1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  27 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  28 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  29 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  30 #include "gc_implementation/shared/spaceDecorator.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/gcLocker.inline.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/java.hpp"
  35 
  36 inline const char* PSOldGen::select_name() {
  37   return UseParallelOldGC ? "ParOldGen" : "PSOldGen";
  38 }
  39 
  40 PSOldGen::PSOldGen(ReservedSpace rs, size_t alignment,
  41                    size_t initial_size, size_t min_size, size_t max_size,
  42                    const char* perf_data_name, int level):
  43   _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  44   _max_gen_size(max_size)
  45 {
  46   initialize(rs, alignment, perf_data_name, level);
  47 }
  48 
  49 PSOldGen::PSOldGen(size_t initial_size,
  50                    size_t min_size, size_t max_size,
  51                    const char* perf_data_name, int level):
  52   _name(select_name()), _init_gen_size(initial_size), _min_gen_size(min_size),
  53   _max_gen_size(max_size)
  54 {}
  55 
  56 void PSOldGen::initialize(ReservedSpace rs, size_t alignment,
  57                           const char* perf_data_name, int level) {
  58   initialize_virtual_space(rs, alignment);
  59   initialize_work(perf_data_name, level);
  60   // The old gen can grow to gen_size_limit().  _reserve reflects only
  61   // the current maximum that can be committed.
  62   assert(_reserved.byte_size() <= gen_size_limit(), "Consistency check");
  63 }
  64 
  65 void PSOldGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  66 
  67   _virtual_space = new PSVirtualSpace(rs, alignment);
  68   if (!_virtual_space->expand_by(_init_gen_size)) {
  69     vm_exit_during_initialization("Could not reserve enough space for "
  70                                   "object heap");
  71   }
  72 }
  73 
  74 void PSOldGen::initialize_work(const char* perf_data_name, int level) {
  75   //
  76   // Basic memory initialization
  77   //
  78 
  79   MemRegion limit_reserved((HeapWord*)virtual_space()->low_boundary(),
  80     heap_word_size(_max_gen_size));
  81   assert(limit_reserved.byte_size() == _max_gen_size,
  82     "word vs bytes confusion");
  83   //
  84   // Object start stuff
  85   //
  86 
  87   start_array()->initialize(limit_reserved);
  88 
  89   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  90                         (HeapWord*)virtual_space()->high_boundary());
  91 
  92   //
  93   // Card table stuff
  94   //
  95 
  96   MemRegion cmr((HeapWord*)virtual_space()->low(),
  97                 (HeapWord*)virtual_space()->high());
  98   if (ZapUnusedHeapArea) {
  99     // Mangle newly committed space immediately rather than
 100     // waiting for the initialization of the space even though
 101     // mangling is related to spaces.  Doing it here eliminates
 102     // the need to carry along information that a complete mangling
 103     // (bottom to end) needs to be done.
 104     SpaceMangler::mangle_region(cmr);
 105   }
 106 
 107   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 108 
 109   CardTableModRefBS* _ct = (CardTableModRefBS*)Universe::heap()->barrier_set();
 110   assert (_ct->kind() == BarrierSet::CardTableModRef, "Sanity");
 111 
 112   // Verify that the start and end of this generation is the start of a card.
 113   // If this wasn't true, a single card could span more than one generation,
 114   // which would cause problems when we commit/uncommit memory, and when we
 115   // clear and dirty cards.
 116   guarantee(_ct->is_card_aligned(_reserved.start()), "generation must be card aligned");
 117   if (_reserved.end() != Universe::heap()->reserved_region().end()) {
 118     // Don't check at the very end of the heap as we'll assert that we're probing off
 119     // the end if we try.
 120     guarantee(_ct->is_card_aligned(_reserved.end()), "generation must be card aligned");
 121   }
 122 
 123   //
 124   // ObjectSpace stuff
 125   //
 126 
 127   _object_space = new MutableSpace(virtual_space()->alignment());
 128 
 129   if (_object_space == NULL)
 130     vm_exit_during_initialization("Could not allocate an old gen space");
 131 
 132   object_space()->initialize(cmr,
 133                              SpaceDecorator::Clear,
 134                              SpaceDecorator::Mangle);
 135 
 136   _object_mark_sweep = new PSMarkSweepDecorator(_object_space, start_array(), MarkSweepDeadRatio);
 137 
 138   if (_object_mark_sweep == NULL)
 139     vm_exit_during_initialization("Could not complete allocation of old generation");
 140 
 141   // Update the start_array
 142   start_array()->set_covered_region(cmr);
 143 
 144   // Generation Counters, generation 'level', 1 subspace
 145   _gen_counters = new PSGenerationCounters(perf_data_name, level, 1,
 146                                            virtual_space());
 147   _space_counters = new SpaceCounters(perf_data_name, 0,
 148                                       virtual_space()->reserved_size(),
 149                                       _object_space, _gen_counters);
 150 }
 151 
 152 // Assume that the generation has been allocated if its
 153 // reserved size is not 0.
