1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A G1CollectorPolicy makes policy decisions that determine the
  26 // characteristics of the collector.  Examples include:
  27 //   * choice of collection set.
  28 //   * when to collect.
  29 
  30 class HeapRegion;
  31 class CollectionSetChooser;
  32 
  33 // Yes, this is a bit unpleasant... but it saves replicating the same thing
  34 // over and over again and introducing subtle problems through small typos and
  35 // cutting and pasting mistakes. The macros below introduces a number
  36 // sequnce into the following two classes and the methods that access it.
  37 
  38 #define define_num_seq(name)                                                  \
  39 private:                                                                      \
  40   NumberSeq _all_##name##_times_ms;                                           \
  41 public:                                                                       \
  42   void record_##name##_time_ms(double ms) {                                   \
  43     _all_##name##_times_ms.add(ms);                                           \
  44   }                                                                           \
  45   NumberSeq* get_##name##_seq() {                                             \
  46     return &_all_##name##_times_ms;                                           \
  47   }
  48 
  49 class MainBodySummary;
  50 
  51 class PauseSummary: public CHeapObj {
  52   define_num_seq(total)
  53     define_num_seq(other)
  54 
  55 public:
  56   virtual MainBodySummary*    main_body_summary()    { return NULL; }
  57 };
  58 
  59 class MainBodySummary: public CHeapObj {
  60   define_num_seq(satb_drain) // optional
  61   define_num_seq(parallel) // parallel only
  62     define_num_seq(ext_root_scan)
  63     define_num_seq(mark_stack_scan)
  64     define_num_seq(update_rs)
  65     define_num_seq(scan_rs)
  66     define_num_seq(obj_copy)
  67     define_num_seq(termination) // parallel only
  68     define_num_seq(parallel_other) // parallel only
  69   define_num_seq(mark_closure)
  70   define_num_seq(clear_ct)  // parallel only
  71 };
  72 
  73 class Summary: public PauseSummary,
  74                public MainBodySummary {
  75 public:
  76   virtual MainBodySummary*    main_body_summary()    { return this; }
  77 };
  78 
  79 class G1CollectorPolicy: public CollectorPolicy {
  80 protected:
  81   // The number of pauses during the execution.
  82   long _n_pauses;
  83 
  84   // either equal to the number of parallel threads, if ParallelGCThreads
  85   // has been set, or 1 otherwise
  86   int _parallel_gc_threads;
  87 
  88   enum SomePrivateConstants {
  89     NumPrevPausesForHeuristics = 10
  90   };
  91 
  92   G1MMUTracker* _mmu_tracker;
  93 
  94   void initialize_flags();
  95 
  96   void initialize_all() {
  97     initialize_flags();
  98     initialize_size_info();
  99     initialize_perm_generation(PermGen::MarkSweepCompact);
 100   }
 101 
 102   virtual size_t default_init_heap_size() {
 103     // Pick some reasonable default.
 104     return 8*M;
 105   }
 106 
 107   double _cur_collection_start_sec;
 108   size_t _cur_collection_pause_used_at_start_bytes;
 109   size_t _cur_collection_pause_used_regions_at_start;
 110   size_t _prev_collection_pause_used_at_end_bytes;
 111   double _cur_collection_par_time_ms;
 112   double _cur_satb_drain_time_ms;
 113   double _cur_clear_ct_time_ms;
 114   bool   _satb_drain_time_set;
 115 
 116 #ifndef PRODUCT
 117   // Card Table Count Cache stats
 118   double _min_clear_cc_time_ms;         // min
 119   double _max_clear_cc_time_ms;         // max
 120   double _cur_clear_cc_time_ms;         // clearing time during current pause
 121   double _cum_clear_cc_time_ms;         // cummulative clearing time
 122   jlong  _num_cc_clears;                // number of times the card count cache has been cleared
 123 #endif
 124 
 125   double _cur_CH_strong_roots_end_sec;
 126   double _cur_CH_strong_roots_dur_ms;
 127   double _cur_G1_strong_roots_end_sec;
 128   double _cur_G1_strong_roots_dur_ms;
 129 
 130   // Statistics for recent GC pauses.  See below for how indexed.
 131   TruncatedSeq* _recent_CH_strong_roots_times_ms;
 132   TruncatedSeq* _recent_G1_strong_roots_times_ms;
 133   TruncatedSeq* _recent_evac_times_ms;
 134   // These exclude marking times.
