(parent);
4315 
4316   // insert new interval in children-list of parent
4317   if (parent->_split_children.length() == 0) {
4318     assert(is_split_parent(), "list must be initialized at first split");
4319 
4320     parent->_split_children = IntervalList(4);
4321     parent->_split_children.append(this);
4322   }
4323   parent->_split_children.append(result);
4324 
4325   return result;
4326 }
4327 
4328 // split this interval at the specified position and return
4329 // the remainder as a new interval.
4330 //
4331 // when an interval is split, a bi-directional link is established between the original interval
4332 // (the split parent) and the intervals that are split off this interval (the split children)
4333 // When a split child is split again, the new created interval is also a direct child
4334 // of the original parent (there is no tree of split children stored, but a flat list)
4335 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4336 //
4337 // Note: The new interval has no valid reg_num
4338 Interval* Interval::split(int split_pos) {
4339   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4340 
4341   // allocate new interval
4342   Interval* result = new_split_child();
4343 
4344   // split the ranges
4345   Range* prev = NULL;
4346   Range* cur = _first;
4347   while (cur != Range::end() && cur->to() <= split_pos) {
4348     prev = cur;
4349     cur = cur->next();
4350   }
4351   assert(cur != Range::end(), "split interval after end of last range");
4352 
4353   if (cur->from() < split_pos) {
4354     result->_first = new Range(split_pos, cur->to(), cur->next());
4355     cur->set_to(split_pos);
4356     cur->set_next(Range::end());
4357 
4358   } else {
4359     assert(prev != NULL, "split before start of first range");
4360     result->_first = cur;
4361     prev->set_next(Range::end());
4362   }
4363   result->_current = result->_first;
4364   _cached_to = -1; // clear cached value
4365 
4366   // split list of use positions
4367   int total_len = _use_pos_and_kinds.length();
4368   int start_idx = total_len - 2;
4369   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4370     start_idx -= 2;
4371   }
4372 
4373   intStack new_use_pos_and_kinds(total_len - start_idx);
4374   int i;
4375   for (i = start_idx + 2; i < total_len; i++) {
4376     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4377   }
4378 
4379   _use_pos_and_kinds.truncate(start_idx + 2);
4380   result->_use_pos_and_kinds = _use_pos_and_kinds;
4381   _use_pos_and_kinds = new_use_pos_and_kinds;
4382 
4383 #ifdef ASSERT
4384   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4385   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4386   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4387 
4388   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4389     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4390     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4391   }
4392   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4393     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4394     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4395   }
4396 #endif
4397 
4398   return result;
4399 }
4400 
4401 // split this interval at the specified position and return
4402 // the head as a new interval (the original interval is the tail)
4403 //
4404 // Currently, only the first range can be split, and the new interval
4405 // must not have split positions
4406 Interval* Interval::split_from_start(int split_pos) {
4407   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4408   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4409   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4410   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4411 
4412   // allocate new interval
4413   Interval* result = new_split_child();
4414 
4415   // the new created interval has only one range (checked by assertion above),
4416   // so the splitting of the ranges is very simple
4417   result->add_range(_first->from(), split_pos);
4418 
4419   if (split_pos == _first->to()) {
4420     assert(_first->next() != Range::end(), "must not be at end");
4421     _first = _first->next();
4422   } else {
4423     _first->set_from(split_pos);
4424   }
4425 
4426   return result;
4427 }
4428 
4429 
4430 // returns true if the op_id is inside the interval
4431 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4432   Range* cur  = _first;
4433 
4434   while (cur != Range::end() && cur->to() < op_id) {
4435     cur = cur->next();
4436   }
4437   if (cur != Range::end()) {
4438     assert(cur->to() != cur->next()->from(), "ranges not separated");
4439 
4440     if (mode == LIR_OpVisitState::outputMode) {
4441       return cur->from() <= op_id && op_id < cur->to();
4442     } else {
4443       return cur->from() <= op_id && op_id <= cur->to();
4444     }
4445   }
4446   return false;
4447 }
4448 
4449 // returns true if the interval has any hole between hole_from and hole_to
4450 // (even if the hole has only the length 1)
4451 bool Interval::has_hole_between(int hole_from, int hole_to) {
4452   assert(hole_from < hole_to, "check");
4453   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4454 
4455   Range* cur  = _first;
4456   while (cur != Range::end()) {
4457     assert(cur->to() < cur->next()->from(), "no space between ranges");
4458 
4459     // hole-range starts before this range -> hole
4460     if (hole_from < cur->from()) {
4461       return true;
4462 
4463     // hole-range completely inside this range -> no hole
4464     } else if (hole_to <= cur->to()) {
4465       return false;
4466 
4467     // overlapping of hole-range with this range -> hole
4468     } else if (hole_from <= cur->to()) {
4469       return true;
4470     }
4471 
4472     cur = cur->next();
4473   }
4474 
4475   return false;
4476 }
4477 
4478 
4479 #ifndef PRODUCT
4480 void Interval::print(outputStream* out) const {
4481   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4482   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4483 
4484   const char* type_name;
4485   LIR_Opr opr = LIR_OprFact::illegal();
4486   if (reg_num() < LIR_OprDesc::vreg_base) {
4487     type_name = "fixed";
4488     // need a temporary operand for fixed intervals because type() cannot be called
4489     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4490       opr = LIR_OprFact::single_cpu(assigned_reg());
4491     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4492       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4493 #ifdef X86
4494     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4495       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4496 #endif
4497     } else {
4498       ShouldNotReachHere();
4499     }
4500   } else {
4501     type_name = type2name(type());
4502     if (assigned_reg() != -1) {
4503       opr = LinearScan::calc_operand_for_interval(this);
4504     }
4505   }
4506 
4507   out->print("%d %s ", reg_num(), type_name);
4508   if (opr->is_valid()) {
4509     out->print("\"");
4510     opr->print(out);
4511     out->print("\" ");
4512   }
4513   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4514 
4515   // print ranges
4516   Range* cur = _first;
4517   while (cur != Range::end()) {
4518     cur->print(out);
4519     cur = cur->next();
4520     assert(cur != NULL, "range list not closed with range sentinel");
4521   }
4522 
4523   // print use positions
4524   int prev = 0;
4525   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4526   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4527     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4528     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4529 
4530     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4531     prev = _use_pos_and_kinds.at(i);
4532   }
4533 
4534   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4535   out->cr();
4536 }
4537 #endif
4538 
4539 
4540 
4541 // **** Implementation of IntervalWalker ****************************
4542 
4543 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4544  : _compilation(allocator->compilation())
4545  , _allocator(allocator)
4546 {
4547   _unhandled_first[fixedKind] = unhandled_fixed_first;
4548   _unhandled_first[anyKind]   = unhandled_any_first;
4549   _active_first[fixedKind]    = Interval::end();
4550   _inactive_first[fixedKind]  = Interval::end();
4551   _active_first[anyKind]      = Interval::end();
4552   _inactive_first[anyKind]    = Interval::end();
4553   _current_position = -1;
4554   _current = NULL;
4555   next_interval();
4556 }
4557 
4558 
4559 // append interval at top of list
4560 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4561   interval->set_next(*list); *list = interval;
4562 }
4563 
4564 
4565 // append interval in order of current range from()
4566 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4567   Interval* prev = NULL;
4568   Interval* cur  = *list;
4569   while (cur->current_from() < interval->current_from()) {
4570     prev = cur; cur = cur->next();
4571   }
4572   if (prev == NULL) {
4573     *list = interval;
4574   } else {
4575     prev->set_next(interval);
4576   }
4577   interval->set_next(cur);
4578 }
4579 
4580 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4581   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4582 
4583   Interval* prev = NULL;
4584   Interval* cur  = *list;
4585   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4586     prev = cur; cur = cur->next();
4587   }
4588   if (prev == NULL) {
4589     *list = interval;
4590   } else {
4591     prev->set_next(interval);
4592   }
4593   interval->set_next(cur);
4594 }
4595 
4596 
4597 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4598   while (*list != Interval::end() && *list != i) {
4599     list = (*list)->next_addr();
4600   }
4601   if (*list != Interval::end()) {
4602     assert(*list == i, "check");
4603     *list = (*list)->next();
4604     return true;
4605   } else {
4606     return false;
4607   }
4608 }
4609 
4610 void IntervalWalker::remove_from_list(Interval* i) {
4611   bool deleted;
4612 
4613   if (i->state() == activeState) {
4614     deleted = remove_from_list(active_first_addr(anyKind), i);
4615   } else {
4616     assert(i->state() == inactiveState, "invalid state");
4617     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4618   }
4619 
4620   assert(deleted, "interval has not been found in list");
4621 }
4622 
4623 
4624 void IntervalWalker::walk_to(IntervalState state, int from) {