 154 bool  PSOldGen::is_allocated() {
 155   return virtual_space()->reserved_size() != 0;
 156 }
 157 
 158 void PSOldGen::precompact() {
 159   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 160   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 161 
 162   // Reset start array first.
 163   start_array()->reset();
 164 
 165   object_mark_sweep()->precompact();
 166 
 167   // Now compact the young gen
 168   heap->young_gen()->precompact();
 169 }
 170 
 171 void PSOldGen::adjust_pointers() {
 172   object_mark_sweep()->adjust_pointers();
 173 }
 174 
 175 void PSOldGen::compact() {
 176   object_mark_sweep()->compact(ZapUnusedHeapArea);
 177 }
 178 
 179 void PSOldGen::move_and_update(ParCompactionManager* cm) {
 180   PSParallelCompact::move_and_update(cm, PSParallelCompact::old_space_id);
 181 }
 182 
 183 size_t PSOldGen::contiguous_available() const {
 184   return object_space()->free_in_bytes() + virtual_space()->uncommitted_size();
 185 }
 186 
 187 // Allocation. We report all successful allocations to the size policy
 188 // Note that the perm gen does not use this method, and should not!
 189 HeapWord* PSOldGen::allocate(size_t word_size, bool is_tlab) {
 190   assert_locked_or_safepoint(Heap_lock);
 191   HeapWord* res = allocate_noexpand(word_size, is_tlab);
 192 
 193   if (res == NULL) {
 194     res = expand_and_allocate(word_size, is_tlab);
 195   }
 196 
 197   // Allocations in the old generation need to be reported
 198   if (res != NULL) {
 199     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 200     heap->size_policy()->tenured_allocation(word_size);
 201   }
 202 
 203   return res;
 204 }
 205 
 206 HeapWord* PSOldGen::expand_and_allocate(size_t word_size, bool is_tlab) {
 207   assert(!is_tlab, "TLAB's are not supported in PSOldGen");
 208   expand(word_size*HeapWordSize);
 209   if (GCExpandToAllocateDelayMillis > 0) {
 210     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 211   }
 212   return allocate_noexpand(word_size, is_tlab);
 213 }
 214 
 215 HeapWord* PSOldGen::expand_and_cas_allocate(size_t word_size) {
 216   expand(word_size*HeapWordSize);
 217   if (GCExpandToAllocateDelayMillis > 0) {
 218     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 219   }
 220   return cas_allocate_noexpand(word_size);
 221 }
 222 
 223 void PSOldGen::expand(size_t bytes) {
 224   if (bytes == 0) {
 225     return;
 226   }
 227   MutexLocker x(ExpandHeap_lock);
 228   const size_t alignment = virtual_space()->alignment();
 229   size_t aligned_bytes  = align_size_up(bytes, alignment);
 230   size_t aligned_expand_bytes = align_size_up(MinHeapDeltaBytes, alignment);
 231   if (aligned_bytes == 0){
 232     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 233     // return true with the implication that and expansion was done when it
 234     // was not.  A call to expand implies a best effort to expand by "bytes"
 235     // but not a guarantee.  Align down to give a best effort.  This is likely
 236     // the most that the generation can expand since it has some capacity to
 237     // start with.
 238     aligned_bytes = align_size_down(bytes, alignment);
 239   }
 240 
 241   bool success = false;
 242   if (aligned_expand_bytes > aligned_bytes) {
 243     success = expand_by(aligned_expand_bytes);
 244   }
 245   if (!success) {
 246     success = expand_by(aligned_bytes);
 247   }
 248   if (!success) {
 249     success = expand_to_reserved();
 250   }
 251 
 252   if (PrintGC && Verbose) {
 253     if (success && GC_locker::is_active()) {
 254       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 255     }
 256   }
 257 }
 258 
 259 bool PSOldGen::expand_by(size_t bytes) {
 260   assert_lock_strong(ExpandHeap_lock);
 261   assert_locked_or_safepoint(Heap_lock);
 262   if (bytes == 0) {
 263     return true;  // That's what virtual_space()->expand_by(0) would return
 264   }
 265   bool result = virtual_space()->expand_by(bytes);
 266   if (result) {
 267     if (ZapUnusedHeapArea) {
 268       // We need to mangle the newly expanded area. The memregion spans
 269       // end -> new_end, we assume that top -> end is already mangled.
