1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP
  27 
  28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
  29 #include "gc_implementation/parallelScavenge/parMarkBitMap.hpp"
  30 #include "gc_implementation/parallelScavenge/psCompactionManager.hpp"
  31 #include "gc_implementation/shared/collectorCounters.hpp"
  32 #include "gc_implementation/shared/markSweep.hpp"
  33 #include "gc_implementation/shared/mutableSpace.hpp"
  34 #include "memory/sharedHeap.hpp"
  35 #include "oops/oop.hpp"
  36 
  37 class ParallelScavengeHeap;
  38 class PSAdaptiveSizePolicy;
  39 class PSYoungGen;
  40 class PSOldGen;
  41 class PSPermGen;
  42 class ParCompactionManager;
  43 class ParallelTaskTerminator;
  44 class PSParallelCompact;
  45 class GCTaskManager;
  46 class GCTaskQueue;
  47 class PreGCValues;
  48 class MoveAndUpdateClosure;
  49 class RefProcTaskExecutor;
  50 
  51 // The SplitInfo class holds the information needed to 'split' a source region
  52 // so that the live data can be copied to two destination *spaces*.  Normally,
  53 // all the live data in a region is copied to a single destination space (e.g.,
  54 // everything live in a region in eden is copied entirely into the old gen).
  55 // However, when the heap is nearly full, all the live data in eden may not fit
  56 // into the old gen.  Copying only some of the regions from eden to old gen
  57 // requires finding a region that does not contain a partial object (i.e., no
  58 // live object crosses the region boundary) somewhere near the last object that
  59 // does fit into the old gen.  Since it's not always possible to find such a
  60 // region, splitting is necessary for predictable behavior.
  61 //
  62 // A region is always split at the end of the partial object.  This avoids
  63 // additional tests when calculating the new location of a pointer, which is a
  64 // very hot code path.  The partial object and everything to its left will be
  65 // copied to another space (call it dest_space_1).  The live data to the right
  66 // of the partial object will be copied either within the space itself, or to a
  67 // different destination space (distinct from dest_space_1).
  68 //
  69 // Split points are identified during the summary phase, when region
  70 // destinations are computed:  data about the split, including the
  71 // partial_object_size, is recorded in a SplitInfo record and the
  72 // partial_object_size field in the summary data is set to zero.  The zeroing is
  73 // possible (and necessary) since the partial object will move to a different
  74 // destination space than anything to its right, thus the partial object should
  75 // not affect the locations of any objects to its right.
  76 //
  77 // The recorded data is used during the compaction phase, but only rarely:  when
  78 // the partial object on the split region will be copied across a destination
  79 // region boundary.  This test is made once each time a region is filled, and is
  80 // a simple address comparison, so the overhead is negligible (see
  81 // PSParallelCompact::first_src_addr()).
  82 //
  83 // Notes:
  84 //
  85 // Only regions with partial objects are split; a region without a partial
  86 // object does not need any extra bookkeeping.
  87 //
  88 // At most one region is split per space, so the amount of data required is
  89 // constant.
  90 //
  91 // A region is split only when the destination space would overflow.  Once that
  92 // happens, the destination space is abandoned and no other data (even from
  93 // other source spaces) is targeted to that destination space.  Abandoning the
  94 // destination space may leave a somewhat large unused area at the end, if a
  95 // large object caused the overflow.
  96 //
  97 // Future work:
  98 //
  99 // More bookkeeping would be required to continue to use the destination space.
 100 // The most general solution would allow data from regions in two different
 101 // source spaces to be "joined" in a single destination region.  At the very
 102 // least, additional code would be required in next_src_region() to detect the
 103 // join and skip to an out-of-order source region.  If the join region was also
 104 // the last destination region to which a split region was copied (the most
 105 // likely case), then additional work would be needed to get fill_region() to
 106 // stop iteration and switch to a new source region at the right point.  Basic
 107 // idea would be to use a fake value for the top of the source space.  It is
 108 // doable, if a bit tricky.
 109 //
 110 // A simpler (but less general) solution would fill the remainder of the
 111 // destination region with a dummy object and continue filling the next
 112 // destination region.
 113 
 114 class SplitInfo
 115 {
 116 public:
 117   // Return true if this split info is valid (i.e., if a split has been
 118   // recorded).  The very first region cannot have a partial object and thus is
 119   // never split, so 0 is the 'invalid' value.
 120   bool is_valid() const { return _src_region_idx > 0; }
 121 
 122   // Return true if this split holds data for the specified source region.
 123   inline bool is_split(size_t source_region) const;
 124 
 125   // The index of the split region, the size of the partial object on that
 126   // region and the destination of the partial object.
 127   size_t    src_region_idx() const   { return _src_region_idx; }
 128   size_t    partial_obj_size() const { return _partial_obj_size; }
 129   HeapWord* destination() const      { return _destination; }
 130 
 131   // The destination count of the partial object referenced by this split
 132   // (either 1 or 2).  This must be added to the destination count of the
 133   // remainder of the source region.
 134   unsigned int destination_count() const { return _destination_count; }
 135 
 136   // If a word within the partial object will be written to the first word of a
 137   // destination region, this is the address of the destination region;
 138   // otherwise this is NULL.
 139   HeapWord* dest_region_addr() const     { return _dest_region_addr; }
 140 
 141   // If a word within the partial object will be written to the first word of a
 142   // destination region, this is the address of that word within the partial
 143   // object; otherwise this is NULL.
 144   HeapWord* first_src_addr() const       { return _first_src_addr; }
 145 
 146   // Record the data necessary to split the region src_region_idx.
 147   void record(size_t src_region_idx, size_t partial_obj_size,
 148               HeapWord* destination);
 149 
 150   void clear();
 151 
 152   DEBUG_ONLY(void verify_clear();)
 153 
 154 private:
 155   size_t       _src_region_idx;
 156   size_t       _partial_obj_size;
 157   HeapWord*    _destination;
 158   unsigned int _destination_count;
 159   HeapWord*    _dest_region_addr;
 160   HeapWord*    _first_src_addr;
 161 };
 162 
 163 inline bool SplitInfo::is_split(size_t region_idx) const
 164 {
 165   return _src_region_idx == region_idx && is_valid();
 166 }
 167 
 168 class SpaceInfo
 169 {
 170  public:
 171   MutableSpace* space() const { return _space; }
 172 
 173   // Where the free space will start after the collection.  Valid only after the
 174   // summary phase completes.
 175   HeapWord* new_top() const { return _new_top; }
 176 
 177   // Allows new_top to be set.
 178   HeapWord** new_top_addr() { return &_new_top; }
 179 
 180   // Where the smallest allowable dense prefix ends (used only for perm gen).
 181   HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
 182 
 183   // Where the dense prefix ends, or the compacted region begins.
 184   HeapWord* dense_prefix() const { return _dense_prefix; }
 185 
 186   // The start array for the (generation containing the) space, or NULL if there
 187   // is no start array.
 188   ObjectStartArray* start_array() const { return _start_array; }
 189 
 190   SplitInfo& split_info() { return _split_info; }
 191 
 192   void set_space(MutableSpace* s)           { _space = s; }
 193   void set_new_top(HeapWord* addr)          { _new_top = addr; }
 194   void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
 195   void set_dense_prefix(HeapWord* addr)     { _dense_prefix = addr; }
 196   void set_start_array(ObjectStartArray* s) { _start_array = s; }
 197 
 198   void publish_new_top() const              { _space->set_top(_new_top); }
 199 
 200  private:
 201   MutableSpace*     _space;
 202   HeapWord*         _new_top;
 203   HeapWord*         _min_dense_prefix;
 204   HeapWord*         _dense_prefix;
 205   ObjectStartArray* _start_array;
 206   SplitInfo         _split_info;
 207 };
 208 
 209 class ParallelCompactData
 210 {
 211 public:
 212   // Sizes are in HeapWords, unless indicated otherwise.
