1 /*
   2  * Copyright (c) 2001, 2007, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // The CollectedHeap type requires subtypes to implement a method
  26 // "block_start".  For some subtypes, notably generational
  27 // systems using card-table-based write barriers, the efficiency of this
  28 // operation may be important.  Implementations of the "BlockOffsetArray"
  29 // class may be useful in providing such efficient implementations.
  30 //
  31 // While generally mirroring the structure of the BOT for GenCollectedHeap,
  32 // the following types are tailored more towards G1's uses; these should,
  33 // however, be merged back into a common BOT to avoid code duplication
  34 // and reduce maintenance overhead.
  35 //
  36 //    G1BlockOffsetTable (abstract)
  37 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
  38 //       -- G1BlockOffsetArrayContigSpace
  39 //
  40 // A main impediment to the consolidation of this code might be the
  41 // effect of making some of the block_start*() calls non-const as
  42 // below. Whether that might adversely affect performance optimizations
  43 // that compilers might normally perform in the case of non-G1
  44 // collectors needs to be carefully investigated prior to any such
  45 // consolidation.
  46 
  47 // Forward declarations
  48 class ContiguousSpace;
  49 class G1BlockOffsetSharedArray;
  50 
  51 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  52   friend class VMStructs;
  53 protected:
  54   // These members describe the region covered by the table.
  55 
  56   // The space this table is covering.
  57   HeapWord* _bottom;    // == reserved.start
  58   HeapWord* _end;       // End of currently allocated region.
  59 
  60 public:
  61   // Initialize the table to cover the given space.
  62   // The contents of the initial table are undefined.
  63   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
  64     _bottom(bottom), _end(end)
  65     {
  66       assert(_bottom <= _end, "arguments out of order");
  67     }
  68 
  69   // Note that the committed size of the covered space may have changed,
  70   // so the table size might also wish to change.
  71   virtual void resize(size_t new_word_size) = 0;
  72 
  73   virtual void set_bottom(HeapWord* new_bottom) {
  74     assert(new_bottom <= _end, "new_bottom > _end");
  75     _bottom = new_bottom;
  76     resize(pointer_delta(_end, _bottom));
  77   }
  78 
  79   // Requires "addr" to be contained by a block, and returns the address of
  80   // the start of that block.  (May have side effects, namely updating of
  81   // shared array entries that "point" too far backwards.  This can occur,
  82   // for example, when LAB allocation is used in a space covered by the
  83   // table.)
  84   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
  85   // Same as above, but does not have any of the possible side effects
  86   // discussed above.
  87   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
  88 
  89   // Returns the address of the start of the block containing "addr", or
  90   // else "null" if it is covered by no block.  (May have side effects,
  91   // namely updating of shared array entries that "point" too far
  92   // backwards.  This can occur, for example, when lab allocation is used
  93   // in a space covered by the table.)
  94   inline HeapWord* block_start(const void* addr);
  95   // Same as above, but does not have any of the possible side effects
  96   // discussed above.
  97   inline HeapWord* block_start_const(const void* addr) const;
  98 };
  99 
 100 // This implementation of "G1BlockOffsetTable" divides the covered region
 101 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
 102 // for each such subregion indicates how far back one must go to find the
 103 // start of the chunk that includes the first word of the subregion.
 104 //
 105 // Each BlockOffsetArray is owned by a Space.  However, the actual array
 106 // may be shared by several BlockOffsetArrays; this is useful
 107 // when a single resizable area (such as a generation) is divided up into
 108 // several spaces in which contiguous allocation takes place,
 109 // such as, for example, in G1 or in the train generation.)
 110 
 111 // Here is the shared array type.
 112 
 113 class G1BlockOffsetSharedArray: public CHeapObj {
 114   friend class G1BlockOffsetArray;
 115   friend class G1BlockOffsetArrayContigSpace;
 116   friend class VMStructs;
 117 
 118 private:
 119   // The reserved region covered by the shared array.
 120   MemRegion _reserved;
 121 
 122   // End of the current committed region.
 123   HeapWord* _end;
 124 
 125   // Array for keeping offsets for retrieving object start fast given an
 126   // address.
 127   VirtualSpace _vs;
 128   u_char* _offset_array;          // byte array keeping backwards offsets
 129 
 130   // Bounds checking accessors:
 131   // For performance these have to devolve to array accesses in product builds.
