1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  26 // is an abstract class: there may be many different kinds of heaps.  This
  27 // class defines the functions that a heap must implement, and contains
  28 // infrastructure common to all heaps.
  29 
  30 class BarrierSet;
  31 class ThreadClosure;
  32 class AdaptiveSizePolicy;
  33 class Thread;
  34 class CollectorPolicy;
  35 
  36 //
  37 // CollectedHeap
  38 //   SharedHeap
  39 //     GenCollectedHeap
  40 //     G1CollectedHeap
  41 //   ParallelScavengeHeap
  42 //
  43 class CollectedHeap : public CHeapObj {
  44   friend class VMStructs;
  45   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  46   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
  47 
  48 #ifdef ASSERT
  49   static int       _fire_out_of_memory_count;
  50 #endif
  51 
  52   // Used for filler objects (static, but initialized in ctor).
  53   static size_t _filler_array_max_size;
  54 
  55   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  56   bool _defer_initial_card_mark;
  57 
  58  protected:
  59   MemRegion _reserved;
  60   BarrierSet* _barrier_set;
  61   bool _is_gc_active;
  62   unsigned int _total_collections;          // ... started
  63   unsigned int _total_full_collections;     // ... started
  64   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
  65   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
  66 
  67   // Reason for current garbage collection.  Should be set to
  68   // a value reflecting no collection between collections.
  69   GCCause::Cause _gc_cause;
  70   GCCause::Cause _gc_lastcause;
  71   PerfStringVariable* _perf_gc_cause;
  72   PerfStringVariable* _perf_gc_lastcause;
  73 
  74   // Constructor
  75   CollectedHeap();
  76 
  77   // Do common initializations that must follow instance construction,
  78   // for example, those needing virtual calls.
  79   // This code could perhaps be moved into initialize() but would
  80   // be slightly more awkward because we want the latter to be a
  81   // pure virtual.
  82   void pre_initialize();
  83 
  84   // Create a new tlab
  85   virtual HeapWord* allocate_new_tlab(size_t size);
  86 
  87   // Accumulate statistics on all tlabs.
  88   virtual void accumulate_statistics_all_tlabs();
  89 
  90   // Reinitialize tlabs before resuming mutators.
  91   virtual void resize_all_tlabs();
  92 
  93  protected:
  94   // Allocate from the current thread's TLAB, with broken-out slow path.
  95   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
  96   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
  97 
  98   // Allocate an uninitialized block of the given size, or returns NULL if
  99   // this is impossible.
 100   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
 101 
 102   // Like allocate_init, but the block returned by a successful allocation
 103   // is guaranteed initialized to zeros.
 104   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
 105 
 106   // Same as common_mem version, except memory is allocated in the permanent area
 107   // If there is no permanent area, revert to common_mem_allocate_noinit
 108   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
 109 
 110   // Same as common_mem version, except memory is allocated in the permanent area
 111   // If there is no permanent area, revert to common_mem_allocate_init
 112   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
 113 
 114   // Helper functions for (VM) allocation.
 115   inline static void post_allocation_setup_common(KlassHandle klass,
 116                                                   HeapWord* obj, size_t size);
 117   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 118                                                             HeapWord* objPtr,
 119                                                             size_t size);
 120 
 121   inline static void post_allocation_setup_obj(KlassHandle klass,
 122                                                HeapWord* obj, size_t size);
 123 
 124   inline static void post_allocation_setup_array(KlassHandle klass,
 125                                                  HeapWord* obj, size_t size,
 126                                                  int length);
 127 
 128   // Clears an allocated object.
 129   inline static void init_obj(HeapWord* obj, size_t size);
 130 
 131   // Filler object utilities.
 132   static inline size_t filler_array_hdr_size();
 133   static inline size_t filler_array_min_size();
 134   static inline size_t filler_array_max_size();
 135 
 136   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 137   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 138 
 139   // Fill with a single array; caller must ensure filler_array_min_size() <=
 140   // words <= filler_array_max_size().
