1 /*
   2  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableModRefBS.hpp"
  28 #include "memory/cardTableRS.hpp"
  29 #include "memory/sharedHeap.hpp"
  30 #include "memory/space.inline.hpp"
  31 #include "memory/universe.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/mutexLocker.hpp"
  34 #include "runtime/virtualspace.hpp"
  35 
  36 void CardTableModRefBS::par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
  37                                                         DirtyCardToOopClosure* dcto_cl,
  38                                                         MemRegionClosure* cl,
  39                                                         bool clear,
  40                                                         int n_threads) {
  41   if (n_threads > 0) {
  42     assert((n_threads == 1 && ParallelGCThreads == 0) ||
  43            n_threads <= (int)ParallelGCThreads,
  44            "# worker threads != # requested!");
  45     // Make sure the LNC array is valid for the space.
  46     jbyte**   lowest_non_clean;
  47     uintptr_t lowest_non_clean_base_chunk_index;
  48     size_t    lowest_non_clean_chunk_size;
  49     get_LNC_array_for_space(sp, lowest_non_clean,
  50                             lowest_non_clean_base_chunk_index,
  51                             lowest_non_clean_chunk_size);
  52 
  53     int n_strides = n_threads * StridesPerThread;
  54     SequentialSubTasksDone* pst = sp->par_seq_tasks();
  55     pst->set_par_threads(n_threads);
  56     pst->set_n_tasks(n_strides);
  57 
  58     int stride = 0;
  59     while (!pst->is_task_claimed(/* reference */ stride)) {
  60       process_stride(sp, mr, stride, n_strides, dcto_cl, cl, clear,
  61                      lowest_non_clean,
  62                      lowest_non_clean_base_chunk_index,
  63                      lowest_non_clean_chunk_size);
  64     }
  65     if (pst->all_tasks_completed()) {
  66       // Clear lowest_non_clean array for next time.
  67       intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
  68       uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
  69       for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
  70         intptr_t ind = ch - lowest_non_clean_base_chunk_index;
  71         assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
  72                "Bounds error");
  73         lowest_non_clean[ind] = NULL;
  74       }
  75     }
  76   }
  77 }
  78 
  79 void
  80 CardTableModRefBS::
  81 process_stride(Space* sp,
  82                MemRegion used,
  83                jint stride, int n_strides,
  84                DirtyCardToOopClosure* dcto_cl,
  85                MemRegionClosure* cl,
  86                bool clear,
  87                jbyte** lowest_non_clean,
  88                uintptr_t lowest_non_clean_base_chunk_index,
  89                size_t    lowest_non_clean_chunk_size) {
  90   // We don't have to go downwards here; it wouldn't help anyway,
  91   // because of parallelism.
  92 
  93   // Find the first card address of the first chunk in the stride that is
  94   // at least "bottom" of the used region.
  95   jbyte*    start_card  = byte_for(used.start());
  96   jbyte*    end_card    = byte_after(used.last());
  97   uintptr_t start_chunk = addr_to_chunk_index(used.start());
  98   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
  99   jbyte* chunk_card_start;
 100 
 101   if ((uintptr_t)stride >= start_chunk_stride_num) {
 102     chunk_card_start = (jbyte*)(start_card +
 103                                 (stride - start_chunk_stride_num) *
 104                                 CardsPerStrideChunk);
 105   } else {
 106     // Go ahead to the next chunk group boundary, then to the requested stride.
 107     chunk_card_start = (jbyte*)(start_card +
 108                                 (n_strides - start_chunk_stride_num + stride) *
 109                                 CardsPerStrideChunk);
 110   }
 111 
 112   while (chunk_card_start < end_card) {
 113     // We don't have to go downwards here; it wouldn't help anyway,
 114     // because of parallelism.  (We take care with "min_done"; see below.)
 115     // Invariant: chunk_mr should be fully contained within the "used" region.
 116     jbyte*    chunk_card_end = chunk_card_start + CardsPerStrideChunk;
 117     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
 118                                          chunk_card_end >= end_card ?
 119                                            used.end() : addr_for(chunk_card_end));
 120     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
 121     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
 122 
 123     // Process the chunk.