4625   assert (state == activeState || state == inactiveState, "wrong state");
4626   for_each_interval_kind(kind) {
4627     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4628     Interval* next   = *prev;
4629     while (next->current_from() <= from) {
4630       Interval* cur = next;
4631       next = cur->next();
4632 
4633       bool range_has_changed = false;
4634       while (cur->current_to() <= from) {
4635         cur->next_range();
4636         range_has_changed = true;
4637       }
4638 
4639       // also handle move from inactive list to active list
4640       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4641 
4642       if (range_has_changed) {
4643         // remove cur from list
4644         *prev = next;
4645         if (cur->current_at_end()) {
4646           // move to handled state (not maintained as a list)
4647           cur->set_state(handledState);
4648           interval_moved(cur, kind, state, handledState);
4649         } else if (cur->current_from() <= from){
4650           // sort into active list
4651           append_sorted(active_first_addr(kind), cur);
4652           cur->set_state(activeState);
4653           if (*prev == cur) {
4654             assert(state == activeState, "check");
4655             prev = cur->next_addr();
4656           }
4657           interval_moved(cur, kind, state, activeState);
4658         } else {
4659           // sort into inactive list
4660           append_sorted(inactive_first_addr(kind), cur);
4661           cur->set_state(inactiveState);
4662           if (*prev == cur) {
4663             assert(state == inactiveState, "check");
4664             prev = cur->next_addr();
4665           }
4666           interval_moved(cur, kind, state, inactiveState);
4667         }
4668       } else {
4669         prev = cur->next_addr();
4670         continue;
4671       }
4672     }
4673   }
4674 }
4675 
4676 
4677 void IntervalWalker::next_interval() {
4678   IntervalKind kind;
4679   Interval* any   = _unhandled_first[anyKind];
4680   Interval* fixed = _unhandled_first[fixedKind];
4681 
4682   if (any != Interval::end()) {
4683     // intervals may start at same position -> prefer fixed interval
4684     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4685 
4686     assert (kind == fixedKind && fixed->from() <= any->from() ||
4687             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4688     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4689 
4690   } else if (fixed != Interval::end()) {
4691     kind = fixedKind;
4692   } else {
4693     _current = NULL; return;
4694   }
4695   _current_kind = kind;
4696   _current = _unhandled_first[kind];
4697   _unhandled_first[kind] = _current->next();
4698   _current->set_next(Interval::end());
4699   _current->rewind_range();
4700 }
4701 
4702 
4703 void IntervalWalker::walk_to(int lir_op_id) {
4704   assert(_current_position <= lir_op_id, "can not walk backwards");
4705   while (current() != NULL) {
4706     bool is_active = current()->from() <= lir_op_id;
4707     int id = is_active ? current()->from() : lir_op_id;
4708 
4709     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4710 
4711     // set _current_position prior to call of walk_to
4712     _current_position = id;
4713 
4714     // call walk_to even if _current_position == id
4715     walk_to(activeState, id);
4716     walk_to(inactiveState, id);
4717 
4718     if (is_active) {
4719       current()->set_state(activeState);
4720       if (activate_current()) {
4721         append_sorted(active_first_addr(current_kind()), current());
4722         interval_moved(current(), current_kind(), unhandledState, activeState);
4723       }
4724 
4725       next_interval();
4726     } else {
4727       return;
4728     }
4729   }
4730 }
4731 
4732 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4733 #ifndef PRODUCT
4734   if (TraceLinearScanLevel >= 4) {
4735     #define print_state(state) \
4736     switch(state) {\
4737       case unhandledState: tty->print("unhandled"); break;\
4738       case activeState: tty->print("active"); break;\
4739       case inactiveState: tty->print("inactive"); break;\
4740       case handledState: tty->print("handled"); break;\
4741       default: ShouldNotReachHere(); \
4742     }
4743 
4744     print_state(from); tty->print(" to "); print_state(to);
4745     tty->fill_to(23);
4746     interval->print();
4747 
4748     #undef print_state
4749   }
4750 #endif
4751 }
4752 
4753 
4754 
4755 // **** Implementation of LinearScanWalker **************************
4756 
4757 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4758   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4759   , _move_resolver(allocator)
4760 {
4761   for (int i = 0; i < LinearScan::nof_regs; i++) {
4762     _spill_intervals[i] = new IntervalList(2);
4763   }
4764 }
4765 
4766 
4767 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4768   for (int i = _first_reg; i <= _last_reg; i++) {
4769     _use_pos[i] = max_jint;
4770 
4771     if (!only_process_use_pos) {
4772       _block_pos[i] = max_jint;
4773       _spill_intervals[i]->clear();
4774     }
4775   }
4776 }
4777 
4778 inline void LinearScanWalker::exclude_from_use(int reg) {
4779   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4780   if (reg >= _first_reg && reg <= _last_reg) {
4781     _use_pos[reg] = 0;
4782   }
4783 }
4784 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4785   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4786 
4787   exclude_from_use(i->assigned_reg());
4788   exclude_from_use(i->assigned_regHi());
4789 }
4790 
4791 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4792   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4793 
4794   if (reg >= _first_reg && reg <= _last_reg) {
4795     if (_use_pos[reg] > use_pos) {
4796       _use_pos[reg] = use_pos;
4797     }
4798     if (!only_process_use_pos) {
4799       _spill_intervals[reg]->append(i);
4800     }
4801   }
4802 }
4803 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4804   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4805   if (use_pos != -1) {
4806     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4807     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4808   }
4809 }
4810 
4811 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4812   if (reg >= _first_reg && reg <= _last_reg) {
4813     if (_block_pos[reg] > block_pos) {
4814       _block_pos[reg] = block_pos;
4815     }
4816     if (_use_pos[reg] > block_pos) {
4817       _use_pos[reg] = block_pos;
4818     }
4819   }
4820 }
4821 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4822   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4823   if (block_pos != -1) {
4824     set_block_pos(i->assigned_reg(), i, block_pos);
4825     set_block_pos(i->assigned_regHi(), i, block_pos);
4826   }
4827 }
4828 
4829 
4830 void LinearScanWalker::free_exclude_active_fixed() {
4831   Interval* list = active_first(fixedKind);
4832   while (list != Interval::end()) {
4833     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4834     exclude_from_use(list);
4835     list = list->next();
4836   }
4837 }
4838 
4839 void LinearScanWalker::free_exclude_active_any() {
4840   Interval* list = active_first(anyKind);
4841   while (list != Interval::end()) {
4842     exclude_from_use(list);
4843     list = list->next();
4844   }
4845 }
4846 
4847 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4848   Interval* list = inactive_first(fixedKind);
4849   while (list != Interval::end()) {
4850     if (cur->to() <= list->current_from()) {
4851       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4852       set_use_pos(list, list->current_from(), true);
4853     } else {
4854       set_use_pos(list, list->current_intersects_at(cur), true);
4855     }
4856     list = list->next();
4857   }
4858 }
4859 
4860 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4861   Interval* list = inactive_first(anyKind);
4862   while (list != Interval::end()) {
4863     set_use_pos(list, list->current_intersects_at(cur), true);
4864     list = list->next();
4865   }
4866 }
4867 
4868 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4869   Interval* list = unhandled_first(kind);
4870   while (list != Interval::end()) {
4871     set_use_pos(list, list->intersects_at(cur), true);
4872     if (kind == fixedKind && cur->to() <= list->from()) {
4873       set_use_pos(list, list->from(), true);
4874     }
4875     list = list->next();
4876   }
4877 }
4878 
4879 void LinearScanWalker::spill_exclude_active_fixed() {
4880   Interval* list = active_first(fixedKind);
4881   while (list != Interval::end()) {
4882     exclude_from_use(list);
4883     list = list->next();
4884   }
4885 }
4886 
4887 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4888   Interval* list = unhandled_first(fixedKind);
4889   while (list != Interval::end()) {
4890     set_block_pos(list, list->intersects_at(cur));
4891     list = list->next();
4892   }
4893 }
4894 
4895 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4896   Interval* list = inactive_first(fixedKind);
4897   while (list != Interval::end()) {
4898     if (cur->to() > list->current_from()) {
4899       set_block_pos(list, list->current_intersects_at(cur));
4900     } else {
4901       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4902     }
4903 
4904     list = list->next();
4905   }
4906 }
4907 
4908 void LinearScanWalker::spill_collect_active_any() {
4909   Interval* list = active_first(anyKind);
4910   while (list != Interval::end()) {
4911     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4912     list = list->next();
4913   }
4914 }
4915 
4916 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4917   Interval* list = inactive_first(anyKind);
4918   while (list != Interval::end()) {
4919     if (list->current_intersects(cur)) {
4920       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4921     }
4922     list = list->next();
4923   }
4924 }
4925 
4926 
4927 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4928   // output all moves here. When source and target are equal, the move is
4929   // optimized away later in assign_reg_nums
4930 
4931   op_id = (op_id + 1) & ~1;
4932   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4933   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4934 
4935   // calculate index of instruction inside instruction list of current block
4936   // the minimal index (for a block with no spill moves) can be calculated because the
4937   // numbering of instructions is known.