 141   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 142 
 143   // Fill with a single object (either an int array or a java.lang.Object).
 144   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 145 
 146   // Verification functions
 147   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 148     PRODUCT_RETURN;
 149   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 150     PRODUCT_RETURN;
 151   debug_only(static void check_for_valid_allocation_state();)
 152 
 153  public:
 154   enum Name {
 155     Abstract,
 156     SharedHeap,
 157     GenCollectedHeap,
 158     ParallelScavengeHeap,
 159     G1CollectedHeap
 160   };
 161 
 162   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 163 
 164   /**
 165    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 166    * and JNI_OK on success.
 167    */
 168   virtual jint initialize() = 0;
 169 
 170   // In many heaps, there will be a need to perform some initialization activities
 171   // after the Universe is fully formed, but before general heap allocation is allowed.
 172   // This is the correct place to place such initialization methods.
 173   virtual void post_initialize() = 0;
 174 
 175   MemRegion reserved_region() const { return _reserved; }
 176   address base() const { return (address)reserved_region().start(); }
 177 
 178   // Future cleanup here. The following functions should specify bytes or
 179   // heapwords as part of their signature.
 180   virtual size_t capacity() const = 0;
 181   virtual size_t used() const = 0;
 182 
 183   // Return "true" if the part of the heap that allocates Java
 184   // objects has reached the maximal committed limit that it can
 185   // reach, without a garbage collection.
 186   virtual bool is_maximal_no_gc() const = 0;
 187 
 188   virtual size_t permanent_capacity() const = 0;
 189   virtual size_t permanent_used() const = 0;
 190 
 191   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 192   // memory that the vm could make available for storing 'normal' java objects.
 193   // This is based on the reserved address space, but should not include space
 194   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
 195   // perm gen space or, in the case of the young gen, one of the survivor
 196   // spaces).
 197   virtual size_t max_capacity() const = 0;
 198 
 199   // Returns "TRUE" if "p" points into the reserved area of the heap.
 200   bool is_in_reserved(const void* p) const {
 201     return _reserved.contains(p);
 202   }
 203 
 204   bool is_in_reserved_or_null(const void* p) const {
 205     return p == NULL || is_in_reserved(p);
 206   }
 207 
 208   // Returns "TRUE" if "p" points to the head of an allocated object in the
 209   // heap. Since this method can be expensive in general, we restrict its
 210   // use to assertion checking only.
 211   virtual bool is_in(const void* p) const = 0;
 212 
 213   bool is_in_or_null(const void* p) const {
 214     return p == NULL || is_in(p);
 215   }
 216 
 217   // Let's define some terms: a "closed" subset of a heap is one that
 218   //
 219   // 1) contains all currently-allocated objects, and
 220   //
 221   // 2) is closed under reference: no object in the closed subset
 222   //    references one outside the closed subset.
 223   //
 224   // Membership in a heap's closed subset is useful for assertions.
 225   // Clearly, the entire heap is a closed subset, so the default
 226   // implementation is to use "is_in_reserved".  But this may not be too
 227   // liberal to perform useful checking.  Also, the "is_in" predicate
 228   // defines a closed subset, but may be too expensive, since "is_in"
 229   // verifies that its argument points to an object head.  The
 230   // "closed_subset" method allows a heap to define an intermediate
 231   // predicate, allowing more precise checking than "is_in_reserved" at
 232   // lower cost than "is_in."
 233 
 234   // One important case is a heap composed of disjoint contiguous spaces,
 235   // such as the Garbage-First collector.  Such heaps have a convenient
 236   // closed subset consisting of the allocated portions of those
 237   // contiguous spaces.
 238 
 239   // Return "TRUE" iff the given pointer points into the heap's defined
 240   // closed subset (which defaults to the entire heap).
