1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 class ParallelScavengeHeap;
  26 class PSAdaptiveSizePolicy;
  27 class PSYoungGen;
  28 class PSOldGen;
  29 class PSPermGen;
  30 class ParCompactionManager;
  31 class ParallelTaskTerminator;
  32 class PSParallelCompact;
  33 class GCTaskManager;
  34 class GCTaskQueue;
  35 class PreGCValues;
  36 class MoveAndUpdateClosure;
  37 class RefProcTaskExecutor;
  38 
  39 // The SplitInfo class holds the information needed to 'split' a source region
  40 // so that the live data can be copied to two destination *spaces*.  Normally,
  41 // all the live data in a region is copied to a single destination space (e.g.,
  42 // everything live in a region in eden is copied entirely into the old gen).
  43 // However, when the heap is nearly full, all the live data in eden may not fit
  44 // into the old gen.  Copying only some of the regions from eden to old gen
  45 // requires finding a region that does not contain a partial object (i.e., no
  46 // live object crosses the region boundary) somewhere near the last object that
  47 // does fit into the old gen.  Since it's not always possible to find such a
  48 // region, splitting is necessary for predictable behavior.
  49 //
  50 // A region is always split at the end of the partial object.  This avoids
  51 // additional tests when calculating the new location of a pointer, which is a
  52 // very hot code path.  The partial object and everything to its left will be
  53 // copied to another space (call it dest_space_1).  The live data to the right
  54 // of the partial object will be copied either within the space itself, or to a
  55 // different destination space (distinct from dest_space_1).
  56 //
  57 // Split points are identified during the summary phase, when region
  58 // destinations are computed:  data about the split, including the
  59 // partial_object_size, is recorded in a SplitInfo record and the
  60 // partial_object_size field in the summary data is set to zero.  The zeroing is
  61 // possible (and necessary) since the partial object will move to a different
  62 // destination space than anything to its right, thus the partial object should
  63 // not affect the locations of any objects to its right.
  64 //
  65 // The recorded data is used during the compaction phase, but only rarely:  when
  66 // the partial object on the split region will be copied across a destination
  67 // region boundary.  This test is made once each time a region is filled, and is
  68 // a simple address comparison, so the overhead is negligible (see
  69 // PSParallelCompact::first_src_addr()).
  70 //
  71 // Notes:
  72 //
  73 // Only regions with partial objects are split; a region without a partial
  74 // object does not need any extra bookkeeping.
  75 //
  76 // At most one region is split per space, so the amount of data required is
  77 // constant.
  78 //
  79 // A region is split only when the destination space would overflow.  Once that
  80 // happens, the destination space is abandoned and no other data (even from
  81 // other source spaces) is targeted to that destination space.  Abandoning the
  82 // destination space may leave a somewhat large unused area at the end, if a
  83 // large object caused the overflow.
  84 //
  85 // Future work:
  86 //
  87 // More bookkeeping would be required to continue to use the destination space.
  88 // The most general solution would allow data from regions in two different
  89 // source spaces to be "joined" in a single destination region.  At the very
  90 // least, additional code would be required in next_src_region() to detect the
  91 // join and skip to an out-of-order source region.  If the join region was also
  92 // the last destination region to which a split region was copied (the most
  93 // likely case), then additional work would be needed to get fill_region() to
  94 // stop iteration and switch to a new source region at the right point.  Basic
  95 // idea would be to use a fake value for the top of the source space.  It is
  96 // doable, if a bit tricky.
  97 //
  98 // A simpler (but less general) solution would fill the remainder of the
  99 // destination region with a dummy object and continue filling the next
 100 // destination region.
 101 
 102 class SplitInfo
 103 {
 104 public:
 105   // Return true if this split info is valid (i.e., if a split has been
 106   // recorded).  The very first region cannot have a partial object and thus is
 107   // never split, so 0 is the 'invalid' value.
 108   bool is_valid() const { return _src_region_idx > 0; }
 109 
 110   // Return true if this split holds data for the specified source region.
 111   inline bool is_split(size_t source_region) const;
 112 
 113   // The index of the split region, the size of the partial object on that
 114   // region and the destination of the partial object.
 115   size_t    src_region_idx() const   { return _src_region_idx; }
 116   size_t    partial_obj_size() const { return _partial_obj_size; }
 117   HeapWord* destination() const      { return _destination; }
 118 
 119   // The destination count of the partial object referenced by this split
 120   // (either 1 or 2).  This must be added to the destination count of the
 121   // remainder of the source region.
 122   unsigned int destination_count() const { return _destination_count; }
 123 
 124   // If a word within the partial object will be written to the first word of a
 125   // destination region, this is the address of the destination region;
 126   // otherwise this is NULL.
 127   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 128 
 129   // If a word within the partial object will be written to the first word of a
 130   // destination region, this is the address of that word within the partial
 131   // object; otherwise this is NULL.
 132   HeapWord* first_src_addr() const       { return _first_src_addr; }
 133 
 134   // Record the data necessary to split the region src_region_idx.
 135   void record(size_t src_region_idx, size_t partial_obj_size,
 136               HeapWord* destination);
 137 
 138   void clear();
 139 
 140   DEBUG_ONLY(void verify_clear();)
 141 
 142 private:
 143   size_t       _src_region_idx;
 144   size_t       _partial_obj_size;
 145   HeapWord*    _destination;
 146   unsigned int _destination_count;
 147   HeapWord*    _dest_region_addr;
 148   HeapWord*    _first_src_addr;
 149 };
 150 
 151 inline bool SplitInfo::is_split(size_t region_idx) const
 152 {
 153   return _src_region_idx == region_idx && is_valid();
 154 }
 155 
 156 class SpaceInfo
 157 {
 158  public:
 159   MutableSpace* space() const { return _space; }
 160 
 161   // Where the free space will start after the collection.  Valid only after the
 162   // summary phase completes.
 163   HeapWord* new_top() const { return _new_top; }
 164 
 165   // Allows new_top to be set.
 166   HeapWord** new_top_addr() { return &_new_top; }
 167 
 168   // Where the smallest allowable dense prefix ends (used only for perm gen).
 169   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 170 
 171   // Where the dense prefix ends, or the compacted region begins.
 172   HeapWord* dense_prefix() const { return _dense_prefix; }
 173 
 174   // The start array for the (generation containing the) space, or NULL if there
 175   // is no start array.
