1 /*
   2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  27 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  28 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
  29 #include "gc_implementation/parallelScavenge/psScavenge.inline.hpp"
  30 #include "gc_implementation/shared/mutableSpace.hpp"
  31 #include "memory/memRegion.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "oops/oop.psgc.inline.hpp"
  34 
  35 PSPromotionManager**         PSPromotionManager::_manager_array = NULL;
  36 OopStarTaskQueueSet*         PSPromotionManager::_stack_array_depth = NULL;
  37 PSOldGen*                    PSPromotionManager::_old_gen = NULL;
  38 MutableSpace*                PSPromotionManager::_young_space = NULL;
  39 
  40 void PSPromotionManager::initialize() {
  41   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  42   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  43 
  44   _old_gen = heap->old_gen();
  45   _young_space = heap->young_gen()->to_space();
  46 
  47   assert(_manager_array == NULL, "Attempt to initialize twice");
  48   _manager_array = NEW_C_HEAP_ARRAY(PSPromotionManager*, ParallelGCThreads+1 );
  49   guarantee(_manager_array != NULL, "Could not initialize promotion manager");
  50 
  51   _stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads);
  52   guarantee(_stack_array_depth != NULL, "Cound not initialize promotion manager");
  53 
  54   // Create and register the PSPromotionManager(s) for the worker threads.
  55   for(uint i=0; i<ParallelGCThreads; i++) {
  56     _manager_array[i] = new PSPromotionManager();
  57     guarantee(_manager_array[i] != NULL, "Could not create PSPromotionManager");
  58     stack_array_depth()->register_queue(i, _manager_array[i]->claimed_stack_depth());
  59   }
  60 
  61   // The VMThread gets its own PSPromotionManager, which is not available
  62   // for work stealing.
  63   _manager_array[ParallelGCThreads] = new PSPromotionManager();
  64   guarantee(_manager_array[ParallelGCThreads] != NULL, "Could not create PSPromotionManager");
  65 }
  66 
  67 PSPromotionManager* PSPromotionManager::gc_thread_promotion_manager(int index) {
  68   assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range");
  69   assert(_manager_array != NULL, "Sanity");
  70   return _manager_array[index];
  71 }
  72 
  73 PSPromotionManager* PSPromotionManager::vm_thread_promotion_manager() {
  74   assert(_manager_array != NULL, "Sanity");
  75   return _manager_array[ParallelGCThreads];
  76 }
  77 
  78 void PSPromotionManager::pre_scavenge() {
  79   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  80   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  81 
  82   _young_space = heap->young_gen()->to_space();
  83 
  84   for(uint i=0; i<ParallelGCThreads+1; i++) {
  85     manager_array(i)->reset();
  86   }
  87 }
  88 
  89 void PSPromotionManager::post_scavenge() {
  90   TASKQUEUE_STATS_ONLY(if (PrintGCDetails && ParallelGCVerbose) print_stats());
  91   for (uint i = 0; i < ParallelGCThreads + 1; i++) {
  92     PSPromotionManager* manager = manager_array(i);
  93     assert(manager->claimed_stack_depth()->is_empty(), "should be empty");
  94     manager->flush_labs();
  95   }
  96 }
  97 
  98 #if TASKQUEUE_STATS
  99 void
 100 PSPromotionManager::print_taskqueue_stats(uint i) const {
 101   tty->print("%3u ", i);
 102   _claimed_stack_depth.stats.print();
 103   tty->cr();
 104 }
 105 
 106 void
 107 PSPromotionManager::print_local_stats(uint i) const {
 108   #define FMT " " SIZE_FORMAT_W(10)
 109   tty->print_cr("%3u" FMT FMT FMT FMT, i, _masked_pushes, _masked_steals,
 110                 _arrays_chunked, _array_chunks_processed);
 111   #undef FMT
 112 }
 113 
 114 static const char* const pm_stats_hdr[] = {
 115   "    --------masked-------     arrays      array",
 116   "thr       push      steal    chunked     chunks",
 117   "--- ---------- ---------- ---------- ----------"
 118 };
 119 
 120 void
 121 PSPromotionManager::print_stats() {
 122   tty->print_cr("== GC Tasks Stats, GC %3d",
 123                 Universe::heap()->total_collections());
 124 
 125   tty->print("thr "); TaskQueueStats::print_header(1); tty->cr();
 126   tty->print("--- "); TaskQueueStats::print_header(2); tty->cr();
 127   for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
 128     manager_array(i)->print_taskqueue_stats(i);
 129   }
 130 
 131   const uint hlines = sizeof(pm_stats_hdr) / sizeof(pm_stats_hdr[0]);
 132   for (uint i = 0; i < hlines; ++i) tty->print_cr(pm_stats_hdr[i]);
 133   for (uint i = 0; i < ParallelGCThreads + 1; ++i) {
 134     manager_array(i)->print_local_stats(i);
 135   }
 136 }
 137 
 138 void
 139 PSPromotionManager::reset_stats() {
 140   claimed_stack_depth()->stats.reset();
 141   _masked_pushes = _masked_steals = 0;
 142   _arrays_chunked = _array_chunks_processed = 0;
 143 }
 144 #endif // TASKQUEUE_STATS
 145 
 146 PSPromotionManager::PSPromotionManager() {
 147   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 148   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 149 
 150   // We set the old lab's start array.
 151   _old_lab.set_start_array(old_gen()->start_array());
 152 
 153   uint queue_size;
 154   claimed_stack_depth()->initialize();
 155   queue_size = claimed_stack_depth()->max_elems();
 156 
 157   _totally_drain = (ParallelGCThreads == 1) || (GCDrainStackTargetSize == 0);
 158   if (_totally_drain) {
 159     _target_stack_size = 0;
 160   } else {
 161     // don't let the target stack size to be more than 1/4 of the entries
 162     _target_stack_size = (uint) MIN2((uint) GCDrainStackTargetSize,
 163                                      (uint) (queue_size / 4));
 164   }
 165 
 166   _array_chunk_size = ParGCArrayScanChunk;
 167   // let's choose 1.5x the chunk size
 168   _min_array_size_for_chunking = 3 * _array_chunk_size / 2;
 169 
 170   reset();
 171 }
 172 
 173 void PSPromotionManager::reset() {
 174   assert(stacks_empty(), "reset of non-empty stack");
 175 
 176   // We need to get an assert in here to make sure the labs are always flushed.
 177 
 178   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 179   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 180 
 181   // Do not prefill the LAB's, save heap wastage!
 182   HeapWord* lab_base = young_space()->top();
 183   _young_lab.initialize(MemRegion(lab_base, (size_t)0));
 184   _young_gen_is_full = false;
 185 
 186   lab_base = old_gen()->object_space()->top();
 187   _old_lab.initialize(MemRegion(lab_base, (size_t)0));
 188   _old_gen_is_full = false;
 189 
 190   TASKQUEUE_STATS_ONLY(reset_stats());
 191 }
 192 
 193 
 194 void PSPromotionManager::drain_stacks_depth(bool totally_drain) {
 195   assert(claimed_stack_depth()->overflow_stack() != NULL, "invariant");
 196   totally_drain = totally_drain || _totally_drain;
 197 
 198 #ifdef ASSERT
 199   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 200   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 201   MutableSpace* to_space = heap->young_gen()->to_space();
 202   MutableSpace* old_space = heap->old_gen()->object_space();
 203   MutableSpace* perm_space = heap->perm_gen()->object_space();
 204 #endif /* ASSERT */
 205 
 206   OopStarTaskQueue* const tq = claimed_stack_depth();
 207   do {
 208     StarTask p;
 209 
 210     // Drain overflow stack first, so other threads can steal from
 211     // claimed stack while we work.
 212     while (tq->pop_overflow(p)) {
 213       process_popped_location_depth(p);
 214     }
 215 
 216     if (totally_drain) {
 217       while (tq->pop_local(p)) {
 218         process_popped_location_depth(p);
 219       }
 220     } else {
 221       while (tq->size() > _target_stack_size && tq->pop_local(p)) {
 222         process_popped_location_depth(p);
 223       }
 224     }
 225   } while (totally_drain && !tq->taskqueue_empty() || !tq->overflow_empty());
 226 
 227   assert(!totally_drain || tq->taskqueue_empty(), "Sanity");
 228   assert(totally_drain || tq->size() <= _target_stack_size, "Sanity");
 229   assert(tq->overflow_empty(), "Sanity");
 230 }
 231 
 232 void PSPromotionManager::flush_labs() {
 233   assert(stacks_empty(), "Attempt to flush lab with live stack");
 234 
 235   // If either promotion lab fills up, we can flush the
 236   // lab but not refill it, so check first.
 237   assert(!_young_lab.is_flushed() || _young_gen_is_full, "Sanity");
 238   if (!_young_lab.is_flushed())
 239     _young_lab.flush();
 240 
 241   assert(!_old_lab.is_flushed() || _old_gen_is_full, "Sanity");
 242   if (!_old_lab.is_flushed())
 243     _old_lab.flush();
 244 
 245   // Let PSScavenge know if we overflowed
 246   if (_young_gen_is_full) {
 247     PSScavenge::set_survivor_overflow(true);
 248   }
 249 }
 250 
 251 //
 252 // This method is pretty bulky. It would be nice to split it up
 253 // into smaller submethods, but we need to be careful not to hurt
 254 // performance.
 255 //
 256 
 257 oop PSPromotionManager::copy_to_survivor_space(oop o) {
 258   assert(PSScavenge::should_scavenge(&o), "Sanity");
 259 
 260   oop new_obj = NULL;
 261 
 262   // NOTE! We must be very careful with any methods that access the mark
 263   // in o. There may be multiple threads racing on it, and it may be forwarded
 264   // at any time. Do not use oop methods for accessing the mark!
 265   markOop test_mark = o->mark();
 266 
 267   // The same test as "o->is_forwarded()"
 268   if (!test_mark->is_marked()) {
 269     bool new_obj_is_tenured = false;
 270     size_t new_obj_size = o->size();
 271 
 272     // Find the objects age, MT safe.
 273     int age = (test_mark->has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
 274       test_mark->displaced_mark_helper()->age() : test_mark->age();
 275 
 276     // Try allocating obj in to-space (unless too old)
 277     if (age < PSScavenge::tenuring_threshold()) {
 278       new_obj = (oop) _young_lab.allocate(new_obj_size);
 279       if (new_obj == NULL && !_young_gen_is_full) {
 280         // Do we allocate directly, or flush and refill?
 281         if (new_obj_size > (YoungPLABSize / 2)) {
 282           // Allocate this object directly
 283           new_obj = (oop)young_space()->cas_allocate(new_obj_size);
 284         } else {
 285           // Flush and fill
 286           _young_lab.flush();
 287 
 288           HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
 289           if (lab_base != NULL) {
 290             _young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
 291             // Try the young lab allocation again.
 292             new_obj = (oop) _young_lab.allocate(new_obj_size);
 293           } else {
 294             _young_gen_is_full = true;
 295           }
 296         }
 297       }
 298     }
 299 
 300     // Otherwise try allocating obj tenured
 301     if (new_obj == NULL) {
 302 #ifndef PRODUCT
 303       if (Universe::heap()->promotion_should_fail()) {
 304         return oop_promotion_failed(o, test_mark);
 305       }
 306 #endif  // #ifndef PRODUCT
 307 
 308       new_obj = (oop) _old_lab.allocate(new_obj_size);
 309       new_obj_is_tenured = true;
 310 
 311       if (new_obj == NULL) {
 312         if (!_old_gen_is_full) {
 313           // Do we allocate directly, or flush and refill?
 314           if (new_obj_size > (OldPLABSize / 2)) {
 315             // Allocate this object directly
 316             new_obj = (oop)old_gen()->cas_allocate(new_obj_size);
 317           } else {
 318             // Flush and fill
 319             _old_lab.flush();
 320 
 321             HeapWord* lab_base = old_gen()->cas_allocate(OldPLABSize);
 322             if(lab_base != NULL) {
 323               _old_lab.initialize(MemRegion(lab_base, OldPLABSize));
 324               // Try the old lab allocation again.
 325               new_obj = (oop) _old_lab.allocate(new_obj_size);
 326             }
 327           }
 328         }
 329 
 330         // This is the promotion failed test, and code handling.
 331         // The code belongs here for two reasons. It is slightly
 332         // different thatn the code below, and cannot share the
 333         // CAS testing code. Keeping the code here also minimizes
 334         // the impact on the common case fast path code.
 335 
 336         if (new_obj == NULL) {
 337           _old_gen_is_full = true;
 338           return oop_promotion_failed(o, test_mark);
 339         }
 340       }
 341     }
 342 
 343     assert(new_obj != NULL, "allocation should have succeeded");
 344 
 345     // Copy obj
 346     Copy::aligned_disjoint_words((HeapWord*)o, (HeapWord*)new_obj, new_obj_size);
 347 
 348     // Now we have to CAS in the header.
 349     if (o->cas_forward_to(new_obj, test_mark)) {
 350       // We won any races, we "own" this object.
 351       assert(new_obj == o->forwardee(), "Sanity");
 352 
 353       // Increment age if obj still in new generation. Now that
 354       // we're dealing with a markOop that cannot change, it is
 355       // okay to use the non mt safe oop methods.
 356       if (!new_obj_is_tenured) {
 357         new_obj->incr_age();
 358         assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
 359       }
 360 
 361       // Do the size comparison first with new_obj_size, which we
 362       // already have. Hopefully, only a few objects are larger than
 363       // _min_array_size_for_chunking, and most of them will be arrays.
 364       // So, the is->objArray() test would be very infrequent.
 365       if (new_obj_size > _min_array_size_for_chunking &&
 366           new_obj->is_objArray() &&
 367           PSChunkLargeArrays) {
 368         // we'll chunk it
 369         oop* const masked_o = mask_chunked_array_oop(o);
 370         push_depth(masked_o);
 371         TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_masked_pushes);
 372       } else {
 373         // we'll just push its contents
 374         new_obj->push_contents(this);
 375       }
 376     }  else {
 377       // We lost, someone else "owns" this object
 378       guarantee(o->is_forwarded(), "Object must be forwarded if the cas failed.");
 379 
 380       // Try to deallocate the space.  If it was directly allocated we cannot
 381       // deallocate it, so we have to test.  If the deallocation fails,
 382       // overwrite with a filler object.
 383       if (new_obj_is_tenured) {
 384         if (!_old_lab.unallocate_object(new_obj)) {
 385           CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 386         }
 387       } else if (!_young_lab.unallocate_object(new_obj)) {
 388         CollectedHeap::fill_with_object((HeapWord*) new_obj, new_obj_size);
 389       }
 390 
 391       // don't update this before the unallocation!
 392       new_obj = o->forwardee();
 393     }
 394   } else {
 395     assert(o->is_forwarded(), "Sanity");
 396     new_obj = o->forwardee();
 397   }
 398 
 399 #ifdef DEBUG
 400   // This code must come after the CAS test, or it will print incorrect
 401   // information.
 402   if (TraceScavenge) {
 403     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (" SIZE_FORMAT ")}",
 404        PSScavenge::should_scavenge(&new_obj) ? "copying" : "tenuring",
 405        new_obj->blueprint()->internal_name(), o, new_obj, new_obj->size());
 406   }
 407 #endif
 408 
 409   return new_obj;
 410 }
 411 
 412 template <class T> void PSPromotionManager::process_array_chunk_work(
 413                                                  oop obj,
 414                                                  int start, int end) {
 415   assert(start < end, "invariant");
 416   T* const base      = (T*)objArrayOop(obj)->base();
 417   T* p               = base + start;
 418   T* const chunk_end = base + end;
 419   while (p < chunk_end) {
 420     if (PSScavenge::should_scavenge(p)) {
 421       claim_or_forward_depth(p);
 422     }
 423     ++p;
 424   }
 425 }
 426 
 427 void PSPromotionManager::process_array_chunk(oop old) {
 428   assert(PSChunkLargeArrays, "invariant");
 429   assert(old->is_objArray(), "invariant");
 430   assert(old->is_forwarded(), "invariant");
 431 
 432   TASKQUEUE_STATS_ONLY(++_array_chunks_processed);
 433 
 434   oop const obj = old->forwardee();
 435 
 436   int start;
 437   int const end = arrayOop(old)->length();
 438   if (end > (int) _min_array_size_for_chunking) {
 439     // we'll chunk more
 440     start = end - _array_chunk_size;
 441     assert(start > 0, "invariant");
 442     arrayOop(old)->set_length(start);
 443     push_depth(mask_chunked_array_oop(old));
 444     TASKQUEUE_STATS_ONLY(++_masked_pushes);
 445   } else {
 446     // this is the final chunk for this array
 447     start = 0;
 448     int const actual_length = arrayOop(obj)->length();
 449     arrayOop(old)->set_length(actual_length);
 450   }
 451 
 452   if (UseCompressedOops) {
 453     process_array_chunk_work<narrowOop>(obj, start, end);
 454   } else {
 455     process_array_chunk_work<oop>(obj, start, end);
 456   }
 457 }
 458 
 459 oop PSPromotionManager::oop_promotion_failed(oop obj, markOop obj_mark) {
 460   assert(_old_gen_is_full || PromotionFailureALot, "Sanity");
 461 
 462   // Attempt to CAS in the header.
 463   // This tests if the header is still the same as when
 464   // this started.  If it is the same (i.e., no forwarding
 465   // pointer has been installed), then this thread owns
 466   // it.
 467   if (obj->cas_forward_to(obj, obj_mark)) {
 468     // We won any races, we "own" this object.
 469     assert(obj == obj->forwardee(), "Sanity");
 470 
 471     obj->push_contents(this);
 472 
 473     // Save the mark if needed
 474     PSScavenge::oop_promotion_failed(obj, obj_mark);
 475   }  else {
 476     // We lost, someone else "owns" this object
 477     guarantee(obj->is_forwarded(), "Object must be forwarded if the cas failed.");
 478 
 479     // No unallocation to worry about.
 480     obj = obj->forwardee();
 481   }
 482 
 483 #ifdef DEBUG
 484   if (TraceScavenge) {
 485     gclog_or_tty->print_cr("{%s %s 0x%x (%d)}",
 486                            "promotion-failure",
 487                            obj->blueprint()->internal_name(),
 488                            obj, obj->size());
 489 
 490   }
 491 #endif
 492 
 493   return obj;
 494 }