1 /*
   2  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP
  27 
  28 #include "gc_implementation/shared/gcUtil.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "gc_interface/gcCause.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/universe.hpp"
  33 
  34 // This class keeps statistical information and computes the
  35 // size of the heap.
  36 
  37 // Forward decls
  38 class elapsedTimer;
  39 class CollectorPolicy;
  40 
  41 class AdaptiveSizePolicy : public CHeapObj {
  42  friend class GCAdaptivePolicyCounters;
  43  friend class PSGCAdaptivePolicyCounters;
  44  friend class CMSGCAdaptivePolicyCounters;
  45  protected:
  46 
  47   enum GCPolicyKind {
  48     _gc_adaptive_size_policy,
  49     _gc_ps_adaptive_size_policy,
  50     _gc_cms_adaptive_size_policy
  51   };
  52   virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
  53 
  54   enum SizePolicyTrueValues {
  55     decrease_old_gen_for_throughput_true = -7,
  56     decrease_young_gen_for_througput_true = -6,
  57 
  58     increase_old_gen_for_min_pauses_true = -5,
  59     decrease_old_gen_for_min_pauses_true = -4,
  60     decrease_young_gen_for_maj_pauses_true = -3,
  61     increase_young_gen_for_min_pauses_true = -2,
  62     increase_old_gen_for_maj_pauses_true = -1,
  63 
  64     decrease_young_gen_for_min_pauses_true = 1,
  65     decrease_old_gen_for_maj_pauses_true = 2,
  66     increase_young_gen_for_maj_pauses_true = 3,
  67 
  68     increase_old_gen_for_throughput_true = 4,
  69     increase_young_gen_for_througput_true = 5,
  70 
  71     decrease_young_gen_for_footprint_true = 6,
  72     decrease_old_gen_for_footprint_true = 7,
  73     decide_at_full_gc_true = 8
  74   };
  75 
  76   // Goal for the fraction of the total time during which application
  77   // threads run.
  78   const double _throughput_goal;
  79 
  80   // Last calculated sizes, in bytes, and aligned
  81   size_t _eden_size;        // calculated eden free space in bytes
  82   size_t _promo_size;       // calculated cms gen free space in bytes
  83 
  84   size_t _survivor_size;    // calculated survivor size in bytes
  85 
  86   // This is a hint for the heap:  we've detected that gc times
  87   // are taking longer than GCTimeLimit allows.
  88   bool _gc_overhead_limit_exceeded;
  89   // Use for diagnostics only.  If UseGCOverheadLimit is false,
  90   // this variable is still set.
  91   bool _print_gc_overhead_limit_would_be_exceeded;
  92   // Count of consecutive GC that have exceeded the
  93   // GC time limit criterion.
  94   uint _gc_overhead_limit_count;
  95   // This flag signals that GCTimeLimit is being exceeded
  96   // but may not have done so for the required number of consequetive
  97   // collections.
  98 
  99   // Minor collection timers used to determine both
 100   // pause and interval times for collections.
 101   static elapsedTimer _minor_timer;
 102 
 103   // Major collection timers, used to determine both
 104   // pause and interval times for collections
 105   static elapsedTimer _major_timer;
 106 
 107   // Time statistics
 108   AdaptivePaddedAverage*   _avg_minor_pause;
 109   AdaptiveWeightedAverage* _avg_minor_interval;
 110   AdaptiveWeightedAverage* _avg_minor_gc_cost;
 111 
 112   AdaptiveWeightedAverage* _avg_major_interval;
 113   AdaptiveWeightedAverage* _avg_major_gc_cost;
 114 
 115   // Footprint statistics
 116   AdaptiveWeightedAverage* _avg_young_live;
 117   AdaptiveWeightedAverage* _avg_eden_live;
 118   AdaptiveWeightedAverage* _avg_old_live;
 119 
 120   // Statistics for survivor space calculation for young generation
 121   AdaptivePaddedAverage*   _avg_survived;
 122 
 123   // Objects that have been directly allocated in the old generation.