 176   ObjectStartArray* start_array() const { return _start_array; }
 177 
 178   SplitInfo& split_info() { return _split_info; }
 179 
 180   void set_space(MutableSpace* s)           { _space = s; }
 181   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 182   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 183   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 184   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 185 
 186   void publish_new_top() const              { _space->set_top(_new_top); }
 187 
 188  private:
 189   MutableSpace*     _space;
 190   HeapWord*         _new_top;
 191   HeapWord*         _min_dense_prefix;
 192   HeapWord*         _dense_prefix;
 193   ObjectStartArray* _start_array;
 194   SplitInfo         _split_info;
 195 };
 196 
 197 class ParallelCompactData
 198 {
 199 public:
 200   // Sizes are in HeapWords, unless indicated otherwise.
 201   static const size_t Log2RegionSize;
 202   static const size_t RegionSize;
 203   static const size_t RegionSizeBytes;
 204 
 205   // Mask for the bits in a size_t to get an offset within a region.
 206   static const size_t RegionSizeOffsetMask;
 207   // Mask for the bits in a pointer to get an offset within a region.
 208   static const size_t RegionAddrOffsetMask;
 209   // Mask for the bits in a pointer to get the address of the start of a region.
 210   static const size_t RegionAddrMask;
 211 
 212   class RegionData
 213   {
 214   public:
 215     // Destination address of the region.
 216     HeapWord* destination() const { return _destination; }
 217 
 218     // The first region containing data destined for this region.
 219     size_t source_region() const { return _source_region; }
 220 
 221     // The object (if any) starting in this region and ending in a different
 222     // region that could not be updated during the main (parallel) compaction
 223     // phase.  This is different from _partial_obj_addr, which is an object that
 224     // extends onto a source region.  However, the two uses do not overlap in
 225     // time, so the same field is used to save space.
 226     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 227 
 228     // The starting address of the partial object extending onto the region.
 229     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 230 
 231     // Size of the partial object extending onto the region (words).
 232     size_t partial_obj_size() const { return _partial_obj_size; }
 233 
 234     // Size of live data that lies within this region due to objects that start
 235     // in this region (words).  This does not include the partial object
 236     // extending onto the region (if any), or the part of an object that extends
 237     // onto the next region (if any).
 238     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 239 
 240     // Total live data that lies within the region (words).
 241     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 242 
 243     // The destination_count is the number of other regions to which data from
 244     // this region will be copied.  At the end of the summary phase, the valid
 245     // values of destination_count are
 246     //
 247     // 0 - data from the region will be compacted completely into itself, or the
 248     //     region is empty.  The region can be claimed and then filled.
 249     // 1 - data from the region will be compacted into 1 other region; some
 250     //     data from the region may also be compacted into the region itself.
 251     // 2 - data from the region will be copied to 2 other regions.
 252     //
 253     // During compaction as regions are emptied, the destination_count is
 254     // decremented (atomically) and when it reaches 0, it can be claimed and
 255     // then filled.
 256     //
 257     // A region is claimed for processing by atomically changing the
 258     // destination_count to the claimed value (dc_claimed).  After a region has
 259     // been filled, the destination_count should be set to the completed value
 260     // (dc_completed).
 261     inline uint destination_count() const;
 262     inline uint destination_count_raw() const;
 263 
 264     // The location of the java heap data that corresponds to this region.
 265     inline HeapWord* data_location() const;
 266 
 267     // The highest address referenced by objects in this region.
 268     inline HeapWord* highest_ref() const;
 269 
 270     // Whether this region is available to be claimed, has been claimed, or has
 271     // been completed.
 272     //
 273     // Minor subtlety:  claimed() returns true if the region is marked
 274     // completed(), which is desirable since a region must be claimed before it
 275     // can be completed.
 276     bool available() const { return _dc_and_los < dc_one; }
 277     bool claimed() const   { return _dc_and_los >= dc_claimed; }
 278     bool completed() const { return _dc_and_los >= dc_completed; }
 279 
 280     // These are not atomic.
 281     void set_destination(HeapWord* addr)       { _destination = addr; }
 282     void set_source_region(size_t region)      { _source_region = region; }
 283     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 284     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 285     void set_partial_obj_size(size_t words)    {
 286       _partial_obj_size = (region_sz_t) words;
 287     }
 288 
 289     inline void set_destination_count(uint count);
 290     inline void set_live_obj_size(size_t words);
 291     inline void set_data_location(HeapWord* addr);
 292     inline void set_completed();
 293     inline bool claim_unsafe();
 294 
 295     // These are atomic.
 296     inline void add_live_obj(size_t words);
 297     inline void set_highest_ref(HeapWord* addr);
 298     inline void decrement_destination_count();
 299     inline bool claim();
 300 
 301   private:
 302     // The type used to represent object sizes within a region.
 303     typedef uint region_sz_t;
 304 
 305     // Constants for manipulating the _dc_and_los field, which holds both the
 306     // destination count and live obj size.  The live obj size lives at the
 307     // least significant end so no masking is necessary when adding.
 308     static const region_sz_t dc_shift;           // Shift amount.
 309     static const region_sz_t dc_mask;            // Mask for destination count.
 310     static const region_sz_t dc_one;             // 1, shifted appropriately.
 311     static const region_sz_t dc_claimed;         // Region has been claimed.
 312     static const region_sz_t dc_completed;       // Region has been completed.
 313     static const region_sz_t los_mask;           // Mask for live obj size.
 314 
 315     HeapWord*            _destination;
 316     size_t               _source_region;
 317     HeapWord*            _partial_obj_addr;
 318     region_sz_t          _partial_obj_size;
 319     region_sz_t volatile _dc_and_los;
 320 #ifdef ASSERT
 321     // These enable optimizations that are only partially implemented.  Use
 322     // debug builds to prevent the code fragments from breaking.
 323     HeapWord*            _data_location;
 324     HeapWord*            _highest_ref;
 325 #endif  // #ifdef ASSERT
 326 
 327 #ifdef ASSERT
 328    public:
 329     uint            _pushed;   // 0 until region is pushed onto a worker's stack
 330    private:
 331 #endif
 332   };
 333 
 334 public:
 335   ParallelCompactData();
 336   bool initialize(MemRegion covered_region);
 337 
 338   size_t region_count() const { return _region_count; }
 339 
 340   // Convert region indices to/from RegionData pointers.
 341   inline RegionData* region(size_t region_idx) const;
 342   inline size_t     region(const RegionData* const region_ptr) const;
 343 
 344   // Returns true if the given address is contained within the region
 345   bool region_contains(size_t region_index, HeapWord* addr);
 346 
 347   void add_obj(HeapWord* addr, size_t len);
 348   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 349 
 350   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 351   // destination of region n is simply the start of region n.  The argument beg
 352   // must be region-aligned; end need not be.
