1 /*
   2  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/cardTableModRefBS.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/interfaceSupport.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/threadCritical.hpp"
  43 #include "utilities/exceptions.hpp"
  44 #ifdef TARGET_OS_ARCH_linux_x86
  45 # include "orderAccess_linux_x86.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_linux_sparc
  48 # include "orderAccess_linux_sparc.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_zero
  51 # include "orderAccess_linux_zero.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_solaris_x86
  54 # include "orderAccess_solaris_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_solaris_sparc
  57 # include "orderAccess_solaris_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_windows_x86
  60 # include "orderAccess_windows_x86.inline.hpp"
  61 #endif
  62 
  63 
  64 // no precompiled headers
  65 #ifdef CC_INTERP
  66 
  67 /*
  68  * USELABELS - If using GCC, then use labels for the opcode dispatching
  69  * rather -then a switch statement. This improves performance because it
  70  * gives us the oportunity to have the instructions that calculate the
  71  * next opcode to jump to be intermixed with the rest of the instructions
  72  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  73  */
  74 #undef USELABELS
  75 #ifdef __GNUC__
  76 /*
  77    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  78    don't use the computed goto approach.
  79 */
  80 #ifndef ASSERT
  81 #define USELABELS
  82 #endif
  83 #endif
  84 
  85 #undef CASE
  86 #ifdef USELABELS
  87 #define CASE(opcode) opc ## opcode
  88 #define DEFAULT opc_default
  89 #else
  90 #define CASE(opcode) case Bytecodes:: opcode
  91 #define DEFAULT default
  92 #endif
  93 
  94 /*
  95  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  96  * opcode before going back to the top of the while loop, rather then having
  97  * the top of the while loop handle it. This provides a better opportunity
  98  * for instruction scheduling. Some compilers just do this prefetch
  99  * automatically. Some actually end up with worse performance if you
 100  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 101  */
 102 #undef PREFETCH_OPCCODE
 103 #define PREFETCH_OPCCODE
 104 
 105 /*
 106   Interpreter safepoint: it is expected that the interpreter will have no live
 107   handles of its own creation live at an interpreter safepoint. Therefore we
 108   run a HandleMarkCleaner and trash all handles allocated in the call chain
 109   since the JavaCalls::call_helper invocation that initiated the chain.
 110   There really shouldn't be any handles remaining to trash but this is cheap
 111   in relation to a safepoint.
 112 */
 113 #define SAFEPOINT                                                                 \
 114     if ( SafepointSynchronize::is_synchronizing()) {                              \
 115         {                                                                         \
 116           /* zap freed handles rather than GC'ing them */                         \
 117           HandleMarkCleaner __hmc(THREAD);                                        \
 118         }                                                                         \
 119         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 120     }
 121 
 122 /*
 123  * VM_JAVA_ERROR - Macro for throwing a java exception from
 124  * the interpreter loop. Should really be a CALL_VM but there
 125  * is no entry point to do the transition to vm so we just
 126  * do it by hand here.
 127  */
 128 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 129     DECACHE_STATE();                                                              \
 130     SET_LAST_JAVA_FRAME();                                                        \
 131     {                                                                             \
 132        ThreadInVMfromJava trans(THREAD);                                          \
 133        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 134     }                                                                             \
 135     RESET_LAST_JAVA_FRAME();                                                      \
 136     CACHE_STATE();
 137 
 138 // Normal throw of a java error
 139 #define VM_JAVA_ERROR(name, msg)                                                  \
 140     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 141     goto handle_exception;
 142 
 143 #ifdef PRODUCT
 144 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 145 #else
 146 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 147 {                                                                                                    \
 148     BytecodeCounter::_counter_value++;                                                               \
 149     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 150     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 151     if (TraceBytecodes) {                                                                            \
 152       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 153                                    topOfStack[Interpreter::expr_index_at(1)],   \
 154                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 155                                    handle_exception);                      \
 156     }                                                                      \
 157 }
 158 #endif
 159 
 160 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 161 #ifdef VM_JVMTI
 162 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 163    incremented. JvmtiExport::at_single_stepping_point() may cause a
 164    breakpoint opcode to get inserted at the current PC to allow the
 165    debugger to coalesce single-step events.
 166 
 167    As a result if we call at_single_stepping_point() we refetch opcode
 168    to get the current opcode. This will override any other prefetching
 169    that might have occurred.
 170 */
 171 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 172 {                                                                                \
 173       if (_jvmti_interp_events) {                                                \
 174         if (JvmtiExport::should_post_single_step()) {                            \
 175           DECACHE_STATE();                                                       \
 176           SET_LAST_JAVA_FRAME();                                                 \
 177           ThreadInVMfromJava trans(THREAD);                                      \
 178           JvmtiExport::at_single_stepping_point(THREAD,                          \
 179                                           istate->method(),                      \
 180                                           pc);                                   \
 181           RESET_LAST_JAVA_FRAME();                                               \
 182           CACHE_STATE();                                                         \
 183           if (THREAD->pop_frame_pending() &&                                     \
 184               !THREAD->pop_frame_in_process()) {                                 \
 185             goto handle_Pop_Frame;                                               \
 186           }                                                                      \
 187           opcode = *pc;                                                          \
 188         }                                                                        \
 189       }                                                                          \
 190 }
 191 #else
 192 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 193 #endif
 194 
 195 /*
 196  * CONTINUE - Macro for executing the next opcode.
 197  */
 198 #undef CONTINUE
 199 #ifdef USELABELS
 200 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 201 // initialization (which is is the initialization of the table pointer...)
 202 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 203 #define CONTINUE {                              \
 204         opcode = *pc;                           \
 205         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 206         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 207         DISPATCH(opcode);                       \
 208     }
 209 #else
 210 #ifdef PREFETCH_OPCCODE
 211 #define CONTINUE {                              \
 212         opcode = *pc;                           \
 213         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 214         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 215         continue;                               \
 216     }
 217 #else
 218 #define CONTINUE {                              \
 219         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 220         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 221         continue;                               \
 222     }
 223 #endif
 224 #endif
 225 
 226 // JavaStack Implementation
 227 #define MORE_STACK(count)  \
 228     (topOfStack -= ((count) * Interpreter::stackElementWords))
 229 
 230 
 231 #define UPDATE_PC(opsize) {pc += opsize; }
 232 /*
 233  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 234  */
 235 #undef UPDATE_PC_AND_TOS
 236 #define UPDATE_PC_AND_TOS(opsize, stack) \
 237     {pc += opsize; MORE_STACK(stack); }
 238 
 239 /*
 240  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 241  * and executing the next opcode. It's somewhat similar to the combination
 242  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 243  */
 244 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 245 #ifdef USELABELS
 246 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 247         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 248         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 249         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 250         DISPATCH(opcode);                                       \
 251     }
 252 
 253 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 254         pc += opsize; opcode = *pc;                             \
 255         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 256         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 257         DISPATCH(opcode);                                       \
 258     }
 259 #else
 260 #ifdef PREFETCH_OPCCODE
 261 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 262         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 263         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 264         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 265         goto do_continue;                                       \
 266     }
 267 
 268 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 269         pc += opsize; opcode = *pc;                             \
 270         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 271         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 272         goto do_continue;                                       \
 273     }
 274 #else
 275 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 276         pc += opsize; MORE_STACK(stack);                \
 277         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 278         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 279         goto do_continue;                               \
 280     }
 281 
 282 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 283         pc += opsize;                                   \
 284         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 285         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 286         goto do_continue;                               \
 287     }
 288 #endif /* PREFETCH_OPCCODE */
 289 #endif /* USELABELS */
 290 
 291 // About to call a new method, update the save the adjusted pc and return to frame manager
 292 #define UPDATE_PC_AND_RETURN(opsize)  \
 293    DECACHE_TOS();                     \
 294    istate->set_bcp(pc+opsize);        \
 295    return;
 296 
 297 
 298 #define METHOD istate->method()
 299 #define INVOCATION_COUNT METHOD->invocation_counter()
 300 #define BACKEDGE_COUNT METHOD->backedge_counter()
 301 
 302 
 303 #define INCR_INVOCATION_COUNT INVOCATION_COUNT->increment()
 304 #define OSR_REQUEST(res, branch_pc) \
 305             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 306 /*
 307  * For those opcodes that need to have a GC point on a backwards branch
 308  */
 309 
 310 // Backedge counting is kind of strange. The asm interpreter will increment
 311 // the backedge counter as a separate counter but it does it's comparisons
 312 // to the sum (scaled) of invocation counter and backedge count to make
 313 // a decision. Seems kind of odd to sum them together like that
 314 
 315 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 316 
 317 
 318 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 319     if ((skip) <= 0) {                                                                              \
 320       if (UseLoopCounter) {                                                                         \
 321         bool do_OSR = UseOnStackReplacement;                                                        \
 322         BACKEDGE_COUNT->increment();                                                                \
 323         if (do_OSR) do_OSR = BACKEDGE_COUNT->reached_InvocationLimit();                             \
 324         if (do_OSR) {                                                                               \
 325           nmethod*  osr_nmethod;                                                                    \
 326           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 327           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 328             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 329             istate->set_msg(do_osr);                                                                \
 330             istate->set_osr_buf((address)buf);                                                      \
 331             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 332             return;                                                                                 \
 333           }                                                                                         \
 334         }                                                                                           \
 335       }  /* UseCompiler ... */                                                                      \
 336       INCR_INVOCATION_COUNT;                                                                        \
 337       SAFEPOINT;                                                                                    \
 338     }
 339 
 340 /*
 341  * For those opcodes that need to have a GC point on a backwards branch
 342  */
 343 
 344 /*
 345  * Macros for caching and flushing the interpreter state. Some local
 346  * variables need to be flushed out to the frame before we do certain
 347  * things (like pushing frames or becomming gc safe) and some need to
 348  * be recached later (like after popping a frame). We could use one
 349  * macro to cache or decache everything, but this would be less then
 350  * optimal because we don't always need to cache or decache everything
 351  * because some things we know are already cached or decached.