 135   TruncatedSeq* _recent_pause_times_ms;
 136   TruncatedSeq* _recent_gc_times_ms;
 137 
 138   TruncatedSeq* _recent_CS_bytes_used_before;
 139   TruncatedSeq* _recent_CS_bytes_surviving;
 140 
 141   TruncatedSeq* _recent_rs_sizes;
 142 
 143   TruncatedSeq* _concurrent_mark_init_times_ms;
 144   TruncatedSeq* _concurrent_mark_remark_times_ms;
 145   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 146 
 147   Summary*           _summary;
 148 
 149   NumberSeq* _all_pause_times_ms;
 150   NumberSeq* _all_full_gc_times_ms;
 151   double _stop_world_start;
 152   NumberSeq* _all_stop_world_times_ms;
 153   NumberSeq* _all_yield_times_ms;
 154 
 155   size_t     _region_num_young;
 156   size_t     _region_num_tenured;
 157   size_t     _prev_region_num_young;
 158   size_t     _prev_region_num_tenured;
 159 
 160   NumberSeq* _all_mod_union_times_ms;
 161 
 162   int        _aux_num;
 163   NumberSeq* _all_aux_times_ms;
 164   double*    _cur_aux_start_times_ms;
 165   double*    _cur_aux_times_ms;
 166   bool*      _cur_aux_times_set;
 167 
 168   double* _par_last_gc_worker_start_times_ms;
 169   double* _par_last_ext_root_scan_times_ms;
 170   double* _par_last_mark_stack_scan_times_ms;
 171   double* _par_last_update_rs_times_ms;
 172   double* _par_last_update_rs_processed_buffers;
 173   double* _par_last_scan_rs_times_ms;
 174   double* _par_last_obj_copy_times_ms;
 175   double* _par_last_termination_times_ms;
 176   double* _par_last_termination_attempts;
 177   double* _par_last_gc_worker_end_times_ms;
 178 
 179   // indicates that we are in young GC mode
 180   bool _in_young_gc_mode;
 181 
 182   // indicates whether we are in full young or partially young GC mode
 183   bool _full_young_gcs;
 184 
 185   // if true, then it tries to dynamically adjust the length of the
 186   // young list
 187   bool _adaptive_young_list_length;
 188   size_t _young_list_min_length;
 189   size_t _young_list_target_length;
 190   size_t _young_list_fixed_length;
 191 
 192   size_t _young_cset_length;
 193   bool   _last_young_gc_full;
 194 
 195   unsigned              _full_young_pause_num;
 196   unsigned              _partial_young_pause_num;
 197 
 198   bool                  _during_marking;
 199   bool                  _in_marking_window;
 200   bool                  _in_marking_window_im;
 201 
 202   SurvRateGroup*        _short_lived_surv_rate_group;
 203   SurvRateGroup*        _survivor_surv_rate_group;
 204   // add here any more surv rate groups
 205 
 206   double                _gc_overhead_perc;
 207 
 208   bool during_marking() {
 209     return _during_marking;
 210   }
 211 
 212   // <NEW PREDICTION>
 213 
 214 private:
 215   enum PredictionConstants {
 216     TruncatedSeqLength = 10
 217   };
 218 
 219   TruncatedSeq* _alloc_rate_ms_seq;
 220   double        _prev_collection_pause_end_ms;
 221 
 222   TruncatedSeq* _pending_card_diff_seq;
 223   TruncatedSeq* _rs_length_diff_seq;
 224   TruncatedSeq* _cost_per_card_ms_seq;
 225   TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
 226   TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
 227   TruncatedSeq* _cost_per_entry_ms_seq;
 228   TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
 229   TruncatedSeq* _cost_per_byte_ms_seq;
 230   TruncatedSeq* _constant_other_time_ms_seq;
 231   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 232   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 233 
 234   TruncatedSeq* _pending_cards_seq;
 235   TruncatedSeq* _scanned_cards_seq;
 236   TruncatedSeq* _rs_lengths_seq;
 237 
 238   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 239 
 240   TruncatedSeq* _young_gc_eff_seq;
 241 
 242   TruncatedSeq* _max_conc_overhead_seq;
 243 
 244   size_t _recorded_young_regions;
 245   size_t _recorded_non_young_regions;
 246   size_t _recorded_region_num;
 247 
 248   size_t _free_regions_at_end_of_collection;
 249 
 250   size_t _recorded_rs_lengths;
 251   size_t _max_rs_lengths;
 252 
 253   size_t _recorded_marked_bytes;
 254   size_t _recorded_young_bytes;
 255 
 256   size_t _predicted_pending_cards;
 257   size_t _predicted_cards_scanned;
 258   size_t _predicted_rs_lengths;
 259   size_t _predicted_bytes_to_copy;
 260 
 261   double _predicted_survival_ratio;
 262   double _predicted_rs_update_time_ms;
 263   double _predicted_rs_scan_time_ms;
 264   double _predicted_object_copy_time_ms;
 265   double _predicted_constant_other_time_ms;
 266   double _predicted_young_other_time_ms;
 267   double _predicted_non_young_other_time_ms;
 268   double _predicted_pause_time_ms;
 269 
 270   double _vtime_diff_ms;
 271 
 272   double _recorded_young_free_cset_time_ms;
 273   double _recorded_non_young_free_cset_time_ms;
 274 
 275   double _sigma;
 276   double _expensive_region_limit_ms;
 277 
 278   size_t _rs_lengths_prediction;
 279 
 280   size_t _known_garbage_bytes;
 281   double _known_garbage_ratio;
 282 
 283   double sigma() {
 284     return _sigma;
 285   }
 286 
 287   // A function that prevents us putting too much stock in small sample
 288   // sets.  Returns a number between 2.0 and 1.0, depending on the number
 289   // of samples.  5 or more samples yields one; fewer scales linearly from
 290   // 2.0 at 1 sample to 1.0 at 5.