 353   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 354 
 355   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 356                                   HeapWord* destination, HeapWord* target_end,
 357                                   HeapWord** target_next);
 358   bool summarize(SplitInfo& split_info,
 359                  HeapWord* source_beg, HeapWord* source_end,
 360                  HeapWord** source_next,
 361                  HeapWord* target_beg, HeapWord* target_end,
 362                  HeapWord** target_next);
 363 
 364   void clear();
 365   void clear_range(size_t beg_region, size_t end_region);
 366   void clear_range(HeapWord* beg, HeapWord* end) {
 367     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 368   }
 369 
 370   // Return the number of words between addr and the start of the region
 371   // containing addr.
 372   inline size_t     region_offset(const HeapWord* addr) const;
 373 
 374   // Convert addresses to/from a region index or region pointer.
 375   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 376   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 377   inline HeapWord*  region_to_addr(size_t region) const;
 378   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 379   inline HeapWord*  region_to_addr(const RegionData* region) const;
 380 
 381   inline HeapWord*  region_align_down(HeapWord* addr) const;
 382   inline HeapWord*  region_align_up(HeapWord* addr) const;
 383   inline bool       is_region_aligned(HeapWord* addr) const;
 384 
 385   // Return the address one past the end of the partial object.
 386   HeapWord* partial_obj_end(size_t region_idx) const;
 387 
 388   // Return the new location of the object p after the
 389   // the compaction.
 390   HeapWord* calc_new_pointer(HeapWord* addr);
 391 
 392   HeapWord* calc_new_pointer(oop p) {
 393     return calc_new_pointer((HeapWord*) p);
 394   }
 395 
 396   // Return the updated address for the given klass
 397   klassOop calc_new_klass(klassOop);
 398 
 399 #ifdef  ASSERT
 400   void verify_clear(const PSVirtualSpace* vspace);
 401   void verify_clear();
 402 #endif  // #ifdef ASSERT
 403 
 404 private:
 405   bool initialize_region_data(size_t region_size);
 406   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 407 
 408 private:
 409   HeapWord*       _region_start;
 410 #ifdef  ASSERT
 411   HeapWord*       _region_end;
 412 #endif  // #ifdef ASSERT
 413 
 414   PSVirtualSpace* _region_vspace;
 415   RegionData*     _region_data;
 416   size_t          _region_count;
 417 };
 418 
 419 inline uint
 420 ParallelCompactData::RegionData::destination_count_raw() const
 421 {
 422   return _dc_and_los & dc_mask;
 423 }
 424 
 425 inline uint
 426 ParallelCompactData::RegionData::destination_count() const
 427 {
 428   return destination_count_raw() >> dc_shift;
 429 }
 430 
 431 inline void
 432 ParallelCompactData::RegionData::set_destination_count(uint count)
 433 {
 434   assert(count <= (dc_completed >> dc_shift), "count too large");
 435   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 436   _dc_and_los = (count << dc_shift) | live_sz;
 437 }
 438 
 439 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 440 {
 441   assert(words <= los_mask, "would overflow");
 442   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 443 }
 444 
 445 inline void ParallelCompactData::RegionData::decrement_destination_count()
 446 {
 447   assert(_dc_and_los < dc_claimed, "already claimed");
 448   assert(_dc_and_los >= dc_one, "count would go negative");
 449   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
 450 }
 451 
 452 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 453 {
 454   DEBUG_ONLY(return _data_location;)
 455   NOT_DEBUG(return NULL;)
 456 }
 457 
 458 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 459 {
 460   DEBUG_ONLY(return _highest_ref;)
 461   NOT_DEBUG(return NULL;)
 462 }
 463 
 464 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 465 {
 466   DEBUG_ONLY(_data_location = addr;)
 467 }
 468 
 469 inline void ParallelCompactData::RegionData::set_completed()
 470 {
 471   assert(claimed(), "must be claimed first");
 472   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 473 }
 474 
 475 // MT-unsafe claiming of a region.  Should only be used during single threaded
 476 // execution.
 477 inline bool ParallelCompactData::RegionData::claim_unsafe()
 478 {
 479   if (available()) {
 480     _dc_and_los |= dc_claimed;
 481     return true;
 482   }
 483   return false;
 484 }
 485 
 486 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 487 {
 488   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 489   Atomic::add((int) words, (volatile int*) &_dc_and_los);
 490 }
 491 
 492 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 493 {
 494 #ifdef ASSERT
 495   HeapWord* tmp = _highest_ref;
 496   while (addr > tmp) {
 497     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
 498   }
 499 #endif  // #ifdef ASSERT
 500 }
 501 
 502 inline bool ParallelCompactData::RegionData::claim()
 503 {
 504   const int los = (int) live_obj_size();
 505   const int old = Atomic::cmpxchg(dc_claimed | los,
 506                                   (volatile int*) &_dc_and_los, los);
 507   return old == los;
 508 }
 509 
 510 inline ParallelCompactData::RegionData*
 511 ParallelCompactData::region(size_t region_idx) const
 512 {
 513   assert(region_idx <= region_count(), "bad arg");
 514   return _region_data + region_idx;
 515 }
 516 
 517 inline size_t
 518 ParallelCompactData::region(const RegionData* const region_ptr) const
 519 {
 520   assert(region_ptr >= _region_data, "bad arg");
 521   assert(region_ptr <= _region_data + region_count(), "bad arg");
 522   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 523 }
 524 
 525 inline size_t
 526 ParallelCompactData::region_offset(const HeapWord* addr) const
 527 {
 528   assert(addr >= _region_start, "bad addr");
 529   assert(addr <= _region_end, "bad addr");
 530   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 531 }
 532 
 533 inline size_t
 534 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 535 {
 536   assert(addr >= _region_start, "bad addr");
 537   assert(addr <= _region_end, "bad addr");
 538   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 539 }
 540 
 541 inline ParallelCompactData::RegionData*
 542 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 543 {
 544   return region(addr_to_region_idx(addr));
 545 }
 546 
 547 inline HeapWord*
 548 ParallelCompactData::region_to_addr(size_t region) const
 549 {
 550   assert(region <= _region_count, "region out of range");
 551   return _region_start + (region << Log2RegionSize);
 552 }
 553 
 554 inline HeapWord*
 555 ParallelCompactData::region_to_addr(const RegionData* region) const
 556 {
 557   return region_to_addr(pointer_delta(region, _region_data,
 558                                       sizeof(RegionData)));
 559 }
 560 
 561 inline HeapWord*
 562 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 563 {
 564   assert(region <= _region_count, "region out of range");
 565   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 566   return region_to_addr(region) + offset;
 567 }
 568 
 569 inline HeapWord*
 570 ParallelCompactData::region_align_down(HeapWord* addr) const
 571 {
 572   assert(addr >= _region_start, "bad addr");
 573   assert(addr < _region_end + RegionSize, "bad addr");
 574   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 575 }
 576 
 577 inline HeapWord*
 578 ParallelCompactData::region_align_up(HeapWord* addr) const
 579 {
 580   assert(addr >= _region_start, "bad addr");
 581   assert(addr <= _region_end, "bad addr");
 582   return region_align_down(addr + RegionSizeOffsetMask);
 583 }
 584 
 585 inline bool
 586 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 587 {
 588   return region_offset(addr) == 0;
 589 }
 590 
 591 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 592 // do_addr() method.