 213   static const size_t Log2RegionSize;
 214   static const size_t RegionSize;
 215   static const size_t RegionSizeBytes;
 216 
 217   // Mask for the bits in a size_t to get an offset within a region.
 218   static const size_t RegionSizeOffsetMask;
 219   // Mask for the bits in a pointer to get an offset within a region.
 220   static const size_t RegionAddrOffsetMask;
 221   // Mask for the bits in a pointer to get the address of the start of a region.
 222   static const size_t RegionAddrMask;
 223 
 224   class RegionData
 225   {
 226   public:
 227     // Destination address of the region.
 228     HeapWord* destination() const { return _destination; }
 229 
 230     // The first region containing data destined for this region.
 231     size_t source_region() const { return _source_region; }
 232 
 233     // The object (if any) starting in this region and ending in a different
 234     // region that could not be updated during the main (parallel) compaction
 235     // phase.  This is different from _partial_obj_addr, which is an object that
 236     // extends onto a source region.  However, the two uses do not overlap in
 237     // time, so the same field is used to save space.
 238     HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
 239 
 240     // The starting address of the partial object extending onto the region.
 241     HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
 242 
 243     // Size of the partial object extending onto the region (words).
 244     size_t partial_obj_size() const { return _partial_obj_size; }
 245 
 246     // Size of live data that lies within this region due to objects that start
 247     // in this region (words).  This does not include the partial object
 248     // extending onto the region (if any), or the part of an object that extends
 249     // onto the next region (if any).
 250     size_t live_obj_size() const { return _dc_and_los & los_mask; }
 251 
 252     // Total live data that lies within the region (words).
 253     size_t data_size() const { return partial_obj_size() + live_obj_size(); }
 254 
 255     // The destination_count is the number of other regions to which data from
 256     // this region will be copied.  At the end of the summary phase, the valid
 257     // values of destination_count are
 258     //
 259     // 0 - data from the region will be compacted completely into itself, or the
 260     //     region is empty.  The region can be claimed and then filled.
 261     // 1 - data from the region will be compacted into 1 other region; some
 262     //     data from the region may also be compacted into the region itself.
 263     // 2 - data from the region will be copied to 2 other regions.
 264     //
 265     // During compaction as regions are emptied, the destination_count is
 266     // decremented (atomically) and when it reaches 0, it can be claimed and
 267     // then filled.
 268     //
 269     // A region is claimed for processing by atomically changing the
 270     // destination_count to the claimed value (dc_claimed).  After a region has
 271     // been filled, the destination_count should be set to the completed value
 272     // (dc_completed).
 273     inline uint destination_count() const;
 274     inline uint destination_count_raw() const;
 275 
 276     // The location of the java heap data that corresponds to this region.
 277     inline HeapWord* data_location() const;
 278 
 279     // The highest address referenced by objects in this region.
 280     inline HeapWord* highest_ref() const;
 281 
 282     // Whether this region is available to be claimed, has been claimed, or has
 283     // been completed.
 284     //
 285     // Minor subtlety:  claimed() returns true if the region is marked
 286     // completed(), which is desirable since a region must be claimed before it
 287     // can be completed.
 288     bool available() const { return _dc_and_los < dc_one; }
 289     bool claimed() const   { return _dc_and_los >= dc_claimed; }
 290     bool completed() const { return _dc_and_los >= dc_completed; }
 291 
 292     // These are not atomic.
 293     void set_destination(HeapWord* addr)       { _destination = addr; }
 294     void set_source_region(size_t region)      { _source_region = region; }
 295     void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
 296     void set_partial_obj_addr(HeapWord* addr)  { _partial_obj_addr = addr; }
 297     void set_partial_obj_size(size_t words)    {
 298       _partial_obj_size = (region_sz_t) words;
 299     }
 300 
 301     inline void set_destination_count(uint count);
 302     inline void set_live_obj_size(size_t words);
 303     inline void set_data_location(HeapWord* addr);
 304     inline void set_completed();
 305     inline bool claim_unsafe();
 306 
 307     // These are atomic.
 308     inline void add_live_obj(size_t words);
 309     inline void set_highest_ref(HeapWord* addr);
 310     inline void decrement_destination_count();
 311     inline bool claim();
 312 
 313   private:
 314     // The type used to represent object sizes within a region.
 315     typedef uint region_sz_t;
 316 
 317     // Constants for manipulating the _dc_and_los field, which holds both the
 318     // destination count and live obj size.  The live obj size lives at the
 319     // least significant end so no masking is necessary when adding.
 320     static const region_sz_t dc_shift;           // Shift amount.
 321     static const region_sz_t dc_mask;            // Mask for destination count.
 322     static const region_sz_t dc_one;             // 1, shifted appropriately.
 323     static const region_sz_t dc_claimed;         // Region has been claimed.
 324     static const region_sz_t dc_completed;       // Region has been completed.
 325     static const region_sz_t los_mask;           // Mask for live obj size.
 326 
 327     HeapWord*            _destination;
 328     size_t               _source_region;
 329     HeapWord*            _partial_obj_addr;
 330     region_sz_t          _partial_obj_size;
 331     region_sz_t volatile _dc_and_los;
 332 #ifdef ASSERT
 333     // These enable optimizations that are only partially implemented.  Use
 334     // debug builds to prevent the code fragments from breaking.
 335     HeapWord*            _data_location;
 336     HeapWord*            _highest_ref;
 337 #endif  // #ifdef ASSERT
 338 
 339 #ifdef ASSERT
 340    public:
 341     uint            _pushed;   // 0 until region is pushed onto a worker's stack
 342    private:
 343 #endif
 344   };
 345 
 346 public:
 347   ParallelCompactData();
 348   bool initialize(MemRegion covered_region);
 349 
 350   size_t region_count() const { return _region_count; }
 351 
 352   // Convert region indices to/from RegionData pointers.
 353   inline RegionData* region(size_t region_idx) const;
 354   inline size_t     region(const RegionData* const region_ptr) const;
 355 
 356   // Returns true if the given address is contained within the region
 357   bool region_contains(size_t region_index, HeapWord* addr);
 358 
 359   void add_obj(HeapWord* addr, size_t len);
 360   void add_obj(oop p, size_t len) { add_obj((HeapWord*)p, len); }
 361 
 362   // Fill in the regions covering [beg, end) so that no data moves; i.e., the
 363   // destination of region n is simply the start of region n.  The argument beg
 364   // must be region-aligned; end need not be.
 365   void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
 366 
 367   HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
 368                                   HeapWord* destination, HeapWord* target_end,
 369                                   HeapWord** target_next);
 370   bool summarize(SplitInfo& split_info,
 371                  HeapWord* source_beg, HeapWord* source_end,
 372                  HeapWord** source_next,
 373                  HeapWord* target_beg, HeapWord* target_end,
 374                  HeapWord** target_next);
 375 
 376   void clear();
 377   void clear_range(size_t beg_region, size_t end_region);
 378   void clear_range(HeapWord* beg, HeapWord* end) {
 379     clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
 380   }
 381 
 382   // Return the number of words between addr and the start of the region
 383   // containing addr.
