1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "runtime/virtualspace.hpp"
  30 #include "utilities/globalDefinitions.hpp"
  31 
  32 // The CollectedHeap type requires subtypes to implement a method
  33 // "block_start".  For some subtypes, notably generational
  34 // systems using card-table-based write barriers, the efficiency of this
  35 // operation may be important.  Implementations of the "BlockOffsetArray"
  36 // class may be useful in providing such efficient implementations.
  37 //
  38 // While generally mirroring the structure of the BOT for GenCollectedHeap,
  39 // the following types are tailored more towards G1's uses; these should,
  40 // however, be merged back into a common BOT to avoid code duplication
  41 // and reduce maintenance overhead.
  42 //
  43 //    G1BlockOffsetTable (abstract)
  44 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
  45 //       -- G1BlockOffsetArrayContigSpace
  46 //
  47 // A main impediment to the consolidation of this code might be the
  48 // effect of making some of the block_start*() calls non-const as
  49 // below. Whether that might adversely affect performance optimizations
  50 // that compilers might normally perform in the case of non-G1
  51 // collectors needs to be carefully investigated prior to any such
  52 // consolidation.
  53 
  54 // Forward declarations
  55 class ContiguousSpace;
  56 class G1BlockOffsetSharedArray;
  57 
  58 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  59   friend class VMStructs;
  60 protected:
  61   // These members describe the region covered by the table.
  62 
  63   // The space this table is covering.
  64   HeapWord* _bottom;    // == reserved.start
  65   HeapWord* _end;       // End of currently allocated region.
  66 
  67 public:
  68   // Initialize the table to cover the given space.
  69   // The contents of the initial table are undefined.
  70   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
  71     _bottom(bottom), _end(end)
  72     {
  73       assert(_bottom <= _end, "arguments out of order");
  74     }
  75 
  76   // Note that the committed size of the covered space may have changed,
  77   // so the table size might also wish to change.
  78   virtual void resize(size_t new_word_size) = 0;
  79 
  80   virtual void set_bottom(HeapWord* new_bottom) {
  81     assert(new_bottom <= _end, "new_bottom > _end");
  82     _bottom = new_bottom;
  83     resize(pointer_delta(_end, _bottom));
  84   }
  85 
  86   // Requires "addr" to be contained by a block, and returns the address of
  87   // the start of that block.  (May have side effects, namely updating of
  88   // shared array entries that "point" too far backwards.  This can occur,
  89   // for example, when LAB allocation is used in a space covered by the
  90   // table.)
  91   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
  92   // Same as above, but does not have any of the possible side effects
  93   // discussed above.
  94   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
  95 
  96   // Returns the address of the start of the block containing "addr", or
  97   // else "null" if it is covered by no block.  (May have side effects,
  98   // namely updating of shared array entries that "point" too far
  99   // backwards.  This can occur, for example, when lab allocation is used
 100   // in a space covered by the table.)
 101   inline HeapWord* block_start(const void* addr);
 102   // Same as above, but does not have any of the possible side effects
 103   // discussed above.
 104   inline HeapWord* block_start_const(const void* addr) const;
 105 };
 106 
 107 // This implementation of "G1BlockOffsetTable" divides the covered region
 108 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
 109 // for each such subregion indicates how far back one must go to find the
 110 // start of the chunk that includes the first word of the subregion.
 111 //
 112 // Each BlockOffsetArray is owned by a Space.  However, the actual array
 113 // may be shared by several BlockOffsetArrays; this is useful
 114 // when a single resizable area (such as a generation) is divided up into
 115 // several spaces in which contiguous allocation takes place,
 116 // such as, for example, in G1 or in the train generation.)
 117 
 118 // Here is the shared array type.
 119 
 120 class G1BlockOffsetSharedArray: public CHeapObj {
 121   friend class G1BlockOffsetArray;
 122   friend class G1BlockOffsetArrayContigSpace;
 123   friend class VMStructs;
 124 
 125 private:
 126   // The reserved region covered by the shared array.
 127   MemRegion _reserved;
 128 
 129   // End of the current committed region.
 130   HeapWord* _end;
 131 
 132   // Array for keeping offsets for retrieving object start fast given an
 133   // address.
 134   VirtualSpace _vs;
 135   u_char* _offset_array;          // byte array keeping backwards offsets
 136 
 137   // Bounds checking accessors:
 138   // For performance these have to devolve to array accesses in product builds.