 593 //
 594 // The closure is initialized with the number of heap words to process
 595 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 596 // methods in subclasses should update the total as words are processed.  Since
 597 // only one subclass actually uses this mechanism to terminate iteration, the
 598 // default initial value is > 0.  The implementation is here and not in the
 599 // single subclass that uses it to avoid making is_full() virtual, and thus
 600 // adding a virtual call per live object.
 601 
 602 class ParMarkBitMapClosure: public StackObj {
 603  public:
 604   typedef ParMarkBitMap::idx_t idx_t;
 605   typedef ParMarkBitMap::IterationStatus IterationStatus;
 606 
 607  public:
 608   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 609                               size_t words = max_uintx);
 610 
 611   inline ParCompactionManager* compaction_manager() const;
 612   inline ParMarkBitMap*        bitmap() const;
 613   inline size_t                words_remaining() const;
 614   inline bool                  is_full() const;
 615   inline HeapWord*             source() const;
 616 
 617   inline void                  set_source(HeapWord* addr);
 618 
 619   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 620 
 621  protected:
 622   inline void decrement_words_remaining(size_t words);
 623 
 624  private:
 625   ParMarkBitMap* const        _bitmap;
 626   ParCompactionManager* const _compaction_manager;
 627   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 628   size_t                      _words_remaining; // Words left to copy.
 629 
 630  protected:
 631   HeapWord*                   _source;          // Next addr that would be read.
 632 };
 633 
 634 inline
 635 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 636                                            ParCompactionManager* cm,
 637                                            size_t words):
 638   _bitmap(bitmap), _compaction_manager(cm)
 639 #ifdef  ASSERT
 640   , _initial_words_remaining(words)
 641 #endif
 642 {
 643   _words_remaining = words;
 644   _source = NULL;
 645 }
 646 
 647 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 648   return _compaction_manager;
 649 }
 650 
 651 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 652   return _bitmap;
 653 }
 654 
 655 inline size_t ParMarkBitMapClosure::words_remaining() const {
 656   return _words_remaining;
 657 }
 658 
 659 inline bool ParMarkBitMapClosure::is_full() const {
 660   return words_remaining() == 0;
 661 }
 662 
 663 inline HeapWord* ParMarkBitMapClosure::source() const {
 664   return _source;
 665 }
 666 
 667 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 668   _source = addr;
 669 }
 670 
 671 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 672   assert(_words_remaining >= words, "processed too many words");
 673   _words_remaining -= words;
 674 }
 675 
 676 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 677 // does parts of the collection using parallel threads.  The collection includes
 678 // the tenured generation and the young generation.  The permanent generation is
 679 // collected at the same time as the other two generations but the permanent
 680 // generation is collect by a single GC thread.  The permanent generation is
 681 // collected serially because of the requirement that during the processing of a
 682 // klass AAA, any objects reference by AAA must already have been processed.
 683 // This requirement is enforced by a left (lower address) to right (higher
 684 // address) sliding compaction.
 685 //
 686 // There are four phases of the collection.
 687 //
 688 //      - marking phase
 689 //      - summary phase
 690 //      - compacting phase
 691 //      - clean up phase
 692 //
 693 // Roughly speaking these phases correspond, respectively, to
 694 //      - mark all the live objects
 695 //      - calculate the destination of each object at the end of the collection
 696 //      - move the objects to their destination
 697 //      - update some references and reinitialize some variables
 698 //
 699 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 700 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 701 // complete marking of the heap.  The summary phase is implemented in
 702 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 703 // in PSParallelCompact::compact().
 704 //
 705 // A space that is being collected is divided into regions and with each region
 706 // is associated an object of type ParallelCompactData.  Each region is of a
 707 // fixed size and typically will contain more than 1 object and may have parts
 708 // of objects at the front and back of the region.
 709 //
 710 // region            -----+---------------------+----------
 711 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 712 //
 713 // The marking phase does a complete marking of all live objects in the heap.
 714 // The marking also compiles the size of the data for all live objects covered
 715 // by the region.  This size includes the part of any live object spanning onto
 716 // the region (part of AAA if it is live) from the front, all live objects
 717 // contained in the region (BBB and/or CCC if they are live), and the part of
 718 // any live objects covered by the region that extends off the region (part of
 719 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 720 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 721 // done atomically as is the accumulation of the size of the live objects
 722 // covered by a region.
 723 //
 724 // The summary phase calculates the total live data to the left of each region
 725 // XXX.  Based on that total and the bottom of the space, it can calculate the
 726 // starting location of the live data in XXX.  The summary phase calculates for
 727 // each region XXX quantites such as
 728 //
 729 //      - the amount of live data at the beginning of a region from an object
 730 //        entering the region.
 731 //      - the location of the first live data on the region
 732 //      - a count of the number of regions receiving live data from XXX.
 733 //
 734 // See ParallelCompactData for precise details.  The summary phase also
 735 // calculates the dense prefix for the compaction.  The dense prefix is a
 736 // portion at the beginning of the space that is not moved.  The objects in the
 737 // dense prefix do need to have their object references updated.  See method
 738 // summarize_dense_prefix().
 739 //
 740 // The summary phase is done using 1 GC thread.
 741 //
 742 // The compaction phase moves objects to their new location and updates all
 743 // references in the object.
 744 //
 745 // A current exception is that objects that cross a region boundary are moved
 746 // but do not have their references updated.  References are not updated because
 747 // it cannot easily be determined if the klass pointer KKK for the object AAA
 748 // has been updated.  KKK likely resides in a region to the left of the region
 749 // containing AAA.  These AAA's have there references updated at the end in a
 750 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 751 // An alternate strategy is being investigated for this deferral of updating.