 352  */
 353 #undef DECACHE_TOS
 354 #undef CACHE_TOS
 355 #undef CACHE_PREV_TOS
 356 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 357 
 358 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 359 
 360 #undef DECACHE_PC
 361 #undef CACHE_PC
 362 #define DECACHE_PC()    istate->set_bcp(pc);
 363 #define CACHE_PC()      pc = istate->bcp();
 364 #define CACHE_CP()      cp = istate->constants();
 365 #define CACHE_LOCALS()  locals = istate->locals();
 366 #undef CACHE_FRAME
 367 #define CACHE_FRAME()
 368 
 369 /*
 370  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 371  * passed is a null ref.
 372  * On some architectures/platforms it should be possible to do this implicitly
 373  */
 374 #undef CHECK_NULL
 375 #define CHECK_NULL(obj_)                                                 \
 376     if ((obj_) == NULL) {                                                \
 377         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 378     }                                                                    \
 379     VERIFY_OOP(obj_)
 380 
 381 #define VMdoubleConstZero() 0.0
 382 #define VMdoubleConstOne() 1.0
 383 #define VMlongConstZero() (max_jlong-max_jlong)
 384 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 385 
 386 /*
 387  * Alignment
 388  */
 389 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 390 
 391 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 392 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 393 
 394 // Reload interpreter state after calling the VM or a possible GC
 395 #define CACHE_STATE()   \
 396         CACHE_TOS();    \
 397         CACHE_PC();     \
 398         CACHE_CP();     \
 399         CACHE_LOCALS();
 400 
 401 // Call the VM don't check for pending exceptions
 402 #define CALL_VM_NOCHECK(func)                                     \
 403           DECACHE_STATE();                                        \
 404           SET_LAST_JAVA_FRAME();                                  \
 405           func;                                                   \
 406           RESET_LAST_JAVA_FRAME();                                \
 407           CACHE_STATE();                                          \
 408           if (THREAD->pop_frame_pending() &&                      \
 409               !THREAD->pop_frame_in_process()) {                  \
 410             goto handle_Pop_Frame;                                \
 411           }
 412 
 413 // Call the VM and check for pending exceptions
 414 #define CALL_VM(func, label) {                                    \
 415           CALL_VM_NOCHECK(func);                                  \
 416           if (THREAD->has_pending_exception()) goto label;        \
 417         }
 418 
 419 /*
 420  * BytecodeInterpreter::run(interpreterState istate)
 421  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 422  *
 423  * The real deal. This is where byte codes actually get interpreted.
 424  * Basically it's a big while loop that iterates until we return from
 425  * the method passed in.
 426  *
 427  * The runWithChecks is used if JVMTI is enabled.
 428  *
 429  */
 430 #if defined(VM_JVMTI)
 431 void
 432 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 433 #else
 434 void
 435 BytecodeInterpreter::run(interpreterState istate) {
 436 #endif
 437 
 438   // In order to simplify some tests based on switches set at runtime
 439   // we invoke the interpreter a single time after switches are enabled
 440   // and set simpler to to test variables rather than method calls or complex
 441   // boolean expressions.
 442 
 443   static int initialized = 0;
 444   static int checkit = 0;
 445   static intptr_t* c_addr = NULL;
 446   static intptr_t  c_value;
 447 
 448   if (checkit && *c_addr != c_value) {
 449     os::breakpoint();
 450   }
 451 #ifdef VM_JVMTI
 452   static bool _jvmti_interp_events = 0;
 453 #endif
 454 
 455   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 456 
 457 #ifdef ASSERT
 458   if (istate->_msg != initialize) {
 459     assert(abs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 460 #ifndef SHARK
 461     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 462 #endif // !SHARK
 463   }
 464   // Verify linkages.
 465   interpreterState l = istate;
 466   do {
 467     assert(l == l->_self_link, "bad link");
 468     l = l->_prev_link;
 469   } while (l != NULL);
 470   // Screwups with stack management usually cause us to overwrite istate
 471   // save a copy so we can verify it.
 472   interpreterState orig = istate;
 473 #endif
 474 
 475   static volatile jbyte* _byte_map_base; // adjusted card table base for oop store barrier
 476 
 477   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 478   register address          pc = istate->bcp();
 479   register jubyte opcode;
 480   register intptr_t*        locals = istate->locals();
 481   register constantPoolCacheOop  cp = istate->constants(); // method()->constants()->cache()
 482 #ifdef LOTS_OF_REGS
 483   register JavaThread*      THREAD = istate->thread();
 484   register volatile jbyte*  BYTE_MAP_BASE = _byte_map_base;
 485 #else
 486 #undef THREAD
 487 #define THREAD istate->thread()
 488 #undef BYTE_MAP_BASE
 489 #define BYTE_MAP_BASE _byte_map_base
 490 #endif
 491 
 492 #ifdef USELABELS
 493   const static void* const opclabels_data[256] = {
 494 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 495 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 496 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 497 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 498 
 499 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 500 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 501 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 502 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 503 
 504 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 505 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 506 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 507 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 508 
 509 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 510 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 511 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 512 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 513 
 514 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 515 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 516 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 517 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 518 
 519 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 520 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 521 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 522 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 523 
 524 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 525 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 526 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 527 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 528 
 529 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 530 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 531 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 532 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 533 
 534 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 535 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 536 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 537 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 538 
 539 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 540 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 541 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 542 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 543 
 544 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 545 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 546 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 547 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 548 
 549 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 550 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 551 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_default,      &&opc_new,
 552 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 553 
 554 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 555 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 556 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 557 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 558 
 559 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 560 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 561 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 562 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 563 
 564 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 565 /* 0xE4 */ &&opc_default,     &&opc_return_register_finalizer,        &&opc_default,      &&opc_default,
 566 /* 0xE8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 567 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 568 
 569 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 570 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 571 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 572 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 573   };
 574   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 575 #endif /* USELABELS */
 576 
 577 #ifdef ASSERT
 578   // this will trigger a VERIFY_OOP on entry
 579   if (istate->msg() != initialize && ! METHOD->is_static()) {
 580     oop rcvr = LOCALS_OBJECT(0);
 581     VERIFY_OOP(rcvr);
 582   }
 583 #endif
 584 // #define HACK
 585 #ifdef HACK
 586   bool interesting = false;
 587 #endif // HACK
 588 
 589   /* QQQ this should be a stack method so we don't know actual direction */
 590   guarantee(istate->msg() == initialize ||
 591          topOfStack >= istate->stack_limit() &&
 592          topOfStack < istate->stack_base(),
 593          "Stack top out of range");
 594 
 595   switch (istate->msg()) {
 596     case initialize: {
 597       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 598       _compiling = (UseCompiler || CountCompiledCalls);
 599 #ifdef VM_JVMTI
 600       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 601 #endif
 602       BarrierSet* bs = Universe::heap()->barrier_set();
 603       assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
 604       _byte_map_base = (volatile jbyte*)(((CardTableModRefBS*)bs)->byte_map_base);
 605       return;
 606     }
 607     break;
 608     case method_entry: {
 609       THREAD->set_do_not_unlock();
 610       // count invocations
 611       assert(initialized, "Interpreter not initialized");
 612       if (_compiling) {
 613         if (ProfileInterpreter) {
 614           METHOD->increment_interpreter_invocation_count();
 615         }
 616         INCR_INVOCATION_COUNT;
 617         if (INVOCATION_COUNT->reached_InvocationLimit()) {
 618             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 619 
 620             // We no longer retry on a counter overflow
 621 
 622             // istate->set_msg(retry_method);
 623             // THREAD->clr_do_not_unlock();
 624             // return;
 625         }
 626         SAFEPOINT;
 627       }
 628 
 629       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 630         // initialize
 631         os::breakpoint();
 632       }
 633 
 634 #ifdef HACK
 635       {
 636         ResourceMark rm;
 637         char *method_name = istate->method()->name_and_sig_as_C_string();
 638         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 639           tty->print_cr("entering: depth %d bci: %d",
 640                          (istate->_stack_base - istate->_stack),
 641                          istate->_bcp - istate->_method->code_base());
 642           interesting = true;
 643         }
 644       }
 645 #endif // HACK
 646 
 647 
 648       // lock method if synchronized
 649       if (METHOD->is_synchronized()) {
 650           // oop rcvr = locals[0].j.r;
 651           oop rcvr;
 652           if (METHOD->is_static()) {
 653             rcvr = METHOD->constants()->pool_holder()->klass_part()->java_mirror();
 654           } else {
 655             rcvr = LOCALS_OBJECT(0);
 656             VERIFY_OOP(rcvr);
 657           }
 658           // The initial monitor is ours for the taking
 659           BasicObjectLock* mon = &istate->monitor_base()[-1];
 660           oop monobj = mon->obj();
 661           assert(mon->obj() == rcvr, "method monitor mis-initialized");
 662 
 663           bool success = UseBiasedLocking;
 664           if (UseBiasedLocking) {
 665             markOop mark = rcvr->mark();
 666             if (mark->has_bias_pattern()) {
 667               // The bias pattern is present in the object's header. Need to check
 668               // whether the bias owner and the epoch are both still current.
