1 /*
   2  * Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_collectedHeap.cpp.incl"
  27 
  28 
  29 #ifdef ASSERT
  30 int CollectedHeap::_fire_out_of_memory_count = 0;
  31 #endif
  32 
  33 size_t CollectedHeap::_filler_array_max_size = 0;
  34 
  35 // Memory state functions.
  36 
  37 CollectedHeap::CollectedHeap()
  38 {
  39   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
  40   const size_t elements_per_word = HeapWordSize / sizeof(jint);
  41   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
  42                                              max_len * elements_per_word);
  43 
  44   _barrier_set = NULL;
  45   _is_gc_active = false;
  46   _total_collections = _total_full_collections = 0;
  47   _gc_cause = _gc_lastcause = GCCause::_no_gc;
  48   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
  49   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
  50 
  51   if (UsePerfData) {
  52     EXCEPTION_MARK;
  53 
  54     // create the gc cause jvmstat counters
  55     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
  56                              80, GCCause::to_string(_gc_cause), CHECK);
  57 
  58     _perf_gc_lastcause =
  59                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
  60                              80, GCCause::to_string(_gc_lastcause), CHECK);
  61   }
  62   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
  63 }
  64 
  65 void CollectedHeap::pre_initialize() {
  66   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
  67   // otherwise remains unused.
  68 #ifdef COMPILER2
  69   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
  70                              && (DeferInitialCardMark || card_mark_must_follow_store());
  71 #else
  72   assert(_defer_initial_card_mark == false, "Who would set it?");
  73 #endif
  74 }
  75 
  76 #ifndef PRODUCT
  77 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
  78   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
  79     for (size_t slot = 0; slot < size; slot += 1) {
  80       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
  81              "Found badHeapWordValue in post-allocation check");
  82     }
  83   }
  84 }
  85 
  86 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
  87  {
  88   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
  89     for (size_t slot = 0; slot < size; slot += 1) {
  90       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
  91              "Found non badHeapWordValue in pre-allocation check");
  92     }
  93   }
  94 }
  95 #endif // PRODUCT
  96 
  97 #ifdef ASSERT
  98 void CollectedHeap::check_for_valid_allocation_state() {
  99   Thread *thread = Thread::current();
 100   // How to choose between a pending exception and a potential
 101   // OutOfMemoryError?  Don't allow pending exceptions.
 102   // This is a VM policy failure, so how do we exhaustively test it?
 103   assert(!thread->has_pending_exception(),
 104          "shouldn't be allocating with pending exception");
 105   if (StrictSafepointChecks) {
 106     assert(thread->allow_allocation(),
 107            "Allocation done by thread for which allocation is blocked "
 108            "by No_Allocation_Verifier!");
 109     // Allocation of an oop can always invoke a safepoint,
 110     // hence, the true argument
 111     thread->check_for_valid_safepoint_state(true);
 112   }
 113 }
 114 #endif
 115 
 116 HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
 117 
 118   // Retain tlab and allocate object in shared space if
 119   // the amount free in the tlab is too large to discard.
 120   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 121     thread->tlab().record_slow_allocation(size);
 122     return NULL;
 123   }
 124 
 125   // Discard tlab and allocate a new one.
 126   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 127   size_t new_tlab_size = thread->tlab().compute_size(size);
 128 
 129   thread->tlab().clear_before_allocation();
 130 
 131   if (new_tlab_size == 0) {
 132     return NULL;
 133   }
 134 
 135   // Allocate a new TLAB...
 136   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 137   if (obj == NULL) {
 138     return NULL;
 139   }
 140   if (ZeroTLAB) {
 141     // ..and clear it.
 142     Copy::zero_to_words(obj, new_tlab_size);
 143   } else {
 144     // ...and clear just the allocated object.