 124     process_chunk_boundaries(sp,
 125                              dcto_cl,
 126                              chunk_mr,
 127                              used,
 128                              lowest_non_clean,
 129                              lowest_non_clean_base_chunk_index,
 130                              lowest_non_clean_chunk_size);
 131 
 132     non_clean_card_iterate_work(chunk_mr, cl, clear);
 133 
 134     // Find the next chunk of the stride.
 135     chunk_card_start += CardsPerStrideChunk * n_strides;
 136   }
 137 }
 138 
 139 void
 140 CardTableModRefBS::
 141 process_chunk_boundaries(Space* sp,
 142                          DirtyCardToOopClosure* dcto_cl,
 143                          MemRegion chunk_mr,
 144                          MemRegion used,
 145                          jbyte** lowest_non_clean,
 146                          uintptr_t lowest_non_clean_base_chunk_index,
 147                          size_t    lowest_non_clean_chunk_size)
 148 {
 149   // We must worry about the chunk boundaries.
 150 
 151   // First, set our max_to_do:
 152   HeapWord* max_to_do = NULL;
 153   uintptr_t cur_chunk_index = addr_to_chunk_index(chunk_mr.start());
 154   cur_chunk_index           = cur_chunk_index - lowest_non_clean_base_chunk_index;
 155 
 156   if (chunk_mr.end() < used.end()) {
 157     // This is not the last chunk in the used region.  What is the last
 158     // object?
 159     HeapWord* last_block = sp->block_start(chunk_mr.end());
 160     assert(last_block <= chunk_mr.end(), "In case this property changes.");
 161     if (last_block == chunk_mr.end()
 162         || !sp->block_is_obj(last_block)) {
 163       max_to_do = chunk_mr.end();
 164 
 165     } else {
 166       // It is an object and starts before the end of the current chunk.
 167       // last_obj_card is the card corresponding to the start of the last object
 168       // in the chunk.  Note that the last object may not start in
 169       // the chunk.
 170       jbyte* last_obj_card = byte_for(last_block);
 171       if (!card_may_have_been_dirty(*last_obj_card)) {
 172         // The card containing the head is not dirty.  Any marks in
 173         // subsequent cards still in this chunk must have been made
 174         // precisely; we can cap processing at the end.
 175         max_to_do = chunk_mr.end();
 176       } else {
 177         // The last object must be considered dirty, and extends onto the
 178         // following chunk.  Look for a dirty card in that chunk that will
 179         // bound our processing.
 180         jbyte* limit_card = NULL;
 181         size_t last_block_size = sp->block_size(last_block);
 182         jbyte* last_card_of_last_obj =
 183           byte_for(last_block + last_block_size - 1);
 184         jbyte* first_card_of_next_chunk = byte_for(chunk_mr.end());
 185         // This search potentially goes a long distance looking
 186         // for the next card that will be scanned.  For example,
 187         // an object that is an array of primitives will not
 188         // have any cards covering regions interior to the array
 189         // that will need to be scanned. The scan can be terminated
 190         // at the last card of the next chunk.  That would leave
 191         // limit_card as NULL and would result in "max_to_do"
 192         // being set with the LNC value or with the end
 193         // of the last block.
 194         jbyte* last_card_of_next_chunk = first_card_of_next_chunk +
 195           CardsPerStrideChunk;
 196         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start())
 197           == CardsPerStrideChunk, "last card of next chunk may be wrong");
 198         jbyte* last_card_to_check = (jbyte*) MIN2(last_card_of_last_obj,
 199                                                   last_card_of_next_chunk);
 200         for (jbyte* cur = first_card_of_next_chunk;
 201              cur <= last_card_to_check; cur++) {
 202           if (card_will_be_scanned(*cur)) {
 203             limit_card = cur; break;
 204           }
 205         }
 206         assert(0 <= cur_chunk_index+1 &&
 207                cur_chunk_index+1 < lowest_non_clean_chunk_size,
 208                "Bounds error.");
 209         // LNC for the next chunk
 210         jbyte* lnc_card = lowest_non_clean[cur_chunk_index+1];
 211         if (limit_card == NULL) {
 212           limit_card = lnc_card;
 213         }
 214         if (limit_card != NULL) {
 215           if (lnc_card != NULL) {
 216             limit_card = (jbyte*)MIN2((intptr_t)limit_card,
 217                                       (intptr_t)lnc_card);
 218           }
 219           max_to_do = addr_for(limit_card);
 220         } else {
 221           max_to_do = last_block + last_block_size;
 222         }
 223       }
 224     }
 225     assert(max_to_do != NULL, "OOPS!");
 226   } else {
 227     max_to_do = used.end();
 228   }
 229   // Now we can set the closure we're using so it doesn't to beyond
 230   // max_to_do.