 384   inline size_t     region_offset(const HeapWord* addr) const;
 385 
 386   // Convert addresses to/from a region index or region pointer.
 387   inline size_t     addr_to_region_idx(const HeapWord* addr) const;
 388   inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
 389   inline HeapWord*  region_to_addr(size_t region) const;
 390   inline HeapWord*  region_to_addr(size_t region, size_t offset) const;
 391   inline HeapWord*  region_to_addr(const RegionData* region) const;
 392 
 393   inline HeapWord*  region_align_down(HeapWord* addr) const;
 394   inline HeapWord*  region_align_up(HeapWord* addr) const;
 395   inline bool       is_region_aligned(HeapWord* addr) const;
 396 
 397   // Return the address one past the end of the partial object.
 398   HeapWord* partial_obj_end(size_t region_idx) const;
 399 
 400   // Return the new location of the object p after the
 401   // the compaction.
 402   HeapWord* calc_new_pointer(HeapWord* addr);
 403 
 404   HeapWord* calc_new_pointer(oop p) {
 405     return calc_new_pointer((HeapWord*) p);
 406   }
 407 
 408   // Return the updated address for the given klass
 409   klassOop calc_new_klass(klassOop);
 410 
 411 #ifdef  ASSERT
 412   void verify_clear(const PSVirtualSpace* vspace);
 413   void verify_clear();
 414 #endif  // #ifdef ASSERT
 415 
 416 private:
 417   bool initialize_region_data(size_t region_size);
 418   PSVirtualSpace* create_vspace(size_t count, size_t element_size);
 419 
 420 private:
 421   HeapWord*       _region_start;
 422 #ifdef  ASSERT
 423   HeapWord*       _region_end;
 424 #endif  // #ifdef ASSERT
 425 
 426   PSVirtualSpace* _region_vspace;
 427   RegionData*     _region_data;
 428   size_t          _region_count;
 429 };
 430 
 431 inline uint
 432 ParallelCompactData::RegionData::destination_count_raw() const
 433 {
 434   return _dc_and_los & dc_mask;
 435 }
 436 
 437 inline uint
 438 ParallelCompactData::RegionData::destination_count() const
 439 {
 440   return destination_count_raw() >> dc_shift;
 441 }
 442 
 443 inline void
 444 ParallelCompactData::RegionData::set_destination_count(uint count)
 445 {
 446   assert(count <= (dc_completed >> dc_shift), "count too large");
 447   const region_sz_t live_sz = (region_sz_t) live_obj_size();
 448   _dc_and_los = (count << dc_shift) | live_sz;
 449 }
 450 
 451 inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
 452 {
 453   assert(words <= los_mask, "would overflow");
 454   _dc_and_los = destination_count_raw() | (region_sz_t)words;
 455 }
 456 
 457 inline void ParallelCompactData::RegionData::decrement_destination_count()
 458 {
 459   assert(_dc_and_los < dc_claimed, "already claimed");
 460   assert(_dc_and_los >= dc_one, "count would go negative");
 461   Atomic::add((int)dc_mask, (volatile int*)&_dc_and_los);
 462 }
 463 
 464 inline HeapWord* ParallelCompactData::RegionData::data_location() const
 465 {
 466   DEBUG_ONLY(return _data_location;)
 467   NOT_DEBUG(return NULL;)
 468 }
 469 
 470 inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
 471 {
 472   DEBUG_ONLY(return _highest_ref;)
 473   NOT_DEBUG(return NULL;)
 474 }
 475 
 476 inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
 477 {
 478   DEBUG_ONLY(_data_location = addr;)
 479 }
 480 
 481 inline void ParallelCompactData::RegionData::set_completed()
 482 {
 483   assert(claimed(), "must be claimed first");
 484   _dc_and_los = dc_completed | (region_sz_t) live_obj_size();
 485 }
 486 
 487 // MT-unsafe claiming of a region.  Should only be used during single threaded
 488 // execution.
 489 inline bool ParallelCompactData::RegionData::claim_unsafe()
 490 {
 491   if (available()) {
 492     _dc_and_los |= dc_claimed;
 493     return true;
 494   }
 495   return false;
 496 }
 497 
 498 inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
 499 {
 500   assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
 501   Atomic::add((int) words, (volatile int*) &_dc_and_los);
 502 }
 503 
 504 inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
 505 {
 506 #ifdef ASSERT
 507   HeapWord* tmp = _highest_ref;
 508   while (addr > tmp) {
 509     tmp = (HeapWord*)Atomic::cmpxchg_ptr(addr, &_highest_ref, tmp);
 510   }
 511 #endif  // #ifdef ASSERT
 512 }
 513 
 514 inline bool ParallelCompactData::RegionData::claim()
 515 {
 516   const int los = (int) live_obj_size();
 517   const int old = Atomic::cmpxchg(dc_claimed | los,
 518                                   (volatile int*) &_dc_and_los, los);
 519   return old == los;
 520 }
 521 
 522 inline ParallelCompactData::RegionData*
 523 ParallelCompactData::region(size_t region_idx) const
 524 {
 525   assert(region_idx <= region_count(), "bad arg");
 526   return _region_data + region_idx;
 527 }
 528 
 529 inline size_t
 530 ParallelCompactData::region(const RegionData* const region_ptr) const
 531 {
 532   assert(region_ptr >= _region_data, "bad arg");
 533   assert(region_ptr <= _region_data + region_count(), "bad arg");
 534   return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
 535 }
 536 
 537 inline size_t
 538 ParallelCompactData::region_offset(const HeapWord* addr) const
 539 {
 540   assert(addr >= _region_start, "bad addr");
 541   assert(addr <= _region_end, "bad addr");
 542   return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
 543 }
 544 
 545 inline size_t
 546 ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
 547 {
 548   assert(addr >= _region_start, "bad addr");
 549   assert(addr <= _region_end, "bad addr");
 550   return pointer_delta(addr, _region_start) >> Log2RegionSize;
 551 }
 552 
 553 inline ParallelCompactData::RegionData*
 554 ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
 555 {
 556   return region(addr_to_region_idx(addr));
 557 }
 558 
 559 inline HeapWord*
 560 ParallelCompactData::region_to_addr(size_t region) const
 561 {
 562   assert(region <= _region_count, "region out of range");
 563   return _region_start + (region << Log2RegionSize);
 564 }
 565 
 566 inline HeapWord*
 567 ParallelCompactData::region_to_addr(const RegionData* region) const
 568 {
 569   return region_to_addr(pointer_delta(region, _region_data,
 570                                       sizeof(RegionData)));
 571 }
 572 
 573 inline HeapWord*
 574 ParallelCompactData::region_to_addr(size_t region, size_t offset) const
 575 {
 576   assert(region <= _region_count, "region out of range");
 577   assert(offset < RegionSize, "offset too big");  // This may be too strict.
 578   return region_to_addr(region) + offset;
 579 }
 580 
 581 inline HeapWord*
 582 ParallelCompactData::region_align_down(HeapWord* addr) const
 583 {
 584   assert(addr >= _region_start, "bad addr");
 585   assert(addr < _region_end + RegionSize, "bad addr");
 586   return (HeapWord*)(size_t(addr) & RegionAddrMask);
 587 }
 588 
 589 inline HeapWord*
 590 ParallelCompactData::region_align_up(HeapWord* addr) const
 591 {
 592   assert(addr >= _region_start, "bad addr");
 593   assert(addr <= _region_end, "bad addr");
 594   return region_align_down(addr + RegionSizeOffsetMask);
 595 }
 596 
 597 inline bool
 598 ParallelCompactData::is_region_aligned(HeapWord* addr) const
 599 {
 600   return region_offset(addr) == 0;
 601 }
 602 
 603 // Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
 604 // do_addr() method.