 132   u_char offset_array(size_t index) const {
 133     assert(index < _vs.committed_size(), "index out of range");
 134     return _offset_array[index];
 135   }
 136 
 137   void set_offset_array(size_t index, u_char offset) {
 138     assert(index < _vs.committed_size(), "index out of range");
 139     assert(offset <= N_words, "offset too large");
 140     _offset_array[index] = offset;
 141   }
 142 
 143   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
 144     assert(index < _vs.committed_size(), "index out of range");
 145     assert(high >= low, "addresses out of order");
 146     assert(pointer_delta(high, low) <= N_words, "offset too large");
 147     _offset_array[index] = (u_char) pointer_delta(high, low);
 148   }
 149 
 150   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
 151     assert(index_for(right - 1) < _vs.committed_size(),
 152            "right address out of range");
 153     assert(left  < right, "Heap addresses out of order");
 154     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 155     memset(&_offset_array[index_for(left)], offset, num_cards);
 156   }
 157 
 158   void set_offset_array(size_t left, size_t right, u_char offset) {
 159     assert(right < _vs.committed_size(), "right address out of range");
 160     assert(left  <= right, "indexes out of order");
 161     size_t num_cards = right - left + 1;
 162     memset(&_offset_array[left], offset, num_cards);
 163   }
 164 
 165   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 166     assert(index < _vs.committed_size(), "index out of range");
 167     assert(high >= low, "addresses out of order");
 168     assert(pointer_delta(high, low) <= N_words, "offset too large");
 169     assert(_offset_array[index] == pointer_delta(high, low),
 170            "Wrong offset");
 171   }
 172 
 173   bool is_card_boundary(HeapWord* p) const;
 174 
 175   // Return the number of slots needed for an offset array
 176   // that covers mem_region_words words.
 177   // We always add an extra slot because if an object
 178   // ends on a card boundary we put a 0 in the next
 179   // offset array slot, so we want that slot always
 180   // to be reserved.
 181 
 182   size_t compute_size(size_t mem_region_words) {
 183     size_t number_of_slots = (mem_region_words / N_words) + 1;
 184     return ReservedSpace::page_align_size_up(number_of_slots);
 185   }
 186 
 187 public:
 188   enum SomePublicConstants {
 189     LogN = 9,
 190     LogN_words = LogN - LogHeapWordSize,
 191     N_bytes = 1 << LogN,
 192     N_words = 1 << LogN_words
 193   };
 194 
 195   // Initialize the table to cover from "base" to (at least)
 196   // "base + init_word_size".  In the future, the table may be expanded
 197   // (see "resize" below) up to the size of "_reserved" (which must be at
 198   // least "init_word_size".) The contents of the initial table are
 199   // undefined; it is the responsibility of the constituent
 200   // G1BlockOffsetTable(s) to initialize cards.
 201   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 202 
 203   // Notes a change in the committed size of the region covered by the
 204   // table.  The "new_word_size" may not be larger than the size of the
 205   // reserved region this table covers.
 206   void resize(size_t new_word_size);
 207 
 208   void set_bottom(HeapWord* new_bottom);
 209 
 210   // Updates all the BlockOffsetArray's sharing this shared array to
 211   // reflect the current "top"'s of their spaces.
 212   void update_offset_arrays();
 213 
 214   // Return the appropriate index into "_offset_array" for "p".
 215   inline size_t index_for(const void* p) const;
 216 
 217   // Return the address indicating the start of the region corresponding to
 218   // "index" in "_offset_array".
 219   inline HeapWord* address_for_index(size_t index) const;
 220 };
 221 
 222 // And here is the G1BlockOffsetTable subtype that uses the array.
 223 
 224 class G1BlockOffsetArray: public G1BlockOffsetTable {
 225   friend class G1BlockOffsetSharedArray;
 226   friend class G1BlockOffsetArrayContigSpace;
 227   friend class VMStructs;
 228 private:
 229   enum SomePrivateConstants {
 230     N_words = G1BlockOffsetSharedArray::N_words,
 231     LogN    = G1BlockOffsetSharedArray::LogN
 232   };
 233 
 234   // The following enums are used by do_block_helper
 235   enum Action {
 236     Action_single,      // BOT records a single block (see single_block())
 237     Action_mark,        // BOT marks the start of a block (see mark_block())
 238     Action_check        // Check that BOT records block correctly
 239                         // (see verify_single_block()).
 240   };
 241 
 242   // This is the array, which can be shared by several BlockOffsetArray's
 243   // servicing different
 244   G1BlockOffsetSharedArray* _array;
 245 
 246   // The space that owns this subregion.
 247   Space* _sp;
 248 
 249   // If "_sp" is a contiguous space, the field below is the view of "_sp"
 250   // as a contiguous space, else NULL.