 231   dcto_cl->set_min_done(max_to_do);
 232 #ifndef PRODUCT
 233   dcto_cl->set_last_bottom(max_to_do);
 234 #endif
 235 
 236   // Now we set *our" lowest_non_clean entry.
 237   // Find the object that spans our boundary, if one exists.
 238   // Nothing to do on the first chunk.
 239   if (chunk_mr.start() > used.start()) {
 240     // first_block is the block possibly spanning the chunk start
 241     HeapWord* first_block = sp->block_start(chunk_mr.start());
 242     // Does the block span the start of the chunk and is it
 243     // an object?
 244     if (first_block < chunk_mr.start() &&
 245         sp->block_is_obj(first_block)) {
 246       jbyte* first_dirty_card = NULL;
 247       jbyte* last_card_of_first_obj =
 248           byte_for(first_block + sp->block_size(first_block) - 1);
 249       jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
 250       jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
 251       jbyte* last_card_to_check =
 252         (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
 253                       (intptr_t) last_card_of_first_obj);
 254       for (jbyte* cur = first_card_of_cur_chunk;
 255            cur <= last_card_to_check; cur++) {
 256         if (card_will_be_scanned(*cur)) {
 257           first_dirty_card = cur; break;
 258         }
 259       }
 260       if (first_dirty_card != NULL) {
 261         assert(0 <= cur_chunk_index &&
 262                  cur_chunk_index < lowest_non_clean_chunk_size,
 263                "Bounds error.");
 264         lowest_non_clean[cur_chunk_index] = first_dirty_card;
 265       }
 266     }
 267   }
 268 }
 269 
 270 void
 271 CardTableModRefBS::
 272 get_LNC_array_for_space(Space* sp,
 273                         jbyte**& lowest_non_clean,
 274                         uintptr_t& lowest_non_clean_base_chunk_index,
 275                         size_t& lowest_non_clean_chunk_size) {
 276 
 277   int       i        = find_covering_region_containing(sp->bottom());
 278   MemRegion covered  = _covered[i];
 279   size_t    n_chunks = chunks_to_cover(covered);
 280 
 281   // Only the first thread to obtain the lock will resize the
 282   // LNC array for the covered region.  Any later expansion can't affect
 283   // the used_at_save_marks region.
 284   // (I observed a bug in which the first thread to execute this would
 285   // resize, and then it would cause "expand_and_allocates" that would
 286   // Increase the number of chunks in the covered region.  Then a second
 287   // thread would come and execute this, see that the size didn't match,
 288   // and free and allocate again.  So the first thread would be using a
 289   // freed "_lowest_non_clean" array.)
 290 
 291   // Do a dirty read here. If we pass the conditional then take the rare
 292   // event lock and do the read again in case some other thread had already
 293   // succeeded and done the resize.
 294   int cur_collection = Universe::heap()->total_collections();
 295   if (_last_LNC_resizing_collection[i] != cur_collection) {
 296     MutexLocker x(ParGCRareEvent_lock);
 297     if (_last_LNC_resizing_collection[i] != cur_collection) {
 298       if (_lowest_non_clean[i] == NULL ||
 299           n_chunks != _lowest_non_clean_chunk_size[i]) {
 300 
 301         // Should we delete the old?
 302         if (_lowest_non_clean[i] != NULL) {
 303           assert(n_chunks != _lowest_non_clean_chunk_size[i],
 304                  "logical consequence");
 305           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
 306           _lowest_non_clean[i] = NULL;
 307         }
 308         // Now allocate a new one if necessary.
 309         if (_lowest_non_clean[i] == NULL) {
 310           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks);
 311           _lowest_non_clean_chunk_size[i]       = n_chunks;
 312           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
 313           for (int j = 0; j < (int)n_chunks; j++)
 314             _lowest_non_clean[i][j] = NULL;
 315         }
 316       }
 317       _last_LNC_resizing_collection[i] = cur_collection;
 318     }
 319   }
 320   // In any case, now do the initialization.
 321   lowest_non_clean                  = _lowest_non_clean[i];
 322   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
 323   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
 324 }