 139   u_char offset_array(size_t index) const {
 140     assert(index < _vs.committed_size(), "index out of range");
 141     return _offset_array[index];
 142   }
 143 
 144   void set_offset_array(size_t index, u_char offset) {
 145     assert(index < _vs.committed_size(), "index out of range");
 146     assert(offset <= N_words, "offset too large");
 147     _offset_array[index] = offset;
 148   }
 149 
 150   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
 151     assert(index < _vs.committed_size(), "index out of range");
 152     assert(high >= low, "addresses out of order");
 153     assert(pointer_delta(high, low) <= N_words, "offset too large");
 154     _offset_array[index] = (u_char) pointer_delta(high, low);
 155   }
 156 
 157   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
 158     assert(index_for(right - 1) < _vs.committed_size(),
 159            "right address out of range");
 160     assert(left  < right, "Heap addresses out of order");
 161     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 162     memset(&_offset_array[index_for(left)], offset, num_cards);
 163   }
 164 
 165   void set_offset_array(size_t left, size_t right, u_char offset) {
 166     assert(right < _vs.committed_size(), "right address out of range");
 167     assert(left  <= right, "indexes out of order");
 168     size_t num_cards = right - left + 1;
 169     memset(&_offset_array[left], offset, num_cards);
 170   }
 171 
 172   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 173     assert(index < _vs.committed_size(), "index out of range");
 174     assert(high >= low, "addresses out of order");
 175     assert(pointer_delta(high, low) <= N_words, "offset too large");
 176     assert(_offset_array[index] == pointer_delta(high, low),
 177            "Wrong offset");
 178   }
 179 
 180   bool is_card_boundary(HeapWord* p) const;
 181 
 182   // Return the number of slots needed for an offset array
 183   // that covers mem_region_words words.
 184   // We always add an extra slot because if an object
 185   // ends on a card boundary we put a 0 in the next
 186   // offset array slot, so we want that slot always
 187   // to be reserved.
 188 
 189   size_t compute_size(size_t mem_region_words) {
 190     size_t number_of_slots = (mem_region_words / N_words) + 1;
 191     return ReservedSpace::page_align_size_up(number_of_slots);
 192   }
 193 
 194 public:
 195   enum SomePublicConstants {
 196     LogN = 9,
 197     LogN_words = LogN - LogHeapWordSize,
 198     N_bytes = 1 << LogN,
 199     N_words = 1 << LogN_words
 200   };
 201 
 202   // Initialize the table to cover from "base" to (at least)
 203   // "base + init_word_size".  In the future, the table may be expanded
 204   // (see "resize" below) up to the size of "_reserved" (which must be at
 205   // least "init_word_size".) The contents of the initial table are
 206   // undefined; it is the responsibility of the constituent
 207   // G1BlockOffsetTable(s) to initialize cards.
 208   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 209 
 210   // Notes a change in the committed size of the region covered by the
 211   // table.  The "new_word_size" may not be larger than the size of the
 212   // reserved region this table covers.
 213   void resize(size_t new_word_size);
 214 
 215   void set_bottom(HeapWord* new_bottom);
 216 
 217   // Updates all the BlockOffsetArray's sharing this shared array to
 218   // reflect the current "top"'s of their spaces.
 219   void update_offset_arrays();
 220 
 221   // Return the appropriate index into "_offset_array" for "p".
 222   inline size_t index_for(const void* p) const;
 223 
 224   // Return the address indicating the start of the region corresponding to
 225   // "index" in "_offset_array".
 226   inline HeapWord* address_for_index(size_t index) const;
 227 };
 228 
 229 // And here is the G1BlockOffsetTable subtype that uses the array.
 230 
 231 class G1BlockOffsetArray: public G1BlockOffsetTable {
 232   friend class G1BlockOffsetSharedArray;
 233   friend class G1BlockOffsetArrayContigSpace;
 234   friend class VMStructs;
 235 private:
 236   enum SomePrivateConstants {
 237     N_words = G1BlockOffsetSharedArray::N_words,
 238     LogN    = G1BlockOffsetSharedArray::LogN
 239   };
 240 
 241   // The following enums are used by do_block_helper
 242   enum Action {
 243     Action_single,      // BOT records a single block (see single_block())
 244     Action_mark,        // BOT marks the start of a block (see mark_block())
 245     Action_check        // Check that BOT records block correctly
 246                         // (see verify_single_block()).
 247   };
 248 
 249   // This is the array, which can be shared by several BlockOffsetArray's
 250   // servicing different
 251   G1BlockOffsetSharedArray* _array;
 252 
 253   // The space that owns this subregion.
 254   Space* _sp;
 255 
 256   // If "_sp" is a contiguous space, the field below is the view of "_sp"
 257   // as a contiguous space, else NULL.