 241   virtual bool is_in_closed_subset(const void* p) const {
 242     return is_in_reserved(p);
 243   }
 244 
 245   bool is_in_closed_subset_or_null(const void* p) const {
 246     return p == NULL || is_in_closed_subset(p);
 247   }
 248 
 249   // XXX is_permanent() and is_in_permanent() should be better named
 250   // to distinguish one from the other.
 251 
 252   // Returns "TRUE" if "p" is allocated as "permanent" data.
 253   // If the heap does not use "permanent" data, returns the same
 254   // value is_in_reserved() would return.
 255   // NOTE: this actually returns true if "p" is in reserved space
 256   // for the space not that it is actually allocated (i.e. in committed
 257   // space). If you need the more conservative answer use is_permanent().
 258   virtual bool is_in_permanent(const void *p) const = 0;
 259 
 260   bool is_in_permanent_or_null(const void *p) const {
 261     return p == NULL || is_in_permanent(p);
 262   }
 263 
 264   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
 265   // If the heap does not use "permanent" data, returns the same
 266   // value is_in() would return.
 267   virtual bool is_permanent(const void *p) const = 0;
 268 
 269   bool is_permanent_or_null(const void *p) const {
 270     return p == NULL || is_permanent(p);
 271   }
 272 
 273   // An object is scavengable if its location may move during a scavenge.
 274   // (A scavenge is a GC which is not a full GC.)
 275   // Currently, this just means it is not perm (and not null).
 276   // This could change if we rethink what's in perm-gen.
 277   bool is_scavengable(const void *p) const {
 278     return !is_in_permanent_or_null(p);
 279   }
 280 
 281   // Returns "TRUE" if "p" is a method oop in the
 282   // current heap, with high probability. This predicate
 283   // is not stable, in general.
 284   bool is_valid_method(oop p) const;
 285 
 286   void set_gc_cause(GCCause::Cause v) {
 287      if (UsePerfData) {
 288        _gc_lastcause = _gc_cause;
 289        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 290        _perf_gc_cause->set_value(GCCause::to_string(v));
 291      }
 292     _gc_cause = v;
 293   }
 294   GCCause::Cause gc_cause() { return _gc_cause; }
 295 
 296   // Preload classes into the shared portion of the heap, and then dump
 297   // that data to a file so that it can be loaded directly by another
 298   // VM (then terminate).
 299   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
 300 
 301   // General obj/array allocation facilities.
 302   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 303   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 304   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
 305 
 306   // Special obj/array allocation facilities.
 307   // Some heaps may want to manage "permanent" data uniquely. These default
 308   // to the general routines if the heap does not support such handling.
 309   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
 310   // permanent_obj_allocate_no_klass_install() does not do the installation of
 311   // the klass pointer in the newly created object (as permanent_obj_allocate()
 312   // above does).  This allows for a delay in the installation of the klass
 313   // pointer that is needed during the create of klassKlass's.  The
 314   // method post_allocation_install_obj_klass() is used to install the
 315   // klass pointer.
 316   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
 317                                                             int size,
 318                                                             TRAPS);
 319   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 320                                                        oop obj,
 321                                                        int size);
 322   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
 323 
 324   // Raw memory allocation facilities
 325   // The obj and array allocate methods are covers for these methods.
 326   // The permanent allocation method should default to mem_allocate if
 327   // permanent memory isn't supported.
 328   virtual HeapWord* mem_allocate(size_t size,
 329                                  bool is_noref,
 330                                  bool is_tlab,
 331                                  bool* gc_overhead_limit_was_exceeded) = 0;
 332   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
 333 
 334   // The boundary between a "large" and "small" array of primitives, in words.
 335   virtual size_t large_typearray_limit() = 0;
 336 
 337   // Utilities for turning raw memory into filler objects.
 338   //
 339   // min_fill_size() is the smallest region that can be filled.
 340   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 341   // multiple objects.  fill_with_object() is for regions known to be smaller
 342   // than the largest array of integers; it uses a single object to fill the
 343   // region and has slightly less overhead.