 124   AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
 125 
 126   // Variable for estimating the major and minor pause times.
 127   // These variables represent linear least-squares fits of
 128   // the data.
 129   //   minor pause time vs. old gen size
 130   LinearLeastSquareFit* _minor_pause_old_estimator;
 131   //   minor pause time vs. young gen size
 132   LinearLeastSquareFit* _minor_pause_young_estimator;
 133 
 134   // Variables for estimating the major and minor collection costs
 135   //   minor collection time vs. young gen size
 136   LinearLeastSquareFit* _minor_collection_estimator;
 137   //   major collection time vs. cms gen size
 138   LinearLeastSquareFit* _major_collection_estimator;
 139 
 140   // These record the most recent collection times.  They
 141   // are available as an alternative to using the averages
 142   // for making ergonomic decisions.
 143   double _latest_minor_mutator_interval_seconds;
 144 
 145   // Allowed difference between major and minor gc times, used
 146   // for computing tenuring_threshold.
 147   const double _threshold_tolerance_percent;
 148 
 149   const double _gc_pause_goal_sec; // goal for maximum gc pause
 150 
 151   // Flag indicating that the adaptive policy is ready to use
 152   bool _young_gen_policy_is_ready;
 153 
 154   // decrease/increase the young generation for minor pause time
 155   int _change_young_gen_for_min_pauses;
 156 
 157   // decrease/increase the old generation for major pause time
 158   int _change_old_gen_for_maj_pauses;
 159 
 160   //   change old geneneration for throughput
 161   int _change_old_gen_for_throughput;
 162 
 163   //   change young generation for throughput
 164   int _change_young_gen_for_throughput;
 165 
 166   // Flag indicating that the policy would
 167   //   increase the tenuring threshold because of the total major gc cost
 168   //   is greater than the total minor gc cost
 169   bool _increment_tenuring_threshold_for_gc_cost;
 170   //   decrease the tenuring threshold because of the the total minor gc
 171   //   cost is greater than the total major gc cost
 172   bool _decrement_tenuring_threshold_for_gc_cost;
 173   //   decrease due to survivor size limit
 174   bool _decrement_tenuring_threshold_for_survivor_limit;
 175 
 176   //   decrease generation sizes for footprint
 177   int _decrease_for_footprint;
 178 
 179   // Set if the ergonomic decisions were made at a full GC.
 180   int _decide_at_full_gc;
 181 
 182   // Changing the generation sizing depends on the data that is
 183   // gathered about the effects of changes on the pause times and
 184   // throughput.  These variable count the number of data points
 185   // gathered.  The policy may use these counters as a threshhold
 186   // for reliable data.
 187   julong _young_gen_change_for_minor_throughput;
 188   julong _old_gen_change_for_major_throughput;
 189 
 190   // Accessors
 191 
 192   double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
 193   // The value returned is unitless:  it's the proportion of time
 194   // spent in a particular collection type.
 195   // An interval time will be 0.0 if a collection type hasn't occurred yet.
 196   // The 1.4.2 implementation put a floor on the values of major_gc_cost
 197   // and minor_gc_cost.  This was useful because of the way major_gc_cost
 198   // and minor_gc_cost was used in calculating the sizes of the generations.
 199   // Do not use a floor in this implementation because any finite value
 200   // will put a limit on the throughput that can be achieved and any
 201   // throughput goal above that limit will drive the generations sizes
 202   // to extremes.
 203   double major_gc_cost() const {
 204     return MAX2(0.0F, _avg_major_gc_cost->average());
 205   }
 206 
 207   // The value returned is unitless:  it's the proportion of time
 208   // spent in a particular collection type.
 209   // An interval time will be 0.0 if a collection type hasn't occurred yet.
 210   // The 1.4.2 implementation put a floor on the values of major_gc_cost
 211   // and minor_gc_cost.  This was useful because of the way major_gc_cost
 212   // and minor_gc_cost was used in calculating the sizes of the generations.