4938   // When the block already contains spill moves, the index must be increased until the
4939   // correct index is reached.
4940   LIR_OpList* list = op_block->lir()->instructions_list();
4941   int index = (op_id - list->at(0)->id()) / 2;
4942   assert(list->at(index)->id() <= op_id, "error in calculation");
4943 
4944   while (list->at(index)->id() != op_id) {
4945     index++;
4946     assert(0 <= index && index < list->length(), "index out of bounds");
4947   }
4948   assert(1 <= index && index < list->length(), "index out of bounds");
4949   assert(list->at(index)->id() == op_id, "error in calculation");
4950 
4951   // insert new instruction before instruction at position index
4952   _move_resolver.move_insert_position(op_block->lir(), index - 1);
4953   _move_resolver.add_mapping(src_it, dst_it);
4954 }
4955 
4956 
4957 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
4958   int from_block_nr = min_block->linear_scan_number();
4959   int to_block_nr = max_block->linear_scan_number();
4960 
4961   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
4962   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
4963   assert(from_block_nr < to_block_nr, "must cross block boundary");
4964 
4965   // Try to split at end of max_block. If this would be after
4966   // max_split_pos, then use the begin of max_block
4967   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
4968   if (optimal_split_pos > max_split_pos) {
4969     optimal_split_pos = max_block->first_lir_instruction_id();
4970   }
4971 
4972   int min_loop_depth = max_block->loop_depth();
4973   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
4974     BlockBegin* cur = block_at(i);
4975 
4976     if (cur->loop_depth() < min_loop_depth) {
4977       // block with lower loop-depth found -> split at the end of this block
4978       min_loop_depth = cur->loop_depth();
4979       optimal_split_pos = cur->last_lir_instruction_id() + 2;
4980     }
4981   }
4982   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
4983 
4984   return optimal_split_pos;
4985 }
4986 
4987 
4988 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
4989   int optimal_split_pos = -1;
4990   if (min_split_pos == max_split_pos) {
4991     // trivial case, no optimization of split position possible
4992     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
4993     optimal_split_pos = min_split_pos;
4994 
4995   } else {
4996     assert(min_split_pos < max_split_pos, "must be true then");
4997     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
4998 
4999     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5000     // beginning of a block, then min_split_pos is also a possible split position.
5001     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5002     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5003 
5004     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5005     // when an interval ends at the end of the last block of the method
5006     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5007     // block at this op_id)
5008     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5009 
5010     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5011     if (min_block == max_block) {
5012       // split position cannot be moved to block boundary, so split as late as possible
5013       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5014       optimal_split_pos = max_split_pos;
5015 
5016     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5017       // Do not move split position if the interval has a hole before max_split_pos.
5018       // Intervals resulting from Phi-Functions have more than one definition (marked
5019       // as mustHaveRegister) with a hole before each definition. When the register is needed
5020       // for the second definition, an earlier reloading is unnecessary.
5021       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5022       optimal_split_pos = max_split_pos;
5023 
5024     } else {
5025       // seach optimal block boundary between min_split_pos and max_split_pos
5026       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5027 
5028       if (do_loop_optimization) {
5029         // Loop optimization: if a loop-end marker is found between min- and max-position,
5030         // then split before this loop
5031         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5032         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5033 
5034         assert(loop_end_pos > min_split_pos, "invalid order");
5035         if (loop_end_pos < max_split_pos) {
5036           // loop-end marker found between min- and max-position
5037           // if it is not the end marker for the same loop as the min-position, then move
5038           // the max-position to this loop block.
5039           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5040           // of the interval (normally, only mustHaveRegister causes a reloading)
5041           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5042 
5043           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5044           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5045 
5046           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5047           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5048             optimal_split_pos = -1;
5049             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5050           } else {
5051             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5052           }
5053         }
5054       }
5055 
5056       if (optimal_split_pos == -1) {
5057         // not calculated by loop optimization
5058         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5059       }
5060     }
5061   }
5062   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5063 
5064   return optimal_split_pos;
5065 }
5066 
5067 
5068 /*
5069   split an interval at the optimal position between min_split_pos and
5070   max_split_pos in two parts:
5071   1) the left part has already a location assigned
5072   2) the right part is sorted into to the unhandled-list
5073 */
5074 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5075   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5076   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5077 
5078   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5079   assert(current_position() < min_split_pos, "cannot split before current position");
5080   assert(min_split_pos <= max_split_pos,     "invalid order");
5081   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5082 
5083   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5084 
5085   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5086   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5087   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5088 
5089   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5090     // the split position would be just before the end of the interval
5091     // -> no split at all necessary
5092     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5093     return;
5094   }
5095 
5096   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5097   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5098 
5099   if (!allocator()->is_block_begin(optimal_split_pos)) {
5100     // move position before actual instruction (odd op_id)
5101     optimal_split_pos = (optimal_split_pos - 1) | 1;
5102   }
5103 
5104   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5105   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5106   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5107 
5108   Interval* split_part = it->split(optimal_split_pos);
5109 
5110   allocator()->append_interval(split_part);
5111   allocator()->copy_register_flags(it, split_part);
5112   split_part->set_insert_move_when_activated(move_necessary);
5113   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5114 
5115   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5116   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5117   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5118 }
5119 
5120 /*
5121   split an interval at the optimal position between min_split_pos and
5122   max_split_pos in two parts:
5123   1) the left part has already a location assigned
5124   2) the right part is always on the stack and therefore ignored in further processing
5125 */
5126 void LinearScanWalker::split_for_spilling(Interval* it) {
5127   // calculate allowed range of splitting position
5128   int max_split_pos = current_position();
5129   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5130 
5131   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5132   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5133 
5134   assert(it->state() == activeState,     "why spill interval that is not active?");
5135   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5136   assert(min_split_pos <= max_split_pos, "invalid order");
5137   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5138   assert(current_position() < it->to(),  "interval must not end before current position");
5139 
5140   if (min_split_pos == it->from()) {
5141     // the whole interval is never used, so spill it entirely to memory
5142     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5143     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5144 
5145     allocator()->assign_spill_slot(it);
5146     allocator()->change_spill_state(it, min_split_pos);
5147 
5148     // Also kick parent intervals out of register to memory when they have no use
5149     // position. This avoids short interval in register surrounded by intervals in
5150     // memory -> avoid useless moves from memory to register and back
5151     Interval* parent = it;
5152     while (parent != NULL && parent->is_split_child()) {
5153       parent = parent->split_child_before_op_id(parent->from());
5154 
5155       if (parent->assigned_reg() < LinearScan::nof_regs) {
5156         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5157           // parent is never used, so kick it out of its assigned register
5158           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5159           allocator()->assign_spill_slot(parent);
5160         } else {
5161           // do not go further back because the register is actually used by the interval
5162           parent = NULL;
5163         }
5164       }
5165     }
5166 
5167   } else {
5168     // search optimal split pos, split interval and spill only the right hand part
5169     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5170 
5171     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5172     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5173     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5174 
5175     if (!allocator()->is_block_begin(optimal_split_pos)) {
5176       // move position before actual instruction (odd op_id)
5177       optimal_split_pos = (optimal_split_pos - 1) | 1;
5178     }
5179 
5180     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5181     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5182     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5183 
5184     Interval* spilled_part = it->split(optimal_split_pos);
5185     allocator()->append_interval(spilled_part);
5186     allocator()->assign_spill_slot(spilled_part);
5187     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5188 
5189     if (!allocator()->is_block_begin(optimal_split_pos)) {
5190       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5191       insert_move(optimal_split_pos, it, spilled_part);
5192     }
5193 
5194     // the current_split_child is needed later when moves are inserted for reloading
5195     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5196     spilled_part->make_current_split_child();
5197 
5198     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5199     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5200     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5201   }
5202 }
5203 
5204 
5205 void LinearScanWalker::split_stack_interval(Interval* it) {
5206   int min_split_pos = current_position() + 1;
5207   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5208 
5209   split_before_usage(it, min_split_pos, max_split_pos);
5210 }
5211 
5212 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5213   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5214   int max_split_pos = register_available_until;
5215 
5216   split_before_usage(it, min_split_pos, max_split_pos);
5217 }
5218 
5219 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5220   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5221 
5222   int current_pos = current_position();
5223   if (it->state() == inactiveState) {
5224     // the interval is currently inactive, so no spill slot is needed for now.