 344   static size_t min_fill_size() {
 345     return size_t(align_object_size(oopDesc::header_size()));
 346   }
 347 
 348   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 349 
 350   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 351   static void fill_with_object(MemRegion region, bool zap = true) {
 352     fill_with_object(region.start(), region.word_size(), zap);
 353   }
 354   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 355     fill_with_object(start, pointer_delta(end, start), zap);
 356   }
 357 
 358   // Some heaps may offer a contiguous region for shared non-blocking
 359   // allocation, via inlined code (by exporting the address of the top and
 360   // end fields defining the extent of the contiguous allocation region.)
 361 
 362   // This function returns "true" iff the heap supports this kind of
 363   // allocation.  (Default is "no".)
 364   virtual bool supports_inline_contig_alloc() const {
 365     return false;
 366   }
 367   // These functions return the addresses of the fields that define the
 368   // boundaries of the contiguous allocation area.  (These fields should be
 369   // physically near to one another.)
 370   virtual HeapWord** top_addr() const {
 371     guarantee(false, "inline contiguous allocation not supported");
 372     return NULL;
 373   }
 374   virtual HeapWord** end_addr() const {
 375     guarantee(false, "inline contiguous allocation not supported");
 376     return NULL;
 377   }
 378 
 379   // Some heaps may be in an unparseable state at certain times between
 380   // collections. This may be necessary for efficient implementation of
 381   // certain allocation-related activities. Calling this function before
 382   // attempting to parse a heap ensures that the heap is in a parsable
 383   // state (provided other concurrent activity does not introduce
 384   // unparsability). It is normally expected, therefore, that this
 385   // method is invoked with the world stopped.
 386   // NOTE: if you override this method, make sure you call
 387   // super::ensure_parsability so that the non-generational
 388   // part of the work gets done. See implementation of
 389   // CollectedHeap::ensure_parsability and, for instance,
 390   // that of GenCollectedHeap::ensure_parsability().
 391   // The argument "retire_tlabs" controls whether existing TLABs
 392   // are merely filled or also retired, thus preventing further
 393   // allocation from them and necessitating allocation of new TLABs.
 394   virtual void ensure_parsability(bool retire_tlabs);
 395 
 396   // Return an estimate of the maximum allocation that could be performed
 397   // without triggering any collection or expansion activity.  In a
 398   // generational collector, for example, this is probably the largest
 399   // allocation that could be supported (without expansion) in the youngest
 400   // generation.  It is "unsafe" because no locks are taken; the result
 401   // should be treated as an approximation, not a guarantee, for use in
 402   // heuristic resizing decisions.
 403   virtual size_t unsafe_max_alloc() = 0;
 404 
 405   // Section on thread-local allocation buffers (TLABs)
 406   // If the heap supports thread-local allocation buffers, it should override
 407   // the following methods:
 408   // Returns "true" iff the heap supports thread-local allocation buffers.
 409   // The default is "no".
 410   virtual bool supports_tlab_allocation() const {
 411     return false;
 412   }
 413   // The amount of space available for thread-local allocation buffers.
 414   virtual size_t tlab_capacity(Thread *thr) const {
 415     guarantee(false, "thread-local allocation buffers not supported");
 416     return 0;
 417   }
 418   // An estimate of the maximum allocation that could be performed
 419   // for thread-local allocation buffers without triggering any
 420   // collection or expansion activity.
 421   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 422     guarantee(false, "thread-local allocation buffers not supported");
 423     return 0;
 424   }
 425 
 426   // Can a compiler initialize a new object without store barriers?
 427   // This permission only extends from the creation of a new object
 428   // via a TLAB up to the first subsequent safepoint. If such permission
 429   // is granted for this heap type, the compiler promises to call
 430   // defer_store_barrier() below on any slow path allocation of
 431   // a new object for which such initializing store barriers will
 432   // have been elided.