 669               intptr_t xx = ((intptr_t) THREAD) ^ (intptr_t) mark;
 670               xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() ^ xx;
 671               intptr_t yy = (xx & ~((int) markOopDesc::age_mask_in_place));
 672               if (yy != 0 ) {
 673                 // At this point we know that the header has the bias pattern and
 674                 // that we are not the bias owner in the current epoch. We need to
 675                 // figure out more details about the state of the header in order to
 676                 // know what operations can be legally performed on the object's
 677                 // header.
 678 
 679                 // If the low three bits in the xor result aren't clear, that means
 680                 // the prototype header is no longer biased and we have to revoke
 681                 // the bias on this object.
 682 
 683                 if (yy & markOopDesc::biased_lock_mask_in_place == 0 ) {
 684                   // Biasing is still enabled for this data type. See whether the
 685                   // epoch of the current bias is still valid, meaning that the epoch
 686                   // bits of the mark word are equal to the epoch bits of the
 687                   // prototype header. (Note that the prototype header's epoch bits
 688                   // only change at a safepoint.) If not, attempt to rebias the object
 689                   // toward the current thread. Note that we must be absolutely sure
 690                   // that the current epoch is invalid in order to do this because
 691                   // otherwise the manipulations it performs on the mark word are
 692                   // illegal.
 693                   if (yy & markOopDesc::epoch_mask_in_place == 0) {
 694                     // The epoch of the current bias is still valid but we know nothing
 695                     // about the owner; it might be set or it might be clear. Try to
 696                     // acquire the bias of the object using an atomic operation. If this
 697                     // fails we will go in to the runtime to revoke the object's bias.
 698                     // Note that we first construct the presumed unbiased header so we
 699                     // don't accidentally blow away another thread's valid bias.
 700                     intptr_t unbiased = (intptr_t) mark & (markOopDesc::biased_lock_mask_in_place |
 701                                                            markOopDesc::age_mask_in_place |
 702                                                            markOopDesc::epoch_mask_in_place);
 703                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | unbiased, (intptr_t*) rcvr->mark_addr(), unbiased) != unbiased) {
 704                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 705                     }
 706                   } else {
 707                     try_rebias:
 708                     // At this point we know the epoch has expired, meaning that the
 709                     // current "bias owner", if any, is actually invalid. Under these
 710                     // circumstances _only_, we are allowed to use the current header's
 711                     // value as the comparison value when doing the cas to acquire the
 712                     // bias in the current epoch. In other words, we allow transfer of
 713                     // the bias from one thread to another directly in this situation.
 714                     xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 715                     if (Atomic::cmpxchg_ptr((intptr_t)THREAD | (intptr_t) rcvr->klass()->klass_part()->prototype_header(),
 716                                             (intptr_t*) rcvr->mark_addr(),
 717                                             (intptr_t) mark) != (intptr_t) mark) {
 718                       CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 719                     }
 720                   }
 721                 } else {
 722                   try_revoke_bias:
 723                   // The prototype mark in the klass doesn't have the bias bit set any
 724                   // more, indicating that objects of this data type are not supposed
 725                   // to be biased any more. We are going to try to reset the mark of
 726                   // this object to the prototype value and fall through to the
 727                   // CAS-based locking scheme. Note that if our CAS fails, it means
 728                   // that another thread raced us for the privilege of revoking the
 729                   // bias of this particular object, so it's okay to continue in the
 730                   // normal locking code.
 731                   //
 732                   xx = (intptr_t) rcvr->klass()->klass_part()->prototype_header() | (intptr_t) THREAD;
 733                   if (Atomic::cmpxchg_ptr(rcvr->klass()->klass_part()->prototype_header(),
 734                                           (intptr_t*) rcvr->mark_addr(),
 735                                           mark) == mark) {
 736                     // (*counters->revoked_lock_entry_count_addr())++;
 737                   success = false;
 738                   }
 739                 }
 740               }
 741             } else {
 742               cas_label:
 743               success = false;
 744             }
 745           }
 746           if (!success) {
 747             markOop displaced = rcvr->mark()->set_unlocked();
 748             mon->lock()->set_displaced_header(displaced);
 749             if (Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 750               // Is it simple recursive case?
 751               if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 752                 mon->lock()->set_displaced_header(NULL);
 753               } else {
 754                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 755               }
 756             }
 757           }
 758       }
 759       THREAD->clr_do_not_unlock();
 760 
 761       // Notify jvmti
 762 #ifdef VM_JVMTI
 763       if (_jvmti_interp_events) {
 764         // Whenever JVMTI puts a thread in interp_only_mode, method
 765         // entry/exit events are sent for that thread to track stack depth.
 766         if (THREAD->is_interp_only_mode()) {
 767           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 768                   handle_exception);
 769         }
 770       }
 771 #endif /* VM_JVMTI */
 772 
 773       goto run;
 774     }
 775 
 776     case popping_frame: {
 777       // returned from a java call to pop the frame, restart the call
 778       // clear the message so we don't confuse ourselves later
 779       ShouldNotReachHere();  // we don't return this.
 780       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 781       istate->set_msg(no_request);
 782       THREAD->clr_pop_frame_in_process();
 783       goto run;
 784     }
 785 
 786     case method_resume: {
 787       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 788         // resume
 789         os::breakpoint();
 790       }
 791 #ifdef HACK
 792       {
 793         ResourceMark rm;
 794         char *method_name = istate->method()->name_and_sig_as_C_string();
 795         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 796           tty->print_cr("resume: depth %d bci: %d",
 797                          (istate->_stack_base - istate->_stack) ,
 798                          istate->_bcp - istate->_method->code_base());
 799           interesting = true;
 800         }
 801       }
 802 #endif // HACK
 803       // returned from a java call, continue executing.
 804       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 805         goto handle_Pop_Frame;
 806       }
 807 
 808       if (THREAD->has_pending_exception()) goto handle_exception;
 809       // Update the pc by the saved amount of the invoke bytecode size
 810       UPDATE_PC(istate->bcp_advance());
 811       goto run;
 812     }
 813 
 814     case deopt_resume2: {
 815       // Returned from an opcode that will reexecute. Deopt was
 816       // a result of a PopFrame request.
 817       //
 818       goto run;
 819     }
 820 
 821     case deopt_resume: {
 822       // Returned from an opcode that has completed. The stack has
 823       // the result all we need to do is skip across the bytecode
 824       // and continue (assuming there is no exception pending)
 825       //
 826       // compute continuation length
 827       //
 828       // Note: it is possible to deopt at a return_register_finalizer opcode
 829       // because this requires entering the vm to do the registering. While the
 830       // opcode is complete we can't advance because there are no more opcodes
 831       // much like trying to deopt at a poll return. In that has we simply
 832       // get out of here
 833       //
 834       if ( Bytecodes::code_at(pc, METHOD) == Bytecodes::_return_register_finalizer) {
 835         // this will do the right thing even if an exception is pending.
 836         goto handle_return;
 837       }
 838       UPDATE_PC(Bytecodes::length_at(pc));
 839       if (THREAD->has_pending_exception()) goto handle_exception;
 840       goto run;
 841     }
 842     case got_monitors: {
 843       // continue locking now that we have a monitor to use
 844       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 845       oop lockee = STACK_OBJECT(-1);
 846       VERIFY_OOP(lockee);
 847       // derefing's lockee ought to provoke implicit null check
 848       // find a free monitor
 849       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 850       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 851       entry->set_obj(lockee);
 852 
 853       markOop displaced = lockee->mark()->set_unlocked();
 854       entry->lock()->set_displaced_header(displaced);
 855       if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 856         // Is it simple recursive case?
 857         if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 858           entry->lock()->set_displaced_header(NULL);
 859         } else {
 860           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 861         }
 862       }
 863       UPDATE_PC_AND_TOS(1, -1);
 864       goto run;
 865     }
 866     default: {
 867       fatal("Unexpected message from frame manager");
 868     }
 869   }
 870 
 871 run:
 872 
 873   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 874   DEBUGGER_SINGLE_STEP_NOTIFY();
 875 #ifdef PREFETCH_OPCCODE
 876   opcode = *pc;  /* prefetch first opcode */
 877 #endif
 878 
 879 #ifndef USELABELS
 880   while (1)
 881 #endif
 882   {
 883 #ifndef PREFETCH_OPCCODE
 884       opcode = *pc;
 885 #endif
 886       // Seems like this happens twice per opcode. At worst this is only
 887       // need at entry to the loop.