 270       // Do the mangling before post_resize() is called because
 271       // the space is available for allocation after post_resize();
 272       HeapWord* const virtual_space_high = (HeapWord*) virtual_space()->high();
 273       assert(object_space()->end() < virtual_space_high,
 274         "Should be true before post_resize()");
 275       MemRegion mangle_region(object_space()->end(), virtual_space_high);
 276       // Note that the object space has not yet been updated to
 277       // coincede with the new underlying virtual space.
 278       SpaceMangler::mangle_region(mangle_region);
 279     }
 280     post_resize();
 281     if (UsePerfData) {
 282       _space_counters->update_capacity();
 283       _gen_counters->update_all();
 284     }
 285   }
 286 
 287   if (result && Verbose && PrintGC) {
 288     size_t new_mem_size = virtual_space()->committed_size();
 289     size_t old_mem_size = new_mem_size - bytes;
 290     gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 291                                        SIZE_FORMAT "K to "
 292                                        SIZE_FORMAT "K",
 293                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
 294   }
 295 
 296   return result;
 297 }
 298 
 299 bool PSOldGen::expand_to_reserved() {
 300   assert_lock_strong(ExpandHeap_lock);
 301   assert_locked_or_safepoint(Heap_lock);
 302 
 303   bool result = true;
 304   const size_t remaining_bytes = virtual_space()->uncommitted_size();
 305   if (remaining_bytes > 0) {
 306     result = expand_by(remaining_bytes);
 307     DEBUG_ONLY(if (!result) warning("grow to reserve failed"));
 308   }
 309   return result;
 310 }
 311 
 312 void PSOldGen::shrink(size_t bytes) {
 313   assert_lock_strong(ExpandHeap_lock);
 314   assert_locked_or_safepoint(Heap_lock);
 315 
 316   size_t size = align_size_down(bytes, virtual_space()->alignment());
 317   if (size > 0) {
 318     assert_lock_strong(ExpandHeap_lock);
 319     virtual_space()->shrink_by(bytes);
 320     post_resize();
 321 
 322     if (Verbose && PrintGC) {
 323       size_t new_mem_size = virtual_space()->committed_size();
 324       size_t old_mem_size = new_mem_size + bytes;
 325       gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by "
 326                                          SIZE_FORMAT "K to "
 327                                          SIZE_FORMAT "K",
 328                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 329     }
 330   }
 331 }
 332 
 333 void PSOldGen::resize(size_t desired_free_space) {
 334   const size_t alignment = virtual_space()->alignment();
 335   const size_t size_before = virtual_space()->committed_size();
 336   size_t new_size = used_in_bytes() + desired_free_space;
 337   if (new_size < used_in_bytes()) {
 338     // Overflowed the addition.
 339     new_size = gen_size_limit();
 340   }
 341   // Adjust according to our min and max
 342   new_size = MAX2(MIN2(new_size, gen_size_limit()), min_gen_size());
 343 
 344   assert(gen_size_limit() >= reserved().byte_size(), "max new size problem?");
 345   new_size = align_size_up(new_size, alignment);
 346 
 347   const size_t current_size = capacity_in_bytes();
 348 
 349   if (PrintAdaptiveSizePolicy && Verbose) {
 350     gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
 351       "desired free: " SIZE_FORMAT " used: " SIZE_FORMAT
 352       " new size: " SIZE_FORMAT " current size " SIZE_FORMAT
 353       " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 354       desired_free_space, used_in_bytes(), new_size, current_size,
 355       gen_size_limit(), min_gen_size());
 356   }
 357 
 358   if (new_size == current_size) {
 359     // No change requested
 360     return;
 361   }
 362   if (new_size > current_size) {
 363     size_t change_bytes = new_size - current_size;
 364     expand(change_bytes);
 365   } else {
 366     size_t change_bytes = current_size - new_size;
 367     // shrink doesn't grab this lock, expand does. Is that right?
 368     MutexLocker x(ExpandHeap_lock);
 369     shrink(change_bytes);
 370   }
 371 
 372   if (PrintAdaptiveSizePolicy) {
 373     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 374     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 375     gclog_or_tty->print_cr("AdaptiveSizePolicy::old generation size: "
 376                   "collection: %d "
 377                   "(" SIZE_FORMAT ") -> (" SIZE_FORMAT ") ",
 378                   heap->total_collections(),
 379                   size_before, virtual_space()->committed_size());
 380   }
 381 }
 382 
 383 // NOTE! We need to be careful about resizing. During a GC, multiple
 384 // allocators may be active during heap expansion. If we allow the
 385 // heap resizing to become visible before we have correctly resized
 386 // all heap related data structures, we may cause program failures.