5225     // when the split part is activated, the interval has a new chance to get a register,
5226     // so in the best case no stack slot is necessary
5227     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5228     split_before_usage(it, current_pos + 1, current_pos + 1);
5229 
5230   } else {
5231     // search the position where the interval must have a register and split
5232     // at the optimal position before.
5233     // The new created part is added to the unhandled list and will get a register
5234     // when it is activated
5235     int min_split_pos = current_pos + 1;
5236     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5237 
5238     split_before_usage(it, min_split_pos, max_split_pos);
5239 
5240     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5241     split_for_spilling(it);
5242   }
5243 }
5244 
5245 
5246 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5247   int min_full_reg = any_reg;
5248   int max_partial_reg = any_reg;
5249 
5250   for (int i = _first_reg; i <= _last_reg; i++) {
5251     if (i == ignore_reg) {
5252       // this register must be ignored
5253 
5254     } else if (_use_pos[i] >= interval_to) {
5255       // this register is free for the full interval
5256       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5257         min_full_reg = i;
5258       }
5259     } else if (_use_pos[i] > reg_needed_until) {
5260       // this register is at least free until reg_needed_until
5261       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5262         max_partial_reg = i;
5263       }
5264     }
5265   }
5266 
5267   if (min_full_reg != any_reg) {
5268     return min_full_reg;
5269   } else if (max_partial_reg != any_reg) {
5270     *need_split = true;
5271     return max_partial_reg;
5272   } else {
5273     return any_reg;
5274   }
5275 }
5276 
5277 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5278   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5279 
5280   int min_full_reg = any_reg;
5281   int max_partial_reg = any_reg;
5282 
5283   for (int i = _first_reg; i < _last_reg; i+=2) {
5284     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5285       // this register is free for the full interval
5286       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5287         min_full_reg = i;
5288       }
5289     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5290       // this register is at least free until reg_needed_until
5291       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5292         max_partial_reg = i;
5293       }
5294     }
5295   }
5296 
5297   if (min_full_reg != any_reg) {
5298     return min_full_reg;
5299   } else if (max_partial_reg != any_reg) {
5300     *need_split = true;
5301     return max_partial_reg;
5302   } else {
5303     return any_reg;
5304   }
5305 }
5306 
5307 
5308 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5309   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5310 
5311   init_use_lists(true);
5312   free_exclude_active_fixed();
5313   free_exclude_active_any();
5314   free_collect_inactive_fixed(cur);
5315   free_collect_inactive_any(cur);
5316 //  free_collect_unhandled(fixedKind, cur);
5317   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5318 
5319   // _use_pos contains the start of the next interval that has this register assigned
5320   // (either as a fixed register or a normal allocated register in the past)
5321   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5322   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5323   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5324 
5325   int hint_reg, hint_regHi;
5326   Interval* register_hint = cur->register_hint();
5327   if (register_hint != NULL) {
5328     hint_reg = register_hint->assigned_reg();
5329     hint_regHi = register_hint->assigned_regHi();
5330 
5331     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5332       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5333       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5334     }
5335     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5336 
5337   } else {
5338     hint_reg = any_reg;
5339     hint_regHi = any_reg;
5340   }
5341   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5342   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5343 
5344   // the register must be free at least until this position
5345   int reg_needed_until = cur->from() + 1;
5346   int interval_to = cur->to();
5347 
5348   bool need_split = false;
5349   int split_pos = -1;
5350   int reg = any_reg;
5351   int regHi = any_reg;
5352 
5353   if (_adjacent_regs) {
5354     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5355     regHi = reg + 1;
5356     if (reg == any_reg) {
5357       return false;
5358     }
5359     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5360 
5361   } else {
5362     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5363     if (reg == any_reg) {
5364       return false;
5365     }
5366     split_pos = _use_pos[reg];
5367 
5368     if (_num_phys_regs == 2) {
5369       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5370 
5371       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5372         // do not split interval if only one register can be assigned until the split pos
5373         // (when one register is found for the whole interval, split&spill is only
5374         // performed for the hi register)
5375         return false;
5376 
5377       } else if (regHi != any_reg) {
5378         split_pos = MIN2(split_pos, _use_pos[regHi]);
5379 
5380         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5381         if (reg > regHi) {
5382           int temp = reg;
5383           reg = regHi;
5384           regHi = temp;
5385         }
5386       }
5387     }
5388   }
5389 
5390   cur->assign_reg(reg, regHi);
5391   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5392 
5393   assert(split_pos > 0, "invalid split_pos");
5394   if (need_split) {
5395     // register not available for full interval, so split it
5396     split_when_partial_register_available(cur, split_pos);
5397   }
5398 
5399   // only return true if interval is completely assigned
5400   return _num_phys_regs == 1 || regHi != any_reg;
5401 }
5402 
5403 
5404 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5405   int max_reg = any_reg;
5406 
5407   for (int i = _first_reg; i <= _last_reg; i++) {
5408     if (i == ignore_reg) {
5409       // this register must be ignored
5410 
5411     } else if (_use_pos[i] > reg_needed_until) {
5412       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5413         max_reg = i;
5414       }
5415     }
5416   }
5417 
5418   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5419     *need_split = true;
5420   }
5421 
5422   return max_reg;
5423 }
5424 
5425 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5426   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5427 
5428   int max_reg = any_reg;
5429 
5430   for (int i = _first_reg; i < _last_reg; i+=2) {
5431     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5432       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5433         max_reg = i;
5434       }
5435     }
5436   }
5437 
5438   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5439     *need_split = true;
5440   }
5441 
5442   return max_reg;
5443 }
5444 
5445 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5446   assert(reg != any_reg, "no register assigned");
5447 
5448   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5449     Interval* it = _spill_intervals[reg]->at(i);
5450     remove_from_list(it);
5451     split_and_spill_interval(it);
5452   }
5453 
5454   if (regHi != any_reg) {
5455     IntervalList* processed = _spill_intervals[reg];
5456     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5457       Interval* it = _spill_intervals[regHi]->at(i);
5458       if (processed->index_of(it) == -1) {
5459         remove_from_list(it);
5460         split_and_spill_interval(it);
5461       }
5462     }
5463   }
5464 }
5465 
5466 
5467 // Split an Interval and spill it to memory so that cur can be placed in a register
5468 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5469   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5470 
5471   // collect current usage of registers
5472   init_use_lists(false);
5473   spill_exclude_active_fixed();
5474 //  spill_block_unhandled_fixed(cur);
5475   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5476   spill_block_inactive_fixed(cur);
5477   spill_collect_active_any();
5478   spill_collect_inactive_any(cur);
5479 
5480 #ifndef PRODUCT
5481   if (TraceLinearScanLevel >= 4) {
5482     tty->print_cr("      state of registers:");
5483     for (int i = _first_reg; i <= _last_reg; i++) {
5484       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5485       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5486         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5487       }
5488       tty->cr();
5489     }
5490   }
5491 #endif
5492 
5493   // the register must be free at least until this position
5494   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5495   int interval_to = cur->to();
5496   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5497 
5498   int split_pos = 0;
5499   int use_pos = 0;
5500   bool need_split = false;
5501   int reg, regHi;
5502 
5503   if (_adjacent_regs) {
5504     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5505     regHi = reg + 1;
5506 
5507     if (reg != any_reg) {
5508       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5509       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5510     }
5511   } else {
5512     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5513     regHi = any_reg;
5514 
5515     if (reg != any_reg) {
5516       use_pos = _use_pos[reg];
5517       split_pos = _block_pos[reg];
5518 
5519       if (_num_phys_regs == 2) {
5520         if (cur->assigned_reg() != any_reg) {
5521           regHi = reg;
5522           reg = cur->assigned_reg();
5523         } else {
5524           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5525           if (regHi != any_reg) {
5526             use_pos = MIN2(use_pos, _use_pos[regHi]);
5527             split_pos = MIN2(split_pos, _block_pos[regHi]);
5528           }
5529         }
5530 
5531         if (regHi != any_reg && reg > regHi) {
5532           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5533           int temp = reg;
5534           reg = regHi;
5535           regHi = temp;
5536         }
5537       }
5538     }
5539   }
5540 
5541   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5542     // the first use of cur is later than the spilling position -> spill cur
5543     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5544 
5545     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5546       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5547       // assign a reasonable register and do a bailout in product mode to avoid errors
5548       allocator()->assign_spill_slot(cur);
5549       BAILOUT("LinearScan: no register found");
5550     }
5551 
5552     split_and_spill_interval(cur);
5553   } else {
5554     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5555     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5556     assert(split_pos > 0, "invalid split_pos");
5557     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5558 
5559     cur->assign_reg(reg, regHi);
5560     if (need_split) {
5561       // register not available for full interval, so split it
5562       split_when_partial_register_available(cur, split_pos);
5563     }
5564 
5565     // perform splitting and spilling for all affected intervalls
5566     split_and_spill_intersecting_intervals(reg, regHi);
5567   }
5568 }
5569 
5570 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5571 #ifdef X86
5572   // fast calculation of intervals that can never get a register because the
5573   // the next instruction is a call that blocks all registers
5574   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5575 
5576   // check if this interval is the result of a split operation
5577   // (an interval got a register until this position)
5578   int pos = cur->from();
5579   if ((pos & 1) == 1) {
5580     // the current instruction is a call that blocks all registers
5581     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5582       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5583 
5584       // safety check that there is really no register available
5585       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5586       return true;
5587     }
5588 
5589   }
5590 #endif
5591   return false;
5592 }
5593 
5594 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5595   BasicType type = cur->type();
5596   _num_phys_regs = LinearScan::num_physical_regs(type);
5597   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5598 
5599   if (pd_init_regs_for_alloc(cur)) {
5600     // the appropriate register range was selected.