 213   // Do not use a floor in this implementation because any finite value
 214   // will put a limit on the throughput that can be achieved and any
 215   // throughput goal above that limit will drive the generations sizes
 216   // to extremes.
 217 
 218   double minor_gc_cost() const {
 219     return MAX2(0.0F, _avg_minor_gc_cost->average());
 220   }
 221 
 222   // Because we're dealing with averages, gc_cost() can be
 223   // larger than 1.0 if just the sum of the minor cost the
 224   // the major cost is used.  Worse than that is the
 225   // fact that the minor cost and the major cost each
 226   // tend toward 1.0 in the extreme of high gc costs.
 227   // Limit the value of gc_cost to 1.0 so that the mutator
 228   // cost stays non-negative.
 229   virtual double gc_cost() const {
 230     double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
 231     assert(result >= 0.0, "Both minor and major costs are non-negative");
 232     return result;
 233   }
 234 
 235   // Elapsed time since the last major collection.
 236   virtual double time_since_major_gc() const;
 237 
 238   // Average interval between major collections to be used
 239   // in calculating the decaying major gc cost.  An overestimate
 240   // of this time would be a conservative estimate because
 241   // this time is used to decide if the major GC cost
 242   // should be decayed (i.e., if the time since the last
 243   // major gc is long compared to the time returned here,
 244   // then the major GC cost will be decayed).  See the
 245   // implementations for the specifics.
 246   virtual double major_gc_interval_average_for_decay() const {
 247     return _avg_major_interval->average();
 248   }
 249 
 250   // Return the cost of the GC where the major gc cost
 251   // has been decayed based on the time since the last
 252   // major collection.
 253   double decaying_gc_cost() const;
 254 
 255   // Decay the major gc cost.  Use this only for decisions on
 256   // whether to adjust, not to determine by how much to adjust.
 257   // This approximation is crude and may not be good enough for the
 258   // latter.
 259   double decaying_major_gc_cost() const;
 260 
 261   // Return the mutator cost using the decayed
 262   // GC cost.
 263   double adjusted_mutator_cost() const {
 264     double result = 1.0 - decaying_gc_cost();
 265     assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
 266     return result;
 267   }
 268 
 269   virtual double mutator_cost() const {
 270     double result = 1.0 - gc_cost();
 271     assert(result >= 0.0, "mutator cost calculation is incorrect");
 272     return result;
 273   }
 274 
 275 
 276   bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
 277 
 278   void update_minor_pause_young_estimator(double minor_pause_in_ms);
 279   virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
 280     // This is not meaningful for all policies but needs to be present
 281     // to use minor_collection_end() in its current form.
 282   }
 283 
 284   virtual size_t eden_increment(size_t cur_eden);
 285   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
 286   virtual size_t eden_decrement(size_t cur_eden);
 287   virtual size_t promo_increment(size_t cur_eden);
 288   virtual size_t promo_increment(size_t cur_eden, uint percent_change);
 289   virtual size_t promo_decrement(size_t cur_eden);
 290 
 291   virtual void clear_generation_free_space_flags();
 292 
 293   int change_old_gen_for_throughput() const {
 294     return _change_old_gen_for_throughput;
 295   }
 296   void set_change_old_gen_for_throughput(int v) {
 297     _change_old_gen_for_throughput = v;
 298   }
 299   int change_young_gen_for_throughput() const {
 300     return _change_young_gen_for_throughput;
 301   }
 302   void set_change_young_gen_for_throughput(int v) {
 303     _change_young_gen_for_throughput = v;
 304   }
 305 
 306   int change_old_gen_for_maj_pauses() const {
 307     return _change_old_gen_for_maj_pauses;
 308   }
 309   void set_change_old_gen_for_maj_pauses(int v) {
 310     _change_old_gen_for_maj_pauses = v;
 311   }
 312 
 313   bool decrement_tenuring_threshold_for_gc_cost() const {
 314     return _decrement_tenuring_threshold_for_gc_cost;
 315   }
 316   void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
 317     _decrement_tenuring_threshold_for_gc_cost = v;
 318   }
 319   bool increment_tenuring_threshold_for_gc_cost() const {
 320     return _increment_tenuring_threshold_for_gc_cost;
 321   }
 322   void set_increment_tenuring_threshold_for_gc_cost(bool v) {
 323     _increment_tenuring_threshold_for_gc_cost = v;
 324   }
 325   bool decrement_tenuring_threshold_for_survivor_limit() const {
 326     return _decrement_tenuring_threshold_for_survivor_limit;
 327   }
 328   void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
 329     _decrement_tenuring_threshold_for_survivor_limit = v;
 330   }
 331   // Return true if the policy suggested a change.