 605 //
 606 // The closure is initialized with the number of heap words to process
 607 // (words_remaining()), and becomes 'full' when it reaches 0.  The do_addr()
 608 // methods in subclasses should update the total as words are processed.  Since
 609 // only one subclass actually uses this mechanism to terminate iteration, the
 610 // default initial value is > 0.  The implementation is here and not in the
 611 // single subclass that uses it to avoid making is_full() virtual, and thus
 612 // adding a virtual call per live object.
 613 
 614 class ParMarkBitMapClosure: public StackObj {
 615  public:
 616   typedef ParMarkBitMap::idx_t idx_t;
 617   typedef ParMarkBitMap::IterationStatus IterationStatus;
 618 
 619  public:
 620   inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
 621                               size_t words = max_uintx);
 622 
 623   inline ParCompactionManager* compaction_manager() const;
 624   inline ParMarkBitMap*        bitmap() const;
 625   inline size_t                words_remaining() const;
 626   inline bool                  is_full() const;
 627   inline HeapWord*             source() const;
 628 
 629   inline void                  set_source(HeapWord* addr);
 630 
 631   virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
 632 
 633  protected:
 634   inline void decrement_words_remaining(size_t words);
 635 
 636  private:
 637   ParMarkBitMap* const        _bitmap;
 638   ParCompactionManager* const _compaction_manager;
 639   DEBUG_ONLY(const size_t     _initial_words_remaining;) // Useful in debugger.
 640   size_t                      _words_remaining; // Words left to copy.
 641 
 642  protected:
 643   HeapWord*                   _source;          // Next addr that would be read.
 644 };
 645 
 646 inline
 647 ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
 648                                            ParCompactionManager* cm,
 649                                            size_t words):
 650   _bitmap(bitmap), _compaction_manager(cm)
 651 #ifdef  ASSERT
 652   , _initial_words_remaining(words)
 653 #endif
 654 {
 655   _words_remaining = words;
 656   _source = NULL;
 657 }
 658 
 659 inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
 660   return _compaction_manager;
 661 }
 662 
 663 inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
 664   return _bitmap;
 665 }
 666 
 667 inline size_t ParMarkBitMapClosure::words_remaining() const {
 668   return _words_remaining;
 669 }
 670 
 671 inline bool ParMarkBitMapClosure::is_full() const {
 672   return words_remaining() == 0;
 673 }
 674 
 675 inline HeapWord* ParMarkBitMapClosure::source() const {
 676   return _source;
 677 }
 678 
 679 inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
 680   _source = addr;
 681 }
 682 
 683 inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
 684   assert(_words_remaining >= words, "processed too many words");
 685   _words_remaining -= words;
 686 }
 687 
 688 // The UseParallelOldGC collector is a stop-the-world garbage collector that
 689 // does parts of the collection using parallel threads.  The collection includes
 690 // the tenured generation and the young generation.  The permanent generation is
 691 // collected at the same time as the other two generations but the permanent
 692 // generation is collect by a single GC thread.  The permanent generation is
 693 // collected serially because of the requirement that during the processing of a
 694 // klass AAA, any objects reference by AAA must already have been processed.
 695 // This requirement is enforced by a left (lower address) to right (higher
 696 // address) sliding compaction.
 697 //
 698 // There are four phases of the collection.
 699 //
 700 //      - marking phase
 701 //      - summary phase
 702 //      - compacting phase
 703 //      - clean up phase
 704 //
 705 // Roughly speaking these phases correspond, respectively, to
 706 //      - mark all the live objects
 707 //      - calculate the destination of each object at the end of the collection
 708 //      - move the objects to their destination
 709 //      - update some references and reinitialize some variables
 710 //
 711 // These three phases are invoked in PSParallelCompact::invoke_no_policy().  The
 712 // marking phase is implemented in PSParallelCompact::marking_phase() and does a
 713 // complete marking of the heap.  The summary phase is implemented in
 714 // PSParallelCompact::summary_phase().  The move and update phase is implemented
 715 // in PSParallelCompact::compact().
 716 //
 717 // A space that is being collected is divided into regions and with each region
 718 // is associated an object of type ParallelCompactData.  Each region is of a
 719 // fixed size and typically will contain more than 1 object and may have parts
 720 // of objects at the front and back of the region.
 721 //
 722 // region            -----+---------------------+----------
 723 // objects covered   [ AAA  )[ BBB )[ CCC   )[ DDD     )
 724 //
 725 // The marking phase does a complete marking of all live objects in the heap.
 726 // The marking also compiles the size of the data for all live objects covered
 727 // by the region.  This size includes the part of any live object spanning onto
 728 // the region (part of AAA if it is live) from the front, all live objects
 729 // contained in the region (BBB and/or CCC if they are live), and the part of
 730 // any live objects covered by the region that extends off the region (part of
 731 // DDD if it is live).  The marking phase uses multiple GC threads and marking
 732 // is done in a bit array of type ParMarkBitMap.  The marking of the bit map is
 733 // done atomically as is the accumulation of the size of the live objects
 734 // covered by a region.
 735 //
 736 // The summary phase calculates the total live data to the left of each region
 737 // XXX.  Based on that total and the bottom of the space, it can calculate the
 738 // starting location of the live data in XXX.  The summary phase calculates for
 739 // each region XXX quantites such as
 740 //
 741 //      - the amount of live data at the beginning of a region from an object
 742 //        entering the region.
 743 //      - the location of the first live data on the region
 744 //      - a count of the number of regions receiving live data from XXX.
 745 //
 746 // See ParallelCompactData for precise details.  The summary phase also
 747 // calculates the dense prefix for the compaction.  The dense prefix is a
 748 // portion at the beginning of the space that is not moved.  The objects in the
 749 // dense prefix do need to have their object references updated.  See method
 750 // summarize_dense_prefix().
 751 //
 752 // The summary phase is done using 1 GC thread.
 753 //
 754 // The compaction phase moves objects to their new location and updates all
 755 // references in the object.
 756 //
 757 // A current exception is that objects that cross a region boundary are moved
 758 // but do not have their references updated.  References are not updated because
 759 // it cannot easily be determined if the klass pointer KKK for the object AAA
 760 // has been updated.  KKK likely resides in a region to the left of the region
 761 // containing AAA.  These AAA's have there references updated at the end in a
 762 // clean up phase.  See the method PSParallelCompact::update_deferred_objects().
 763 // An alternate strategy is being investigated for this deferral of updating.
 764 //
 765 // Compaction is done on a region basis.  A region that is ready to be filled is
 766 // put on a ready list and GC threads take region off the list and fill them.  A
 767 // region is ready to be filled if it empty of live objects.  Such a region may
 768 // have been initially empty (only contained dead objects) or may have had all
 769 // its live objects copied out already.  A region that compacts into itself is
 770 // also ready for filling.  The ready list is initially filled with empty
 771 // regions and regions compacting into themselves.  There is always at least 1
 772 // region that can be put on the ready list.  The regions are atomically added
 773 // and removed from the ready list.
 774 
 775 class PSParallelCompact : AllStatic {
 776  public:
 777   // Convenient access to type names.
 778   typedef ParMarkBitMap::idx_t idx_t;
 779   typedef ParallelCompactData::RegionData RegionData;
 780 
 781   typedef enum {
 782     perm_space_id, old_space_id, eden_space_id,
 783     from_space_id, to_space_id, last_space_id
 784   } SpaceId;
 785 
 786  public:
 787   // Inline closure decls
 788   //
 789   class IsAliveClosure: public BoolObjectClosure {
 790    public:
 791     virtual void do_object(oop p);
 792     virtual bool do_object_b(oop p);
 793   };
 794 
 795   class KeepAliveClosure: public OopClosure {
 796    private:
 797     ParCompactionManager* _compaction_manager;
 798    protected:
 799     template <class T> inline void do_oop_work(T* p);
 800    public:
 801     KeepAliveClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 802     virtual void do_oop(oop* p);
 803     virtual void do_oop(narrowOop* p);
 804   };
 805 
 806   // Current unused
 807   class FollowRootClosure: public OopsInGenClosure {
 808    private:
 809     ParCompactionManager* _compaction_manager;
 810    public:
 811     FollowRootClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 812     virtual void do_oop(oop* p);
 813     virtual void do_oop(narrowOop* p);
 814  };
 815 
 816   class FollowStackClosure: public VoidClosure {
 817    private:
 818     ParCompactionManager* _compaction_manager;
 819    public:
 820     FollowStackClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
 821     virtual void do_void();
 822   };
 823 
 824   class AdjustPointerClosure: public OopsInGenClosure {
 825    private:
 826     bool _is_root;
 827    public:
 828     AdjustPointerClosure(bool is_root) : _is_root(is_root) { }
 829     virtual void do_oop(oop* p);
 830     virtual void do_oop(narrowOop* p);
 831     // do not walk from thread stacks to the code cache on this phase
 832     virtual void do_code_blob(CodeBlob* cb) const { }
 833   };
 834 
 835   // Closure for verifying update of pointers.  Does not
 836   // have any side effects.
 837   class VerifyUpdateClosure: public ParMarkBitMapClosure {
 838     const MutableSpace* _space; // Is this ever used?
 839 
 840    public:
 841     VerifyUpdateClosure(ParCompactionManager* cm, const MutableSpace* sp) :
 842       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm), _space(sp)
 843     { }
 844 
 845     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 846 
 847     const MutableSpace* space() { return _space; }
 848   };
 849 
 850   // Closure for updating objects altered for debug checking
 851   class ResetObjectsClosure: public ParMarkBitMapClosure {
 852    public:
 853     ResetObjectsClosure(ParCompactionManager* cm):
 854       ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm)
 855     { }
 856 
 857     virtual IterationStatus do_addr(HeapWord* addr, size_t words);
 858   };
 859 
 860   friend class KeepAliveClosure;
 861   friend class FollowStackClosure;
 862   friend class AdjustPointerClosure;
 863   friend class FollowRootClosure;
 864   friend class instanceKlassKlass;
 865   friend class RefProcTaskProxy;
 866 
 867  private:
 868   static elapsedTimer         _accumulated_time;
 869   static unsigned int         _total_invocations;
 870   static unsigned int         _maximum_compaction_gc_num;
 871   static jlong                _time_of_last_gc;   // ms
 872   static CollectorCounters*   _counters;
 873   static ParMarkBitMap        _mark_bitmap;
 874   static ParallelCompactData  _summary_data;
 875   static IsAliveClosure       _is_alive_closure;
 876   static SpaceInfo            _space_info[last_space_id];
 877   static bool                 _print_phases;
 878   static AdjustPointerClosure _adjust_root_pointer_closure;
 879   static AdjustPointerClosure _adjust_pointer_closure;
 880 
 881   // Reference processing (used in ...follow_contents)
 882   static ReferenceProcessor*  _ref_processor;
 883 
 884   // Updated location of intArrayKlassObj.
 885   static klassOop _updated_int_array_klass_obj;
 886 
 887   // Values computed at initialization and used by dead_wood_limiter().
 888   static double _dwl_mean;
 889   static double _dwl_std_dev;
 890   static double _dwl_first_term;
 891   static double _dwl_adjustment;
 892 #ifdef  ASSERT
 893   static bool   _dwl_initialized;
 894 #endif  // #ifdef ASSERT
 895 
 896  private:
 897   // Closure accessors
 898   static OopClosure* adjust_pointer_closure()      { return (OopClosure*)&_adjust_pointer_closure; }
 899   static OopClosure* adjust_root_pointer_closure() { return (OopClosure*)&_adjust_root_pointer_closure; }
 900   static BoolObjectClosure* is_alive_closure()     { return (BoolObjectClosure*)&_is_alive_closure; }
 901 
 902   static void initialize_space_info();
 903 
 904   // Return true if details about individual phases should be printed.
 905   static inline bool print_phases();
 906 
 907   // Clear the marking bitmap and summary data that cover the specified space.
 908   static void clear_data_covering_space(SpaceId id);
 909 
 910   static void pre_compact(PreGCValues* pre_gc_values);
 911   static void post_compact();
 912 
 913   // Mark live objects
 914   static void marking_phase(ParCompactionManager* cm,
 915                             bool maximum_heap_compaction);
 916   static void follow_weak_klass_links();
 917   static void follow_mdo_weak_refs();
 918 
 919   template <class T> static inline void adjust_pointer(T* p, bool is_root);
 920   static void adjust_root_pointer(oop* p) { adjust_pointer(p, true); }
 921 
 922   template <class T>
 923   static inline void follow_root(ParCompactionManager* cm, T* p);
 924 
 925   // Compute the dense prefix for the designated space.  This is an experimental
 926   // implementation currently not used in production.
 927   static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
 928                                                     bool maximum_compaction);
 929 
 930   // Methods used to compute the dense prefix.
 931 
 932   // Compute the value of the normal distribution at x = density.  The mean and
 933   // standard deviation are values saved by initialize_dead_wood_limiter().
 934   static inline double normal_distribution(double density);
 935 
 936   // Initialize the static vars used by dead_wood_limiter().
 937   static void initialize_dead_wood_limiter();
 938 
 939   // Return the percentage of space that can be treated as "dead wood" (i.e.,
 940   // not reclaimed).
 941   static double dead_wood_limiter(double density, size_t min_percent);
 942 
 943   // Find the first (left-most) region in the range [beg, end) that has at least
 944   // dead_words of dead space to the left.  The argument beg must be the first
 945   // region in the space that is not completely live.
 946   static RegionData* dead_wood_limit_region(const RegionData* beg,
 947                                             const RegionData* end,
 948                                             size_t dead_words);
 949 
 950   // Return a pointer to the first region in the range [beg, end) that is not
 951   // completely full.
 952   static RegionData* first_dead_space_region(const RegionData* beg,
 953                                              const RegionData* end);
 954 
 955   // Return a value indicating the benefit or 'yield' if the compacted region
 956   // were to start (or equivalently if the dense prefix were to end) at the
 957   // candidate region.  Higher values are better.
 958   //
 959   // The value is based on the amount of space reclaimed vs. the costs of (a)
 960   // updating references in the dense prefix plus (b) copying objects and
 961   // updating references in the compacted region.
 962   static inline double reclaimed_ratio(const RegionData* const candidate,
 963                                        HeapWord* const bottom,
 964                                        HeapWord* const top,
 965                                        HeapWord* const new_top);
 966 
 967   // Compute the dense prefix for the designated space.
 968   static HeapWord* compute_dense_prefix(const SpaceId id,
 969                                         bool maximum_compaction);
 970 
 971   // Return true if dead space crosses onto the specified Region; bit must be
 972   // the bit index corresponding to the first word of the Region.
 973   static inline bool dead_space_crosses_boundary(const RegionData* region,
 974                                                  idx_t bit);
 975 
 976   // Summary phase utility routine to fill dead space (if any) at the dense
 977   // prefix boundary.  Should only be called if the the dense prefix is
 978   // non-empty.
 979   static void fill_dense_prefix_end(SpaceId id);
 980 
 981   // Clear the summary data source_region field for the specified addresses.
 982   static void clear_source_region(HeapWord* beg_addr, HeapWord* end_addr);
 983 
 984 #ifndef PRODUCT
 985   // Routines to provoke splitting a young gen space (ParallelOldGCSplitALot).
 986 
 987   // Fill the region [start, start + words) with live object(s).  Only usable
 988   // for the old and permanent generations.
 989   static void fill_with_live_objects(SpaceId id, HeapWord* const start,
 990                                      size_t words);
 991   // Include the new objects in the summary data.
 992   static void summarize_new_objects(SpaceId id, HeapWord* start);
 993 
 994   // Add live objects to a survivor space since it's rare that both survivors
 995   // are non-empty.
 996   static void provoke_split_fill_survivor(SpaceId id);
 997 
 998   // Add live objects and/or choose the dense prefix to provoke splitting.
 999   static void provoke_split(bool & maximum_compaction);
1000 #endif
1001 
1002   static void summarize_spaces_quick();
1003   static void summarize_space(SpaceId id, bool maximum_compaction);
1004   static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
1005 
1006   // Adjust addresses in roots.  Does not adjust addresses in heap.
1007   static void adjust_roots();
1008 
1009   // Serial code executed in preparation for the compaction phase.
1010   static void compact_prologue();
1011 
1012   // Move objects to new locations.
1013   static void compact_perm(ParCompactionManager* cm);
1014   static void compact();
1015 
1016   // Add available regions to the stack and draining tasks to the task queue.
1017   static void enqueue_region_draining_tasks(GCTaskQueue* q,
1018                                             uint parallel_gc_threads);
1019 
1020   // Add dense prefix update tasks to the task queue.
1021   static void enqueue_dense_prefix_tasks(GCTaskQueue* q,
1022                                          uint parallel_gc_threads);
1023 
1024   // Add region stealing tasks to the task queue.
1025   static void enqueue_region_stealing_tasks(
1026                                        GCTaskQueue* q,
1027                                        ParallelTaskTerminator* terminator_ptr,
1028                                        uint parallel_gc_threads);
1029 
1030   // For debugging only - compacts the old gen serially
1031   static void compact_serial(ParCompactionManager* cm);
1032 
1033   // If objects are left in eden after a collection, try to move the boundary
1034   // and absorb them into the old gen.  Returns true if eden was emptied.
1035   static bool absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1036                                          PSYoungGen* young_gen,
1037                                          PSOldGen* old_gen);
1038 
1039   // Reset time since last full gc
1040   static void reset_millis_since_last_gc();
1041 
1042  protected:
1043 #ifdef VALIDATE_MARK_SWEEP
1044   static GrowableArray<void*>*           _root_refs_stack;
1045   static GrowableArray<oop> *            _live_oops;
1046   static GrowableArray<oop> *            _live_oops_moved_to;
1047   static GrowableArray<size_t>*          _live_oops_size;
1048   static size_t                          _live_oops_index;
1049   static size_t                          _live_oops_index_at_perm;
1050   static GrowableArray<void*>*           _other_refs_stack;
1051   static GrowableArray<void*>*           _adjusted_pointers;
1052   static bool                            _pointer_tracking;
1053   static bool                            _root_tracking;
1054 
1055   // The following arrays are saved since the time of the last GC and
1056   // assist in tracking down problems where someone has done an errant
1057   // store into the heap, usually to an oop that wasn't properly
1058   // handleized across a GC. If we crash or otherwise fail before the
1059   // next GC, we can query these arrays to find out the object we had
1060   // intended to do the store to (assuming it is still alive) and the
1061   // offset within that object. Covered under RecordMarkSweepCompaction.
1062   static GrowableArray<HeapWord*> *      _cur_gc_live_oops;
1063   static GrowableArray<HeapWord*> *      _cur_gc_live_oops_moved_to;
1064   static GrowableArray<size_t>*          _cur_gc_live_oops_size;
1065   static GrowableArray<HeapWord*> *      _last_gc_live_oops;
1066   static GrowableArray<HeapWord*> *      _last_gc_live_oops_moved_to;
1067   static GrowableArray<size_t>*          _last_gc_live_oops_size;
1068 #endif
1069 
1070  public:
1071   class MarkAndPushClosure: public OopClosure {
1072    private:
1073     ParCompactionManager* _compaction_manager;
1074    public:
1075     MarkAndPushClosure(ParCompactionManager* cm) : _compaction_manager(cm) { }
1076     virtual void do_oop(oop* p);
1077     virtual void do_oop(narrowOop* p);
1078   };
1079 
1080   PSParallelCompact();
1081 
1082   // Convenient accessor for Universe::heap().
1083   static ParallelScavengeHeap* gc_heap() {
1084     return (ParallelScavengeHeap*)Universe::heap();
1085   }
1086 
1087   static void invoke(bool maximum_heap_compaction);
1088   static void invoke_no_policy(bool maximum_heap_compaction);
1089 
1090   static void post_initialize();
1091   // Perform initialization for PSParallelCompact that requires
1092   // allocations.  This should be called during the VM initialization
1093   // at a pointer where it would be appropriate to return a JNI_ENOMEM
1094   // in the event of a failure.
1095   static bool initialize();
1096 
1097   // Public accessors
1098   static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1099   static unsigned int total_invocations() { return _total_invocations; }
1100   static CollectorCounters* counters()    { return _counters; }
1101 
1102   // Used to add tasks
1103   static GCTaskManager* const gc_task_manager();
1104   static klassOop updated_int_array_klass_obj() {
1105     return _updated_int_array_klass_obj;
1106   }
1107 
1108   // Marking support
1109   static inline bool mark_obj(oop obj);
1110   // Check mark and maybe push on marking stack
1111   template <class T> static inline void mark_and_push(ParCompactionManager* cm,
1112                                                       T* p);
1113 
1114   // Compaction support.
1115   // Return true if p is in the range [beg_addr, end_addr).
1116   static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1117   static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1118 
1119   // Convenience wrappers for per-space data kept in _space_info.
1120   static inline MutableSpace*     space(SpaceId space_id);
1121   static inline HeapWord*         new_top(SpaceId space_id);
1122   static inline HeapWord*         dense_prefix(SpaceId space_id);
1123   static inline ObjectStartArray* start_array(SpaceId space_id);
1124 
1125   // Return true if the klass should be updated.
1126   static inline bool should_update_klass(klassOop k);
1127 
1128   // Move and update the live objects in the specified space.
1129   static void move_and_update(ParCompactionManager* cm, SpaceId space_id);
1130 
1131   // Process the end of the given region range in the dense prefix.
1132   // This includes saving any object not updated.
1133   static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1134                                             size_t region_start_index,
1135                                             size_t region_end_index,
1136                                             idx_t exiting_object_offset,
1137                                             idx_t region_offset_start,
1138                                             idx_t region_offset_end);
1139 
1140   // Update a region in the dense prefix.  For each live object
1141   // in the region, update it's interior references.  For each
1142   // dead object, fill it with deadwood. Dead space at the end
1143   // of a region range will be filled to the start of the next
1144   // live object regardless of the region_index_end.  None of the
1145   // objects in the dense prefix move and dead space is dead
1146   // (holds only dead objects that don't need any processing), so
1147   // dead space can be filled in any order.
1148   static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1149                                                   SpaceId space_id,
1150                                                   size_t region_index_start,
1151                                                   size_t region_index_end);
1152 
1153   // Return the address of the count + 1st live word in the range [beg, end).
1154   static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1155 
1156   // Return the address of the word to be copied to dest_addr, which must be
1157   // aligned to a region boundary.
1158   static HeapWord* first_src_addr(HeapWord* const dest_addr,
1159                                   SpaceId src_space_id,
1160                                   size_t src_region_idx);
1161 
1162   // Determine the next source region, set closure.source() to the start of the
1163   // new region return the region index.  Parameter end_addr is the address one
1164   // beyond the end of source range just processed.  If necessary, switch to a
1165   // new source space and set src_space_id (in-out parameter) and src_space_top
1166   // (out parameter) accordingly.
1167   static size_t next_src_region(MoveAndUpdateClosure& closure,
1168                                 SpaceId& src_space_id,
1169                                 HeapWord*& src_space_top,
1170                                 HeapWord* end_addr);
1171 
1172   // Decrement the destination count for each non-empty source region in the
1173   // range [beg_region, region(region_align_up(end_addr))).  If the destination
1174   // count for a region goes to 0 and it needs to be filled, enqueue it.
1175   static void decrement_destination_counts(ParCompactionManager* cm,
1176                                            SpaceId src_space_id,
1177                                            size_t beg_region,
1178                                            HeapWord* end_addr);
1179 
1180   // Fill a region, copying objects from one or more source regions.
1181   static void fill_region(ParCompactionManager* cm, size_t region_idx);
1182   static void fill_and_update_region(ParCompactionManager* cm, size_t region) {
1183     fill_region(cm, region);
1184   }
1185 
1186   // Update the deferred objects in the space.
1187   static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1188 
1189   // Mark pointer and follow contents.
1190   template <class T>
1191   static inline void mark_and_follow(ParCompactionManager* cm, T* p);
1192 
1193   static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1194   static ParallelCompactData& summary_data() { return _summary_data; }
1195 
1196   static inline void adjust_pointer(oop* p)       { adjust_pointer(p, false); }
1197   static inline void adjust_pointer(narrowOop* p) { adjust_pointer(p, false); }
1198 
1199   template <class T>
1200   static inline void adjust_pointer(T* p,
1201                                     HeapWord* beg_addr,
1202                                     HeapWord* end_addr);
1203 
1204   // Reference Processing
1205   static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1206 
1207   // Return the SpaceId for the given address.
1208   static SpaceId space_id(HeapWord* addr);
1209 
1210   // Time since last full gc (in milliseconds).
1211   static jlong millis_since_last_gc();
1212 
1213 #ifdef VALIDATE_MARK_SWEEP
1214   static void track_adjusted_pointer(void* p, bool isroot);
1215   static void check_adjust_pointer(void* p);
1216   static void track_interior_pointers(oop obj);
1217   static void check_interior_pointers();
1218 
1219   static void reset_live_oop_tracking(bool at_perm);
1220   static void register_live_oop(oop p, size_t size);
1221   static void validate_live_oop(oop p, size_t size);
1222   static void live_oop_moved_to(HeapWord* q, size_t size, HeapWord* compaction_top);
1223   static void compaction_complete();
1224 
1225   // Querying operation of RecordMarkSweepCompaction results.
1226   // Finds and prints the current base oop and offset for a word
1227   // within an oop that was live during the last GC. Helpful for
1228   // tracking down heap stomps.
1229   static void print_new_location_of_heap_address(HeapWord* q);
1230 #endif  // #ifdef VALIDATE_MARK_SWEEP
1231 
1232   // Call backs for class unloading
1233   // Update subklass/sibling/implementor links at end of marking.
1234   static void revisit_weak_klass_link(ParCompactionManager* cm, Klass* k);
1235 
1236   // Clear unmarked oops in MDOs at the end of marking.
1237   static void revisit_mdo(ParCompactionManager* cm, DataLayout* p);
1238 
1239 #ifndef PRODUCT
1240   // Debugging support.
1241   static const char* space_names[last_space_id];
1242   static void print_region_ranges();
1243   static void print_dense_prefix_stats(const char* const algorithm,
1244                                        const SpaceId id,
1245                                        const bool maximum_compaction,
1246                                        HeapWord* const addr);
1247   static void summary_phase_msg(SpaceId dst_space_id,
1248                                 HeapWord* dst_beg, HeapWord* dst_end,
1249                                 SpaceId src_space_id,
1250                                 HeapWord* src_beg, HeapWord* src_end);
1251 #endif  // #ifndef PRODUCT
1252 
1253 #ifdef  ASSERT
1254   // Sanity check the new location of a word in the heap.
1255   static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1256   // Verify that all the regions have been emptied.
1257   static void verify_complete(SpaceId space_id);
1258 #endif  // #ifdef ASSERT
1259 };
1260 
1261 inline bool PSParallelCompact::mark_obj(oop obj) {
1262   const int obj_size = obj->size();
1263   if (mark_bitmap()->mark_obj(obj, obj_size)) {
1264     _summary_data.add_obj(obj, obj_size);
1265     return true;
1266   } else {
1267     return false;
1268   }
1269 }
1270 
1271 template <class T>
1272 inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
1273   assert(!Universe::heap()->is_in_reserved(p),
1274          "roots shouldn't be things within the heap");
1275 #ifdef VALIDATE_MARK_SWEEP
1276   if (ValidateMarkSweep) {
1277     guarantee(!_root_refs_stack->contains(p), "should only be in here once");
1278     _root_refs_stack->push(p);
1279   }
1280 #endif
1281   T heap_oop = oopDesc::load_heap_oop(p);
1282   if (!oopDesc::is_null(heap_oop)) {
1283     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1284     if (mark_bitmap()->is_unmarked(obj)) {
1285       if (mark_obj(obj)) {
1286         obj->follow_contents(cm);
1287       }
1288     }
1289   }
1290   cm->follow_marking_stacks();
1291 }
1292 
1293 template <class T>
1294 inline void PSParallelCompact::mark_and_follow(ParCompactionManager* cm,
1295                                                T* p) {
1296   T heap_oop = oopDesc::load_heap_oop(p);
1297   if (!oopDesc::is_null(heap_oop)) {
1298     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1299     if (mark_bitmap()->is_unmarked(obj)) {
1300       if (mark_obj(obj)) {
1301         obj->follow_contents(cm);
1302       }
1303     }
1304   }
1305 }
1306 
1307 template <class T>
1308 inline void PSParallelCompact::mark_and_push(ParCompactionManager* cm, T* p) {
1309   T heap_oop = oopDesc::load_heap_oop(p);
1310   if (!oopDesc::is_null(heap_oop)) {
1311     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
1312     if (mark_bitmap()->is_unmarked(obj) && mark_obj(obj)) {
1313       cm->push(obj);
1314     }
1315   }
1316 }
1317 
1318 template <class T>
1319 inline void PSParallelCompact::adjust_pointer(T* p, bool isroot) {
1320   T heap_oop = oopDesc::load_heap_oop(p);
1321   if (!oopDesc::is_null(heap_oop)) {
1322     oop obj     = oopDesc::decode_heap_oop_not_null(heap_oop);
1323     oop new_obj = (oop)summary_data().calc_new_pointer(obj);
1324     assert(new_obj != NULL ||                     // is forwarding ptr?
1325            obj->is_shared(),                      // never forwarded?
1326            "should be forwarded");
1327     // Just always do the update unconditionally?
1328     if (new_obj != NULL) {
1329       assert(Universe::heap()->is_in_reserved(new_obj),
1330              "should be in object space");
1331       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
1332     }
1333   }
1334   VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
1335 }
1336 
1337 template <class T>
1338 inline void PSParallelCompact::KeepAliveClosure::do_oop_work(T* p) {
1339 #ifdef VALIDATE_MARK_SWEEP
1340   if (ValidateMarkSweep) {
1341     if (!Universe::heap()->is_in_reserved(p)) {
1342       _root_refs_stack->push(p);
1343     } else {
1344       _other_refs_stack->push(p);
1345     }
1346   }
1347 #endif
1348   mark_and_push(_compaction_manager, p);
1349 }
1350 
1351 inline bool PSParallelCompact::print_phases() {
1352   return _print_phases;
1353 }
1354 
1355 inline double PSParallelCompact::normal_distribution(double density) {
1356   assert(_dwl_initialized, "uninitialized");
1357   const double squared_term = (density - _dwl_mean) / _dwl_std_dev;
1358   return _dwl_first_term * exp(-0.5 * squared_term * squared_term);
1359 }
1360 
1361 inline bool
1362 PSParallelCompact::dead_space_crosses_boundary(const RegionData* region,
1363                                                idx_t bit)
1364 {
1365   assert(bit > 0, "cannot call this for the first bit/region");
1366   assert(_summary_data.region_to_addr(region) == _mark_bitmap.bit_to_addr(bit),
1367          "sanity check");
1368 
1369   // Dead space crosses the boundary if (1) a partial object does not extend
1370   // onto the region, (2) an object does not start at the beginning of the
1371   // region, and (3) an object does not end at the end of the prior region.
1372   return region->partial_obj_size() == 0 &&
1373     !_mark_bitmap.is_obj_beg(bit) &&
1374     !_mark_bitmap.is_obj_end(bit - 1);
1375 }
1376 
1377 inline bool
1378 PSParallelCompact::is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr) {
1379   return p >= beg_addr && p < end_addr;
1380 }
1381 
1382 inline bool
1383 PSParallelCompact::is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr) {
1384   return is_in((HeapWord*)p, beg_addr, end_addr);
1385 }
1386 
1387 inline MutableSpace* PSParallelCompact::space(SpaceId id) {
1388   assert(id < last_space_id, "id out of range");
1389   return _space_info[id].space();
1390 }
1391 
1392 inline HeapWord* PSParallelCompact::new_top(SpaceId id) {
1393   assert(id < last_space_id, "id out of range");
1394   return _space_info[id].new_top();
1395 }
1396 
1397 inline HeapWord* PSParallelCompact::dense_prefix(SpaceId id) {
1398   assert(id < last_space_id, "id out of range");
1399   return _space_info[id].dense_prefix();
1400 }
1401 
1402 inline ObjectStartArray* PSParallelCompact::start_array(SpaceId id) {
1403   assert(id < last_space_id, "id out of range");
1404   return _space_info[id].start_array();
1405 }
1406 
1407 inline bool PSParallelCompact::should_update_klass(klassOop k) {
1408   return ((HeapWord*) k) >= dense_prefix(perm_space_id);
1409 }
1410 
1411 template <class T>
1412 inline void PSParallelCompact::adjust_pointer(T* p,
1413                                               HeapWord* beg_addr,
1414                                               HeapWord* end_addr) {
1415   if (is_in((HeapWord*)p, beg_addr, end_addr)) {
1416     adjust_pointer(p);
1417   }
1418 }
1419 
1420 #ifdef ASSERT
1421 inline void
1422 PSParallelCompact::check_new_location(HeapWord* old_addr, HeapWord* new_addr)
1423 {
1424   assert(old_addr >= new_addr || space_id(old_addr) != space_id(new_addr),
1425          "must move left or to a different space");
1426   assert(is_object_aligned((intptr_t)old_addr) && is_object_aligned((intptr_t)new_addr),
1427          "checking alignment");
1428 }
1429 #endif // ASSERT
1430 
1431 class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1432  public:
1433   inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1434                               ObjectStartArray* start_array,
1435                               HeapWord* destination, size_t words);
1436 
1437   // Accessors.
1438   HeapWord* destination() const         { return _destination; }
1439 
1440   // If the object will fit (size <= words_remaining()), copy it to the current
1441   // destination, update the interior oops and the start array and return either
1442   // full (if the closure is full) or incomplete.  If the object will not fit,
1443   // return would_overflow.
1444   virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1445 
1446   // Copy enough words to fill this closure, starting at source().  Interior
1447   // oops and the start array are not updated.  Return full.
1448   IterationStatus copy_until_full();
1449 
1450   // Copy enough words to fill this closure or to the end of an object,
1451   // whichever is smaller, starting at source().  Interior oops and the start
1452   // array are not updated.
1453   void copy_partial_obj();
1454 
1455  protected:
1456   // Update variables to indicate that word_count words were processed.
1457   inline void update_state(size_t word_count);
1458 
1459  protected:
1460   ObjectStartArray* const _start_array;
1461   HeapWord*               _destination;         // Next addr to be written.
1462 };
1463 
1464 inline
1465 MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1466                                            ParCompactionManager* cm,
1467                                            ObjectStartArray* start_array,
1468                                            HeapWord* destination,
1469                                            size_t words) :
1470   ParMarkBitMapClosure(bitmap, cm, words), _start_array(start_array)
1471 {
1472   _destination = destination;
1473 }
1474 
1475 inline void MoveAndUpdateClosure::update_state(size_t words)
1476 {
1477   decrement_words_remaining(words);
1478   _source += words;
1479   _destination += words;
1480 }
1481 
1482 class UpdateOnlyClosure: public ParMarkBitMapClosure {
1483  private:
1484   const PSParallelCompact::SpaceId _space_id;
1485   ObjectStartArray* const          _start_array;
1486 
1487  public:
1488   UpdateOnlyClosure(ParMarkBitMap* mbm,
1489                     ParCompactionManager* cm,
1490                     PSParallelCompact::SpaceId space_id);
1491 
1492   // Update the object.
1493   virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1494 
1495   inline void do_addr(HeapWord* addr);
1496 };
1497 
1498 inline void UpdateOnlyClosure::do_addr(HeapWord* addr)
1499 {
1500   _start_array->allocate_block(addr);
1501   oop(addr)->update_contents(compaction_manager());
1502 }
1503 
1504 class FillClosure: public ParMarkBitMapClosure
1505 {
1506 public:
1507   FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
1508     ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
1509     _start_array(PSParallelCompact::start_array(space_id))
1510   {
1511     assert(space_id == PSParallelCompact::perm_space_id ||
1512            space_id == PSParallelCompact::old_space_id,
1513            "cannot use FillClosure in the young gen");
1514   }
1515 
1516   virtual IterationStatus do_addr(HeapWord* addr, size_t size) {
1517     CollectedHeap::fill_with_objects(addr, size);
1518     HeapWord* const end = addr + size;
1519     do {
1520       _start_array->allocate_block(addr);
1521       addr += oop(addr)->size();
1522     } while (addr < end);
1523     return ParMarkBitMap::incomplete;
1524   }
1525 
1526 private:
1527   ObjectStartArray* const _start_array;
1528 };
1529 
1530 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PSPARALLELCOMPACT_HPP