5601   } else if (type == T_FLOAT || type == T_DOUBLE) {
5602     _first_reg = pd_first_fpu_reg;
5603     _last_reg = pd_last_fpu_reg;
5604   } else {
5605     _first_reg = pd_first_cpu_reg;
5606     _last_reg = pd_last_cpu_reg;
5607   }
5608 
5609   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5610   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5611 }
5612 
5613 
5614 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5615   if (op->code() != lir_move) {
5616     return false;
5617   }
5618   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5619 
5620   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5621   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5622   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5623 }
5624 
5625 // optimization (especially for phi functions of nested loops):
5626 // assign same spill slot to non-intersecting intervals
5627 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5628   if (cur->is_split_child()) {
5629     // optimization is only suitable for split parents
5630     return;
5631   }
5632 
5633   Interval* register_hint = cur->register_hint(false);
5634   if (register_hint == NULL) {
5635     // cur is not the target of a move, otherwise register_hint would be set
5636     return;
5637   }
5638   assert(register_hint->is_split_parent(), "register hint must be split parent");
5639 
5640   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5641     // combining the stack slots for intervals where spill move optimization is applied
5642     // is not benefitial and would cause problems
5643     return;
5644   }
5645 
5646   int begin_pos = cur->from();
5647   int end_pos = cur->to();
5648   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5649     // safety check that lir_op_with_id is allowed
5650     return;
5651   }
5652 
5653   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5654     // cur and register_hint are not connected with two moves
5655     return;
5656   }
5657 
5658   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5659   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5660   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5661     // register_hint must be split, otherwise the re-writing of use positions does not work
5662     return;
5663   }
5664 
5665   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5666   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5667   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5668   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5669 
5670   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5671     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5672     return;
5673   }
5674   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5675 
5676   // modify intervals such that cur gets the same stack slot as register_hint
5677   // delete use positions to prevent the intervals to get a register at beginning
5678   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5679   cur->remove_first_use_pos();
5680   end_hint->remove_first_use_pos();
5681 }
5682 
5683 
5684 // allocate a physical register or memory location to an interval
5685 bool LinearScanWalker::activate_current() {
5686   Interval* cur = current();
5687   bool result = true;
5688 
5689   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5690   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5691 
5692   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5693     // activating an interval that has a stack slot assigned -> split it at first use position
5694     // used for method parameters
5695     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5696 
5697     split_stack_interval(cur);
5698     result = false;
5699 
5700   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5701     // activating an interval that must start in a stack slot, but may get a register later
5702     // used for lir_roundfp: rounding is done by store to stack and reload later
5703     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5704     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5705 
5706     allocator()->assign_spill_slot(cur);
5707     split_stack_interval(cur);
5708     result = false;
5709 
5710   } else if (cur->assigned_reg() == any_reg) {
5711     // interval has not assigned register -> normal allocation
5712     // (this is the normal case for most intervals)
5713     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5714 
5715     // assign same spill slot to non-intersecting intervals
5716     combine_spilled_intervals(cur);
5717 
5718     init_vars_for_alloc(cur);
5719     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5720       // no empty register available.
5721       // split and spill another interval so that this interval gets a register
5722       alloc_locked_reg(cur);
5723     }
5724 
5725     // spilled intervals need not be move to active-list
5726     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5727       result = false;
5728     }
5729   }
5730 
5731   // load spilled values that become active from stack slot to register
5732   if (cur->insert_move_when_activated()) {
5733     assert(cur->is_split_child(), "must be");
5734     assert(cur->current_split_child() != NULL, "must be");
5735     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5736     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5737 
5738     insert_move(cur->from(), cur->current_split_child(), cur);
5739   }
5740   cur->make_current_split_child();
5741 
5742   return result; // true = interval is moved to active list
5743 }
5744 
5745 
5746 // Implementation of EdgeMoveOptimizer
5747 
5748 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5749   _edge_instructions(4),
5750   _edge_instructions_idx(4)
5751 {
5752 }
5753 
5754 void EdgeMoveOptimizer::optimize(BlockList* code) {
5755   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5756 
5757   // ignore the first block in the list (index 0 is not processed)
5758   for (int i = code->length() - 1; i >= 1; i--) {
5759     BlockBegin* block = code->at(i);
5760 
5761     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5762       optimizer.optimize_moves_at_block_end(block);
5763     }
5764     if (block->number_of_sux() == 2) {
5765       optimizer.optimize_moves_at_block_begin(block);
5766     }
5767   }
5768 }
5769 
5770 
5771 // clear all internal data structures
5772 void EdgeMoveOptimizer::init_instructions() {
5773   _edge_instructions.clear();
5774   _edge_instructions_idx.clear();
5775 }
5776 
5777 // append a lir-instruction-list and the index of the current operation in to the list
5778 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5779   _edge_instructions.append(instructions);
5780   _edge_instructions_idx.append(instructions_idx);
5781 }
5782 
5783 // return the current operation of the given edge (predecessor or successor)
5784 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5785   LIR_OpList* instructions = _edge_instructions.at(edge);
5786   int idx = _edge_instructions_idx.at(edge);
5787 
5788   if (idx < instructions->length()) {
5789     return instructions->at(idx);
5790   } else {
5791     return NULL;
5792   }
5793 }
5794 
5795 // removes the current operation of the given edge (predecessor or successor)
5796 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5797   LIR_OpList* instructions = _edge_instructions.at(edge);
5798   int idx = _edge_instructions_idx.at(edge);
5799   instructions->remove_at(idx);
5800 
5801   if (decrement_index) {
5802     _edge_instructions_idx.at_put(edge, idx - 1);
5803   }
5804 }
5805 
5806 
5807 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5808   if (op1 == NULL || op2 == NULL) {
5809     // at least one block is already empty -> no optimization possible
5810     return true;
5811   }
5812 
5813   if (op1->code() == lir_move && op2->code() == lir_move) {
5814     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5815     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5816     LIR_Op1* move1 = (LIR_Op1*)op1;
5817     LIR_Op1* move2 = (LIR_Op1*)op2;
5818     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5819       // these moves are exactly equal and can be optimized
5820       return false;
5821     }
5822 
5823   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5824     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5825     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5826     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5827     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5828     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5829       // equal FPU stack operations can be optimized
5830       return false;
5831     }
5832 
5833   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5834     // equal FPU stack operations can be optimized
5835     return false;
5836   }
5837 
5838   // no optimization possible
5839   return true;
5840 }
5841 
5842 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5843   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5844 
5845   if (block->is_predecessor(block)) {
5846     // currently we can't handle this correctly.
5847     return;
5848   }
5849 
5850   init_instructions();
5851   int num_preds = block->number_of_preds();
5852   assert(num_preds > 1, "do not call otherwise");
5853   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5854 
5855   // setup a list with the lir-instructions of all predecessors
5856   int i;
5857   for (i = 0; i < num_preds; i++) {
5858     BlockBegin* pred = block->pred_at(i);
5859     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5860 
5861     if (pred->number_of_sux() != 1) {
5862       // this can happen with switch-statements where multiple edges are between
5863       // the same blocks.