 433   virtual bool can_elide_tlab_store_barriers() const = 0;
 434 
 435   // If a compiler is eliding store barriers for TLAB-allocated objects,
 436   // there is probably a corresponding slow path which can produce
 437   // an object allocated anywhere.  The compiler's runtime support
 438   // promises to call this function on such a slow-path-allocated
 439   // object before performing initializations that have elided
 440   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 441   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 442 
 443   // Answers whether an initializing store to a new object currently
 444   // allocated at the given address doesn't need a store
 445   // barrier. Returns "true" if it doesn't need an initializing
 446   // store barrier; answers "false" if it does.
 447   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 448 
 449   // If a compiler is eliding store barriers for TLAB-allocated objects,
 450   // we will be informed of a slow-path allocation by a call
 451   // to new_store_pre_barrier() above. Such a call precedes the
 452   // initialization of the object itself, and no post-store-barriers will
 453   // be issued. Some heap types require that the barrier strictly follows
 454   // the initializing stores. (This is currently implemented by deferring the
 455   // barrier until the next slow-path allocation or gc-related safepoint.)
 456   // This interface answers whether a particular heap type needs the card
 457   // mark to be thus strictly sequenced after the stores.
 458   virtual bool card_mark_must_follow_store() const = 0;
 459 
 460   // If the CollectedHeap was asked to defer a store barrier above,
 461   // this informs it to flush such a deferred store barrier to the
 462   // remembered set.
 463   virtual void flush_deferred_store_barrier(JavaThread* thread);
 464 
 465   // Can a compiler elide a store barrier when it writes
 466   // a permanent oop into the heap?  Applies when the compiler
 467   // is storing x to the heap, where x->is_perm() is true.
 468   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
 469 
 470   // Does this heap support heap inspection (+PrintClassHistogram?)
 471   virtual bool supports_heap_inspection() const = 0;
 472 
 473   // Perform a collection of the heap; intended for use in implementing
 474   // "System.gc".  This probably implies as full a collection as the
 475   // "CollectedHeap" supports.
 476   virtual void collect(GCCause::Cause cause) = 0;
 477 
 478   // This interface assumes that it's being called by the
 479   // vm thread. It collects the heap assuming that the
 480   // heap lock is already held and that we are executing in
 481   // the context of the vm thread.
 482   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
 483 
 484   // Returns the barrier set for this heap
 485   BarrierSet* barrier_set() { return _barrier_set; }
 486 
 487   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 488   // that it should answer "false" for the concurrent part of a concurrent
 489   // collector -- dld).
 490   bool is_gc_active() const { return _is_gc_active; }
 491 
 492   // Total number of GC collections (started)
 493   unsigned int total_collections() const { return _total_collections; }
 494   unsigned int total_full_collections() const { return _total_full_collections;}
 495 
 496   // Increment total number of GC collections (started)
 497   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 498   void increment_total_collections(bool full = false) {
 499     _total_collections++;
 500     if (full) {
 501       increment_total_full_collections();
 502     }
 503   }
 504 
 505   void increment_total_full_collections() { _total_full_collections++; }
 506 
 507   // Return the AdaptiveSizePolicy for the heap.
 508   virtual AdaptiveSizePolicy* size_policy() = 0;
 509 
 510   // Return the CollectorPolicy for the heap
 511   virtual CollectorPolicy* collector_policy() const = 0;
 512 
 513   // Iterate over all the ref-containing fields of all objects, calling
 514   // "cl.do_oop" on each. This includes objects in permanent memory.
 515   virtual void oop_iterate(OopClosure* cl) = 0;
 516 
 517   // Iterate over all objects, calling "cl.do_object" on each.
 518   // This includes objects in permanent memory.
 519   virtual void object_iterate(ObjectClosure* cl) = 0;
 520 
 521   // Similar to object_iterate() except iterates only
 522   // over live objects.
 523   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 524 
 525   // Behaves the same as oop_iterate, except only traverses
 526   // interior pointers contained in permanent memory. If there
 527   // is no permanent memory, does nothing.