 291   double confidence_factor(int samples) {
 292     if (samples > 4) return 1.0;
 293     else return  1.0 + sigma() * ((double)(5 - samples))/2.0;
 294   }
 295 
 296   double get_new_neg_prediction(TruncatedSeq* seq) {
 297     return seq->davg() - sigma() * seq->dsd();
 298   }
 299 
 300 #ifndef PRODUCT
 301   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 302 #endif // PRODUCT
 303 
 304   void adjust_concurrent_refinement(double update_rs_time,
 305                                     double update_rs_processed_buffers,
 306                                     double goal_ms);
 307 
 308 protected:
 309   double _pause_time_target_ms;
 310   double _recorded_young_cset_choice_time_ms;
 311   double _recorded_non_young_cset_choice_time_ms;
 312   bool   _within_target;
 313   size_t _pending_cards;
 314   size_t _max_pending_cards;
 315 
 316 public:
 317 
 318   void set_region_short_lived(HeapRegion* hr) {
 319     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 320   }
 321 
 322   void set_region_survivors(HeapRegion* hr) {
 323     hr->install_surv_rate_group(_survivor_surv_rate_group);
 324   }
 325 
 326 #ifndef PRODUCT
 327   bool verify_young_ages();
 328 #endif // PRODUCT
 329 
 330   double get_new_prediction(TruncatedSeq* seq) {
 331     return MAX2(seq->davg() + sigma() * seq->dsd(),
 332                 seq->davg() * confidence_factor(seq->num()));
 333   }
 334 
 335   size_t young_cset_length() {
 336     return _young_cset_length;
 337   }
 338 
 339   void record_max_rs_lengths(size_t rs_lengths) {
 340     _max_rs_lengths = rs_lengths;
 341   }
 342 
 343   size_t predict_pending_card_diff() {
 344     double prediction = get_new_neg_prediction(_pending_card_diff_seq);
 345     if (prediction < 0.00001)
 346       return 0;
 347     else
 348       return (size_t) prediction;
 349   }
 350 
 351   size_t predict_pending_cards() {
 352     size_t max_pending_card_num = _g1->max_pending_card_num();
 353     size_t diff = predict_pending_card_diff();
 354     size_t prediction;
 355     if (diff > max_pending_card_num)
 356       prediction = max_pending_card_num;
 357     else
 358       prediction = max_pending_card_num - diff;
 359 
 360     return prediction;
 361   }
 362 
 363   size_t predict_rs_length_diff() {
 364     return (size_t) get_new_prediction(_rs_length_diff_seq);
 365   }
 366 
 367   double predict_alloc_rate_ms() {
 368     return get_new_prediction(_alloc_rate_ms_seq);
 369   }
 370 
 371   double predict_cost_per_card_ms() {
 372     return get_new_prediction(_cost_per_card_ms_seq);
 373   }
 374 
 375   double predict_rs_update_time_ms(size_t pending_cards) {
 376     return (double) pending_cards * predict_cost_per_card_ms();
 377   }
 378 
 379   double predict_fully_young_cards_per_entry_ratio() {
 380     return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
 381   }
 382 
 383   double predict_partially_young_cards_per_entry_ratio() {
 384     if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
 385       return predict_fully_young_cards_per_entry_ratio();
 386     else
 387       return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
 388   }
 389 
 390   size_t predict_young_card_num(size_t rs_length) {
 391     return (size_t) ((double) rs_length *
 392                      predict_fully_young_cards_per_entry_ratio());
 393   }
 394 
 395   size_t predict_non_young_card_num(size_t rs_length) {
 396     return (size_t) ((double) rs_length *
 397                      predict_partially_young_cards_per_entry_ratio());
 398   }
 399 
 400   double predict_rs_scan_time_ms(size_t card_num) {
 401     if (full_young_gcs())
 402       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 403     else
 404       return predict_partially_young_rs_scan_time_ms(card_num);
 405   }
 406 
 407   double predict_partially_young_rs_scan_time_ms(size_t card_num) {
 408     if (_partially_young_cost_per_entry_ms_seq->num() < 3)
 409       return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
 410     else
 411       return (double) card_num *
 412         get_new_prediction(_partially_young_cost_per_entry_ms_seq);
 413   }
 414 
 415   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
 416     if (_cost_per_byte_ms_during_cm_seq->num() < 3)
 417       return 1.1 * (double) bytes_to_copy *
 418         get_new_prediction(_cost_per_byte_ms_seq);
 419     else
 420       return (double) bytes_to_copy *
 421         get_new_prediction(_cost_per_byte_ms_during_cm_seq);
 422   }
 423 
 424   double predict_object_copy_time_ms(size_t bytes_to_copy) {
 425     if (_in_marking_window && !_in_marking_window_im)
 426       return predict_object_copy_time_ms_during_cm(bytes_to_copy);
 427     else
 428       return (double) bytes_to_copy *
 429         get_new_prediction(_cost_per_byte_ms_seq);
 430   }
 431 
 432   double predict_constant_other_time_ms() {
 433     return get_new_prediction(_constant_other_time_ms_seq);
 434   }
 435 
 436   double predict_young_other_time_ms(size_t young_num) {
 437     return
 438       (double) young_num *
 439       get_new_prediction(_young_other_cost_per_region_ms_seq);
 440   }
 441 
 442   double predict_non_young_other_time_ms(size_t non_young_num) {
 443     return
 444       (double) non_young_num *
 445       get_new_prediction(_non_young_other_cost_per_region_ms_seq);
 446   }
 447 
 448   void check_if_region_is_too_expensive(double predicted_time_ms);
 449 
 450   double predict_young_collection_elapsed_time_ms(size_t adjustment);
 451   double predict_base_elapsed_time_ms(size_t pending_cards);
 452   double predict_base_elapsed_time_ms(size_t pending_cards,
 453                                       size_t scanned_cards);
 454   size_t predict_bytes_to_copy(HeapRegion* hr);
 455   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
 456 
 457     // for use by: calculate_young_list_target_length(rs_length)
 458   bool predict_will_fit(size_t young_region_num,
 459                         double base_time_ms,
 460                         size_t init_free_regions,
 461                         double target_pause_time_ms);
 462 
 463   void start_recording_regions();
 464   void record_cset_region_info(HeapRegion* hr, bool young);
 465   void record_non_young_cset_region(HeapRegion* hr);
 466 
 467   void set_recorded_young_regions(size_t n_regions);
 468   void set_recorded_young_bytes(size_t bytes);
 469   void set_recorded_rs_lengths(size_t rs_lengths);
 470   void set_predicted_bytes_to_copy(size_t bytes);
 471 
 472   void end_recording_regions();
 473 
 474   void record_vtime_diff_ms(double vtime_diff_ms) {
 475     _vtime_diff_ms = vtime_diff_ms;
 476   }
 477 
 478   void record_young_free_cset_time_ms(double time_ms) {
 479     _recorded_young_free_cset_time_ms = time_ms;
 480   }
 481 
 482   void record_non_young_free_cset_time_ms(double time_ms) {
 483     _recorded_non_young_free_cset_time_ms = time_ms;
 484   }
 485 
 486   double predict_young_gc_eff() {
 487     return get_new_neg_prediction(_young_gc_eff_seq);
 488   }
 489 
 490   double predict_survivor_regions_evac_time();
 491 
 492   // </NEW PREDICTION>
 493 
 494 public:
 495   void cset_regions_freed() {
 496     bool propagate = _last_young_gc_full && !_in_marking_window;
 497     _short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
 498     _survivor_surv_rate_group->all_surviving_words_recorded(propagate);
 499     // also call it on any more surv rate groups
 500   }
 501 
 502   void set_known_garbage_bytes(size_t known_garbage_bytes) {
 503     _known_garbage_bytes = known_garbage_bytes;
 504     size_t heap_bytes = _g1->capacity();
 505     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 506   }
 507 
 508   void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
 509     guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
 510 
 511     _known_garbage_bytes -= known_garbage_bytes;
 512     size_t heap_bytes = _g1->capacity();
 513     _known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
 514   }
 515 
 516   G1MMUTracker* mmu_tracker() {
 517     return _mmu_tracker;
 518   }
 519 
 520   double max_pause_time_ms() {
 521     return _mmu_tracker->max_gc_time() * 1000.0;
 522   }
 523 
 524   double predict_init_time_ms() {
 525     return get_new_prediction(_concurrent_mark_init_times_ms);
 526   }
 527 
 528   double predict_remark_time_ms() {
 529     return get_new_prediction(_concurrent_mark_remark_times_ms);
 530   }
 531 
 532   double predict_cleanup_time_ms() {
 533     return get_new_prediction(_concurrent_mark_cleanup_times_ms);
 534   }
 535 
 536   // Returns an estimate of the survival rate of the region at yg-age
 537   // "yg_age".