5864       return;
5865     }
5866 
5867     assert(pred->number_of_sux() == 1, "can handle only one successor");
5868     assert(pred->sux_at(0) == block, "invalid control flow");
5869     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5870     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5871     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5872 
5873     if (pred_instructions->last()->info() != NULL) {
5874       // can not optimize instructions when debug info is needed
5875       return;
5876     }
5877 
5878     // ignore the unconditional branch at the end of the block
5879     append_instructions(pred_instructions, pred_instructions->length() - 2);
5880   }
5881 
5882 
5883   // process lir-instructions while all predecessors end with the same instruction
5884   while (true) {
5885     LIR_Op* op = instruction_at(0);
5886     for (i = 1; i < num_preds; i++) {
5887       if (operations_different(op, instruction_at(i))) {
5888         // these instructions are different and cannot be optimized ->
5889         // no further optimization possible
5890         return;
5891       }
5892     }
5893 
5894     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5895 
5896     // insert the instruction at the beginning of the current block
5897     block->lir()->insert_before(1, op);
5898 
5899     // delete the instruction at the end of all predecessors
5900     for (i = 0; i < num_preds; i++) {
5901       remove_cur_instruction(i, true);
5902     }
5903   }
5904 }
5905 
5906 
5907 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5908   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5909 
5910   init_instructions();
5911   int num_sux = block->number_of_sux();
5912 
5913   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5914 
5915   assert(num_sux == 2, "method should not be called otherwise");
5916   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5917   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5918   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5919 
5920   if (cur_instructions->last()->info() != NULL) {
5921     // can no optimize instructions when debug info is needed
5922     return;
5923   }
5924 
5925   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5926   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5927     // not a valid case for optimization
5928     // currently, only blocks that end with two branches (conditional branch followed
5929     // by unconditional branch) are optimized
5930     return;
5931   }
5932 
5933   // now it is guaranteed that the block ends with two branch instructions.
5934   // the instructions are inserted at the end of the block before these two branches
5935   int insert_idx = cur_instructions->length() - 2;
5936 
5937   int i;
5938 #ifdef ASSERT
5939   for (i = insert_idx - 1; i >= 0; i--) {
5940     LIR_Op* op = cur_instructions->at(i);
5941     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5942       assert(false, "block with two successors can have only two branch instructions");
5943     }
5944   }
5945 #endif
5946 
5947   // setup a list with the lir-instructions of all successors
5948   for (i = 0; i < num_sux; i++) {
5949     BlockBegin* sux = block->sux_at(i);
5950     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5951 
5952     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
5953 
5954     if (sux->number_of_preds() != 1) {
5955       // this can happen with switch-statements where multiple edges are between
5956       // the same blocks.
5957       return;
5958     }
5959     assert(sux->pred_at(0) == block, "invalid control flow");
5960     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5961 
5962     // ignore the label at the beginning of the block
5963     append_instructions(sux_instructions, 1);
5964   }
5965 
5966   // process lir-instructions while all successors begin with the same instruction
5967   while (true) {
5968     LIR_Op* op = instruction_at(0);
5969     for (i = 1; i < num_sux; i++) {
5970       if (operations_different(op, instruction_at(i))) {
5971         // these instructions are different and cannot be optimized ->
5972         // no further optimization possible
5973         return;
5974       }
5975     }
5976 
5977     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
5978 
5979     // insert instruction at end of current block
5980     block->lir()->insert_before(insert_idx, op);
5981     insert_idx++;
5982 
5983     // delete the instructions at the beginning of all successors
5984     for (i = 0; i < num_sux; i++) {
5985       remove_cur_instruction(i, false);
5986     }
5987   }
5988 }
5989 
5990 
5991 // Implementation of ControlFlowOptimizer
5992 
5993 ControlFlowOptimizer::ControlFlowOptimizer() :
5994   _original_preds(4)
5995 {
5996 }
5997 
5998 void ControlFlowOptimizer::optimize(BlockList* code) {
5999   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6000 
6001   // push the OSR entry block to the end so that we're not jumping over it.
6002   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6003   if (osr_entry) {
6004     int index = osr_entry->linear_scan_number();
6005     assert(code->at(index) == osr_entry, "wrong index");
6006     code->remove_at(index);
6007     code->append(osr_entry);
6008   }
6009 
6010   optimizer.reorder_short_loops(code);
6011   optimizer.delete_empty_blocks(code);
6012   optimizer.delete_unnecessary_jumps(code);
6013   optimizer.delete_jumps_to_return(code);
6014 }
6015 
6016 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6017   int i = header_idx + 1;
6018   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6019   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6020     i++;
6021   }
6022 
6023   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6024     int end_idx = i - 1;
6025     BlockBegin* end_block = code->at(end_idx);
6026 
6027     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6028       // short loop from header_idx to end_idx found -> reorder blocks such that
6029       // the header_block is the last block instead of the first block of the loop
6030       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6031                                          end_idx - header_idx + 1,
6032                                          header_block->block_id(), end_block->block_id()));
6033 
6034       for (int j = header_idx; j < end_idx; j++) {
6035         code->at_put(j, code->at(j + 1));
6036       }
6037       code->at_put(end_idx, header_block);
6038 
6039       // correct the flags so that any loop alignment occurs in the right place.
6040       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6041       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6042       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6043     }
6044   }
6045 }
6046 
6047 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6048   for (int i = code->length() - 1; i >= 0; i--) {
6049     BlockBegin* block = code->at(i);
6050 
6051     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6052       reorder_short_loop(code, block, i);
6053     }
6054   }
6055 
6056   DEBUG_ONLY(verify(code));
6057 }
6058 
6059 // only blocks with exactly one successor can be deleted. Such blocks
6060 // must always end with an unconditional branch to this successor
6061 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6062   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6063     return false;
6064   }
6065 
6066   LIR_OpList* instructions = block->lir()->instructions_list();
6067 
6068   assert(instructions->length() >= 2, "block must have label and branch");
6069   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6070   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6071   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6072   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6073 
6074   // block must have exactly one successor
6075 
6076   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6077     return true;
6078   }
6079   return false;
6080 }
6081 
6082 // substitute branch targets in all branch-instructions of this blocks
6083 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6084   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6085 
6086   LIR_OpList* instructions = block->lir()->instructions_list();
6087 
6088   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6089   for (int i = instructions->length() - 1; i >= 1; i--) {
6090     LIR_Op* op = instructions->at(i);
6091 
6092     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6093       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6094       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6095 
6096       if (branch->block() == target_from) {
6097         branch->change_block(target_to);
6098       }
6099       if (branch->ublock() == target_from) {
6100         branch->change_ublock(target_to);
6101       }
6102     }
6103   }
6104 }
6105 
6106 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6107   int old_pos = 0;
6108   int new_pos = 0;
6109   int num_blocks = code->length();
6110 
6111   while (old_pos < num_blocks) {
6112     BlockBegin* block = code->at(old_pos);
6113 
6114     if (can_delete_block(block)) {
6115       BlockBegin* new_target = block->sux_at(0);
6116 
6117       // propagate backward branch target flag for correct code alignment
6118       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6119         new_target->set(BlockBegin::backward_branch_target_flag);
6120       }
6121 
6122       // collect a list with all predecessors that contains each predecessor only once
6123       // the predecessors of cur are changed during the substitution, so a copy of the
6124       // predecessor list is necessary
6125       int j;
6126       _original_preds.clear();
6127       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6128         BlockBegin* pred = block->pred_at(j);
6129         if (_original_preds.index_of(pred) == -1) {
6130           _original_preds.append(pred);
6131         }
6132       }
6133 
6134       for (j = _original_preds.length() - 1; j >= 0; j--) {
6135         BlockBegin* pred = _original_preds.at(j);
6136         substitute_branch_target(pred, block, new_target);
6137         pred->substitute_sux(block, new_target);
6138       }
6139     } else {
6140       // adjust position of this block in the block list if blocks before