 258   ContiguousSpace* _csp;
 259 
 260   // If true, array entries are initialized to 0; otherwise, they are
 261   // initialized to point backwards to the beginning of the covered region.
 262   bool _init_to_zero;
 263 
 264   // The portion [_unallocated_block, _sp.end()) of the space that
 265   // is a single block known not to contain any objects.
 266   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 267   HeapWord* _unallocated_block;
 268 
 269   // Sets the entries
 270   // corresponding to the cards starting at "start" and ending at "end"
 271   // to point back to the card before "start": the interval [start, end)
 272   // is right-open.
 273   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
 274   // Same as above, except that the args here are a card _index_ interval
 275   // that is closed: [start_index, end_index]
 276   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
 277 
 278   // A helper function for BOT adjustment/verification work
 279   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
 280 
 281 protected:
 282 
 283   ContiguousSpace* csp() const { return _csp; }
 284 
 285   // Returns the address of a block whose start is at most "addr".
 286   // If "has_max_index" is true, "assumes "max_index" is the last valid one
 287   // in the array.
 288   inline HeapWord* block_at_or_preceding(const void* addr,
 289                                          bool has_max_index,
 290                                          size_t max_index) const;
 291 
 292   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 293   // next block (or the end of the space.)  Return the address of the
 294   // beginning of the block that contains "addr".  Does so without side
 295   // effects (see, e.g., spec of  block_start.)
 296   inline HeapWord*
 297   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
 298                                          const void* addr) const;
 299 
 300   // "q" is a block boundary that is <= "addr"; return the address of the
 301   // beginning of the block that contains "addr".  May have side effects
 302   // on "this", by updating imprecise entries.
 303   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
 304                                                     const void* addr);
 305 
 306   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 307   // next block (or the end of the space.)  Return the address of the
 308   // beginning of the block that contains "addr".  May have side effects
 309   // on "this", by updating imprecise entries.
 310   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
 311                                                   HeapWord* n,
 312                                                   const void* addr);
 313 
 314   // Requires that "*threshold_" be the first array entry boundary at or
 315   // above "blk_start", and that "*index_" be the corresponding array
 316   // index.  If the block starts at or crosses "*threshold_", records
 317   // "blk_start" as the appropriate block start for the array index
 318   // starting at "*threshold_", and for any other indices crossed by the
 319   // block.  Updates "*threshold_" and "*index_" to correspond to the first
 320   // index after the block end.
 321   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
 322                          HeapWord* blk_start, HeapWord* blk_end);
 323 
 324 public:
 325   // The space may not have it's bottom and top set yet, which is why the
 326   // region is passed as a parameter.  If "init_to_zero" is true, the
 327   // elements of the array are initialized to zero.  Otherwise, they are
 328   // initialized to point backwards to the beginning.
 329   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
 330                      bool init_to_zero);
 331 
 332   // Note: this ought to be part of the constructor, but that would require
 333   // "this" to be passed as a parameter to a member constructor for
 334   // the containing concrete subtype of Space.
 335   // This would be legal C++, but MS VC++ doesn't allow it.
 336   void set_space(Space* sp);
 337 
 338   // Resets the covered region to the given "mr".
 339   void set_region(MemRegion mr);
 340 
 341   // Resets the covered region to one with the same _bottom as before but
 342   // the "new_word_size".
 343   void resize(size_t new_word_size);
 344 
 345   // These must be guaranteed to work properly (i.e., do nothing)
 346   // when "blk_start" ("blk" for second version) is "NULL".
 347   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 348   virtual void alloc_block(HeapWord* blk, size_t size) {
 349     alloc_block(blk, blk + size);
 350   }
 351 
 352   // The following methods are useful and optimized for a
 353   // general, non-contiguous space.
 354 
 355   // The given arguments are required to be the starts of adjacent ("blk1"
 356   // before "blk2") well-formed blocks covered by "this".  After this call,
 357   // they should be considered to form one block.
 358   virtual void join_blocks(HeapWord* blk1, HeapWord* blk2);
 359 
 360   // Given a block [blk_start, blk_start + full_blk_size), and
 361   // a left_blk_size < full_blk_size, adjust the BOT to show two
 362   // blocks [blk_start, blk_start + left_blk_size) and
 363   // [blk_start + left_blk_size, blk_start + full_blk_size).
 364   // It is assumed (and verified in the non-product VM) that the
 365   // BOT was correct for the original block.
 366   void split_block(HeapWord* blk_start, size_t full_blk_size,
 367                            size_t left_blk_size);
 368 
 369   // Adjust the BOT to show that it has a single block in the
 370   // range [blk_start, blk_start + size). All necessary BOT
 371   // cards are adjusted, but _unallocated_block isn't.