 538   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
 539     TruncatedSeq* seq = surv_rate_group->get_seq(age);
 540     if (seq->num() == 0)
 541       gclog_or_tty->print("BARF! age is %d", age);
 542     guarantee( seq->num() > 0, "invariant" );
 543     double pred = get_new_prediction(seq);
 544     if (pred > 1.0)
 545       pred = 1.0;
 546     return pred;
 547   }
 548 
 549   double predict_yg_surv_rate(int age) {
 550     return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
 551   }
 552 
 553   double accum_yg_surv_rate_pred(int age) {
 554     return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
 555   }
 556 
 557 protected:
 558   void print_stats(int level, const char* str, double value);
 559   void print_stats(int level, const char* str, int value);
 560 
 561   void print_par_stats(int level, const char* str, double* data) {
 562     print_par_stats(level, str, data, true);
 563   }
 564   void print_par_stats(int level, const char* str, double* data, bool summary);
 565   void print_par_sizes(int level, const char* str, double* data, bool summary);
 566 
 567   void check_other_times(int level,
 568                          NumberSeq* other_times_ms,
 569                          NumberSeq* calc_other_times_ms) const;
 570 
 571   void print_summary (PauseSummary* stats) const;
 572 
 573   void print_summary (int level, const char* str, NumberSeq* seq) const;
 574   void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
 575 
 576   double avg_value (double* data);
 577   double max_value (double* data);
 578   double sum_of_values (double* data);
 579   double max_sum (double* data1, double* data2);
 580 
 581   int _last_satb_drain_processed_buffers;
 582   int _last_update_rs_processed_buffers;
 583   double _last_pause_time_ms;
 584 
 585   size_t _bytes_in_to_space_before_gc;
 586   size_t _bytes_in_to_space_after_gc;
 587   size_t bytes_in_to_space_during_gc() {
 588     return
 589       _bytes_in_to_space_after_gc - _bytes_in_to_space_before_gc;
 590   }
 591   size_t _bytes_in_collection_set_before_gc;
 592   // Used to count used bytes in CS.
 593   friend class CountCSClosure;
 594 
 595   // Statistics kept per GC stoppage, pause or full.
 596   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 597 
 598   // We track markings.
 599   int _num_markings;
 600   double _mark_thread_startup_sec;       // Time at startup of marking thread
 601 
 602   // Add a new GC of the given duration and end time to the record.
 603   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 604 
 605   // The head of the list (via "next_in_collection_set()") representing the
 606   // current collection set. Set from the incrementally built collection
 607   // set at the start of the pause.
 608   HeapRegion* _collection_set;
 609 
 610   // The number of regions in the collection set. Set from the incrementally
 611   // built collection set at the start of an evacuation pause.
 612   size_t _collection_set_size;
 613 
 614   // The number of bytes in the collection set before the pause. Set from
 615   // the incrementally built collection set at the start of an evacuation
 616   // pause.
 617   size_t _collection_set_bytes_used_before;
 618 
 619   // The associated information that is maintained while the incremental
 620   // collection set is being built with young regions. Used to populate
 621   // the recorded info for the evacuation pause.
 622 
 623   enum CSetBuildType {
 624     Active,             // We are actively building the collection set
 625     Inactive            // We are not actively building the collection set
 626   };
 627 
 628   CSetBuildType _inc_cset_build_state;
 629 
 630   // The head of the incrementally built collection set.
 631   HeapRegion* _inc_cset_head;
 632 
 633   // The tail of the incrementally built collection set.
 634   HeapRegion* _inc_cset_tail;
 635 
 636   // The number of regions in the incrementally built collection set.
 637   // Used to set _collection_set_size at the start of an evacuation
 638   // pause.
 639   size_t _inc_cset_size;
 640 
 641   // Used as the index in the surving young words structure
 642   // which tracks the amount of space, for each young region,
 643   // that survives the pause.
 644   size_t _inc_cset_young_index;
 645 
 646   // The number of bytes in the incrementally built collection set.
 647   // Used to set _collection_set_bytes_used_before at the start of
 648   // an evacuation pause.
 649   size_t _inc_cset_bytes_used_before;
 650 
 651   // Used to record the highest end of heap region in collection set
 652   HeapWord* _inc_cset_max_finger;
 653 
 654   // The number of recorded used bytes in the young regions
 655   // of the collection set. This is the sum of the used() bytes
 656   // of retired young regions in the collection set.
 657   size_t _inc_cset_recorded_young_bytes;
 658 
 659   // The RSet lengths recorded for regions in the collection set
 660   // (updated by the periodic sampling of the regions in the
 661   // young list/collection set).