6141       // have been deleted
6142       if (new_pos != old_pos) {
6143         code->at_put(new_pos, code->at(old_pos));
6144       }
6145       new_pos++;
6146     }
6147     old_pos++;
6148   }
6149   code->truncate(new_pos);
6150 
6151   DEBUG_ONLY(verify(code));
6152 }
6153 
6154 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6155   // skip the last block because there a branch is always necessary
6156   for (int i = code->length() - 2; i >= 0; i--) {
6157     BlockBegin* block = code->at(i);
6158     LIR_OpList* instructions = block->lir()->instructions_list();
6159 
6160     LIR_Op* last_op = instructions->last();
6161     if (last_op->code() == lir_branch) {
6162       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6163       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6164 
6165       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6166       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6167 
6168       if (last_branch->info() == NULL) {
6169         if (last_branch->block() == code->at(i + 1)) {
6170 
6171           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6172 
6173           // delete last branch instruction
6174           instructions->truncate(instructions->length() - 1);
6175 
6176         } else {
6177           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6178           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6179             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6180             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6181 
6182             LIR_Op2* prev_cmp = NULL;
6183 
6184             for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6185               prev_op = instructions->at(j);
6186               if(prev_op->code() == lir_cmp) {
6187                 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6188                 prev_cmp = (LIR_Op2*)prev_op;
6189                 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6190               }
6191             }
6192             assert(prev_cmp != NULL, "should have found comp instruction for branch");
6193             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6194 
6195               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6196 
6197               // eliminate a conditional branch to the immediate successor
6198               prev_branch->change_block(last_branch->block());
6199               prev_branch->negate_cond();
6200               prev_cmp->set_condition(prev_branch->cond());
6201               instructions->truncate(instructions->length() - 1);
6202             }
6203           }
6204         }
6205       }
6206     }
6207   }
6208 
6209   DEBUG_ONLY(verify(code));
6210 }
6211 
6212 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6213 #ifdef ASSERT
6214   BitMap return_converted(BlockBegin::number_of_blocks());
6215   return_converted.clear();
6216 #endif
6217 
6218   for (int i = code->length() - 1; i >= 0; i--) {
6219     BlockBegin* block = code->at(i);
6220     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6221     LIR_Op*     cur_last_op = cur_instructions->last();
6222 
6223     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6224     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6225       // the block contains only a label and a return
6226       // if a predecessor ends with an unconditional jump to this block, then the jump
6227       // can be replaced with a return instruction
6228       //
6229       // Note: the original block with only a return statement cannot be deleted completely
6230       //       because the predecessors might have other (conditional) jumps to this block
6231       //       -> this may lead to unnecesary return instructions in the final code
6232 
6233       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6234       assert(block->number_of_sux() == 0 ||
6235              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6236              "blocks that end with return must not have successors");
6237 
6238       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6239       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6240 
6241       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6242         BlockBegin* pred = block->pred_at(j);
6243         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6244         LIR_Op*     pred_last_op = pred_instructions->last();
6245 
6246         if (pred_last_op->code() == lir_branch) {
6247           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6248           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6249 
6250           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6251             // replace the jump to a return with a direct return
6252             // Note: currently the edge between the blocks is not deleted
6253             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6254 #ifdef ASSERT
6255             return_converted.set_bit(pred->block_id());
6256 #endif
6257           }
6258         }
6259       }
6260     }
6261   }
6262 }
6263 
6264 
6265 #ifdef ASSERT
6266 void ControlFlowOptimizer::verify(BlockList* code) {
6267   for (int i = 0; i < code->length(); i++) {
6268     BlockBegin* block = code->at(i);
6269     LIR_OpList* instructions = block->lir()->instructions_list();
6270 
6271     int j;
6272     for (j = 0; j < instructions->length(); j++) {
6273       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6274 
6275       if (op_branch != NULL) {
6276         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6277         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6278       }
6279     }
6280 
6281     for (j = 0; j < block->number_of_sux() - 1; j++) {
6282       BlockBegin* sux = block->sux_at(j);
6283       assert(code->index_of(sux) != -1, "successor not valid");
6284     }
6285 
6286     for (j = 0; j < block->number_of_preds() - 1; j++) {
6287       BlockBegin* pred = block->pred_at(j);
6288       assert(code->index_of(pred) != -1, "successor not valid");
6289     }
6290   }
6291 }
6292 #endif
6293 
6294 
6295 #ifndef PRODUCT
6296 
6297 // Implementation of LinearStatistic
6298 
6299 const char* LinearScanStatistic::counter_name(int counter_idx) {
6300   switch (counter_idx) {
6301     case counter_method:          return "compiled methods";
6302     case counter_fpu_method:      return "methods using fpu";
6303     case counter_loop_method:     return "methods with loops";
6304     case counter_exception_method:return "methods with xhandler";
6305 
6306     case counter_loop:            return "loops";
6307     case counter_block:           return "blocks";
6308     case counter_loop_block:      return "blocks inside loop";
6309     case counter_exception_block: return "exception handler entries";
6310     case counter_interval:        return "intervals";
6311     case counter_fixed_interval:  return "fixed intervals";
6312     case counter_range:           return "ranges";
6313     case counter_fixed_range:     return "fixed ranges";
6314     case counter_use_pos:         return "use positions";
6315     case counter_fixed_use_pos:   return "fixed use positions";
6316     case counter_spill_slots:     return "spill slots";
6317 
6318     // counter for classes of lir instructions
6319     case counter_instruction:     return "total instructions";
6320     case counter_label:           return "labels";
6321     case counter_entry:           return "method entries";
6322     case counter_return:          return "method returns";
6323     case counter_call:            return "method calls";
6324     case counter_move:            return "moves";
6325     case counter_cmp:             return "compare";
6326     case counter_cond_branch:     return "conditional branches";
6327     case counter_uncond_branch:   return "unconditional branches";
6328     case counter_stub_branch:     return "branches to stub";
6329     case counter_alu:             return "artithmetic + logic";
6330     case counter_alloc:           return "allocations";
6331     case counter_sync:            return "synchronisation";
6332     case counter_throw:           return "throw";
6333     case counter_unwind:          return "unwind";
6334     case counter_typecheck:       return "type+null-checks";
6335     case counter_fpu_stack:       return "fpu-stack";
6336     case counter_misc_inst:       return "other instructions";
6337     case counter_other_inst:      return "misc. instructions";
6338 
6339     // counter for different types of moves
6340     case counter_move_total:      return "total moves";
6341     case counter_move_reg_reg:    return "register->register";
6342     case counter_move_reg_stack:  return "register->stack";
6343     case counter_move_stack_reg:  return "stack->register";
6344     case counter_move_stack_stack:return "stack->stack";
6345     case counter_move_reg_mem:    return "register->memory";
6346     case counter_move_mem_reg:    return "memory->register";
6347     case counter_move_const_any:  return "constant->any";
6348 
6349     case blank_line_1:            return "";
6350     case blank_line_2:            return "";
6351 
6352     default: ShouldNotReachHere(); return "";
6353   }
6354 }
6355 
6356 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6357   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6358     return counter_method;
6359   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6360     return counter_block;
6361   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6362     return counter_instruction;
6363   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6364     return counter_move_total;
6365   }
6366   return invalid_counter;
6367 }
6368 
6369 LinearScanStatistic::LinearScanStatistic() {
6370   for (int i = 0; i < number_of_counters; i++) {
6371     _counters_sum[i] = 0;
6372     _counters_max[i] = -1;
6373   }
6374 
6375 }
6376 
6377 // add the method-local numbers to the total sum
6378 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6379   for (int i = 0; i < number_of_counters; i++) {
6380     _counters_sum[i] += method_statistic._counters_sum[i];
6381     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6382   }
6383 }
6384 
6385 void LinearScanStatistic::print(const char* title) {
6386   if (CountLinearScan || TraceLinearScanLevel > 0) {
6387     tty->cr();