 888       // DEBUGGER_SINGLE_STEP_NOTIFY();
 889       /* Using this labels avoids double breakpoints when quickening and
 890        * when returing from transition frames.
 891        */
 892   opcode_switch:
 893       assert(istate == orig, "Corrupted istate");
 894       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 895       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 896       assert(topOfStack < istate->stack_base(), "Stack underrun");
 897 
 898 #ifdef USELABELS
 899       DISPATCH(opcode);
 900 #else
 901       switch (opcode)
 902 #endif
 903       {
 904       CASE(_nop):
 905           UPDATE_PC_AND_CONTINUE(1);
 906 
 907           /* Push miscellaneous constants onto the stack. */
 908 
 909       CASE(_aconst_null):
 910           SET_STACK_OBJECT(NULL, 0);
 911           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 912 
 913 #undef  OPC_CONST_n
 914 #define OPC_CONST_n(opcode, const_type, value)                          \
 915       CASE(opcode):                                                     \
 916           SET_STACK_ ## const_type(value, 0);                           \
 917           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 918 
 919           OPC_CONST_n(_iconst_m1,   INT,       -1);
 920           OPC_CONST_n(_iconst_0,    INT,        0);
 921           OPC_CONST_n(_iconst_1,    INT,        1);
 922           OPC_CONST_n(_iconst_2,    INT,        2);
 923           OPC_CONST_n(_iconst_3,    INT,        3);
 924           OPC_CONST_n(_iconst_4,    INT,        4);
 925           OPC_CONST_n(_iconst_5,    INT,        5);
 926           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 927           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 928           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 929 
 930 #undef  OPC_CONST2_n
 931 #define OPC_CONST2_n(opcname, value, key, kind)                         \
 932       CASE(_##opcname):                                                 \
 933       {                                                                 \
 934           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
 935           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 936       }
 937          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
 938          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
 939          OPC_CONST2_n(lconst_0, Zero, long, LONG);
 940          OPC_CONST2_n(lconst_1, One,  long, LONG);
 941 
 942          /* Load constant from constant pool: */
 943 
 944           /* Push a 1-byte signed integer value onto the stack. */
 945       CASE(_bipush):
 946           SET_STACK_INT((jbyte)(pc[1]), 0);
 947           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 948 
 949           /* Push a 2-byte signed integer constant onto the stack. */
 950       CASE(_sipush):
 951           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
 952           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
 953 
 954           /* load from local variable */
 955 
 956       CASE(_aload):
 957           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
 958           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
 959           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 960 
 961       CASE(_iload):
 962       CASE(_fload):
 963           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 964           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 965 
 966       CASE(_lload):
 967           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
 968           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 969 
 970       CASE(_dload):
 971           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
 972           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 973 
 974 #undef  OPC_LOAD_n
 975 #define OPC_LOAD_n(num)                                                 \
 976       CASE(_aload_##num):                                               \
 977           VERIFY_OOP(LOCALS_OBJECT(num));                               \
 978           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
 979           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 980                                                                         \
 981       CASE(_iload_##num):                                               \
 982       CASE(_fload_##num):                                               \
 983           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
 984           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 985                                                                         \
 986       CASE(_lload_##num):                                               \
 987           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
 988           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 989       CASE(_dload_##num):                                               \
 990           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
 991           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
 992 
 993           OPC_LOAD_n(0);
 994           OPC_LOAD_n(1);
 995           OPC_LOAD_n(2);
 996           OPC_LOAD_n(3);
 997 
 998           /* store to a local variable */
 999 
1000       CASE(_astore):
1001           astore(topOfStack, -1, locals, pc[1]);
1002           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1003 
1004       CASE(_istore):
1005       CASE(_fstore):
1006           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1007           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1008 
1009       CASE(_lstore):
1010           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1011           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1012 
1013       CASE(_dstore):
1014           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1015           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1016 
1017       CASE(_wide): {
1018           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1019 
1020           opcode = pc[1];
1021           switch(opcode) {
1022               case Bytecodes::_aload:
1023                   VERIFY_OOP(LOCALS_OBJECT(reg));
1024                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1025                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1026 
1027               case Bytecodes::_iload:
1028               case Bytecodes::_fload:
1029                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1030                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1031 
1032               case Bytecodes::_lload:
1033                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1034                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1035 
1036               case Bytecodes::_dload:
1037                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1038                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1039 
1040               case Bytecodes::_astore:
1041                   astore(topOfStack, -1, locals, reg);
1042                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1043 
1044               case Bytecodes::_istore:
1045               case Bytecodes::_fstore:
1046                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1047                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1048 
1049               case Bytecodes::_lstore:
1050                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1051                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1052 
1053               case Bytecodes::_dstore:
1054                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1055                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1056 
1057               case Bytecodes::_iinc: {
1058                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1059                   // Be nice to see what this generates.... QQQ
1060                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1061                   UPDATE_PC_AND_CONTINUE(6);
1062               }
1063               case Bytecodes::_ret:
1064                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1065                   UPDATE_PC_AND_CONTINUE(0);
1066               default:
1067                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1068           }
1069       }
1070 
1071 
1072 #undef  OPC_STORE_n
1073 #define OPC_STORE_n(num)                                                \
1074       CASE(_astore_##num):                                              \
1075           astore(topOfStack, -1, locals, num);                          \
1076           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1077       CASE(_istore_##num):                                              \
1078       CASE(_fstore_##num):                                              \
1079           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1081 
1082           OPC_STORE_n(0);
1083           OPC_STORE_n(1);
1084           OPC_STORE_n(2);
1085           OPC_STORE_n(3);
1086 
1087 #undef  OPC_DSTORE_n
1088 #define OPC_DSTORE_n(num)                                               \
1089       CASE(_dstore_##num):                                              \
1090           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1091           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1092       CASE(_lstore_##num):                                              \
1093           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1094           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1095 
1096           OPC_DSTORE_n(0);
1097           OPC_DSTORE_n(1);
1098           OPC_DSTORE_n(2);
1099           OPC_DSTORE_n(3);
1100 
1101           /* stack pop, dup, and insert opcodes */
1102 
1103 
1104       CASE(_pop):                /* Discard the top item on the stack */
1105           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1106 
1107 
1108       CASE(_pop2):               /* Discard the top 2 items on the stack */
1109           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1110 
1111 
1112       CASE(_dup):               /* Duplicate the top item on the stack */
1113           dup(topOfStack);
1114           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1115 
1116       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1117           dup2(topOfStack);
1118           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1119 
1120       CASE(_dup_x1):    /* insert top word two down */
1121           dup_x1(topOfStack);
1122           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1123 
1124       CASE(_dup_x2):    /* insert top word three down  */
1125           dup_x2(topOfStack);
1126           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1127 
1128       CASE(_dup2_x1):   /* insert top 2 slots three down */
1129           dup2_x1(topOfStack);
1130           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1131 
1132       CASE(_dup2_x2):   /* insert top 2 slots four down */
1133           dup2_x2(topOfStack);
1134           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1135 
1136       CASE(_swap): {        /* swap top two elements on the stack */
1137           swap(topOfStack);
1138           UPDATE_PC_AND_CONTINUE(1);
1139       }
1140 
1141           /* Perform various binary integer operations */
1142 
1143 #undef  OPC_INT_BINARY
1144 #define OPC_INT_BINARY(opcname, opname, test)                           \
1145       CASE(_i##opcname):                                                \
1146           if (test && (STACK_INT(-1) == 0)) {                           \
1147               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1148                             "/ by zero");                               \
1149           }                                                             \
1150           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1151                                       STACK_INT(-1)),                   \
1152                                       -2);                              \
1153           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1154       CASE(_l##opcname):                                                \
1155       {                                                                 \
1156           if (test) {                                                   \
1157             jlong l1 = STACK_LONG(-1);                                  \
1158             if (VMlongEqz(l1)) {                                        \
1159               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1160                             "/ by long zero");                          \
1161             }                                                           \
1162           }                                                             \
1163           /* First long at (-1,-2) next long at (-3,-4) */              \
1164           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1165                                         STACK_LONG(-1)),                \
1166                                         -3);                            \
1167           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1168       }
1169 
1170       OPC_INT_BINARY(add, Add, 0);
1171       OPC_INT_BINARY(sub, Sub, 0);
1172       OPC_INT_BINARY(mul, Mul, 0);
1173       OPC_INT_BINARY(and, And, 0);
1174       OPC_INT_BINARY(or,  Or,  0);
1175       OPC_INT_BINARY(xor, Xor, 0);
1176       OPC_INT_BINARY(div, Div, 1);
1177       OPC_INT_BINARY(rem, Rem, 1);
1178 
1179 
1180       /* Perform various binary floating number operations */
1181       /* On some machine/platforms/compilers div zero check can be implicit */
1182 
1183 #undef  OPC_FLOAT_BINARY
1184 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1185       CASE(_d##opcname): {                                                 \