 662   size_t _inc_cset_recorded_rs_lengths;
 663 
 664   // The predicted elapsed time it will take to collect the regions
 665   // in the collection set (updated by the periodic sampling of the
 666   // regions in the young list/collection set).
 667   double _inc_cset_predicted_elapsed_time_ms;
 668 
 669   // The predicted bytes to copy for the regions in the collection
 670   // set (updated by the periodic sampling of the regions in the
 671   // young list/collection set).
 672   size_t _inc_cset_predicted_bytes_to_copy;
 673 
 674   // Info about marking.
 675   int _n_marks; // Sticky at 2, so we know when we've done at least 2.
 676 
 677   // The number of collection pauses at the end of the last mark.
 678   size_t _n_pauses_at_mark_end;
 679 
 680   // Stash a pointer to the g1 heap.
 681   G1CollectedHeap* _g1;
 682 
 683   // The average time in ms per collection pause, averaged over recent pauses.
 684   double recent_avg_time_for_pauses_ms();
 685 
 686   // The average time in ms for processing CollectedHeap strong roots, per
 687   // collection pause, averaged over recent pauses.
 688   double recent_avg_time_for_CH_strong_ms();
 689 
 690   // The average time in ms for processing the G1 remembered set, per
 691   // pause, averaged over recent pauses.
 692   double recent_avg_time_for_G1_strong_ms();
 693 
 694   // The average time in ms for "evacuating followers", per pause, averaged
 695   // over recent pauses.
 696   double recent_avg_time_for_evac_ms();
 697 
 698   // The number of "recent" GCs recorded in the number sequences
 699   int number_of_recent_gcs();
 700 
 701   // The average survival ratio, computed by the total number of bytes
 702   // suriviving / total number of bytes before collection over the last
 703   // several recent pauses.
 704   double recent_avg_survival_fraction();
 705   // The survival fraction of the most recent pause; if there have been no
 706   // pauses, returns 1.0.
 707   double last_survival_fraction();
 708 
 709   // Returns a "conservative" estimate of the recent survival rate, i.e.,
 710   // one that may be higher than "recent_avg_survival_fraction".
 711   // This is conservative in several ways:
 712   //   If there have been few pauses, it will assume a potential high
 713   //     variance, and err on the side of caution.
 714   //   It puts a lower bound (currently 0.1) on the value it will return.
 715   //   To try to detect phase changes, if the most recent pause ("latest") has a
 716   //     higher-than average ("avg") survival rate, it returns that rate.
 717   // "work" version is a utility function; young is restricted to young regions.
 718   double conservative_avg_survival_fraction_work(double avg,
 719                                                  double latest);
 720 
 721   // The arguments are the two sequences that keep track of the number of bytes
 722   //   surviving and the total number of bytes before collection, resp.,
 723   //   over the last evereal recent pauses
 724   // Returns the survival rate for the category in the most recent pause.
 725   // If there have been no pauses, returns 1.0.
 726   double last_survival_fraction_work(TruncatedSeq* surviving,
 727                                      TruncatedSeq* before);
 728 
 729   // The arguments are the two sequences that keep track of the number of bytes
 730   //   surviving and the total number of bytes before collection, resp.,
 731   //   over the last several recent pauses
 732   // Returns the average survival ration over the last several recent pauses
 733   // If there have been no pauses, return 1.0
 734   double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
 735                                            TruncatedSeq* before);
 736 
 737   double conservative_avg_survival_fraction() {
 738     double avg = recent_avg_survival_fraction();
 739     double latest = last_survival_fraction();
 740     return conservative_avg_survival_fraction_work(avg, latest);
 741   }
 742 
 743   // The ratio of gc time to elapsed time, computed over recent pauses.
 744   double _recent_avg_pause_time_ratio;
 745 
 746   double recent_avg_pause_time_ratio() {
 747     return _recent_avg_pause_time_ratio;
 748   }
 749 
 750   // Number of pauses between concurrent marking.
 751   size_t _pauses_btwn_concurrent_mark;
 752 
 753   size_t _n_marks_since_last_pause;
 754 
 755   // At the end of a pause we check the heap occupancy and we decide
 756   // whether we will start a marking cycle during the next pause. If
 757   // we decide that we want to do that, we will set this parameter to
 758   // true. So, this parameter will stay true between the end of a
 759   // pause and the beginning of a subsequent pause (not necessarily
 760   // the next one, see the comments on the next field) when we decide
 761   // that we will indeed start a marking cycle and do the initial-mark
 762   // work.
 763   volatile bool _initiate_conc_mark_if_possible;
 764 
 765   // If initiate_conc_mark_if_possible() is set at the beginning of a
 766   // pause, it is a suggestion that the pause should start a marking
 767   // cycle by doing the initial-mark work. However, it is possible
 768   // that the concurrent marking thread is still finishing up the
 769   // previous marking cycle (e.g., clearing the next marking
 770   // bitmap). If that is the case we cannot start a new cycle and
 771   // we'll have to wait for the concurrent marking thread to finish
 772   // what it is doing. In this case we will postpone the marking cycle
 773   // initiation decision for the next pause. When we eventually decide
 774   // to start a cycle, we will set _during_initial_mark_pause which
 775   // will stay true until the end of the initial-mark pause and it's
 776   // the condition that indicates that a pause is doing the
 777   // initial-mark work.
 778   volatile bool _during_initial_mark_pause;
 779 
 780   bool _should_revert_to_full_young_gcs;
 781   bool _last_full_young_gc;
 782 
 783   // This set of variables tracks the collector efficiency, in order to
 784   // determine whether we should initiate a new marking.