 332   bool tenuring_threshold_change() const;
 333 
 334  public:
 335   AdaptiveSizePolicy(size_t init_eden_size,
 336                      size_t init_promo_size,
 337                      size_t init_survivor_size,
 338                      double gc_pause_goal_sec,
 339                      uint gc_cost_ratio);
 340 
 341   bool is_gc_cms_adaptive_size_policy() {
 342     return kind() == _gc_cms_adaptive_size_policy;
 343   }
 344   bool is_gc_ps_adaptive_size_policy() {
 345     return kind() == _gc_ps_adaptive_size_policy;
 346   }
 347 
 348   AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
 349   AdaptiveWeightedAverage* avg_minor_interval() const {
 350     return _avg_minor_interval;
 351   }
 352   AdaptiveWeightedAverage* avg_minor_gc_cost() const {
 353     return _avg_minor_gc_cost;
 354   }
 355 
 356   AdaptiveWeightedAverage* avg_major_gc_cost() const {
 357     return _avg_major_gc_cost;
 358   }
 359 
 360   AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
 361   AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
 362   AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
 363 
 364   AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
 365   AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
 366 
 367   // Methods indicating events of interest to the adaptive size policy,
 368   // called by GC algorithms. It is the responsibility of users of this
 369   // policy to call these methods at the correct times!
 370   virtual void minor_collection_begin();
 371   virtual void minor_collection_end(GCCause::Cause gc_cause);
 372   virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
 373     return _minor_pause_old_estimator;
 374   }
 375 
 376   LinearLeastSquareFit* minor_pause_young_estimator() {
 377     return _minor_pause_young_estimator;
 378   }
 379   LinearLeastSquareFit* minor_collection_estimator() {
 380     return _minor_collection_estimator;
 381   }
 382 
 383   LinearLeastSquareFit* major_collection_estimator() {
 384     return _major_collection_estimator;
 385   }
 386 
 387   float minor_pause_young_slope() {
 388     return _minor_pause_young_estimator->slope();
 389   }
 390 
 391   float minor_collection_slope() { return _minor_collection_estimator->slope();}
 392   float major_collection_slope() { return _major_collection_estimator->slope();}
 393 
 394   float minor_pause_old_slope() {
 395     return _minor_pause_old_estimator->slope();
 396   }
 397 
 398   void set_eden_size(size_t new_size) {
 399     _eden_size = new_size;
 400   }
 401   void set_survivor_size(size_t new_size) {
 402     _survivor_size = new_size;
 403   }
 404 
 405   size_t calculated_eden_size_in_bytes() const {
 406     return _eden_size;
 407   }
 408 
 409   size_t calculated_promo_size_in_bytes() const {
 410     return _promo_size;
 411   }
 412 
 413   size_t calculated_survivor_size_in_bytes() const {
 414     return _survivor_size;
 415   }
 416 
 417   // This is a hint for the heap:  we've detected that gc times
 418   // are taking longer than GCTimeLimit allows.