1186           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1187                                             STACK_DOUBLE(-1)),             \
1188                                             -3);                           \
1189           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1190       }                                                                    \
1191       CASE(_f##opcname):                                                   \
1192           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1193                                           STACK_FLOAT(-1)),                \
1194                                           -2);                             \
1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1196 
1197 
1198      OPC_FLOAT_BINARY(add, Add);
1199      OPC_FLOAT_BINARY(sub, Sub);
1200      OPC_FLOAT_BINARY(mul, Mul);
1201      OPC_FLOAT_BINARY(div, Div);
1202      OPC_FLOAT_BINARY(rem, Rem);
1203 
1204       /* Shift operations
1205        * Shift left int and long: ishl, lshl
1206        * Logical shift right int and long w/zero extension: iushr, lushr
1207        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1208        */
1209 
1210 #undef  OPC_SHIFT_BINARY
1211 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1212       CASE(_i##opcname):                                                \
1213          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1214                                      STACK_INT(-1)),                    \
1215                                      -2);                               \
1216          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1217       CASE(_l##opcname):                                                \
1218       {                                                                 \
1219          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1220                                        STACK_INT(-1)),                  \
1221                                        -2);                             \
1222          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1223       }
1224 
1225       OPC_SHIFT_BINARY(shl, Shl);
1226       OPC_SHIFT_BINARY(shr, Shr);
1227       OPC_SHIFT_BINARY(ushr, Ushr);
1228 
1229      /* Increment local variable by constant */
1230       CASE(_iinc):
1231       {
1232           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1233           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1234           UPDATE_PC_AND_CONTINUE(3);
1235       }
1236 
1237      /* negate the value on the top of the stack */
1238 
1239       CASE(_ineg):
1240          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1241          UPDATE_PC_AND_CONTINUE(1);
1242 
1243       CASE(_fneg):
1244          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1245          UPDATE_PC_AND_CONTINUE(1);
1246 
1247       CASE(_lneg):
1248       {
1249          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1250          UPDATE_PC_AND_CONTINUE(1);
1251       }
1252 
1253       CASE(_dneg):
1254       {
1255          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1256          UPDATE_PC_AND_CONTINUE(1);
1257       }
1258 
1259       /* Conversion operations */
1260 
1261       CASE(_i2f):       /* convert top of stack int to float */
1262          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1263          UPDATE_PC_AND_CONTINUE(1);
1264 
1265       CASE(_i2l):       /* convert top of stack int to long */
1266       {
1267           // this is ugly QQQ
1268           jlong r = VMint2Long(STACK_INT(-1));
1269           MORE_STACK(-1); // Pop
1270           SET_STACK_LONG(r, 1);
1271 
1272           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1273       }
1274 
1275       CASE(_i2d):       /* convert top of stack int to double */
1276       {
1277           // this is ugly QQQ (why cast to jlong?? )
1278           jdouble r = (jlong)STACK_INT(-1);
1279           MORE_STACK(-1); // Pop
1280           SET_STACK_DOUBLE(r, 1);
1281 
1282           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1283       }
1284 
1285       CASE(_l2i):       /* convert top of stack long to int */
1286       {
1287           jint r = VMlong2Int(STACK_LONG(-1));
1288           MORE_STACK(-2); // Pop
1289           SET_STACK_INT(r, 0);
1290           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1291       }
1292 
1293       CASE(_l2f):   /* convert top of stack long to float */
1294       {
1295           jlong r = STACK_LONG(-1);
1296           MORE_STACK(-2); // Pop
1297           SET_STACK_FLOAT(VMlong2Float(r), 0);
1298           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1299       }
1300 
1301       CASE(_l2d):       /* convert top of stack long to double */
1302       {
1303           jlong r = STACK_LONG(-1);
1304           MORE_STACK(-2); // Pop
1305           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1306           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1307       }
1308 
1309       CASE(_f2i):  /* Convert top of stack float to int */
1310           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1311           UPDATE_PC_AND_CONTINUE(1);
1312 
1313       CASE(_f2l):  /* convert top of stack float to long */
1314       {
1315           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1316           MORE_STACK(-1); // POP
1317           SET_STACK_LONG(r, 1);
1318           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1319       }
1320 
1321       CASE(_f2d):  /* convert top of stack float to double */
1322       {
1323           jfloat f;
1324           jdouble r;
1325           f = STACK_FLOAT(-1);
1326 #ifdef IA64
1327           // IA64 gcc bug
1328           r = ( f == 0.0f ) ? (jdouble) f : (jdouble) f + ia64_double_zero;
1329 #else
1330           r = (jdouble) f;
1331 #endif
1332           MORE_STACK(-1); // POP
1333           SET_STACK_DOUBLE(r, 1);
1334           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1335       }
1336 
1337       CASE(_d2i): /* convert top of stack double to int */
1338       {
1339           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1340           MORE_STACK(-2);
1341           SET_STACK_INT(r1, 0);
1342           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1343       }
1344 
1345       CASE(_d2f): /* convert top of stack double to float */
1346       {
1347           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1348           MORE_STACK(-2);
1349           SET_STACK_FLOAT(r1, 0);
1350           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1351       }
1352 
1353       CASE(_d2l): /* convert top of stack double to long */
1354       {
1355           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1356           MORE_STACK(-2);
1357           SET_STACK_LONG(r1, 1);
1358           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1359       }
1360 
1361       CASE(_i2b):
1362           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1363           UPDATE_PC_AND_CONTINUE(1);
1364 
1365       CASE(_i2c):
1366           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1367           UPDATE_PC_AND_CONTINUE(1);
1368 
1369       CASE(_i2s):
1370           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1371           UPDATE_PC_AND_CONTINUE(1);
1372 
1373       /* comparison operators */
1374 
1375 
1376 #define COMPARISON_OP(name, comparison)                                      \
1377       CASE(_if_icmp##name): {                                                \
1378           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1379                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1380           address branch_pc = pc;                                            \
1381           UPDATE_PC_AND_TOS(skip, -2);                                       \
1382           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1383           CONTINUE;                                                          \
1384       }                                                                      \
1385       CASE(_if##name): {                                                     \
1386           int skip = (STACK_INT(-1) comparison 0)                            \
1387                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1388           address branch_pc = pc;                                            \
1389           UPDATE_PC_AND_TOS(skip, -1);                                       \
1390           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1391           CONTINUE;                                                          \
1392       }
1393 
1394 #define COMPARISON_OP2(name, comparison)                                     \
1395       COMPARISON_OP(name, comparison)                                        \
1396       CASE(_if_acmp##name): {                                                \
1397           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1398                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1399           address branch_pc = pc;                                            \
1400           UPDATE_PC_AND_TOS(skip, -2);                                       \
1401           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1402           CONTINUE;                                                          \
1403       }
1404 
1405 #define NULL_COMPARISON_NOT_OP(name)                                         \
1406       CASE(_if##name): {                                                     \
1407           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1408                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1409           address branch_pc = pc;                                            \
1410           UPDATE_PC_AND_TOS(skip, -1);                                       \
1411           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1412           CONTINUE;                                                          \
1413       }
1414 
1415 #define NULL_COMPARISON_OP(name)                                             \
1416       CASE(_if##name): {                                                     \
1417           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1418                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1419           address branch_pc = pc;                                            \
1420           UPDATE_PC_AND_TOS(skip, -1);                                       \
1421           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1422           CONTINUE;                                                          \
1423       }
1424       COMPARISON_OP(lt, <);
1425       COMPARISON_OP(gt, >);
1426       COMPARISON_OP(le, <=);
1427       COMPARISON_OP(ge, >=);
1428       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1429       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1430       NULL_COMPARISON_OP(null);
1431       NULL_COMPARISON_NOT_OP(nonnull);
1432 
1433       /* Goto pc at specified offset in switch table. */
1434 
1435       CASE(_tableswitch): {
1436           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1437           int32_t  key  = STACK_INT(-1);
1438           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1439           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1440           int32_t  skip;
1441           key -= low;
1442           skip = ((uint32_t) key > (uint32_t)(high - low))
1443                       ? Bytes::get_Java_u4((address)&lpc[0])
1444                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1445           // Does this really need a full backedge check (osr?)
1446           address branch_pc = pc;
1447           UPDATE_PC_AND_TOS(skip, -1);
1448           DO_BACKEDGE_CHECKS(skip, branch_pc);
1449           CONTINUE;
1450       }
1451 
1452       /* Goto pc whose table entry matches specified key */
1453 
1454       CASE(_lookupswitch): {
1455           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1456           int32_t  key  = STACK_INT(-1);
1457           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1458           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1459           while (--npairs >= 0) {
1460               lpc += 2;
1461               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1462                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1463                   break;
1464               }
1465           }
1466           address branch_pc = pc;
1467           UPDATE_PC_AND_TOS(skip, -1);
1468           DO_BACKEDGE_CHECKS(skip, branch_pc);
1469           CONTINUE;
1470       }
1471 
1472       CASE(_fcmpl):
1473       CASE(_fcmpg):
1474       {
1475           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1476                                         STACK_FLOAT(-1),
1477                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1478                         -2);
1479           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1480       }
1481 
1482       CASE(_dcmpl):
1483       CASE(_dcmpg):
1484       {
1485           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1486                                   STACK_DOUBLE(-1),
1487                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1488           MORE_STACK(-4); // Pop
1489           SET_STACK_INT(r, 0);
1490           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1491       }
1492 
1493       CASE(_lcmp):
1494       {
1495           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1496           MORE_STACK(-4);
1497           SET_STACK_INT(r, 0);
1498           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1499       }
1500 
1501 
1502       /* Return from a method */
1503 
1504       CASE(_areturn):
1505       CASE(_ireturn):
1506       CASE(_freturn):
1507       {
1508           // Allow a safepoint before returning to frame manager.