 251   ContiguousSpace* _csp;
 252 
 253   // If true, array entries are initialized to 0; otherwise, they are
 254   // initialized to point backwards to the beginning of the covered region.
 255   bool _init_to_zero;
 256 
 257   // The portion [_unallocated_block, _sp.end()) of the space that
 258   // is a single block known not to contain any objects.
 259   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 260   HeapWord* _unallocated_block;
 261 
 262   // Sets the entries
 263   // corresponding to the cards starting at "start" and ending at "end"
 264   // to point back to the card before "start": the interval [start, end)
 265   // is right-open.
 266   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
 267   // Same as above, except that the args here are a card _index_ interval
 268   // that is closed: [start_index, end_index]
 269   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
 270 
 271   // A helper function for BOT adjustment/verification work
 272   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
 273 
 274 protected:
 275 
 276   ContiguousSpace* csp() const { return _csp; }
 277 
 278   // Returns the address of a block whose start is at most "addr".
 279   // If "has_max_index" is true, "assumes "max_index" is the last valid one
 280   // in the array.
 281   inline HeapWord* block_at_or_preceding(const void* addr,
 282                                          bool has_max_index,
 283                                          size_t max_index) const;
 284 
 285   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 286   // next block (or the end of the space.)  Return the address of the
 287   // beginning of the block that contains "addr".  Does so without side
 288   // effects (see, e.g., spec of  block_start.)
 289   inline HeapWord*
 290   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
 291                                          const void* addr) const;
 292 
 293   // "q" is a block boundary that is <= "addr"; return the address of the
 294   // beginning of the block that contains "addr".  May have side effects
 295   // on "this", by updating imprecise entries.
 296   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
 297                                                     const void* addr);
 298 
 299   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 300   // next block (or the end of the space.)  Return the address of the
 301   // beginning of the block that contains "addr".  May have side effects
 302   // on "this", by updating imprecise entries.
 303   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
 304                                                   HeapWord* n,
 305                                                   const void* addr);
 306 
 307   // Requires that "*threshold_" be the first array entry boundary at or
 308   // above "blk_start", and that "*index_" be the corresponding array
 309   // index.  If the block starts at or crosses "*threshold_", records
 310   // "blk_start" as the appropriate block start for the array index
 311   // starting at "*threshold_", and for any other indices crossed by the
 312   // block.  Updates "*threshold_" and "*index_" to correspond to the first
 313   // index after the block end.
 314   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
 315                          HeapWord* blk_start, HeapWord* blk_end);
 316 
 317 public:
 318   // The space may not have it's bottom and top set yet, which is why the
 319   // region is passed as a parameter.  If "init_to_zero" is true, the
 320   // elements of the array are initialized to zero.  Otherwise, they are
 321   // initialized to point backwards to the beginning.
 322   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
 323                      bool init_to_zero);
 324 
 325   // Note: this ought to be part of the constructor, but that would require
 326   // "this" to be passed as a parameter to a member constructor for
 327   // the containing concrete subtype of Space.
 328   // This would be legal C++, but MS VC++ doesn't allow it.
 329   void set_space(Space* sp);
 330 
 331   // Resets the covered region to the given "mr".
 332   void set_region(MemRegion mr);
 333 
 334   // Resets the covered region to one with the same _bottom as before but
 335   // the "new_word_size".
 336   void resize(size_t new_word_size);
 337 
 338   // These must be guaranteed to work properly (i.e., do nothing)
 339   // when "blk_start" ("blk" for second version) is "NULL".
 340   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 341   virtual void alloc_block(HeapWord* blk, size_t size) {
 342     alloc_block(blk, blk + size);
 343   }
 344 
 345   // The following methods are useful and optimized for a
 346   // general, non-contiguous space.
 347 
 348   // The given arguments are required to be the starts of adjacent ("blk1"
 349   // before "blk2") well-formed blocks covered by "this".  After this call,
 350   // they should be considered to form one block.
 351   virtual void join_blocks(HeapWord* blk1, HeapWord* blk2);
 352 
 353   // Given a block [blk_start, blk_start + full_blk_size), and
 354   // a left_blk_size < full_blk_size, adjust the BOT to show two
 355   // blocks [blk_start, blk_start + left_blk_size) and
 356   // [blk_start + left_blk_size, blk_start + full_blk_size).
 357   // It is assumed (and verified in the non-product VM) that the
 358   // BOT was correct for the original block.
 359   void split_block(HeapWord* blk_start, size_t full_blk_size,
 360                            size_t left_blk_size);
 361 
 362   // Adjust the BOT to show that it has a single block in the
 363   // range [blk_start, blk_start + size). All necessary BOT
 364   // cards are adjusted, but _unallocated_block isn't.