 145     Copy::zero_to_words(obj, size);
 146   }
 147   thread->tlab().fill(obj, obj + size, new_tlab_size);
 148   return obj;
 149 }
 150 
 151 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 152   MemRegion deferred = thread->deferred_card_mark();
 153   if (!deferred.is_empty()) {
 154     assert(_defer_initial_card_mark, "Otherwise should be empty");
 155     {
 156       // Verify that the storage points to a parsable object in heap
 157       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 158       assert(is_in(old_obj), "Not in allocated heap");
 159       assert(!can_elide_initializing_store_barrier(old_obj),
 160              "Else should have been filtered in new_store_pre_barrier()");
 161       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 162       assert(old_obj->is_oop(true), "Not an oop");
 163       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 164       assert(deferred.word_size() == (size_t)(old_obj->size()),
 165              "Mismatch: multiple objects?");
 166     }
 167     BarrierSet* bs = barrier_set();
 168     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 169     bs->write_region(deferred);
 170     // "Clear" the deferred_card_mark field
 171     thread->set_deferred_card_mark(MemRegion());
 172   }
 173   assert(thread->deferred_card_mark().is_empty(), "invariant");
 174 }
 175 
 176 // Helper for ReduceInitialCardMarks. For performance,
 177 // compiled code may elide card-marks for initializing stores
 178 // to a newly allocated object along the fast-path. We
 179 // compensate for such elided card-marks as follows:
 180 // (a) Generational, non-concurrent collectors, such as
 181 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 182 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 183 //     need the card-mark if and only if the region is
 184 //     in the old gen, and do not care if the card-mark
 185 //     succeeds or precedes the initializing stores themselves,
 186 //     so long as the card-mark is completed before the next
 187 //     scavenge. For all these cases, we can do a card mark
 188 //     at the point at which we do a slow path allocation
 189 //     in the old gen, i.e. in this call.
 190 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 191 //     in addition that the card-mark for an old gen allocated
 192 //     object strictly follow any associated initializing stores.
 193 //     In these cases, the memRegion remembered below is
 194 //     used to card-mark the entire region either just before the next
 195 //     slow-path allocation by this thread or just before the next scavenge or
 196 //     CMS-associated safepoint, whichever of these events happens first.
 197 //     (The implicit assumption is that the object has been fully
 198 //     initialized by this point, a fact that we assert when doing the
 199 //     card-mark.)
 200 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 201 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 202 //     is used to remember the pre-value of any store. Initializing
 203 //     stores will not need this barrier, so we need not worry about
 204 //     compensating for the missing pre-barrier here. Turning now
 205 //     to the post-barrier, we note that G1 needs a RS update barrier
 206 //     which simply enqueues a (sequence of) dirty cards which may
 207 //     optionally be refined by the concurrent update threads. Note
 208 //     that this barrier need only be applied to a non-young write,
 209 //     but, like in CMS, because of the presence of concurrent refinement
 210 //     (much like CMS' precleaning), must strictly follow the oop-store.
 211 //     Thus, using the same protocol for maintaining the intended
 212 //     invariants turns out, serendepitously, to be the same for both
 213 //     G1 and CMS.
 214 //
 215 // For any future collector, this code should be reexamined with
 216 // that specific collector in mind, and the documentation above suitably
 217 // extended and updated.
 218 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 219   // If a previous card-mark was deferred, flush it now.
 220   flush_deferred_store_barrier(thread);
 221   if (can_elide_initializing_store_barrier(new_obj)) {
 222     // The deferred_card_mark region should be empty
 223     // following the flush above.
 224     assert(thread->deferred_card_mark().is_empty(), "Error");
 225   } else {
 226     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 227     assert(!mr.is_empty(), "Error");
 228     if (_defer_initial_card_mark) {
 229       // Defer the card mark
 230       thread->set_deferred_card_mark(mr);
 231     } else {
 232       // Do the card mark
 233       BarrierSet* bs = barrier_set();
 234       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 235       bs->write_region(mr);
 236     }
 237   }
 238   return new_obj;
 239 }
 240 
 241 size_t CollectedHeap::filler_array_hdr_size() {
 242   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 243 }
 244 
 245 size_t CollectedHeap::filler_array_min_size() {
 246   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 247 }
 248 
 249 size_t CollectedHeap::filler_array_max_size() {
 250   return _filler_array_max_size;
 251 }
 252 
 253 #ifdef ASSERT
 254 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 255 {
 256   assert(words >= min_fill_size(), "too small to fill");
 257   assert(words % MinObjAlignment == 0, "unaligned size");
 258   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 259   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 260 }
 261 
 262 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 263 {
 264   if (ZapFillerObjects && zap) {
 265     Copy::fill_to_words(start + filler_array_hdr_size(),
 266                         words - filler_array_hdr_size(), 0XDEAFBABE);
 267   }
 268 }
 269 #endif // ASSERT
 270 
 271 void
 272 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 273 {
 274   assert(words >= filler_array_min_size(), "too small for an array");
 275   assert(words <= filler_array_max_size(), "too big for a single object");
 276 
 277   const size_t payload_size = words - filler_array_hdr_size();
 278   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 279 
 280   // Set the length first for concurrent GC.