 752 //
 753 // Compaction is done on a region basis.  A region that is ready to be filled is
 754 // put on a ready list and GC threads take region off the list and fill them.  A
 755 // region is ready to be filled if it empty of live objects.  Such a region may
 756 // have been initially empty (only contained dead objects) or may have had all
 757 // its live objects copied out already.  A region that compacts into itself is
 758 // also ready for filling.  The ready list is initially filled with empty
 759 // regions and regions compacting into themselves.  There is always at least 1
 760 // region that can be put on the ready list.  The regions are atomically added
 761 // and removed from the ready list.
 762 
 763 class PSParallelCompact : AllStatic {
 764  public:
 765   // Convenient access to type names.
 766   typedef ParMarkBitMap::idx_t idx_t;
 767   typedef ParallelCompactData::RegionData RegionData;
 768 
 769   typedef enum {
 770     perm_space_id, old_space_id, eden_space_id,
 771     from_space_id, to_space_id, last_space_id
 772   } SpaceId;
 773 
 774  public:
 775   // Inline closure decls
 776   //
 777   class IsAliveClosure: public BoolObjectClosure {
 778    public:
 779     virtual void do_object(oop p);
 780     virtual bool do_object_b(oop p);
 781   };
 782 
 783   class KeepAliveClosure: public OopClosure {
 784    private:
 785     ParCompactionManager* _compaction_manager;
 786    protected:
 787     template <class T> inline void do_oop_work(T* p);
 788    public:
 789     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 790     virtual void do_oop(oop* p);
 791     virtual void do_oop(narrowOop* p);
 792   };
 793 
 794   // Current unused
 795   class FollowRootClosure: public OopsInGenClosure {
 796    private:
 797     ParCompactionManager* _compaction_manager;
 798    public:
 799     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 800     virtual void do_oop(oop* p);
 801     virtual void do_oop(narrowOop* p);
 802  };
 803 
 804   class FollowStackClosure: public VoidClosure {
 805    private:
 806     ParCompactionManager* _compaction_manager;
 807    public:
 808     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 809     virtual void do_void();
 810   };
 811 
 812   class AdjustPointerClosure: public OopsInGenClosure {
 813    private:
 814     bool _is_root;
 815    public:
 816     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
 817     virtual void do_oop(oop* p);
 818     virtual void do_oop(narrowOop* p);
 819     // do not walk from thread stacks to the code cache on this phase
 820     virtual void do_code_blob(CodeBlob* cb) const { }
 821   };
 822 
 823   // Closure for verifying update of pointers.  Does not
 824   // have any side effects.
 825   class VerifyUpdateClosure: public ParMarkBitMapClosure {
 826     const MutableSpace* _space; // Is this ever used?
 827 
 828    public:
 829     VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
 830       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
 831     { }
 832 
 833     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 834 
 835     const MutableSpace* space() { return _space; }
 836   };
 837 
 838   // Closure for updating objects altered for debug checking
 839   class ResetObjectsClosure: public ParMarkBitMapClosure {
 840    public:
 841     ResetObjectsClosure(ParCompactionManager* cm):
 842       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
 843     { }
 844 
 845     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 846   };
 847 
 848   friend class KeepAliveClosure;
 849   friend class FollowStackClosure;
 850   friend class AdjustPointerClosure;
 851   friend class FollowRootClosure;
 852   friend class instanceKlassKlass;
 853   friend class RefProcTaskProxy;
 854 
 855  private:
 856   static elapsedTimer         _accumulated_time;
 857   static unsigned int         _total_invocations;
 858   static unsigned int         _maximum_compaction_gc_num;
 859   static jlong                _time_of_last_gc;   // ms
 860   static CollectorCounters*   _counters;
 861   static ParMarkBitMap        _mark_bitmap;
 862   static ParallelCompactData  _summary_data;
 863   static IsAliveClosure       _is_alive_closure;
 864   static SpaceInfo            _space_info[last_space_id];
 865   static bool                 _print_phases;
 866   static AdjustPointerClosure _adjust_root_pointer_closure;
 867   static AdjustPointerClosure _adjust_pointer_closure;
 868 
 869   // Reference processing (used in ...follow_contents)
 870   static ReferenceProcessor*  _ref_processor;
 871 
 872   // Updated location of intArrayKlassObj.
 873   static klassOop _updated_int_array_klass_obj;
 874 
 875   // Values computed at initialization and used by dead_wood_limiter().
 876   static double _dwl_mean;
 877   static double _dwl_std_dev;
 878   static double _dwl_first_term;
 879   static double _dwl_adjustment;
 880 #ifdef  ASSERT
 881   static bool   _dwl_initialized;
 882 #endif  // #ifdef ASSERT
 883 
 884  private:
 885   // Closure accessors
 886   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
 887   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
 888   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
 889 
 890   static void initialize_space_info();
 891 
 892   // Return true if details about individual phases should be printed.
 893   static inline bool print_phases();
 894 
 895   // Clear the marking bitmap and summary data that cover the specified space.
 896   static void clear_data_covering_space(SpaceId id);
 897 
 898   static void pre_compact(PreGCValues* pre_gc_values);
 899   static void post_compact();
 900 
 901   // Mark live objects
 902   static void marking_phase(ParCompactionManager* cm,
 903                             bool maximum_heap_compaction);
 904   static void follow_weak_klass_links();
 905   static void follow_mdo_weak_refs();
 906 
 907   template <class T> static inline void adjust_pointer(T* p, bool is_root);
 908   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
 909 
 910   template <class T>
 911   static inline void follow_root(ParCompactionManager* cm, T* p);
 912 
 913   // Compute the dense prefix for the designated space.  This is an experimental
 914   // implementation currently not used in production.
 915   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
 916                                                     bool maximum_compaction);
 917 
 918   // Methods used to compute the dense prefix.
 919 
 920   // Compute the value of the normal distribution at x = density.  The mean and
 921   // standard deviation are values saved by initialize_dead_wood_limiter().
 922   static inline double normal_distribution(double density);
 923 
 924   // Initialize the static vars used by dead_wood_limiter().
 925   static void initialize_dead_wood_limiter();
 926 
 927   // Return the percentage of space that can be treated as "dead wood" (i.e.,
 928   // not reclaimed).
 929   static double dead_wood_limiter(double density, size_t min_percent);
 930 
 931   // Find the first (left-most) region in the range [beg, end) that has at least
 932   // dead_words of dead space to the left.  The argument beg must be the first
 933   // region in the space that is not completely live.
 934   static RegionData* dead_wood_limit_region(const RegionData* beg,
 935                                             const RegionData* end,
 936                                             size_t dead_words);
 937 
 938   // Return a pointer to the first region in the range [beg, end) that is not
 939   // completely full.