1509           SAFEPOINT;
1510 
1511           goto handle_return;
1512       }
1513 
1514       CASE(_lreturn):
1515       CASE(_dreturn):
1516       {
1517           // Allow a safepoint before returning to frame manager.
1518           SAFEPOINT;
1519           goto handle_return;
1520       }
1521 
1522       CASE(_return_register_finalizer): {
1523 
1524           oop rcvr = LOCALS_OBJECT(0);
1525           VERIFY_OOP(rcvr);
1526           if (rcvr->klass()->klass_part()->has_finalizer()) {
1527             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1528           }
1529           goto handle_return;
1530       }
1531       CASE(_return): {
1532 
1533           // Allow a safepoint before returning to frame manager.
1534           SAFEPOINT;
1535           goto handle_return;
1536       }
1537 
1538       /* Array access byte-codes */
1539 
1540       /* Every array access byte-code starts out like this */
1541 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1542 #define ARRAY_INTRO(arrayOff)                                                  \
1543       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1544       jint     index  = STACK_INT(arrayOff + 1);                               \
1545       char message[jintAsStringSize];                                          \
1546       CHECK_NULL(arrObj);                                                      \
1547       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1548           sprintf(message, "%d", index);                                       \
1549           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1550                         message);                                              \
1551       }
1552 
1553       /* 32-bit loads. These handle conversion from < 32-bit types */
1554 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1555       {                                                                               \
1556           ARRAY_INTRO(-2);                                                            \
1557           extra;                                                                      \
1558           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1559                            -2);                                                       \
1560           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1561       }
1562 
1563       /* 64-bit loads */
1564 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1565       {                                                                                    \
1566           ARRAY_INTRO(-2);                                                                 \
1567           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1568           extra;                                                                           \
1569           UPDATE_PC_AND_CONTINUE(1);                                            \
1570       }
1571 
1572       CASE(_iaload):
1573           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1574       CASE(_faload):
1575           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1576       CASE(_aaload):
1577           ARRAY_LOADTO32(T_OBJECT, oop,   INTPTR_FORMAT, STACK_OBJECT, 0);
1578       CASE(_baload):
1579           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1580       CASE(_caload):
1581           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1582       CASE(_saload):
1583           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1584       CASE(_laload):
1585           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1586       CASE(_daload):
1587           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1588 
1589       /* 32-bit stores. These handle conversion to < 32-bit types */
1590 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1591       {                                                                              \
1592           ARRAY_INTRO(-3);                                                           \
1593           extra;                                                                     \
1594           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1595           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1596       }
1597 
1598       /* 64-bit stores */
1599 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1600       {                                                                              \
1601           ARRAY_INTRO(-4);                                                           \
1602           extra;                                                                     \
1603           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1604           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1605       }
1606 
1607       CASE(_iastore):
1608           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1609       CASE(_fastore):
1610           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1611       /*
1612        * This one looks different because of the assignability check
1613        */
1614       CASE(_aastore): {
1615           oop rhsObject = STACK_OBJECT(-1);
1616           VERIFY_OOP(rhsObject);
1617           ARRAY_INTRO( -3);
1618           // arrObj, index are set
1619           if (rhsObject != NULL) {
1620             /* Check assignability of rhsObject into arrObj */
1621             klassOop rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1622             assert(arrObj->klass()->klass()->klass_part()->oop_is_objArrayKlass(), "Ack not an objArrayKlass");
1623             klassOop elemKlassOop = ((objArrayKlass*) arrObj->klass()->klass_part())->element_klass(); // superklass EAX
1624             //
1625             // Check for compatibilty. This check must not GC!!
1626             // Seems way more expensive now that we must dispatch
1627             //
1628             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->klass_part()->is_subtype_of(elemKlassOop)) { // ebx->is...
1629               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1630             }
1631           }
1632           oop* elem_loc = (oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop));
1633           // *(oop*)(((address) arrObj->base(T_OBJECT)) + index * sizeof(oop)) = rhsObject;
1634           *elem_loc = rhsObject;
1635           // Mark the card
1636           OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)elem_loc >> CardTableModRefBS::card_shift], 0);
1637           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1638       }
1639       CASE(_bastore):
1640           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1641       CASE(_castore):
1642           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1643       CASE(_sastore):
1644           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1645       CASE(_lastore):
1646           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1647       CASE(_dastore):
1648           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1649 
1650       CASE(_arraylength):
1651       {
1652           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1653           CHECK_NULL(ary);
1654           SET_STACK_INT(ary->length(), -1);
1655           UPDATE_PC_AND_CONTINUE(1);
1656       }
1657 
1658       /* monitorenter and monitorexit for locking/unlocking an object */
1659 
1660       CASE(_monitorenter): {
1661         oop lockee = STACK_OBJECT(-1);
1662         // derefing's lockee ought to provoke implicit null check
1663         CHECK_NULL(lockee);
1664         // find a free monitor or one already allocated for this object
1665         // if we find a matching object then we need a new monitor
1666         // since this is recursive enter
1667         BasicObjectLock* limit = istate->monitor_base();
1668         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1669         BasicObjectLock* entry = NULL;
1670         while (most_recent != limit ) {
1671           if (most_recent->obj() == NULL) entry = most_recent;
1672           else if (most_recent->obj() == lockee) break;
1673           most_recent++;
1674         }
1675         if (entry != NULL) {
1676           entry->set_obj(lockee);
1677           markOop displaced = lockee->mark()->set_unlocked();
1678           entry->lock()->set_displaced_header(displaced);
1679           if (Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1680             // Is it simple recursive case?
1681             if (THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1682               entry->lock()->set_displaced_header(NULL);
1683             } else {
1684               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1685             }
1686           }
1687           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1688         } else {
1689           istate->set_msg(more_monitors);
1690           UPDATE_PC_AND_RETURN(0); // Re-execute
1691         }
1692       }
1693 
1694       CASE(_monitorexit): {
1695         oop lockee = STACK_OBJECT(-1);
1696         CHECK_NULL(lockee);
1697         // derefing's lockee ought to provoke implicit null check
1698         // find our monitor slot
1699         BasicObjectLock* limit = istate->monitor_base();
1700         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1701         while (most_recent != limit ) {
1702           if ((most_recent)->obj() == lockee) {
1703             BasicLock* lock = most_recent->lock();
1704             markOop header = lock->displaced_header();
1705             most_recent->set_obj(NULL);
1706             // If it isn't recursive we either must swap old header or call the runtime
1707             if (header != NULL) {
1708               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1709                 // restore object for the slow case
1710                 most_recent->set_obj(lockee);
1711                 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1712               }
1713             }
1714             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1715           }
1716           most_recent++;
1717         }
1718         // Need to throw illegal monitor state exception
1719         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1720         // Should never reach here...
1721         assert(false, "Should have thrown illegal monitor exception");
1722       }
1723 
1724       /* All of the non-quick opcodes. */
1725 
1726       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1727        *  constant pool index in the instruction.
1728        */
1729       CASE(_getfield):
1730       CASE(_getstatic):
1731         {
1732           u2 index;
1733           ConstantPoolCacheEntry* cache;
1734           index = Bytes::get_native_u2(pc+1);
1735 
1736           // QQQ Need to make this as inlined as possible. Probably need to
1737           // split all the bytecode cases out so c++ compiler has a chance
1738           // for constant prop to fold everything possible away.
1739 
1740           cache = cp->entry_at(index);
1741           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1742             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1743                     handle_exception);
1744             cache = cp->entry_at(index);
1745           }
1746 
1747 #ifdef VM_JVMTI
1748           if (_jvmti_interp_events) {
1749             int *count_addr;
1750             oop obj;
1751             // Check to see if a field modification watch has been set
1752             // before we take the time to call into the VM.