 785   double _cur_mark_stop_world_time_ms;
 786   double _mark_init_start_sec;
 787   double _mark_remark_start_sec;
 788   double _mark_cleanup_start_sec;
 789   double _mark_closure_time_ms;
 790 
 791   void   calculate_young_list_min_length();
 792   void   calculate_young_list_target_length();
 793   void   calculate_young_list_target_length(size_t rs_lengths);
 794 
 795 public:
 796 
 797   G1CollectorPolicy();
 798 
 799   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 800 
 801   virtual CollectorPolicy::Name kind() {
 802     return CollectorPolicy::G1CollectorPolicyKind;
 803   }
 804 
 805   void check_prediction_validity();
 806 
 807   size_t bytes_in_collection_set() {
 808     return _bytes_in_collection_set_before_gc;
 809   }
 810 
 811   size_t bytes_in_to_space() {
 812     return bytes_in_to_space_during_gc();
 813   }
 814 
 815   unsigned calc_gc_alloc_time_stamp() {
 816     return _all_pause_times_ms->num() + 1;
 817   }
 818 
 819 protected:
 820 
 821   // Count the number of bytes used in the CS.
 822   void count_CS_bytes_used();
 823 
 824   // Together these do the base cleanup-recording work.  Subclasses might
 825   // want to put something between them.
 826   void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
 827                                                 size_t max_live_bytes);
 828   void record_concurrent_mark_cleanup_end_work2();
 829 
 830 public:
 831 
 832   virtual void init();
 833 
 834   // Create jstat counters for the policy.
 835   virtual void initialize_gc_policy_counters();
 836 
 837   virtual HeapWord* mem_allocate_work(size_t size,
 838                                       bool is_tlab,
 839                                       bool* gc_overhead_limit_was_exceeded);
 840 
 841   // This method controls how a collector handles one or more
 842   // of its generations being fully allocated.
 843   virtual HeapWord* satisfy_failed_allocation(size_t size,
 844                                               bool is_tlab);
 845 
 846   BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
 847 
 848   GenRemSet::Name  rem_set_name()     { return GenRemSet::CardTable; }
 849 
 850   // The number of collection pauses so far.
 851   long n_pauses() const { return _n_pauses; }
 852 
 853   // Update the heuristic info to record a collection pause of the given
 854   // start time, where the given number of bytes were used at the start.
 855   // This may involve changing the desired size of a collection set.
 856 
 857   virtual void record_stop_world_start();
 858 
 859   virtual void record_collection_pause_start(double start_time_sec,
 860                                              size_t start_used);
 861 
 862   // Must currently be called while the world is stopped.
 863   virtual void record_concurrent_mark_init_start();
 864   virtual void record_concurrent_mark_init_end();
 865   void record_concurrent_mark_init_end_pre(double
 866                                            mark_init_elapsed_time_ms);
 867 
 868   void record_mark_closure_time(double mark_closure_time_ms);
 869 
 870   virtual void record_concurrent_mark_remark_start();
 871   virtual void record_concurrent_mark_remark_end();
 872 
 873   virtual void record_concurrent_mark_cleanup_start();
 874   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
 875                                                   size_t max_live_bytes);
 876   virtual void record_concurrent_mark_cleanup_completed();
 877 
 878   virtual void record_concurrent_pause();
 879   virtual void record_concurrent_pause_end();
 880 
 881   virtual void record_collection_pause_end_CH_strong_roots();
 882   virtual void record_collection_pause_end_G1_strong_roots();
 883 
 884   virtual void record_collection_pause_end();
 885 
 886   // Record the fact that a full collection occurred.
 887   virtual void record_full_collection_start();
 888   virtual void record_full_collection_end();
 889 
 890   void record_gc_worker_start_time(int worker_i, double ms) {
 891     _par_last_gc_worker_start_times_ms[worker_i] = ms;
 892   }
 893 
 894   void record_ext_root_scan_time(int worker_i, double ms) {
 895     _par_last_ext_root_scan_times_ms[worker_i] = ms;
 896   }
 897 
 898   void record_mark_stack_scan_time(int worker_i, double ms) {
 899     _par_last_mark_stack_scan_times_ms[worker_i] = ms;
 900   }
 901 
 902   void record_satb_drain_time(double ms) {
 903     _cur_satb_drain_time_ms = ms;
 904     _satb_drain_time_set    = true;
 905   }
 906 
 907   void record_satb_drain_processed_buffers (int processed_buffers) {
 908     _last_satb_drain_processed_buffers = processed_buffers;
 909   }
 910 
 911   void record_mod_union_time(double ms) {
 912     _all_mod_union_times_ms->add(ms);
 913   }
 914 
 915   void record_update_rs_time(int thread, double ms) {
 916     _par_last_update_rs_times_ms[thread] = ms;
 917   }
 918 
 919   void record_update_rs_processed_buffers (int thread,
 920                                            double processed_buffers) {
 921     _par_last_update_rs_processed_buffers[thread] = processed_buffers;
 922   }
 923 
 924   void record_scan_rs_time(int thread, double ms) {
 925     _par_last_scan_rs_times_ms[thread] = ms;
 926   }
 927 
 928   void reset_obj_copy_time(int thread) {
 929     _par_last_obj_copy_times_ms[thread] = 0.0;
 930   }
 931 
 932   void reset_obj_copy_time() {
 933     reset_obj_copy_time(0);
 934   }
 935 
 936   void record_obj_copy_time(int thread, double ms) {
 937     _par_last_obj_copy_times_ms[thread] += ms;
 938   }
 939 
 940   void record_termination(int thread, double ms, size_t attempts) {
 941     _par_last_termination_times_ms[thread] = ms;
 942     _par_last_termination_attempts[thread] = (double) attempts;
 943   }
 944 
 945   void record_gc_worker_end_time(int worker_i, double ms) {
 946     _par_last_gc_worker_end_times_ms[worker_i] = ms;
 947   }
 948 
 949   void record_pause_time_ms(double ms) {
 950     _last_pause_time_ms = ms;
 951   }
 952 
 953   void record_clear_ct_time(double ms) {
 954     _cur_clear_ct_time_ms = ms;
 955   }
 956 
 957   void record_par_time(double ms) {
 958     _cur_collection_par_time_ms = ms;
 959   }
 960 
 961   void record_aux_start_time(int i) {
 962     guarantee(i < _aux_num, "should be within range");
 963     _cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
 964   }
 965 
 966   void record_aux_end_time(int i) {
 967     guarantee(i < _aux_num, "should be within range");
 968     double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
 969     _cur_aux_times_set[i] = true;
 970     _cur_aux_times_ms[i] += ms;
 971   }
 972 
 973 #ifndef PRODUCT
 974   void record_cc_clear_time(double ms) {
 975     if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
 976       _min_clear_cc_time_ms = ms;
 977     if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
 978       _max_clear_cc_time_ms = ms;
 979     _cur_clear_cc_time_ms = ms;
 980     _cum_clear_cc_time_ms += ms;
 981     _num_cc_clears++;
 982   }
 983 #endif
 984 
 985   // Record the fact that "bytes" bytes allocated in a region.
 986   void record_before_bytes(size_t bytes);
 987   void record_after_bytes(size_t bytes);
 988 
 989   // Returns "true" if this is a good time to do a collection pause.
 990   // The "word_size" argument, if non-zero, indicates the size of an
 991   // allocation request that is prompting this query.
 992   virtual bool should_do_collection_pause(size_t word_size) = 0;
 993 
 994   // Choose a new collection set.  Marks the chosen regions as being
 995   // "in_collection_set", and links them together.  The head and number of
 996   // the collection set are available via access methods.
 997   virtual void choose_collection_set(double target_pause_time_ms) = 0;
 998 
 999   // The head of the list (via "next_in_collection_set()") representing the
1000   // current collection set.
1001   HeapRegion* collection_set() { return _collection_set; }
1002 
1003   void clear_collection_set() { _collection_set = NULL; }
1004 
1005   // The number of elements in the current collection set.
1006   size_t collection_set_size() { return _collection_set_size; }
1007 
1008   // Add "hr" to the CS.
1009   void add_to_collection_set(HeapRegion* hr);
1010 
1011   // Incremental CSet Support
1012 
1013   // The head of the incrementally built collection set.
1014   HeapRegion* inc_cset_head() { return _inc_cset_head; }
1015 
1016   // The tail of the incrementally built collection set.
1017   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
1018 
1019   // The number of elements in the incrementally built collection set.
1020   size_t inc_cset_size() { return _inc_cset_size; }
1021 
1022   // Initialize incremental collection set info.
1023   void start_incremental_cset_building();
1024 
1025   void clear_incremental_cset() {
1026     _inc_cset_head = NULL;
1027     _inc_cset_tail = NULL;
1028   }
1029 
1030   // Stop adding regions to the incremental collection set
1031   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
1032 
1033   // Add/remove information about hr to the aggregated information
1034   // for the incrementally built collection set.
1035   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
1036   void remove_from_incremental_cset_info(HeapRegion* hr);
1037 
1038   // Update information about hr in the aggregated information for
1039   // the incrementally built collection set.
1040   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
1041 
1042 private:
1043   // Update the incremental cset information when adding a region
1044   // (should not be called directly).
1045   void add_region_to_incremental_cset_common(HeapRegion* hr);
1046 
1047 public:
1048   // Add hr to the LHS of the incremental collection set.
1049   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
1050 
1051   // Add hr to the RHS of the incremental collection set.
1052   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
1053 
1054 #ifndef PRODUCT
1055   void print_collection_set(HeapRegion* list_head, outputStream* st);
1056 #endif // !PRODUCT
1057 
1058   bool initiate_conc_mark_if_possible()       { return _initiate_conc_mark_if_possible;  }
1059   void set_initiate_conc_mark_if_possible()   { _initiate_conc_mark_if_possible = true;  }
1060   void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
1061 
1062   bool during_initial_mark_pause()      { return _during_initial_mark_pause;  }
1063   void set_during_initial_mark_pause()  { _during_initial_mark_pause = true;  }
1064   void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
1065 
1066   // This sets the initiate_conc_mark_if_possible() flag to start a
1067   // new cycle, as long as we are not already in one. It's best if it
1068   // is called during a safepoint when the test whether a cycle is in
1069   // progress or not is stable.
1070   bool force_initial_mark_if_outside_cycle();
1071 
1072   // This is called at the very beginning of an evacuation pause (it
1073   // has to be the first thing that the pause does). If
1074   // initiate_conc_mark_if_possible() is true, and the concurrent
1075   // marking thread has completed its work during the previous cycle,
1076   // it will set during_initial_mark_pause() to so that the pause does
1077   // the initial-mark work and start a marking cycle.
1078   void decide_on_conc_mark_initiation();
1079 
1080   // If an expansion would be appropriate, because recent GC overhead had
1081   // exceeded the desired limit, return an amount to expand by.
1082   virtual size_t expansion_amount();
1083 
1084   // note start of mark thread
1085   void note_start_of_mark_thread();
1086 
1087   // The marked bytes of the "r" has changed; reclassify it's desirability
1088   // for marking.  Also asserts that "r" is eligible for a CS.
1089   virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
1090 
1091 #ifndef PRODUCT
1092   // Check any appropriate marked bytes info, asserting false if
1093   // something's wrong, else returning "true".
1094   virtual bool assertMarkedBytesDataOK() = 0;
1095 #endif
1096 
1097   // Print tracing information.
1098   void print_tracing_info() const;
1099 
1100   // Print stats on young survival ratio
1101   void print_yg_surv_rate_info() const;
1102 
1103   void finished_recalculating_age_indexes(bool is_survivors) {
1104     if (is_survivors) {
1105       _survivor_surv_rate_group->finished_recalculating_age_indexes();
1106     } else {
1107       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
1108     }
1109     // do that for any other surv rate groups
1110   }
1111 
1112   bool should_add_next_region_to_young_list();
1113 
1114   bool in_young_gc_mode() {
1115     return _in_young_gc_mode;
1116   }
1117   void set_in_young_gc_mode(bool in_young_gc_mode) {
1118     _in_young_gc_mode = in_young_gc_mode;
1119   }
1120 
1121   bool full_young_gcs() {
1122     return _full_young_gcs;
1123   }
1124   void set_full_young_gcs(bool full_young_gcs) {
1125     _full_young_gcs = full_young_gcs;
1126   }
1127 
1128   bool adaptive_young_list_length() {
1129     return _adaptive_young_list_length;
1130   }
1131   void set_adaptive_young_list_length(bool adaptive_young_list_length) {
1132     _adaptive_young_list_length = adaptive_young_list_length;
1133   }
1134 
1135   inline double get_gc_eff_factor() {
1136     double ratio = _known_garbage_ratio;
1137 
1138     double square = ratio * ratio;
1139     // square = square * square;
1140     double ret = square * 9.0 + 1.0;
1141 #if 0
1142     gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
1143 #endif // 0
1144     guarantee(0.0 <= ret && ret < 10.0, "invariant!");
1145     return ret;
1146   }
1147 
1148   //
1149   // Survivor regions policy.
1150   //
1151 protected:
1152 
1153   // Current tenuring threshold, set to 0 if the collector reaches the
1154   // maximum amount of suvivors regions.
1155   int _tenuring_threshold;
1156 
1157   // The limit on the number of regions allocated for survivors.
1158   size_t _max_survivor_regions;
1159 
1160   // The amount of survor regions after a collection.
1161   size_t _recorded_survivor_regions;
1162   // List of survivor regions.
1163   HeapRegion* _recorded_survivor_head;
1164   HeapRegion* _recorded_survivor_tail;
1165 
1166   ageTable _survivors_age_table;
1167 
1168 public:
1169 
1170   inline GCAllocPurpose
1171     evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
1172       if (age < _tenuring_threshold && src_region->is_young()) {
1173         return GCAllocForSurvived;
1174       } else {
1175         return GCAllocForTenured;
1176       }
1177   }
1178 
1179   inline bool track_object_age(GCAllocPurpose purpose) {
1180     return purpose == GCAllocForSurvived;
1181   }
1182 
1183   inline GCAllocPurpose alternative_purpose(int purpose) {
1184     return GCAllocForTenured;
1185   }
1186 
1187   static const size_t REGIONS_UNLIMITED = ~(size_t)0;
1188 
1189   size_t max_regions(int purpose);
1190 
1191   // The limit on regions for a particular purpose is reached.
1192   void note_alloc_region_limit_reached(int purpose) {
1193     if (purpose == GCAllocForSurvived) {
1194       _tenuring_threshold = 0;
1195     }
1196   }
1197 
1198   void note_start_adding_survivor_regions() {
1199     _survivor_surv_rate_group->start_adding_regions();
1200   }
1201 
1202   void note_stop_adding_survivor_regions() {
1203     _survivor_surv_rate_group->stop_adding_regions();
1204   }
1205 
1206   void record_survivor_regions(size_t      regions,
1207                                HeapRegion* head,
1208                                HeapRegion* tail) {
1209     _recorded_survivor_regions = regions;
1210     _recorded_survivor_head    = head;
1211     _recorded_survivor_tail    = tail;
1212   }
1213 
1214   size_t recorded_survivor_regions() {
1215     return _recorded_survivor_regions;
1216   }
1217 
1218   void record_thread_age_table(ageTable* age_table)
1219   {
1220     _survivors_age_table.merge_par(age_table);
1221   }
1222 
1223   // Calculates survivor space parameters.
1224   void calculate_survivors_policy();
1225 
1226 };
1227 
1228 // This encapsulates a particular strategy for a g1 Collector.
1229 //
1230 //      Start a concurrent mark when our heap size is n bytes
1231 //            greater then our heap size was at the last concurrent
1232 //            mark.  Where n is a function of the CMSTriggerRatio
1233 //            and the MinHeapFreeRatio.
1234 //
1235 //      Start a g1 collection pause when we have allocated the
1236 //            average number of bytes currently being freed in
1237 //            a collection, but only if it is at least one region
1238 //            full
1239 //
1240 //      Resize Heap based on desired
1241 //      allocation space, where desired allocation space is
1242 //      a function of survival rate and desired future to size.
1243 //
1244 //      Choose collection set by first picking all older regions
1245 //      which have a survival rate which beats our projected young
1246 //      survival rate.  Then fill out the number of needed regions
1247 //      with young regions.
1248 
1249 class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
1250   CollectionSetChooser* _collectionSetChooser;
1251   // If the estimated is less then desirable, resize if possible.
1252   void expand_if_possible(size_t numRegions);
1253 
1254   virtual void choose_collection_set(double target_pause_time_ms);
1255   virtual void record_collection_pause_start(double start_time_sec,
1256                                              size_t start_used);
1257   virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
1258                                                   size_t max_live_bytes);
1259   virtual void record_full_collection_end();
1260 
1261 public:
1262   G1CollectorPolicy_BestRegionsFirst() {
1263     _collectionSetChooser = new CollectionSetChooser();
1264   }
1265   void record_collection_pause_end();
1266   bool should_do_collection_pause(size_t word_size);
1267   // This is not needed any more, after the CSet choosing code was
1268   // changed to use the pause prediction work. But let's leave the
1269   // hook in just in case.
1270   void note_change_in_marked_bytes(HeapRegion* r) { }
1271 #ifndef PRODUCT
1272   bool assertMarkedBytesDataOK();
1273 #endif
1274 };
1275 
1276 // This should move to some place more general...
1277 
1278 // If we have "n" measurements, and we've kept track of their "sum" and the
1279 // "sum_of_squares" of the measurements, this returns the variance of the
1280 // sequence.
1281 inline double variance(int n, double sum_of_squares, double sum) {
1282   double n_d = (double)n;
1283   double avg = sum/n_d;
1284   return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
1285 }
1286 
1287 // Local Variables: ***
1288 // c-indentation-style: gnu ***
1289 // End: ***