 940   static RegionData* first_dead_space_region(const RegionData* beg,
 941                                              const RegionData* end);
 942 
 943   // Return a value indicating the benefit or 'yield' if the compacted region
 944   // were to start (or equivalently if the dense prefix were to end) at the
 945   // candidate region.  Higher values are better.
 946   //
 947   // The value is based on the amount of space reclaimed vs. the costs of (a)
 948   // updating references in the dense prefix plus (b) copying objects and
 949   // updating references in the compacted region.
 950   static inline double reclaimed_ratio(const RegionData* const candidate,
 951                                        HeapWord* const bottom,
 952                                        HeapWord* const top,
 953                                        HeapWord* const new_top);
 954 
 955   // Compute the dense prefix for the designated space.
 956   static HeapWord* compute_dense_prefix(const SpaceId id,
 957                                         bool maximum_compaction);
 958 
 959   // Return true if dead space crosses onto the specified Region; bit must be
 960   // the bit index corresponding to the first word of the Region.
 961   static inline bool dead_space_crosses_boundary(const RegionData* region,
 962                                                  idx_t bit);
 963 
 964   // Summary phase utility routine to fill dead space (if any) at the dense
 965   // prefix boundary.  Should only be called if the the dense prefix is
 966   // non-empty.
 967   static void fill_dense_prefix_end(SpaceId id);
 968 
 969   // Clear the summary data source_region field for the specified addresses.
 970   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
 971 
 972 #ifndef PRODUCT
 973   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
 974 
 975   // Fill the region [start, start + words) with live object(s).  Only usable
 976   // for the old and permanent generations.
 977   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
 978                                      size_t words);
 979   // Include the new objects in the summary data.
 980   static void summarize_new_objects(SpaceId id, HeapWord* start);
 981 
 982   // Add live objects to a survivor space since it's rare that both survivors
 983   // are non-empty.
 984   static void provoke_split_fill_survivor(SpaceId id);
 985 
 986   // Add live objects and/or choose the dense prefix to provoke splitting.
 987   static void provoke_split(bool & maximum_compaction);
 988 #endif
 989 
 990   static void summarize_spaces_quick();
 991   static void summarize_space(SpaceId id, bool maximum_compaction);
 992   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
 993 
 994   // Adjust addresses in roots.  Does not adjust addresses in heap.
 995   static void adjust_roots();
 996 
 997   // Serial code executed in preparation for the compaction phase.
 998   static void compact_prologue();
 999 
1000   // Move objects to new locations.
1001   static void compact_perm(ParCompactionManager* cm);
1002   static void compact();
1003 
1004   // Add available regions to the stack and draining tasks to the task queue.
1005   static void enqueue_region_draining_tasks(GCTaskQueue* q,
1006                                             uint parallel_gc_threads);
1007 
1008   // Add dense prefix update tasks to the task queue.
1009   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
1010                                          uint parallel_gc_threads);
1011 
1012   // Add region stealing tasks to the task queue.
1013   static void enqueue_region_stealing_tasks(
1014                                        GCTaskQueue* q,
1015                                        ParallelTaskTerminator* terminator_ptr,
1016                                        uint parallel_gc_threads);
1017 
1018   // For debugging only - compacts the old gen serially
1019   static void compact_serial(ParCompactionManager* cm);
1020 
1021   // If objects are left in eden after a collection, try to move the boundary
1022   // and absorb them into the old gen.  Returns true if eden was emptied.
1023   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1024                                          PSYoungGen* young_gen,
1025                                          PSOldGen* old_gen);
1026 
1027   // Reset time since last full gc
1028   static void reset_millis_since_last_gc();
1029 
1030  protected:
1031 #ifdef VALIDATE_MARK_SWEEP
1032   static GrowableArray<void*>*           _root_refs_stack;
1033   static GrowableArray<oop> *            _live_oops;
1034   static GrowableArray<oop> *            _live_oops_moved_to;
1035   static GrowableArray<size_t>*          _live_oops_size;
1036   static size_t                          _live_oops_index;
1037   static size_t                          _live_oops_index_at_perm;
1038   static GrowableArray<void*>*           _other_refs_stack;
1039   static GrowableArray<void*>*           _adjusted_pointers;
1040   static bool                            _pointer_tracking;
1041   static bool                            _root_tracking;
1042 
1043   // The following arrays are saved since the time of the last GC and
1044   // assist in tracking down problems where someone has done an errant
1045   // store into the heap, usually to an oop that wasn't properly
1046   // handleized across a GC. If we crash or otherwise fail before the
1047   // next GC, we can query these arrays to find out the object we had
1048   // intended to do the store to (assuming it is still alive) and the
1049   // offset within that object. Covered under RecordMarkSweepCompaction.
1050   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
1051   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
1052   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
1053   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
1054   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
1055   static GrowableArray<size_t>*          _last_gc_live_oops_size;
1056 #endif
1057 
1058  public:
1059   class MarkAndPushClosure: public OopClosure {
1060    private:
1061     ParCompactionManager* _compaction_manager;
1062    public:
1063     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
1064     virtual void do_oop(oop* p);
1065     virtual void do_oop(narrowOop* p);
1066   };
1067 
1068   PSParallelCompact();
1069 
1070   // Convenient accessor for Universe::heap().
1071   static ParallelScavengeHeap* gc_heap() {
1072     return (ParallelScavengeHeap*)Universe::heap();
1073   }
1074 
1075   static void invoke(bool maximum_heap_compaction);
1076   static void invoke_no_policy(bool maximum_heap_compaction);
1077 
1078   static void post_initialize();
1079   // Perform initialization for PSParallelCompact that requires
1080   // allocations.  This should be called during the VM initialization
1081   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1082   // in the event of a failure.
1083   static bool initialize();
1084 
1085   // Public accessors
1086   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1087   static unsigned int total_invocations() { return _total_invocations; }
1088   static CollectorCounters* counters()    { return _counters; }
1089 
1090   // Used to add tasks
1091   static GCTaskManager* const gc_task_manager();
1092   static klassOop updated_int_array_klass_obj() {
1093     return _updated_int_array_klass_obj;
1094   }
1095 
1096   // Marking support
1097   static inline bool mark_obj(oop obj);
1098   // Check mark and maybe push on marking stack
1099   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
1100                                                       T* p);
1101 
1102   // Compaction support.
1103   // Return true if p is in the range [beg_addr, end_addr).
1104   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1105   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1106 
1107   // Convenience wrappers for per-space data kept in _space_info.
1108   static inline MutableSpace*     space(SpaceId space_id);
1109   static inline HeapWord*         new_top(SpaceId space_id);
1110   static inline HeapWord*         dense_prefix(SpaceId space_id);
1111   static inline ObjectStartArray* start_array(SpaceId space_id);
1112 
1113   // Return true if the klass should be updated.