1753             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1754             if ( *count_addr > 0 ) {
1755               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1756                 obj = (oop)NULL;
1757               } else {
1758                 obj = (oop) STACK_OBJECT(-1);
1759                 VERIFY_OOP(obj);
1760               }
1761               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1762                                           obj,
1763                                           cache),
1764                                           handle_exception);
1765             }
1766           }
1767 #endif /* VM_JVMTI */
1768 
1769           oop obj;
1770           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1771             obj = (oop) cache->f1();
1772             MORE_STACK(1);  // Assume single slot push
1773           } else {
1774             obj = (oop) STACK_OBJECT(-1);
1775             CHECK_NULL(obj);
1776           }
1777 
1778           //
1779           // Now store the result on the stack
1780           //
1781           TosState tos_type = cache->flag_state();
1782           int field_offset = cache->f2();
1783           if (cache->is_volatile()) {
1784             if (tos_type == atos) {
1785               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1786               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1787             } else if (tos_type == itos) {
1788               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1789             } else if (tos_type == ltos) {
1790               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1791               MORE_STACK(1);
1792             } else if (tos_type == btos) {
1793               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1794             } else if (tos_type == ctos) {
1795               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1796             } else if (tos_type == stos) {
1797               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1798             } else if (tos_type == ftos) {
1799               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1800             } else {
1801               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1802               MORE_STACK(1);
1803             }
1804           } else {
1805             if (tos_type == atos) {
1806               VERIFY_OOP(obj->obj_field(field_offset));
1807               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1808             } else if (tos_type == itos) {
1809               SET_STACK_INT(obj->int_field(field_offset), -1);
1810             } else if (tos_type == ltos) {
1811               SET_STACK_LONG(obj->long_field(field_offset), 0);
1812               MORE_STACK(1);
1813             } else if (tos_type == btos) {
1814               SET_STACK_INT(obj->byte_field(field_offset), -1);
1815             } else if (tos_type == ctos) {
1816               SET_STACK_INT(obj->char_field(field_offset), -1);
1817             } else if (tos_type == stos) {
1818               SET_STACK_INT(obj->short_field(field_offset), -1);
1819             } else if (tos_type == ftos) {
1820               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1821             } else {
1822               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1823               MORE_STACK(1);
1824             }
1825           }
1826 
1827           UPDATE_PC_AND_CONTINUE(3);
1828          }
1829 
1830       CASE(_putfield):
1831       CASE(_putstatic):
1832         {
1833           u2 index = Bytes::get_native_u2(pc+1);
1834           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1835           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1836             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1837                     handle_exception);
1838             cache = cp->entry_at(index);
1839           }
1840 
1841 #ifdef VM_JVMTI
1842           if (_jvmti_interp_events) {
1843             int *count_addr;
1844             oop obj;
1845             // Check to see if a field modification watch has been set
1846             // before we take the time to call into the VM.
1847             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1848             if ( *count_addr > 0 ) {
1849               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1850                 obj = (oop)NULL;
1851               }
1852               else {
1853                 if (cache->is_long() || cache->is_double()) {
1854                   obj = (oop) STACK_OBJECT(-3);
1855                 } else {
1856                   obj = (oop) STACK_OBJECT(-2);
1857                 }
1858                 VERIFY_OOP(obj);
1859               }
1860 
1861               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
1862                                           obj,
1863                                           cache,
1864                                           (jvalue *)STACK_SLOT(-1)),
1865                                           handle_exception);
1866             }
1867           }
1868 #endif /* VM_JVMTI */
1869 
1870           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1871           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1872 
1873           oop obj;
1874           int count;
1875           TosState tos_type = cache->flag_state();
1876 
1877           count = -1;
1878           if (tos_type == ltos || tos_type == dtos) {
1879             --count;
1880           }
1881           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1882             obj = (oop) cache->f1();
1883           } else {
1884             --count;
1885             obj = (oop) STACK_OBJECT(count);
1886             CHECK_NULL(obj);
1887           }
1888 
1889           //
1890           // Now store the result
1891           //
1892           int field_offset = cache->f2();
1893           if (cache->is_volatile()) {
1894             if (tos_type == itos) {
1895               obj->release_int_field_put(field_offset, STACK_INT(-1));
1896             } else if (tos_type == atos) {
1897               VERIFY_OOP(STACK_OBJECT(-1));
1898               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
1899               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1900             } else if (tos_type == btos) {
1901               obj->release_byte_field_put(field_offset, STACK_INT(-1));
1902             } else if (tos_type == ltos) {
1903               obj->release_long_field_put(field_offset, STACK_LONG(-1));
1904             } else if (tos_type == ctos) {
1905               obj->release_char_field_put(field_offset, STACK_INT(-1));
1906             } else if (tos_type == stos) {
1907               obj->release_short_field_put(field_offset, STACK_INT(-1));
1908             } else if (tos_type == ftos) {
1909               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1910             } else {
1911               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1912             }
1913             OrderAccess::storeload();
1914           } else {
1915             if (tos_type == itos) {
1916               obj->int_field_put(field_offset, STACK_INT(-1));
1917             } else if (tos_type == atos) {
1918               VERIFY_OOP(STACK_OBJECT(-1));
1919               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
1920               OrderAccess::release_store(&BYTE_MAP_BASE[(uintptr_t)obj >> CardTableModRefBS::card_shift], 0);
1921             } else if (tos_type == btos) {
1922               obj->byte_field_put(field_offset, STACK_INT(-1));
1923             } else if (tos_type == ltos) {
1924               obj->long_field_put(field_offset, STACK_LONG(-1));
1925             } else if (tos_type == ctos) {
1926               obj->char_field_put(field_offset, STACK_INT(-1));
1927             } else if (tos_type == stos) {
1928               obj->short_field_put(field_offset, STACK_INT(-1));
1929             } else if (tos_type == ftos) {
1930               obj->float_field_put(field_offset, STACK_FLOAT(-1));
1931             } else {
1932               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1933             }
1934           }
1935 
1936           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1937         }
1938 
1939       CASE(_new): {
1940         u2 index = Bytes::get_Java_u2(pc+1);
1941         constantPoolOop constants = istate->method()->constants();
1942         if (!constants->tag_at(index).is_unresolved_klass()) {
1943           // Make sure klass is initialized and doesn't have a finalizer
1944           oop entry = (klassOop) *constants->obj_at_addr(index);
1945           assert(entry->is_klass(), "Should be resolved klass");
1946           klassOop k_entry = (klassOop) entry;
1947           assert(k_entry->klass_part()->oop_is_instance(), "Should be instanceKlass");
1948           instanceKlass* ik = (instanceKlass*) k_entry->klass_part();
1949           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
1950             size_t obj_size = ik->size_helper();
1951             oop result = NULL;
1952             // If the TLAB isn't pre-zeroed then we'll have to do it
1953             bool need_zero = !ZeroTLAB;
1954             if (UseTLAB) {
1955               result = (oop) THREAD->tlab().allocate(obj_size);
1956             }
1957             if (result == NULL) {
1958               need_zero = true;
1959               // Try allocate in shared eden
1960         retry:
1961               HeapWord* compare_to = *Universe::heap()->top_addr();
1962               HeapWord* new_top = compare_to + obj_size;
1963               if (new_top <= *Universe::heap()->end_addr()) {
1964                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
1965                   goto retry;
1966                 }
1967                 result = (oop) compare_to;
1968               }
1969             }
1970             if (result != NULL) {
1971               // Initialize object (if nonzero size and need) and then the header
1972               if (need_zero ) {
1973                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
1974                 obj_size -= sizeof(oopDesc) / oopSize;
1975                 if (obj_size > 0 ) {
1976                   memset(to_zero, 0, obj_size * HeapWordSize);
1977                 }
1978               }
1979               if (UseBiasedLocking) {
1980                 result->set_mark(ik->prototype_header());
1981               } else {
1982                 result->set_mark(markOopDesc::prototype());
1983               }
1984               result->set_klass_gap(0);
1985               result->set_klass(k_entry);
1986               SET_STACK_OBJECT(result, 0);
1987               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1988             }
1989           }
1990         }
1991         // Slow case allocation
1992         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1993                 handle_exception);
1994         SET_STACK_OBJECT(THREAD->vm_result(), 0);
1995         THREAD->set_vm_result(NULL);
1996         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1997       }
1998       CASE(_anewarray): {
1999         u2 index = Bytes::get_Java_u2(pc+1);
2000         jint size = STACK_INT(-1);
2001         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2002                 handle_exception);
2003         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2004         THREAD->set_vm_result(NULL);
2005         UPDATE_PC_AND_CONTINUE(3);
2006       }
2007       CASE(_multianewarray): {
2008         jint dims = *(pc+3);
2009         jint size = STACK_INT(-1);
2010         // stack grows down, dimensions are up!
2011         jint *dimarray =
2012                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2013                                       Interpreter::stackElementWords-1];
2014         //adjust pointer to start of stack element
2015         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2016                 handle_exception);
2017         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2018         THREAD->set_vm_result(NULL);
2019         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2020       }
2021       CASE(_checkcast):
2022           if (STACK_OBJECT(-1) != NULL) {
2023             VERIFY_OOP(STACK_OBJECT(-1));
2024             u2 index = Bytes::get_Java_u2(pc+1);
2025             if (ProfileInterpreter) {
2026               // needs Profile_checkcast QQQ
2027               ShouldNotReachHere();
2028             }
2029             // Constant pool may have actual klass or unresolved klass. If it is
2030             // unresolved we must resolve it
2031             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2032               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2033             }
2034             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
2035             klassOop objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2036             //
2037             // Check for compatibilty. This check must not GC!!
2038             // Seems way more expensive now that we must dispatch
2039             //
2040             if (objKlassOop != klassOf &&
2041                 !objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2042               ResourceMark rm(THREAD);
2043               const char* objName = Klass::cast(objKlassOop)->external_name();
2044               const char* klassName = Klass::cast(klassOf)->external_name();
2045               char* message = SharedRuntime::generate_class_cast_message(
2046                 objName, klassName);
2047               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2048             }
2049           } else {
2050             if (UncommonNullCast) {
2051 //              istate->method()->set_null_cast_seen();
2052 // [RGV] Not sure what to do here!