 528   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
 529 
 530   // Behaves the same as object_iterate, except only traverses
 531   // object contained in permanent memory. If there is no
 532   // permanent memory, does nothing.
 533   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
 534 
 535   // NOTE! There is no requirement that a collector implement these
 536   // functions.
 537   //
 538   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 539   // each address in the (reserved) heap is a member of exactly
 540   // one block.  The defining characteristic of a block is that it is
 541   // possible to find its size, and thus to progress forward to the next
 542   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 543   // represent Java objects, or they might be free blocks in a
 544   // free-list-based heap (or subheap), as long as the two kinds are
 545   // distinguishable and the size of each is determinable.
 546 
 547   // Returns the address of the start of the "block" that contains the
 548   // address "addr".  We say "blocks" instead of "object" since some heaps
 549   // may not pack objects densely; a chunk may either be an object or a
 550   // non-object.
 551   virtual HeapWord* block_start(const void* addr) const = 0;
 552 
 553   // Requires "addr" to be the start of a chunk, and returns its size.
 554   // "addr + size" is required to be the start of a new chunk, or the end
 555   // of the active area of the heap.
 556   virtual size_t block_size(const HeapWord* addr) const = 0;
 557 
 558   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 559   // the block is an object.
 560   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 561 
 562   // Returns the longest time (in ms) that has elapsed since the last
 563   // time that any part of the heap was examined by a garbage collection.
 564   virtual jlong millis_since_last_gc() = 0;
 565 
 566   // Perform any cleanup actions necessary before allowing a verification.
 567   virtual void prepare_for_verify() = 0;
 568 
 569   // Generate any dumps preceding or following a full gc
 570   void pre_full_gc_dump();
 571   void post_full_gc_dump();
 572 
 573   virtual void print() const = 0;
 574   virtual void print_on(outputStream* st) const = 0;
 575 
 576   // Print all GC threads (other than the VM thread)
 577   // used by this heap.
 578   virtual void print_gc_threads_on(outputStream* st) const = 0;
 579   void print_gc_threads() { print_gc_threads_on(tty); }
 580   // Iterator for all GC threads (other than VM thread)
 581   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 582 
 583   // Print any relevant tracing info that flags imply.
 584   // Default implementation does nothing.
 585   virtual void print_tracing_info() const = 0;
 586 
 587   // Heap verification
 588   virtual void verify(bool allow_dirty, bool silent, bool option) = 0;
 589 
 590   // Non product verification and debugging.
 591 #ifndef PRODUCT
 592   // Support for PromotionFailureALot.  Return true if it's time to cause a
 593   // promotion failure.  The no-argument version uses
 594   // this->_promotion_failure_alot_count as the counter.
 595   inline bool promotion_should_fail(volatile size_t* count);
 596   inline bool promotion_should_fail();
 597 
 598   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 599   // GC in which promotion failure ocurred.
 600   inline void reset_promotion_should_fail(volatile size_t* count);
 601   inline void reset_promotion_should_fail();
 602 #endif  // #ifndef PRODUCT
 603 
 604 #ifdef ASSERT
 605   static int fired_fake_oom() {
 606     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 607   }
 608 #endif
 609 };
 610 
 611 // Class to set and reset the GC cause for a CollectedHeap.
 612 
 613 class GCCauseSetter : StackObj {
 614   CollectedHeap* _heap;
 615   GCCause::Cause _previous_cause;
 616  public:
 617   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 618     assert(SafepointSynchronize::is_at_safepoint(),
 619            "This method manipulates heap state without locking");
 620     _heap = heap;
 621     _previous_cause = _heap->gc_cause();
 622     _heap->set_gc_cause(cause);
 623   }
 624 
 625   ~GCCauseSetter() {
 626     assert(SafepointSynchronize::is_at_safepoint(),
 627           "This method manipulates heap state without locking");
 628     _heap->set_gc_cause(_previous_cause);
 629   }
 630 };