1114   static inline bool should_update_klass(klassOop k);
1115 
1116   // Move and update the live objects in the specified space.
1117   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1118 
1119   // Process the end of the given region range in the dense prefix.
1120   // This includes saving any object not updated.
1121   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1122                                             size_t region_start_index,
1123                                             size_t region_end_index,
1124                                             idx_t exiting_object_offset,
1125                                             idx_t region_offset_start,
1126                                             idx_t region_offset_end);
1127 
1128   // Update a region in the dense prefix.  For each live object
1129   // in the region, update it's interior references.  For each
1130   // dead object, fill it with deadwood. Dead space at the end
1131   // of a region range will be filled to the start of the next
1132   // live object regardless of the region_index_end.  None of the
1133   // objects in the dense prefix move and dead space is dead
1134   // (holds only dead objects that don't need any processing), so
1135   // dead space can be filled in any order.
1136   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1137                                                   SpaceId space_id,
1138                                                   size_t region_index_start,
1139                                                   size_t region_index_end);
1140 
1141   // Return the address of the count + 1st live word in the range [beg, end).
1142   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1143 
1144   // Return the address of the word to be copied to dest_addr, which must be
1145   // aligned to a region boundary.
1146   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1147                                   SpaceId src_space_id,
1148                                   size_t src_region_idx);
1149 
1150   // Determine the next source region, set closure.source() to the start of the
1151   // new region return the region index.  Parameter end_addr is the address one
1152   // beyond the end of source range just processed.  If necessary, switch to a
1153   // new source space and set src_space_id (in-out parameter) and src_space_top
1154   // (out parameter) accordingly.
1155   static size_t next_src_region(MoveAndUpdateClosure& closure,
1156                                 SpaceId& src_space_id,
1157                                 HeapWord*& src_space_top,
1158                                 HeapWord* end_addr);
1159 
1160   // Decrement the destination count for each non-empty source region in the
1161   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1162   // count for a region goes to 0 and it needs to be filled, enqueue it.
1163   static void decrement_destination_counts(ParCompactionManager* cm,
1164                                            SpaceId src_space_id,
1165                                            size_t beg_region,
1166                                            HeapWord* end_addr);
1167 
1168   // Fill a region, copying objects from one or more source regions.
1169   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1170   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1171     fill_region(cm, region);
1172   }
1173 
1174   // Update the deferred objects in the space.
1175   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1176 
1177   // Mark pointer and follow contents.
1178   template <class T>
1179   static inline void mark_and_follow(ParCompactionManager* cm, T* p);
1180 
1181   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1182   static ParallelCompactData& summary_data() { return _summary_data; }
1183 
1184   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
1185   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
1186 
1187   template <class T>
1188   static inline void adjust_pointer(T* p,
1189                                     HeapWord* beg_addr,
1190                                     HeapWord* end_addr);
1191 
1192   // Reference Processing
1193   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1194 
1195   // Return the SpaceId for the given address.
1196   static SpaceId space_id(HeapWord* addr);
1197 
1198   // Time since last full gc (in milliseconds).
1199   static jlong millis_since_last_gc();
1200 
1201 #ifdef VALIDATE_MARK_SWEEP
1202   static void track_adjusted_pointer(void* p, bool isroot);
1203   static void check_adjust_pointer(void* p);
1204   static void track_interior_pointers(oop obj);
1205   static void check_interior_pointers();
1206 
1207   static void reset_live_oop_tracking(bool at_perm);
1208   static void register_live_oop(oop p, size_t size);
1209   static void validate_live_oop(oop p, size_t size);
1210   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
1211   static void compaction_complete();
1212 
1213   // Querying operation of RecordMarkSweepCompaction results.
1214   // Finds and prints the current base oop and offset for a word
1215   // within an oop that was live during the last GC. Helpful for
1216   // tracking down heap stomps.
1217   static void print_new_location_of_heap_address(HeapWord* q);
1218 #endif  // #ifdef VALIDATE_MARK_SWEEP
1219 
1220   // Call backs for class unloading
1221   // Update subklass/sibling/implementor links at end of marking.
1222   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
1223 
1224   // Clear unmarked oops in MDOs at the end of marking.
1225   static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
1226 
1227 #ifndef PRODUCT
1228   // Debugging support.
1229   static const char* space_names[last_space_id];
1230   static void print_region_ranges();
1231   static void print_dense_prefix_stats(const char* const algorithm,
1232                                        const SpaceId id,
1233                                        const bool maximum_compaction,
1234                                        HeapWord* const addr);
1235   static void summary_phase_msg(SpaceId dst_space_id,
1236                                 HeapWord* dst_beg, HeapWord* dst_end,
1237                                 SpaceId src_space_id,
1238                                 HeapWord* src_beg, HeapWord* src_end);
1239 #endif  // #ifndef PRODUCT
1240 
1241 #ifdef  ASSERT
1242   // Sanity check the new location of a word in the heap.
1243   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1244   // Verify that all the regions have been emptied.
1245   static void verify_complete(SpaceId space_id);
1246 #endif  // #ifdef ASSERT
1247 };
1248 
1249 inline bool PSParallelCompact::mark_obj(oop obj) {
1250   const int obj_size = obj->size();
1251   if (mark_bitmap()->mark_obj(obj, obj_size)) {
1252     _summary_data.add_obj(obj, obj_size);
1253     return true;
1254   } else {
1255     return false;
1256   }
1257 }
1258 
1259 template <class T>
1260 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
1261   assert(!Universe::heap()->is_in_reserved(p),
1262          "roots shouldn't be things within the heap");
1263 #ifdef VALIDATE_MARK_SWEEP
1264   if (ValidateMarkSweep) {
1265     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
1266     _root_refs_stack->push(p);
1267   }
1268 #endif
1269   T heap_oop = oopDesc::load_heap_oop(p);
1270   if (!oopDesc::is_null(heap_oop)) {
1271     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1272     if (mark_bitmap()->is_unmarked(obj)) {
1273       if (mark_obj(obj)) {
1274         obj->follow_contents(cm);
1275       }
1276     }
1277   }
1278   cm->follow_marking_stacks();
1279 }
1280 
1281 template <class T>
1282 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
1283                                                T* p) {
1284   T heap_oop = oopDesc::load_heap_oop(p);
1285   if (!oopDesc::is_null(heap_oop)) {
1286     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1287     if (mark_bitmap()->is_unmarked(obj)) {
1288       if (mark_obj(obj)) {
1289         obj->follow_contents(cm);
1290       }
1291     }
1292   }
1293 }
1294 
1295 template <class T>
1296 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
1297   T heap_oop = oopDesc::load_heap_oop(p);
1298   if (!oopDesc::is_null(heap_oop)) {
1299     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1300     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
1301       cm->push(obj);
1302     }
1303   }
1304 }
1305 
1306 template <class T>
1307 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
1308   T heap_oop = oopDesc::load_heap_oop(p);
1309   if (!oopDesc::is_null(heap_oop)) {
1310     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
1311     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
1312     assert(new_obj != NULL ||                     // is forwarding ptr?