6388     tty->print_cr("***** LinearScan statistic - %s *****", title);
6389 
6390     for (int i = 0; i < number_of_counters; i++) {
6391       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6392         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6393 
6394         if (base_counter(i) != invalid_counter) {
6395           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6396         } else {
6397           tty->print("           ");
6398         }
6399 
6400         if (_counters_max[i] >= 0) {
6401           tty->print("%8d", _counters_max[i]);
6402         }
6403       }
6404       tty->cr();
6405     }
6406   }
6407 }
6408 
6409 void LinearScanStatistic::collect(LinearScan* allocator) {
6410   inc_counter(counter_method);
6411   if (allocator->has_fpu_registers()) {
6412     inc_counter(counter_fpu_method);
6413   }
6414   if (allocator->num_loops() > 0) {
6415     inc_counter(counter_loop_method);
6416   }
6417   inc_counter(counter_loop, allocator->num_loops());
6418   inc_counter(counter_spill_slots, allocator->max_spills());
6419 
6420   int i;
6421   for (i = 0; i < allocator->interval_count(); i++) {
6422     Interval* cur = allocator->interval_at(i);
6423 
6424     if (cur != NULL) {
6425       inc_counter(counter_interval);
6426       inc_counter(counter_use_pos, cur->num_use_positions());
6427       if (LinearScan::is_precolored_interval(cur)) {
6428         inc_counter(counter_fixed_interval);
6429         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6430       }
6431 
6432       Range* range = cur->first();
6433       while (range != Range::end()) {
6434         inc_counter(counter_range);
6435         if (LinearScan::is_precolored_interval(cur)) {
6436           inc_counter(counter_fixed_range);
6437         }
6438         range = range->next();
6439       }
6440     }
6441   }
6442 
6443   bool has_xhandlers = false;
6444   // Note: only count blocks that are in code-emit order
6445   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6446     BlockBegin* cur = allocator->ir()->code()->at(i);
6447 
6448     inc_counter(counter_block);
6449     if (cur->loop_depth() > 0) {
6450       inc_counter(counter_loop_block);
6451     }
6452     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6453       inc_counter(counter_exception_block);
6454       has_xhandlers = true;
6455     }
6456 
6457     LIR_OpList* instructions = cur->lir()->instructions_list();
6458     for (int j = 0; j < instructions->length(); j++) {
6459       LIR_Op* op = instructions->at(j);
6460 
6461       inc_counter(counter_instruction);
6462 
6463       switch (op->code()) {
6464         case lir_label:           inc_counter(counter_label); break;
6465         case lir_std_entry:
6466         case lir_osr_entry:       inc_counter(counter_entry); break;
6467         case lir_return:          inc_counter(counter_return); break;
6468 
6469         case lir_rtcall:
6470         case lir_static_call:
6471         case lir_optvirtual_call:
6472         case lir_virtual_call:    inc_counter(counter_call); break;
6473 
6474         case lir_move: {
6475           inc_counter(counter_move);
6476           inc_counter(counter_move_total);
6477 
6478           LIR_Opr in = op->as_Op1()->in_opr();
6479           LIR_Opr res = op->as_Op1()->result_opr();
6480           if (in->is_register()) {
6481             if (res->is_register()) {
6482               inc_counter(counter_move_reg_reg);
6483             } else if (res->is_stack()) {
6484               inc_counter(counter_move_reg_stack);
6485             } else if (res->is_address()) {
6486               inc_counter(counter_move_reg_mem);
6487             } else {
6488               ShouldNotReachHere();
6489             }
6490           } else if (in->is_stack()) {
6491             if (res->is_register()) {
6492               inc_counter(counter_move_stack_reg);
6493             } else {
6494               inc_counter(counter_move_stack_stack);
6495             }
6496           } else if (in->is_address()) {
6497             assert(res->is_register(), "must be");
6498             inc_counter(counter_move_mem_reg);
6499           } else if (in->is_constant()) {
6500             inc_counter(counter_move_const_any);
6501           } else {
6502             ShouldNotReachHere();
6503           }
6504           break;
6505         }
6506 
6507         case lir_cmp:             inc_counter(counter_cmp); break;
6508 
6509         case lir_branch:
6510         case lir_cond_float_branch: {
6511           LIR_OpBranch* branch = op->as_OpBranch();
6512           if (branch->block() == NULL) {
6513             inc_counter(counter_stub_branch);
6514           } else if (branch->cond() == lir_cond_always) {
6515             inc_counter(counter_uncond_branch);
6516           } else {
6517             inc_counter(counter_cond_branch);
6518           }
6519           break;
6520         }
6521 
6522         case lir_neg:
6523         case lir_add:
6524         case lir_sub:
6525         case lir_mul:
6526         case lir_mul_strictfp:
6527         case lir_div:
6528         case lir_div_strictfp:
6529         case lir_rem:
6530         case lir_sqrt:
6531         case lir_sin:
6532         case lir_cos:
6533         case lir_abs:
6534         case lir_log10:
6535         case lir_log:
6536         case lir_logic_and:
6537         case lir_logic_or:
6538         case lir_logic_xor:
6539         case lir_shl:
6540         case lir_shr:
6541         case lir_ushr:            inc_counter(counter_alu); break;
6542 
6543         case lir_alloc_object:
6544         case lir_alloc_array:     inc_counter(counter_alloc); break;
6545 
6546         case lir_monaddr:
6547         case lir_lock:
6548         case lir_unlock:          inc_counter(counter_sync); break;
6549 
6550         case lir_throw:           inc_counter(counter_throw); break;
6551 
6552         case lir_unwind:          inc_counter(counter_unwind); break;
6553 
6554         case lir_null_check:
6555         case lir_leal:
6556         case lir_instanceof:
6557         case lir_checkcast:
6558         case lir_store_check:     inc_counter(counter_typecheck); break;
6559 
6560         case lir_fpop_raw:
6561         case lir_fxch:
6562         case lir_fld:             inc_counter(counter_fpu_stack); break;
6563 
6564         case lir_nop:
6565         case lir_push:
6566         case lir_pop:
6567         case lir_convert:
6568         case lir_roundfp:
6569         case lir_cmove:           inc_counter(counter_misc_inst); break;
6570 
6571         default:                  inc_counter(counter_other_inst); break;
6572       }
6573     }
6574   }
6575 
6576   if (has_xhandlers) {
6577     inc_counter(counter_exception_method);
6578   }
6579 }
6580 
6581 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6582   if (CountLinearScan || TraceLinearScanLevel > 0) {
6583 
6584     LinearScanStatistic local_statistic = LinearScanStatistic();
6585 
6586     local_statistic.collect(allocator);
6587     global_statistic.sum_up(local_statistic);
6588 
6589     if (TraceLinearScanLevel > 2) {
6590       local_statistic.print("current local statistic");
6591     }
6592   }
6593 }
6594 
6595 
6596 // Implementation of LinearTimers
6597 
6598 LinearScanTimers::LinearScanTimers() {
6599   for (int i = 0; i < number_of_timers; i++) {
6600     timer(i)->reset();
6601   }
6602 }
6603 
6604 const char* LinearScanTimers::timer_name(int idx) {
6605   switch (idx) {
6606     case timer_do_nothing:               return "Nothing (Time Check)";
6607     case timer_number_instructions:      return "Number Instructions";
6608     case timer_compute_local_live_sets:  return "Local Live Sets";
6609     case timer_compute_global_live_sets: return "Global Live Sets";
6610     case timer_build_intervals:          return "Build Intervals";
6611     case timer_sort_intervals_before:    return "Sort Intervals Before";
6612     case timer_allocate_registers:       return "Allocate Registers";
6613     case timer_resolve_data_flow:        return "Resolve Data Flow";
6614     case timer_sort_intervals_after:     return "Sort Intervals After";
6615     case timer_eliminate_spill_moves:    return "Spill optimization";
6616     case timer_assign_reg_num:           return "Assign Reg Num";
6617     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6618     case timer_optimize_lir:             return "Optimize LIR";
6619     default: ShouldNotReachHere();       return "";
6620   }
6621 }
6622 
6623 void LinearScanTimers::begin_method() {
6624   if (TimeEachLinearScan) {
6625     // reset all timers to measure only current method
6626     for (int i = 0; i < number_of_timers; i++) {
6627       timer(i)->reset();
6628     }
6629   }
6630 }
6631 
6632 void LinearScanTimers::end_method(LinearScan* allocator) {
6633   if (TimeEachLinearScan) {
6634 
6635     double c = timer(timer_do_nothing)->seconds();
6636     double total = 0;
6637     for (int i = 1; i < number_of_timers; i++) {
6638       total += timer(i)->seconds() - c;
6639     }
6640 
6641     if (total >= 0.0005) {
6642       // print all information in one line for automatic processing
6643       tty->print("@"); allocator->compilation()->method()->print_name();
6644 
6645       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6646       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6647       tty->print("@ %d ", allocator->block_count());
6648       tty->print("@ %d ", allocator->num_virtual_regs());
6649       tty->print("@ %d ", allocator->interval_count());
6650       tty->print("@ %d ", allocator->_num_calls);
6651       tty->print("@ %d ", allocator->num_loops());
6652 
6653       tty->print("@ %6.6f ", total);
6654       for (int i = 1; i < number_of_timers; i++) {
6655         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6656       }
6657       tty->cr();
6658     }
6659   }
6660 }
6661 
6662 void LinearScanTimers::print(double total_time) {
6663   if (TimeLinearScan) {
6664     // correction value: sum of dummy-timer that only measures the time that
6665     // is necesary to start and stop itself
6666     double c = timer(timer_do_nothing)->seconds();
6667 
6668     for (int i = 0; i < number_of_timers; i++) {
6669       double t = timer(i)->seconds();
6670       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6671     }
6672   }
6673 }
6674 
6675 #endif // #ifndef PRODUCT