 365   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 366   void single_block(HeapWord* blk, size_t size) {
 367     single_block(blk, blk + size);
 368   }
 369 
 370   // Adjust BOT to show that it has a block in the range
 371   // [blk_start, blk_start + size). Only the first card
 372   // of BOT is touched. It is assumed (and verified in the
 373   // non-product VM) that the remaining cards of the block
 374   // are correct.
 375   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
 376   void mark_block(HeapWord* blk, size_t size) {
 377     mark_block(blk, blk + size);
 378   }
 379 
 380   // Adjust _unallocated_block to indicate that a particular
 381   // block has been newly allocated or freed. It is assumed (and
 382   // verified in the non-product VM) that the BOT is correct for
 383   // the given block.
 384   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
 385     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 386     verify_single_block(blk_start, blk_end);
 387     if (BlockOffsetArrayUseUnallocatedBlock) {
 388       _unallocated_block = MAX2(_unallocated_block, blk_end);
 389     }
 390   }
 391 
 392   inline void allocated(HeapWord* blk, size_t size) {
 393     allocated(blk, blk + size);
 394   }
 395 
 396   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
 397 
 398   inline void freed(HeapWord* blk, size_t size);
 399 
 400   virtual HeapWord* block_start_unsafe(const void* addr);
 401   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
 402 
 403   // Requires "addr" to be the start of a card and returns the
 404   // start of the block that contains the given address.
 405   HeapWord* block_start_careful(const void* addr) const;
 406 
 407   // If true, initialize array slots with no allocated blocks to zero.
 408   // Otherwise, make them point back to the front.
 409   bool init_to_zero() { return _init_to_zero; }
 410 
 411   // Verification & debugging - ensure that the offset table reflects the fact
 412   // that the block [blk_start, blk_end) or [blk, blk + size) is a
 413   // single block of storage. NOTE: can;t const this because of
 414   // call to non-const do_block_internal() below.
 415   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
 416     if (VerifyBlockOffsetArray) {
 417       do_block_internal(blk_start, blk_end, Action_check);
 418     }
 419   }
 420 
 421   inline void verify_single_block(HeapWord* blk, size_t size) {
 422     verify_single_block(blk, blk + size);
 423   }
 424 
 425   // Verify that the given block is before _unallocated_block
 426   inline void verify_not_unallocated(HeapWord* blk_start,
 427                                      HeapWord* blk_end) const {
 428     if (BlockOffsetArrayUseUnallocatedBlock) {
 429       assert(blk_start < blk_end, "Block inconsistency?");
 430       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
 431     }
 432   }
 433 
 434   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
 435     verify_not_unallocated(blk, blk + size);
 436   }
 437 
 438   void check_all_cards(size_t left_card, size_t right_card) const;
 439 };
 440 
 441 // A subtype of BlockOffsetArray that takes advantage of the fact
 442 // that its underlying space is a ContiguousSpace, so that its "active"
 443 // region can be more efficiently tracked (than for a non-contiguous space).
 444 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
 445   friend class VMStructs;
 446 
 447   // allocation boundary at which offset array must be updated
 448   HeapWord* _next_offset_threshold;
 449   size_t    _next_offset_index;      // index corresponding to that boundary
 450 
 451   // Work function to be called when allocation start crosses the next
 452   // threshold in the contig space.
 453   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
 454     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
 455                       blk_start, blk_end);
 456   }
 457 
 458 
 459  public:
 460   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
 461 
 462   // Initialize the threshold to reflect the first boundary after the
 463   // bottom of the covered region.
 464   HeapWord* initialize_threshold();
 465 
 466   // Zero out the entry for _bottom (offset will be zero).
 467   void      zero_bottom_entry();
 468 
 469   // Return the next threshold, the point at which the table should be
 470   // updated.
 471   HeapWord* threshold() const { return _next_offset_threshold; }
 472 
 473   // These must be guaranteed to work properly (i.e., do nothing)
 474   // when "blk_start" ("blk" for second version) is "NULL".  In this
 475   // implementation, that's true because NULL is represented as 0, and thus
 476   // never exceeds the "_next_offset_threshold".
 477   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 478     if (blk_end > _next_offset_threshold)
 479       alloc_block_work1(blk_start, blk_end);
 480   }
 481   void alloc_block(HeapWord* blk, size_t size) {
 482      alloc_block(blk, blk+size);
 483   }
 484 
 485   HeapWord* block_start_unsafe(const void* addr);
 486   HeapWord* block_start_unsafe_const(const void* addr) const;
 487 };