1313            obj->is_shared(),                      // never forwarded?
1314            "should be forwarded");
1315     // Just always do the update unconditionally?
1316     if (new_obj != NULL) {
1317       assert(Universe::heap()->is_in_reserved(new_obj),
1318              "should be in object space");
1319       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
1320     }
1321   }
1322   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
1323 }
1324 
1325 template <class T>
1326 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
1327 #ifdef VALIDATE_MARK_SWEEP
1328   if (ValidateMarkSweep) {
1329     if (!Universe::heap()->is_in_reserved(p)) {
1330       _root_refs_stack->push(p);
1331     } else {
1332       _other_refs_stack->push(p);
1333     }
1334   }
1335 #endif
1336   mark_and_push(_compaction_manager, p);
1337 }
1338 
1339 inline bool PSParallelCompact::print_phases() {
1340   return _print_phases;
1341 }
1342 
1343 inline double PSParallelCompact::normal_distribution(double density) {
1344   assert(_dwl_initialized, "uninitialized");
1345   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
1346   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
1347 }
1348 
1349 inline bool
1350 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
1351                                                idx_t bit)
1352 {
1353   assert(bit > 0, "cannot call this for the first bit/region");
1354   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
1355          "sanity check");
1356 
1357   // Dead space crosses the boundary if (1) a partial object does not extend
1358   // onto the region, (2) an object does not start at the beginning of the
1359   // region, and (3) an object does not end at the end of the prior region.
1360   return region->partial_obj_size() == 0 &&
1361     !_mark_bitmap.is_obj_beg(bit) &&
1362     !_mark_bitmap.is_obj_end(bit - 1);
1363 }
1364 
1365 inline bool
1366 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
1367   return p >= beg_addr && p < end_addr;
1368 }
1369 
1370 inline bool
1371 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
1372   return is_in((HeapWord*)p, beg_addr, end_addr);
1373 }
1374 
1375 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
1376   assert(id < last_space_id, "id out of range");
1377   return _space_info[id].space();
1378 }
1379 
1380 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
1381   assert(id < last_space_id, "id out of range");
1382   return _space_info[id].new_top();
1383 }
1384 
1385 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
1386   assert(id < last_space_id, "id out of range");
1387   return _space_info[id].dense_prefix();
1388 }
1389 
1390 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
1391   assert(id < last_space_id, "id out of range");
1392   return _space_info[id].start_array();
1393 }
1394 
1395 inline bool PSParallelCompact::should_update_klass(klassOop k) {
1396   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
1397 }
1398 
1399 template <class T>
1400 inline void PSParallelCompact::adjust_pointer(T* p,
1401                                               HeapWord* beg_addr,
1402                                               HeapWord* end_addr) {
1403   if (is_in((HeapWord*)p, beg_addr, end_addr)) {
1404     adjust_pointer(p);
1405   }
1406 }
1407 
1408 #ifdef ASSERT
1409 inline void
1410 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
1411 {
1412   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
1413          "must move left or to a different space");
1414   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
1415          "checking alignment");
1416 }
1417 #endif // ASSERT
1418 
1419 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1420  public:
1421   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1422                               ObjectStartArray* start_array,
1423                               HeapWord* destination, size_t words);
1424 
1425   // Accessors.
1426   HeapWord* destination() const         { return _destination; }
1427 
1428   // If the object will fit (size <= words_remaining()), copy it to the current
1429   // destination, update the interior oops and the start array and return either
1430   // full (if the closure is full) or incomplete.  If the object will not fit,
1431   // return would_overflow.
1432   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1433 
1434   // Copy enough words to fill this closure, starting at source().  Interior
1435   // oops and the start array are not updated.  Return full.
1436   IterationStatus copy_until_full();
1437 
1438   // Copy enough words to fill this closure or to the end of an object,
1439   // whichever is smaller, starting at source().  Interior oops and the start
1440   // array are not updated.
1441   void copy_partial_obj();
1442 
1443  protected:
1444   // Update variables to indicate that word_count words were processed.
1445   inline void update_state(size_t word_count);
1446 
1447  protected:
1448   ObjectStartArray* const _start_array;
1449   HeapWord*               _destination;         // Next addr to be written.
1450 };
1451 
1452 inline
1453 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1454                                            ParCompactionManager* cm,
1455                                            ObjectStartArray* start_array,
1456                                            HeapWord* destination,
1457                                            size_t words) :
1458   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1459 {
1460   _destination = destination;
1461 }
1462 
1463 inline void MoveAndUpdateClosure::update_state(size_t words)
1464 {
1465   decrement_words_remaining(words);
1466   _source += words;
1467   _destination += words;
1468 }
1469 
1470 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1471  private:
1472   const PSParallelCompact::SpaceId _space_id;
1473   ObjectStartArray* const          _start_array;
1474 
1475  public:
1476   UpdateOnlyClosure(ParMarkBitMap* mbm,
1477                     ParCompactionManager* cm,
1478                     PSParallelCompact::SpaceId space_id);
1479 
1480   // Update the object.
1481   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1482 
1483   inline void do_addr(HeapWord* addr);
1484 };
1485 
1486 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
1487 {
1488   _start_array->allocate_block(addr);
1489   oop(addr)->update_contents(compaction_manager());
1490 }
1491 
1492 class FillClosure: public ParMarkBitMapClosure
1493 {
1494 public:
1495   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
1496     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1497     _start_array(PSParallelCompact::start_array(space_id))
1498   {
1499     assert(space_id == PSParallelCompact::perm_space_id ||
1500            space_id == PSParallelCompact::old_space_id,
1501            "cannot use FillClosure in the young gen");
1502   }
1503 
1504   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1505     CollectedHeap::fill_with_objects(addr, size);
1506     HeapWord* const end = addr + size;
1507     do {
1508       _start_array->allocate_block(addr);
1509       addr += oop(addr)->size();
1510     } while (addr < end);
1511     return ParMarkBitMap::incomplete;
1512   }
1513 
1514 private:
1515   ObjectStartArray* const _start_array;
1516 };