 419   // Most heaps will choose to throw an OutOfMemoryError when
 420   // this occurs but it is up to the heap to request this information
 421   // of the policy
 422   bool gc_overhead_limit_exceeded() {
 423     return _gc_overhead_limit_exceeded;
 424   }
 425   void set_gc_overhead_limit_exceeded(bool v) {
 426     _gc_overhead_limit_exceeded = v;
 427   }
 428 
 429   // Tests conditions indicate the GC overhead limit is being approached.
 430   bool gc_overhead_limit_near() {
 431     return gc_overhead_limit_count() >=
 432         (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
 433   }
 434   uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
 435   void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
 436   void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
 437   // accessors for flags recording the decisions to resize the
 438   // generations to meet the pause goal.
 439 
 440   int change_young_gen_for_min_pauses() const {
 441     return _change_young_gen_for_min_pauses;
 442   }
 443   void set_change_young_gen_for_min_pauses(int v) {
 444     _change_young_gen_for_min_pauses = v;
 445   }
 446   void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
 447   int decrease_for_footprint() const { return _decrease_for_footprint; }
 448   int decide_at_full_gc() { return _decide_at_full_gc; }
 449   void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
 450 
 451   // Check the conditions for an out-of-memory due to excessive GC time.
 452   // Set _gc_overhead_limit_exceeded if all the conditions have been met.
 453   void check_gc_overhead_limit(size_t young_live,
 454                                size_t eden_live,
 455                                size_t max_old_gen_size,
 456                                size_t max_eden_size,
 457                                bool   is_full_gc,
 458                                GCCause::Cause gc_cause,
 459                                CollectorPolicy* collector_policy);
 460 
 461   // Printing support
 462   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
 463   bool print_adaptive_size_policy_on(outputStream* st, int
 464                                   tenuring_threshold) const;
 465 };
 466 
 467 // Class that can be used to print information about the
 468 // adaptive size policy at intervals specified by
 469 // AdaptiveSizePolicyOutputInterval.  Only print information
 470 // if an adaptive size policy is in use.
 471 class AdaptiveSizePolicyOutput : StackObj {
 472   AdaptiveSizePolicy* _size_policy;
 473   bool _do_print;
 474   bool print_test(uint count) {
 475     // A count of zero is a special value that indicates that the
 476     // interval test should be ignored.  An interval is of zero is
 477     // a special value that indicates that the interval test should
 478     // always fail (never do the print based on the interval test).
 479     return PrintGCDetails &&
 480            UseAdaptiveSizePolicy &&
 481            (UseParallelGC || UseConcMarkSweepGC) &&
 482            (AdaptiveSizePolicyOutputInterval > 0) &&
 483            ((count == 0) ||
 484              ((count % AdaptiveSizePolicyOutputInterval) == 0));
 485   }
 486  public:
 487   // The special value of a zero count can be used to ignore
 488   // the count test.
 489   AdaptiveSizePolicyOutput(uint count) {
 490     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
 491       CollectedHeap* heap = Universe::heap();
 492       _size_policy = heap->size_policy();
 493       _do_print = print_test(count);
 494     } else {
 495       _size_policy = NULL;
 496       _do_print = false;
 497     }
 498   }
 499   AdaptiveSizePolicyOutput(AdaptiveSizePolicy* size_policy,
 500                            uint count) :
 501     _size_policy(size_policy) {
 502     if (UseAdaptiveSizePolicy && (AdaptiveSizePolicyOutputInterval > 0)) {
 503       _do_print = print_test(count);
 504     } else {
 505       _do_print = false;
 506     }
 507   }
 508   ~AdaptiveSizePolicyOutput() {
 509     if (_do_print) {
 510       assert(UseAdaptiveSizePolicy, "Should not be in use");
 511       _size_policy->print_adaptive_size_policy_on(gclog_or_tty);
 512     }
 513   }
 514 };
 515 
 516 #endif // SHARE_VM_GC_IMPLEMENTATION_SHARED_ADAPTIVESIZEPOLICY_HPP