 281   ((arrayOop)start)->set_length((int)len);
 282   post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
 283   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 284 }
 285 
 286 void
 287 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 288 {
 289   assert(words <= filler_array_max_size(), "too big for a single object");
 290 
 291   if (words >= filler_array_min_size()) {
 292     fill_with_array(start, words, zap);
 293   } else if (words > 0) {
 294     assert(words == min_fill_size(), "unaligned size");
 295     post_allocation_setup_common(SystemDictionary::Object_klass(), start,
 296                                  words);
 297   }
 298 }
 299 
 300 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 301 {
 302   DEBUG_ONLY(fill_args_check(start, words);)
 303   HandleMark hm;  // Free handles before leaving.
 304   fill_with_object_impl(start, words, zap);
 305 }
 306 
 307 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 308 {
 309   DEBUG_ONLY(fill_args_check(start, words);)
 310   HandleMark hm;  // Free handles before leaving.
 311 
 312 #ifdef _LP64
 313   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 314   // First fill with arrays, ensuring that any remaining space is big enough to
 315   // fill.  The remainder is filled with a single object.
 316   const size_t min = min_fill_size();
 317   const size_t max = filler_array_max_size();
 318   while (words > max) {
 319     const size_t cur = words - max >= min ? max : max - min;
 320     fill_with_array(start, cur, zap);
 321     start += cur;
 322     words -= cur;
 323   }
 324 #endif
 325 
 326   fill_with_object_impl(start, words, zap);
 327 }
 328 
 329 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 330   guarantee(false, "thread-local allocation buffers not supported");
 331   return NULL;
 332 }
 333 
 334 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 335   // The second disjunct in the assertion below makes a concession
 336   // for the start-up verification done while the VM is being
 337   // created. Callers be careful that you know that mutators
 338   // aren't going to interfere -- for instance, this is permissible
 339   // if we are still single-threaded and have either not yet
 340   // started allocating (nothing much to verify) or we have
 341   // started allocating but are now a full-fledged JavaThread
 342   // (and have thus made our TLAB's) available for filling.
 343   assert(SafepointSynchronize::is_at_safepoint() ||
 344          !is_init_completed(),
 345          "Should only be called at a safepoint or at start-up"
 346          " otherwise concurrent mutator activity may make heap "
 347          " unparsable again");
 348   const bool use_tlab = UseTLAB;
 349   const bool deferred = _defer_initial_card_mark;
 350   // The main thread starts allocating via a TLAB even before it
 351   // has added itself to the threads list at vm boot-up.
 352   assert(!use_tlab || Threads::first() != NULL,
 353          "Attempt to fill tlabs before main thread has been added"
 354          " to threads list is doomed to failure!");
 355   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 356      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 357 #ifdef COMPILER2
 358      // The deferred store barriers must all have been flushed to the
 359      // card-table (or other remembered set structure) before GC starts
 360      // processing the card-table (or other remembered set).
 361      if (deferred) flush_deferred_store_barrier(thread);
 362 #else
 363      assert(!deferred, "Should be false");
 364      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 365 #endif
 366   }
 367 }
 368 
 369 void CollectedHeap::accumulate_statistics_all_tlabs() {
 370   if (UseTLAB) {
 371     assert(SafepointSynchronize::is_at_safepoint() ||
 372          !is_init_completed(),
 373          "should only accumulate statistics on tlabs at safepoint");
 374 
 375     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 376   }
 377 }
 378 
 379 void CollectedHeap::resize_all_tlabs() {
 380   if (UseTLAB) {
 381     assert(SafepointSynchronize::is_at_safepoint() ||
 382          !is_init_completed(),
 383          "should only resize tlabs at safepoint");
 384 
 385     ThreadLocalAllocBuffer::resize_all_tlabs();
 386   }
 387 }
 388 
 389 void CollectedHeap::pre_full_gc_dump() {
 390   if (HeapDumpBeforeFullGC) {
 391     TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
 392     // We are doing a "major" collection and a heap dump before
 393     // major collection has been requested.
 394     HeapDumper::dump_heap();
 395   }
 396   if (PrintClassHistogramBeforeFullGC) {
 397     TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
 398     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 399     inspector.doit();
 400   }
 401 }
 402 
 403 void CollectedHeap::post_full_gc_dump() {
 404   if (HeapDumpAfterFullGC) {
 405     TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
 406     HeapDumper::dump_heap();
 407   }
 408   if (PrintClassHistogramAfterFullGC) {
 409     TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
 410     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 411     inspector.doit();
 412   }
 413 }