 387 void PSOldGen::post_resize() {
 388   // First construct a memregion representing the new size
 389   MemRegion new_memregion((HeapWord*)virtual_space()->low(),
 390     (HeapWord*)virtual_space()->high());
 391   size_t new_word_size = new_memregion.word_size();
 392 
 393   start_array()->set_covered_region(new_memregion);
 394   Universe::heap()->barrier_set()->resize_covered_region(new_memregion);
 395 
 396   // ALWAYS do this last!!
 397   object_space()->initialize(new_memregion,
 398                              SpaceDecorator::DontClear,
 399                              SpaceDecorator::DontMangle);
 400 
 401   assert(new_word_size == heap_word_size(object_space()->capacity_in_bytes()),
 402     "Sanity");
 403 }
 404 
 405 size_t PSOldGen::gen_size_limit() {
 406   return _max_gen_size;
 407 }
 408 
 409 void PSOldGen::reset_after_change() {
 410   ShouldNotReachHere();
 411   return;
 412 }
 413 
 414 size_t PSOldGen::available_for_expansion() {
 415   ShouldNotReachHere();
 416   return 0;
 417 }
 418 
 419 size_t PSOldGen::available_for_contraction() {
 420   ShouldNotReachHere();
 421   return 0;
 422 }
 423 
 424 void PSOldGen::print() const { print_on(tty);}
 425 void PSOldGen::print_on(outputStream* st) const {
 426   st->print(" %-15s", name());
 427   if (PrintGCDetails && Verbose) {
 428     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 429                 capacity_in_bytes(), used_in_bytes());
 430   } else {
 431     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 432                 capacity_in_bytes()/K, used_in_bytes()/K);
 433   }
 434   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 435                 virtual_space()->low_boundary(),
 436                 virtual_space()->high(),
 437                 virtual_space()->high_boundary());
 438 
 439   st->print("  object"); object_space()->print_on(st);
 440 }
 441 
 442 void PSOldGen::print_used_change(size_t prev_used) const {
 443   gclog_or_tty->print(" [%s:", name());
 444   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 445                       "->" SIZE_FORMAT "K"
 446                       "("  SIZE_FORMAT "K)",
 447                       prev_used / K, used_in_bytes() / K,
 448                       capacity_in_bytes() / K);
 449   gclog_or_tty->print("]");
 450 }
 451 
 452 void PSOldGen::update_counters() {
 453   if (UsePerfData) {
 454     _space_counters->update_all();
 455     _gen_counters->update_all();
 456   }
 457 }
 458 
 459 #ifndef PRODUCT
 460 
 461 void PSOldGen::space_invariants() {
 462   assert(object_space()->end() == (HeapWord*) virtual_space()->high(),
 463     "Space invariant");
 464   assert(object_space()->bottom() == (HeapWord*) virtual_space()->low(),
 465     "Space invariant");
 466   assert(virtual_space()->low_boundary() <= virtual_space()->low(),
 467     "Space invariant");
 468   assert(virtual_space()->high_boundary() >= virtual_space()->high(),
 469     "Space invariant");
 470   assert(virtual_space()->low_boundary() == (char*) _reserved.start(),
 471     "Space invariant");
 472   assert(virtual_space()->high_boundary() == (char*) _reserved.end(),
 473     "Space invariant");
 474   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 475     "Space invariant");
 476 }
 477 #endif
 478 
 479 void PSOldGen::verify(bool allow_dirty) {
 480   object_space()->verify(allow_dirty);
 481 }
 482 class VerifyObjectStartArrayClosure : public ObjectClosure {
 483   PSOldGen* _gen;
 484   ObjectStartArray* _start_array;
 485 
 486  public:
 487   VerifyObjectStartArrayClosure(PSOldGen* gen, ObjectStartArray* start_array) :
 488     _gen(gen), _start_array(start_array) { }
 489 
 490   virtual void do_object(oop obj) {
 491     HeapWord* test_addr = (HeapWord*)obj + 1;
 492     guarantee(_start_array->object_start(test_addr) == (HeapWord*)obj, "ObjectStartArray cannot find start of object");
 493     guarantee(_start_array->is_block_allocated((HeapWord*)obj), "ObjectStartArray missing block allocation");
 494   }
 495 };
 496 
 497 void PSOldGen::verify_object_start_array() {
 498   VerifyObjectStartArrayClosure check( this, &_start_array );
 499   object_iterate(&check);
 500 }
 501 
 502 #ifndef PRODUCT
 503 void PSOldGen::record_spaces_top() {
 504   assert(ZapUnusedHeapArea, "Not mangling unused space");
 505   object_space()->set_top_for_allocations();
 506 }
 507 #endif