 372   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 373   void single_block(HeapWord* blk, size_t size) {
 374     single_block(blk, blk + size);
 375   }
 376 
 377   // Adjust BOT to show that it has a block in the range
 378   // [blk_start, blk_start + size). Only the first card
 379   // of BOT is touched. It is assumed (and verified in the
 380   // non-product VM) that the remaining cards of the block
 381   // are correct.
 382   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
 383   void mark_block(HeapWord* blk, size_t size) {
 384     mark_block(blk, blk + size);
 385   }
 386 
 387   // Adjust _unallocated_block to indicate that a particular
 388   // block has been newly allocated or freed. It is assumed (and
 389   // verified in the non-product VM) that the BOT is correct for
 390   // the given block.
 391   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
 392     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 393     verify_single_block(blk_start, blk_end);
 394     if (BlockOffsetArrayUseUnallocatedBlock) {
 395       _unallocated_block = MAX2(_unallocated_block, blk_end);
 396     }
 397   }
 398 
 399   inline void allocated(HeapWord* blk, size_t size) {
 400     allocated(blk, blk + size);
 401   }
 402 
 403   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
 404 
 405   inline void freed(HeapWord* blk, size_t size);
 406 
 407   virtual HeapWord* block_start_unsafe(const void* addr);
 408   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
 409 
 410   // Requires "addr" to be the start of a card and returns the
 411   // start of the block that contains the given address.
 412   HeapWord* block_start_careful(const void* addr) const;
 413 
 414   // If true, initialize array slots with no allocated blocks to zero.
 415   // Otherwise, make them point back to the front.
 416   bool init_to_zero() { return _init_to_zero; }
 417 
 418   // Verification & debugging - ensure that the offset table reflects the fact
 419   // that the block [blk_start, blk_end) or [blk, blk + size) is a
 420   // single block of storage. NOTE: can;t const this because of
 421   // call to non-const do_block_internal() below.
 422   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
 423     if (VerifyBlockOffsetArray) {
 424       do_block_internal(blk_start, blk_end, Action_check);
 425     }
 426   }
 427 
 428   inline void verify_single_block(HeapWord* blk, size_t size) {
 429     verify_single_block(blk, blk + size);
 430   }
 431 
 432   // Verify that the given block is before _unallocated_block
 433   inline void verify_not_unallocated(HeapWord* blk_start,
 434                                      HeapWord* blk_end) const {
 435     if (BlockOffsetArrayUseUnallocatedBlock) {
 436       assert(blk_start < blk_end, "Block inconsistency?");
 437       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
 438     }
 439   }
 440 
 441   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
 442     verify_not_unallocated(blk, blk + size);
 443   }
 444 
 445   void check_all_cards(size_t left_card, size_t right_card) const;
 446 };
 447 
 448 // A subtype of BlockOffsetArray that takes advantage of the fact
 449 // that its underlying space is a ContiguousSpace, so that its "active"
 450 // region can be more efficiently tracked (than for a non-contiguous space).
 451 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
 452   friend class VMStructs;
 453 
 454   // allocation boundary at which offset array must be updated
 455   HeapWord* _next_offset_threshold;
 456   size_t    _next_offset_index;      // index corresponding to that boundary
 457 
 458   // Work function to be called when allocation start crosses the next
 459   // threshold in the contig space.
 460   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
 461     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
 462                       blk_start, blk_end);
 463   }
 464 
 465 
 466  public:
 467   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
 468 
 469   // Initialize the threshold to reflect the first boundary after the
 470   // bottom of the covered region.
 471   HeapWord* initialize_threshold();
 472 
 473   // Zero out the entry for _bottom (offset will be zero).
 474   void      zero_bottom_entry();
 475 
 476   // Return the next threshold, the point at which the table should be
 477   // updated.
 478   HeapWord* threshold() const { return _next_offset_threshold; }
 479 
 480   // These must be guaranteed to work properly (i.e., do nothing)
 481   // when "blk_start" ("blk" for second version) is "NULL".  In this
 482   // implementation, that's true because NULL is represented as 0, and thus
 483   // never exceeds the "_next_offset_threshold".
 484   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 485     if (blk_end > _next_offset_threshold)
 486       alloc_block_work1(blk_start, blk_end);
 487   }
 488   void alloc_block(HeapWord* blk, size_t size) {
 489      alloc_block(blk, blk+size);
 490   }
 491 
 492   HeapWord* block_start_unsafe(const void* addr);
 493   HeapWord* block_start_unsafe_const(const void* addr) const;
 494 };
 495 
 496 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP