1 /*
   2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 
  26 # include "incls/_precompiled.incl"
  27 # include "incls/_psScavenge.cpp.incl"
  28 
  29 HeapWord*                  PSScavenge::_to_space_top_before_gc = NULL;
  30 int                        PSScavenge::_consecutive_skipped_scavenges = 0;
  31 ReferenceProcessor*        PSScavenge::_ref_processor = NULL;
  32 CardTableExtension*        PSScavenge::_card_table = NULL;
  33 bool                       PSScavenge::_survivor_overflow = false;
  34 int                        PSScavenge::_tenuring_threshold = 0;
  35 HeapWord*                  PSScavenge::_young_generation_boundary = NULL;
  36 elapsedTimer               PSScavenge::_accumulated_time;
  37 GrowableArray<markOop>*    PSScavenge::_preserved_mark_stack = NULL;
  38 GrowableArray<oop>*        PSScavenge::_preserved_oop_stack = NULL;
  39 CollectorCounters*         PSScavenge::_counters = NULL;
  40 
  41 // Define before use
  42 class PSIsAliveClosure: public BoolObjectClosure {
  43 public:
  44   void do_object(oop p) {
  45     assert(false, "Do not call.");
  46   }
  47   bool do_object_b(oop p) {
  48     return (!PSScavenge::is_obj_in_young((HeapWord*) p)) || p->is_forwarded();
  49   }
  50 };
  51 
  52 PSIsAliveClosure PSScavenge::_is_alive_closure;
  53 
  54 class PSKeepAliveClosure: public OopClosure {
  55 protected:
  56   MutableSpace* _to_space;
  57   PSPromotionManager* _promotion_manager;
  58 
  59 public:
  60   PSKeepAliveClosure(PSPromotionManager* pm) : _promotion_manager(pm) {
  61     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  62     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
  63     _to_space = heap->young_gen()->to_space();
  64 
  65     assert(_promotion_manager != NULL, "Sanity");
  66   }
  67 
  68   template <class T> void do_oop_work(T* p) {
  69     assert (!oopDesc::is_null(*p), "expected non-null ref");
  70     assert ((oopDesc::load_decode_heap_oop_not_null(p))->is_oop(),
  71             "expected an oop while scanning weak refs");
  72 
  73     // Weak refs may be visited more than once.
  74     if (PSScavenge::should_scavenge(p, _to_space)) {
  75       PSScavenge::copy_and_push_safe_barrier(_promotion_manager, p);
  76     }
  77   }
  78   virtual void do_oop(oop* p)       { PSKeepAliveClosure::do_oop_work(p); }
  79   virtual void do_oop(narrowOop* p) { PSKeepAliveClosure::do_oop_work(p); }
  80 };
  81 
  82 class PSEvacuateFollowersClosure: public VoidClosure {
  83  private:
  84   PSPromotionManager* _promotion_manager;
  85  public:
  86   PSEvacuateFollowersClosure(PSPromotionManager* pm) : _promotion_manager(pm) {}
  87 
  88   virtual void do_void() {
  89     assert(_promotion_manager != NULL, "Sanity");
  90     _promotion_manager->drain_stacks(true);
  91     guarantee(_promotion_manager->stacks_empty(),
  92               "stacks should be empty at this point");
  93   }
  94 };
  95 
  96 class PSPromotionFailedClosure : public ObjectClosure {
  97   virtual void do_object(oop obj) {
  98     if (obj->is_forwarded()) {
  99       obj->init_mark();
 100     }
 101   }
 102 };
 103 
 104 class PSRefProcTaskProxy: public GCTask {
 105   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 106   ProcessTask & _rp_task;
 107   uint          _work_id;
 108 public:
 109   PSRefProcTaskProxy(ProcessTask & rp_task, uint work_id)
 110     : _rp_task(rp_task),
 111       _work_id(work_id)
 112   { }
 113 
 114 private:
 115   virtual char* name() { return (char *)"Process referents by policy in parallel"; }
 116   virtual void do_it(GCTaskManager* manager, uint which);
 117 };
 118 
 119 void PSRefProcTaskProxy::do_it(GCTaskManager* manager, uint which)
 120 {
 121   PSPromotionManager* promotion_manager =
 122     PSPromotionManager::gc_thread_promotion_manager(which);
 123   assert(promotion_manager != NULL, "sanity check");
 124   PSKeepAliveClosure keep_alive(promotion_manager);
 125   PSEvacuateFollowersClosure evac_followers(promotion_manager);
 126   PSIsAliveClosure is_alive;
 127   _rp_task.work(_work_id, is_alive, keep_alive, evac_followers);
 128 }
 129 
 130 class PSRefEnqueueTaskProxy: public GCTask {
 131   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 132   EnqueueTask& _enq_task;
 133   uint         _work_id;
 134 
 135 public:
 136   PSRefEnqueueTaskProxy(EnqueueTask& enq_task, uint work_id)
 137     : _enq_task(enq_task),
 138       _work_id(work_id)
 139   { }
 140 
 141   virtual char* name() { return (char *)"Enqueue reference objects in parallel"; }
 142   virtual void do_it(GCTaskManager* manager, uint which)
 143   {
 144     _enq_task.work(_work_id);
 145   }
 146 };
 147 
 148 class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 149   virtual void execute(ProcessTask& task);
 150   virtual void execute(EnqueueTask& task);
 151 };
 152 
 153 void PSRefProcTaskExecutor::execute(ProcessTask& task)
 154 {
 155   GCTaskQueue* q = GCTaskQueue::create();
 156   for(uint i=0; i<ParallelGCThreads; i++) {
 157     q->enqueue(new PSRefProcTaskProxy(task, i));
 158   }
 159   ParallelTaskTerminator terminator(
 160                  ParallelScavengeHeap::gc_task_manager()->workers(),
 161                  (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
 162   if (task.marks_oops_alive() && ParallelGCThreads > 1) {
 163     for (uint j=0; j<ParallelGCThreads; j++) {
 164       q->enqueue(new StealTask(&terminator));
 165     }
 166   }
 167   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 168 }
 169 
 170 
 171 void PSRefProcTaskExecutor::execute(EnqueueTask& task)
 172 {
 173   GCTaskQueue* q = GCTaskQueue::create();
 174   for(uint i=0; i<ParallelGCThreads; i++) {
 175     q->enqueue(new PSRefEnqueueTaskProxy(task, i));
 176   }
 177   ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
 178 }
 179 
 180 // This method contains all heap specific policy for invoking scavenge.
 181 // PSScavenge::invoke_no_policy() will do nothing but attempt to
 182 // scavenge. It will not clean up after failed promotions, bail out if
 183 // we've exceeded policy time limits, or any other special behavior.
 184 // All such policy should be placed here.
 185 //
 186 // Note that this method should only be called from the vm_thread while
 187 // at a safepoint!
 188 void PSScavenge::invoke() {
 189   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 190   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 191   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 192 
 193   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 194   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 195 
 196   PSAdaptiveSizePolicy* policy = heap->size_policy();
 197   IsGCActiveMark mark;
 198 
 199   bool scavenge_was_done = PSScavenge::invoke_no_policy();
 200 
 201   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 202   if (UsePerfData)
 203     counters->update_full_follows_scavenge(0);
 204   if (!scavenge_was_done ||
 205       policy->should_full_GC(heap->old_gen()->free_in_bytes())) {
 206     if (UsePerfData)
 207       counters->update_full_follows_scavenge(full_follows_scavenge);
 208     GCCauseSetter gccs(heap, GCCause::_adaptive_size_policy);
 209     CollectorPolicy* cp = heap->collector_policy();
 210     const bool clear_all_softrefs = cp->should_clear_all_soft_refs();
 211 
 212     if (UseParallelOldGC) {
 213       PSParallelCompact::invoke_no_policy(clear_all_softrefs);
 214     } else {
 215       PSMarkSweep::invoke_no_policy(clear_all_softrefs);
 216     }
 217   }
 218 }
 219 
 220 // This method contains no policy. You should probably
 221 // be calling invoke() instead.
 222 bool PSScavenge::invoke_no_policy() {
 223   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 224   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 225 
 226   TimeStamp scavenge_entry;
 227   TimeStamp scavenge_midpoint;
 228   TimeStamp scavenge_exit;
 229 
 230   scavenge_entry.update();
 231 
 232   if (GC_locker::check_active_before_gc()) {
 233     return false;
 234   }
 235 
 236   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 237   GCCause::Cause gc_cause = heap->gc_cause();
 238   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 239 
 240   // Check for potential problems.
 241   if (!should_attempt_scavenge()) {
 242     return false;
 243   }
 244 
 245   bool promotion_failure_occurred = false;
 246 
 247   PSYoungGen* young_gen = heap->young_gen();
 248   PSOldGen* old_gen = heap->old_gen();
 249   PSPermGen* perm_gen = heap->perm_gen();
 250   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 251   heap->increment_total_collections();
 252 
 253   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 254 
 255   if ((gc_cause != GCCause::_java_lang_system_gc) ||
 256        UseAdaptiveSizePolicyWithSystemGC) {
 257     // Gather the feedback data for eden occupancy.
 258     young_gen->eden_space()->accumulate_statistics();
 259   }
 260 
 261   if (ZapUnusedHeapArea) {
 262     // Save information needed to minimize mangling
 263     heap->record_gen_tops_before_GC();
 264   }
 265 
 266   if (PrintHeapAtGC) {
 267     Universe::print_heap_before_gc();
 268   }
 269 
 270   assert(!NeverTenure || _tenuring_threshold == markOopDesc::max_age + 1, "Sanity");
 271   assert(!AlwaysTenure || _tenuring_threshold == 0, "Sanity");
 272 
 273   size_t prev_used = heap->used();
 274   assert(promotion_failed() == false, "Sanity");
 275 
 276   // Fill in TLABs
 277   heap->accumulate_statistics_all_tlabs();
 278   heap->ensure_parsability(true);  // retire TLABs
 279 
 280   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 281     HandleMark hm;  // Discard invalid handles created during verification
 282     gclog_or_tty->print(" VerifyBeforeGC:");
 283     Universe::verify(true);
 284   }
 285 
 286   {
 287     ResourceMark rm;
 288     HandleMark hm;
 289 
 290     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 291     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 292     TraceTime t1("GC", PrintGC, !PrintGCDetails, gclog_or_tty);
 293     TraceCollectorStats tcs(counters());
 294     TraceMemoryManagerStats tms(false /* not full GC */);
 295 
 296     if (TraceGen0Time) accumulated_time()->start();
 297 
 298     // Let the size policy know we're starting
 299     size_policy->minor_collection_begin();
 300 
 301     // Verify the object start arrays.
 302     if (VerifyObjectStartArray &&
 303         VerifyBeforeGC) {
 304       old_gen->verify_object_start_array();
 305       perm_gen->verify_object_start_array();
 306     }
 307 
 308     // Verify no unmarked old->young roots
 309     if (VerifyRememberedSets) {
 310       CardTableExtension::verify_all_young_refs_imprecise();
 311     }
 312 
 313     if (!ScavengeWithObjectsInToSpace) {
 314       assert(young_gen->to_space()->is_empty(),
 315              "Attempt to scavenge with live objects in to_space");
 316       young_gen->to_space()->clear(SpaceDecorator::Mangle);
 317     } else if (ZapUnusedHeapArea) {
 318       young_gen->to_space()->mangle_unused_area();
 319     }
 320     save_to_space_top_before_gc();
 321 
 322     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 323     COMPILER2_PRESENT(DerivedPointerTable::clear());
 324 
 325     reference_processor()->enable_discovery();
 326     reference_processor()->setup_policy(false);
 327 
 328     // We track how much was promoted to the next generation for
 329     // the AdaptiveSizePolicy.
 330     size_t old_gen_used_before = old_gen->used_in_bytes();
 331 
 332     // For PrintGCDetails
 333     size_t young_gen_used_before = young_gen->used_in_bytes();
 334 
 335     // Reset our survivor overflow.
 336     set_survivor_overflow(false);
 337 
 338     // We need to save the old/perm top values before
 339     // creating the promotion_manager. We pass the top
 340     // values to the card_table, to prevent it from
 341     // straying into the promotion labs.
 342     HeapWord* old_top = old_gen->object_space()->top();
 343     HeapWord* perm_top = perm_gen->object_space()->top();
 344 
 345     // Release all previously held resources
 346     gc_task_manager()->release_all_resources();
 347 
 348     PSPromotionManager::pre_scavenge();
 349 
 350     // We'll use the promotion manager again later.
 351     PSPromotionManager* promotion_manager = PSPromotionManager::vm_thread_promotion_manager();
 352     {
 353       // TraceTime("Roots");
 354       ParallelScavengeHeap::ParStrongRootsScope psrs;
 355 
 356       GCTaskQueue* q = GCTaskQueue::create();
 357 
 358       for(uint i=0; i<ParallelGCThreads; i++) {
 359         q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
 360       }
 361 
 362       q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
 363 
 364       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::universe));
 365       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jni_handles));
 366       // We scan the thread roots in parallel
 367       Threads::create_thread_roots_tasks(q);
 368       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::object_synchronizer));
 369       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::flat_profiler));
 370       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::management));
 371       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::system_dictionary));
 372       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::jvmti));
 373       q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
 374 
 375       ParallelTaskTerminator terminator(
 376                   gc_task_manager()->workers(),
 377                   (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
 378       if (ParallelGCThreads>1) {
 379         for (uint j=0; j<ParallelGCThreads; j++) {
 380           q->enqueue(new StealTask(&terminator));
 381         }
 382       }
 383 
 384       gc_task_manager()->execute_and_wait(q);
 385     }
 386 
 387     scavenge_midpoint.update();
 388 
 389     // Process reference objects discovered during scavenge
 390     {
 391       reference_processor()->setup_policy(false); // not always_clear
 392       PSKeepAliveClosure keep_alive(promotion_manager);
 393       PSEvacuateFollowersClosure evac_followers(promotion_manager);
 394       if (reference_processor()->processing_is_mt()) {
 395         PSRefProcTaskExecutor task_executor;
 396         reference_processor()->process_discovered_references(
 397           &_is_alive_closure, &keep_alive, &evac_followers, &task_executor);
 398       } else {
 399         reference_processor()->process_discovered_references(
 400           &_is_alive_closure, &keep_alive, &evac_followers, NULL);
 401       }
 402     }
 403 
 404     // Enqueue reference objects discovered during scavenge.
 405     if (reference_processor()->processing_is_mt()) {
 406       PSRefProcTaskExecutor task_executor;
 407       reference_processor()->enqueue_discovered_references(&task_executor);
 408     } else {
 409       reference_processor()->enqueue_discovered_references(NULL);
 410     }
 411 
 412     // Finally, flush the promotion_manager's labs, and deallocate its stacks.
 413     PSPromotionManager::post_scavenge();
 414 
 415     promotion_failure_occurred = promotion_failed();
 416     if (promotion_failure_occurred) {
 417       clean_up_failed_promotion();
 418       if (PrintGC) {
 419         gclog_or_tty->print("--");
 420       }
 421     }
 422 
 423     // Let the size policy know we're done.  Note that we count promotion
 424     // failure cleanup time as part of the collection (otherwise, we're
 425     // implicitly saying it's mutator time).
 426     size_policy->minor_collection_end(gc_cause);
 427 
 428     if (!promotion_failure_occurred) {
 429       // Swap the survivor spaces.
 430 
 431 
 432       young_gen->eden_space()->clear(SpaceDecorator::Mangle);
 433       young_gen->from_space()->clear(SpaceDecorator::Mangle);
 434       young_gen->swap_spaces();
 435 
 436       size_t survived = young_gen->from_space()->used_in_bytes();
 437       size_t promoted = old_gen->used_in_bytes() - old_gen_used_before;
 438       size_policy->update_averages(_survivor_overflow, survived, promoted);
 439 
 440       // A successful scavenge should restart the GC time limit count which is
 441       // for full GC's.
 442       size_policy->reset_gc_overhead_limit_count();
 443       if (UseAdaptiveSizePolicy) {
 444         // Calculate the new survivor size and tenuring threshold
 445 
 446         if (PrintAdaptiveSizePolicy) {
 447           gclog_or_tty->print("AdaptiveSizeStart: ");
 448           gclog_or_tty->stamp();
 449           gclog_or_tty->print_cr(" collection: %d ",
 450                          heap->total_collections());
 451 
 452           if (Verbose) {
 453             gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
 454               " perm_gen_capacity: %d ",
 455               old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
 456               perm_gen->capacity_in_bytes());
 457           }
 458         }
 459 
 460 
 461         if (UsePerfData) {
 462           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 463           counters->update_old_eden_size(
 464             size_policy->calculated_eden_size_in_bytes());
 465           counters->update_old_promo_size(
 466             size_policy->calculated_promo_size_in_bytes());
 467           counters->update_old_capacity(old_gen->capacity_in_bytes());
 468           counters->update_young_capacity(young_gen->capacity_in_bytes());
 469           counters->update_survived(survived);
 470           counters->update_promoted(promoted);
 471           counters->update_survivor_overflowed(_survivor_overflow);
 472         }
 473 
 474         size_t survivor_limit =
 475           size_policy->max_survivor_size(young_gen->max_size());
 476         _tenuring_threshold =
 477           size_policy->compute_survivor_space_size_and_threshold(
 478                                                            _survivor_overflow,
 479                                                            _tenuring_threshold,
 480                                                            survivor_limit);
 481 
 482        if (PrintTenuringDistribution) {
 483          gclog_or_tty->cr();
 484          gclog_or_tty->print_cr("Desired survivor size %ld bytes, new threshold %d (max %d)",
 485                                 size_policy->calculated_survivor_size_in_bytes(),
 486                                 _tenuring_threshold, MaxTenuringThreshold);
 487        }
 488 
 489         if (UsePerfData) {
 490           PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 491           counters->update_tenuring_threshold(_tenuring_threshold);
 492           counters->update_survivor_size_counters();
 493         }
 494 
 495         // Do call at minor collections?
 496         // Don't check if the size_policy is ready at this
 497         // level.  Let the size_policy check that internally.
 498         if (UseAdaptiveSizePolicy &&
 499             UseAdaptiveGenerationSizePolicyAtMinorCollection &&
 500             ((gc_cause != GCCause::_java_lang_system_gc) ||
 501               UseAdaptiveSizePolicyWithSystemGC)) {
 502 
 503           // Calculate optimial free space amounts
 504           assert(young_gen->max_size() >
 505             young_gen->from_space()->capacity_in_bytes() +
 506             young_gen->to_space()->capacity_in_bytes(),
 507             "Sizes of space in young gen are out-of-bounds");
 508           size_t max_eden_size = young_gen->max_size() -
 509             young_gen->from_space()->capacity_in_bytes() -
 510             young_gen->to_space()->capacity_in_bytes();
 511           size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
 512                                    young_gen->eden_space()->used_in_bytes(),
 513                                    old_gen->used_in_bytes(),
 514                                    perm_gen->used_in_bytes(),
 515                                    young_gen->eden_space()->capacity_in_bytes(),
 516                                    old_gen->max_gen_size(),
 517                                    max_eden_size,
 518                                    false  /* full gc*/,
 519                                    gc_cause,
 520                                    heap->collector_policy());
 521 
 522         }
 523         // Resize the young generation at every collection
 524         // even if new sizes have not been calculated.  This is
 525         // to allow resizes that may have been inhibited by the
 526         // relative location of the "to" and "from" spaces.
 527 
 528         // Resizing the old gen at minor collects can cause increases
 529         // that don't feed back to the generation sizing policy until
 530         // a major collection.  Don't resize the old gen here.
 531 
 532         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 533                         size_policy->calculated_survivor_size_in_bytes());
 534 
 535         if (PrintAdaptiveSizePolicy) {
 536           gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 537                          heap->total_collections());
 538         }
 539       }
 540 
 541       // Update the structure of the eden. With NUMA-eden CPU hotplugging or offlining can
 542       // cause the change of the heap layout. Make sure eden is reshaped if that's the case.
 543       // Also update() will case adaptive NUMA chunk resizing.
 544       assert(young_gen->eden_space()->is_empty(), "eden space should be empty now");
 545       young_gen->eden_space()->update();
 546 
 547       heap->gc_policy_counters()->update_counters();
 548 
 549       heap->resize_all_tlabs();
 550 
 551       assert(young_gen->to_space()->is_empty(), "to space should be empty now");
 552     }
 553 
 554     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 555 
 556     NOT_PRODUCT(reference_processor()->verify_no_references_recorded());
 557 
 558     // Re-verify object start arrays
 559     if (VerifyObjectStartArray &&
 560         VerifyAfterGC) {
 561       old_gen->verify_object_start_array();
 562       perm_gen->verify_object_start_array();
 563     }
 564 
 565     // Verify all old -> young cards are now precise
 566     if (VerifyRememberedSets) {
 567       // Precise verification will give false positives. Until this is fixed,
 568       // use imprecise verification.
 569       // CardTableExtension::verify_all_young_refs_precise();
 570       CardTableExtension::verify_all_young_refs_imprecise();
 571     }
 572 
 573     if (TraceGen0Time) accumulated_time()->stop();
 574 
 575     if (PrintGC) {
 576       if (PrintGCDetails) {
 577         // Don't print a GC timestamp here.  This is after the GC so
 578         // would be confusing.
 579         young_gen->print_used_change(young_gen_used_before);
 580       }
 581       heap->print_heap_change(prev_used);
 582     }
 583 
 584     // Track memory usage and detect low memory
 585     MemoryService::track_memory_usage();
 586     heap->update_counters();
 587   }
 588 
 589   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 590     HandleMark hm;  // Discard invalid handles created during verification
 591     gclog_or_tty->print(" VerifyAfterGC:");
 592     Universe::verify(false);
 593   }
 594 
 595   if (PrintHeapAtGC) {
 596     Universe::print_heap_after_gc();
 597   }
 598 
 599   if (ZapUnusedHeapArea) {
 600     young_gen->eden_space()->check_mangled_unused_area_complete();
 601     young_gen->from_space()->check_mangled_unused_area_complete();
 602     young_gen->to_space()->check_mangled_unused_area_complete();
 603   }
 604 
 605   scavenge_exit.update();
 606 
 607   if (PrintGCTaskTimeStamps) {
 608     tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " " INT64_FORMAT,
 609                   scavenge_entry.ticks(), scavenge_midpoint.ticks(),
 610                   scavenge_exit.ticks());
 611     gc_task_manager()->print_task_time_stamps();
 612   }
 613 
 614 #ifdef TRACESPINNING
 615   ParallelTaskTerminator::print_termination_counts();
 616 #endif
 617 
 618   return !promotion_failure_occurred;
 619 }
 620 
 621 // This method iterates over all objects in the young generation,
 622 // unforwarding markOops. It then restores any preserved mark oops,
 623 // and clears the _preserved_mark_stack.
 624 void PSScavenge::clean_up_failed_promotion() {
 625   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 626   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 627   assert(promotion_failed(), "Sanity");
 628 
 629   PSYoungGen* young_gen = heap->young_gen();
 630 
 631   {
 632     ResourceMark rm;
 633 
 634     // Unforward all pointers in the young gen.
 635     PSPromotionFailedClosure unforward_closure;
 636     young_gen->object_iterate(&unforward_closure);
 637 
 638     if (PrintGC && Verbose) {
 639       gclog_or_tty->print_cr("Restoring %d marks",
 640                               _preserved_oop_stack->length());
 641     }
 642 
 643     // Restore any saved marks.
 644     for (int i=0; i < _preserved_oop_stack->length(); i++) {
 645       oop obj       = _preserved_oop_stack->at(i);
 646       markOop mark  = _preserved_mark_stack->at(i);
 647       obj->set_mark(mark);
 648     }
 649 
 650     // Deallocate the preserved mark and oop stacks.
 651     // The stacks were allocated as CHeap objects, so
 652     // we must call delete to prevent mem leaks.
 653     delete _preserved_mark_stack;
 654     _preserved_mark_stack = NULL;
 655     delete _preserved_oop_stack;
 656     _preserved_oop_stack = NULL;
 657   }
 658 
 659   // Reset the PromotionFailureALot counters.
 660   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 661 }
 662 
 663 // This method is called whenever an attempt to promote an object
 664 // fails. Some markOops will need preserving, some will not. Note
 665 // that the entire eden is traversed after a failed promotion, with
 666 // all forwarded headers replaced by the default markOop. This means
 667 // it is not neccessary to preserve most markOops.
 668 void PSScavenge::oop_promotion_failed(oop obj, markOop obj_mark) {
 669   if (_preserved_mark_stack == NULL) {
 670     ThreadCritical tc; // Lock and retest
 671     if (_preserved_mark_stack == NULL) {
 672       assert(_preserved_oop_stack == NULL, "Sanity");
 673       _preserved_mark_stack = new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
 674       _preserved_oop_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
 675     }
 676   }
 677 
 678   // Because we must hold the ThreadCritical lock before using
 679   // the stacks, we should be safe from observing partial allocations,
 680   // which are also guarded by the ThreadCritical lock.
 681   if (obj_mark->must_be_preserved_for_promotion_failure(obj)) {
 682     ThreadCritical tc;
 683     _preserved_oop_stack->push(obj);
 684     _preserved_mark_stack->push(obj_mark);
 685   }
 686 }
 687 
 688 bool PSScavenge::should_attempt_scavenge() {
 689   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 690   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 691   PSGCAdaptivePolicyCounters* counters = heap->gc_policy_counters();
 692 
 693   if (UsePerfData) {
 694     counters->update_scavenge_skipped(not_skipped);
 695   }
 696 
 697   PSYoungGen* young_gen = heap->young_gen();
 698   PSOldGen* old_gen = heap->old_gen();
 699 
 700   if (!ScavengeWithObjectsInToSpace) {
 701     // Do not attempt to promote unless to_space is empty
 702     if (!young_gen->to_space()->is_empty()) {
 703       _consecutive_skipped_scavenges++;
 704       if (UsePerfData) {
 705         counters->update_scavenge_skipped(to_space_not_empty);
 706       }
 707       return false;
 708     }
 709   }
 710 
 711   // Test to see if the scavenge will likely fail.
 712   PSAdaptiveSizePolicy* policy = heap->size_policy();
 713 
 714   // A similar test is done in the policy's should_full_GC().  If this is
 715   // changed, decide if that test should also be changed.
 716   size_t avg_promoted = (size_t) policy->padded_average_promoted_in_bytes();
 717   size_t promotion_estimate = MIN2(avg_promoted, young_gen->used_in_bytes());
 718   bool result = promotion_estimate < old_gen->free_in_bytes();
 719 
 720   if (PrintGCDetails && Verbose) {
 721     gclog_or_tty->print(result ? "  do scavenge: " : "  skip scavenge: ");
 722     gclog_or_tty->print_cr(" average_promoted " SIZE_FORMAT
 723       " padded_average_promoted " SIZE_FORMAT
 724       " free in old gen " SIZE_FORMAT,
 725       (size_t) policy->average_promoted_in_bytes(),
 726       (size_t) policy->padded_average_promoted_in_bytes(),
 727       old_gen->free_in_bytes());
 728     if (young_gen->used_in_bytes() <
 729         (size_t) policy->padded_average_promoted_in_bytes()) {
 730       gclog_or_tty->print_cr(" padded_promoted_average is greater"
 731         " than maximum promotion = " SIZE_FORMAT, young_gen->used_in_bytes());
 732     }
 733   }
 734 
 735   if (result) {
 736     _consecutive_skipped_scavenges = 0;
 737   } else {
 738     _consecutive_skipped_scavenges++;
 739     if (UsePerfData) {
 740       counters->update_scavenge_skipped(promoted_too_large);
 741     }
 742   }
 743   return result;
 744 }
 745 
 746   // Used to add tasks
 747 GCTaskManager* const PSScavenge::gc_task_manager() {
 748   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
 749    "shouldn't return NULL");
 750   return ParallelScavengeHeap::gc_task_manager();
 751 }
 752 
 753 void PSScavenge::initialize() {
 754   // Arguments must have been parsed
 755 
 756   if (AlwaysTenure) {
 757     _tenuring_threshold = 0;
 758   } else if (NeverTenure) {
 759     _tenuring_threshold = markOopDesc::max_age + 1;
 760   } else {
 761     // We want to smooth out our startup times for the AdaptiveSizePolicy
 762     _tenuring_threshold = (UseAdaptiveSizePolicy) ? InitialTenuringThreshold :
 763                                                     MaxTenuringThreshold;
 764   }
 765 
 766   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 767   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 768 
 769   PSYoungGen* young_gen = heap->young_gen();
 770   PSOldGen* old_gen = heap->old_gen();
 771   PSPermGen* perm_gen = heap->perm_gen();
 772 
 773   // Set boundary between young_gen and old_gen
 774   assert(perm_gen->reserved().end() <= old_gen->object_space()->bottom(),
 775          "perm above old");
 776   assert(old_gen->reserved().end() <= young_gen->eden_space()->bottom(),
 777          "old above young");
 778   _young_generation_boundary = young_gen->eden_space()->bottom();
 779 
 780   // Initialize ref handling object for scavenging.
 781   MemRegion mr = young_gen->reserved();
 782   _ref_processor = ReferenceProcessor::create_ref_processor(
 783     mr,                         // span
 784     true,                       // atomic_discovery
 785     true,                       // mt_discovery
 786     NULL,                       // is_alive_non_header
 787     ParallelGCThreads,
 788     ParallelRefProcEnabled);
 789 
 790   // Cache the cardtable
 791   BarrierSet* bs = Universe::heap()->barrier_set();
 792   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 793   _card_table = (CardTableExtension*)bs;
 794 
 795   _counters = new CollectorCounters("PSScavenge", 0);
 796 }