2053 
2054             }
2055           }
2056           UPDATE_PC_AND_CONTINUE(3);
2057 
2058       CASE(_instanceof):
2059           if (STACK_OBJECT(-1) == NULL) {
2060             SET_STACK_INT(0, -1);
2061           } else {
2062             VERIFY_OOP(STACK_OBJECT(-1));
2063             u2 index = Bytes::get_Java_u2(pc+1);
2064             // Constant pool may have actual klass or unresolved klass. If it is
2065             // unresolved we must resolve it
2066             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2067               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2068             }
2069             klassOop klassOf = (klassOop) *(METHOD->constants()->obj_at_addr(index));
2070             klassOop objKlassOop = STACK_OBJECT(-1)->klass();
2071             //
2072             // Check for compatibilty. This check must not GC!!
2073             // Seems way more expensive now that we must dispatch
2074             //
2075             if ( objKlassOop == klassOf || objKlassOop->klass_part()->is_subtype_of(klassOf)) {
2076               SET_STACK_INT(1, -1);
2077             } else {
2078               SET_STACK_INT(0, -1);
2079             }
2080           }
2081           UPDATE_PC_AND_CONTINUE(3);
2082 
2083       CASE(_ldc_w):
2084       CASE(_ldc):
2085         {
2086           u2 index;
2087           bool wide = false;
2088           int incr = 2; // frequent case
2089           if (opcode == Bytecodes::_ldc) {
2090             index = pc[1];
2091           } else {
2092             index = Bytes::get_Java_u2(pc+1);
2093             incr = 3;
2094             wide = true;
2095           }
2096 
2097           constantPoolOop constants = METHOD->constants();
2098           switch (constants->tag_at(index).value()) {
2099           case JVM_CONSTANT_Integer:
2100             SET_STACK_INT(constants->int_at(index), 0);
2101             break;
2102 
2103           case JVM_CONSTANT_Float:
2104             SET_STACK_FLOAT(constants->float_at(index), 0);
2105             break;
2106 
2107           case JVM_CONSTANT_String:
2108             VERIFY_OOP(constants->resolved_string_at(index));
2109             SET_STACK_OBJECT(constants->resolved_string_at(index), 0);
2110             break;
2111 
2112           case JVM_CONSTANT_Class:
2113             VERIFY_OOP(constants->resolved_klass_at(index)->klass_part()->java_mirror());
2114             SET_STACK_OBJECT(constants->resolved_klass_at(index)->klass_part()->java_mirror(), 0);
2115             break;
2116 
2117           case JVM_CONSTANT_UnresolvedString:
2118           case JVM_CONSTANT_UnresolvedClass:
2119           case JVM_CONSTANT_UnresolvedClassInError:
2120             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2121             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2122             THREAD->set_vm_result(NULL);
2123             break;
2124 
2125           default:  ShouldNotReachHere();
2126           }
2127           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2128         }
2129 
2130       CASE(_ldc2_w):
2131         {
2132           u2 index = Bytes::get_Java_u2(pc+1);
2133 
2134           constantPoolOop constants = METHOD->constants();
2135           switch (constants->tag_at(index).value()) {
2136 
2137           case JVM_CONSTANT_Long:
2138              SET_STACK_LONG(constants->long_at(index), 1);
2139             break;
2140 
2141           case JVM_CONSTANT_Double:
2142              SET_STACK_DOUBLE(constants->double_at(index), 1);
2143             break;
2144           default:  ShouldNotReachHere();
2145           }
2146           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2147         }
2148 
2149       CASE(_invokeinterface): {
2150         u2 index = Bytes::get_native_u2(pc+1);
2151 
2152         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2153         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2154 
2155         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2156         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2157           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2158                   handle_exception);
2159           cache = cp->entry_at(index);
2160         }
2161 
2162         istate->set_msg(call_method);
2163 
2164         // Special case of invokeinterface called for virtual method of
2165         // java.lang.Object.  See cpCacheOop.cpp for details.
2166         // This code isn't produced by javac, but could be produced by
2167         // another compliant java compiler.
2168         if (cache->is_methodInterface()) {
2169           methodOop callee;
2170           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2171           if (cache->is_vfinal()) {
2172             callee = (methodOop) cache->f2();
2173           } else {
2174             // get receiver
2175             int parms = cache->parameter_size();
2176             // Same comments as invokevirtual apply here
2177             VERIFY_OOP(STACK_OBJECT(-parms));
2178             instanceKlass* rcvrKlass = (instanceKlass*)
2179                                  STACK_OBJECT(-parms)->klass()->klass_part();
2180             callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2181           }
2182           istate->set_callee(callee);
2183           istate->set_callee_entry_point(callee->from_interpreted_entry());
2184 #ifdef VM_JVMTI
2185           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2186             istate->set_callee_entry_point(callee->interpreter_entry());
2187           }
2188 #endif /* VM_JVMTI */
2189           istate->set_bcp_advance(5);
2190           UPDATE_PC_AND_RETURN(0); // I'll be back...
2191         }
2192 
2193         // this could definitely be cleaned up QQQ
2194         methodOop callee;
2195         klassOop iclass = (klassOop)cache->f1();
2196         // instanceKlass* interface = (instanceKlass*) iclass->klass_part();
2197         // get receiver
2198         int parms = cache->parameter_size();
2199         oop rcvr = STACK_OBJECT(-parms);
2200         CHECK_NULL(rcvr);
2201         instanceKlass* int2 = (instanceKlass*) rcvr->klass()->klass_part();
2202         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2203         int i;
2204         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2205           if (ki->interface_klass() == iclass) break;
2206         }
2207         // If the interface isn't found, this class doesn't implement this
2208         // interface.  The link resolver checks this but only for the first
2209         // time this interface is called.
2210         if (i == int2->itable_length()) {
2211           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2212         }
2213         int mindex = cache->f2();
2214         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2215         callee = im[mindex].method();
2216         if (callee == NULL) {
2217           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2218         }
2219 
2220         istate->set_callee(callee);
2221         istate->set_callee_entry_point(callee->from_interpreted_entry());
2222 #ifdef VM_JVMTI
2223         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2224           istate->set_callee_entry_point(callee->interpreter_entry());
2225         }
2226 #endif /* VM_JVMTI */
2227         istate->set_bcp_advance(5);
2228         UPDATE_PC_AND_RETURN(0); // I'll be back...
2229       }
2230 
2231       CASE(_invokevirtual):
2232       CASE(_invokespecial):
2233       CASE(_invokestatic): {
2234         u2 index = Bytes::get_native_u2(pc+1);
2235 
2236         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2237         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2238         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2239 
2240         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2241           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2242                   handle_exception);
2243           cache = cp->entry_at(index);
2244         }
2245 
2246         istate->set_msg(call_method);
2247         {
2248           methodOop callee;
2249           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2250             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2251             if (cache->is_vfinal()) callee = (methodOop) cache->f2();
2252             else {
2253               // get receiver
2254               int parms = cache->parameter_size();
2255               // this works but needs a resourcemark and seems to create a vtable on every call:
2256               // methodOop callee = rcvr->klass()->klass_part()->vtable()->method_at(cache->f2());
2257               //
2258               // this fails with an assert
2259               // instanceKlass* rcvrKlass = instanceKlass::cast(STACK_OBJECT(-parms)->klass());
2260               // but this works
2261               VERIFY_OOP(STACK_OBJECT(-parms));
2262               instanceKlass* rcvrKlass = (instanceKlass*) STACK_OBJECT(-parms)->klass()->klass_part();
2263               /*
2264                 Executing this code in java.lang.String:
2265                     public String(char value[]) {
2266                           this.count = value.length;
2267                           this.value = (char[])value.clone();
2268                      }
2269 
2270                  a find on rcvr->klass()->klass_part() reports:
2271                  {type array char}{type array class}
2272                   - klass: {other class}
2273 
2274                   but using instanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2275                   because rcvr->klass()->klass_part()->oop_is_instance() == 0
2276                   However it seems to have a vtable in the right location. Huh?
2277 
2278               */
2279               callee = (methodOop) rcvrKlass->start_of_vtable()[ cache->f2()];
2280             }
2281           } else {
2282             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2283               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2284             }
2285             callee = (methodOop) cache->f1();
2286           }
2287 
2288           istate->set_callee(callee);
2289           istate->set_callee_entry_point(callee->from_interpreted_entry());
2290 #ifdef VM_JVMTI
2291           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2292             istate->set_callee_entry_point(callee->interpreter_entry());
2293           }
2294 #endif /* VM_JVMTI */
2295           istate->set_bcp_advance(3);
2296           UPDATE_PC_AND_RETURN(0); // I'll be back...
2297         }
2298       }
2299 
2300       /* Allocate memory for a new java object. */
2301 
2302       CASE(_newarray): {
2303         BasicType atype = (BasicType) *(pc+1);
2304         jint size = STACK_INT(-1);
2305         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2306                 handle_exception);
2307         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2308         THREAD->set_vm_result(NULL);
2309 
2310         UPDATE_PC_AND_CONTINUE(2);
2311       }
2312 
2313       /* Throw an exception. */
2314 
2315       CASE(_athrow): {
2316           oop except_oop = STACK_OBJECT(-1);
2317           CHECK_NULL(except_oop);
2318           // set pending_exception so we use common code
2319           THREAD->set_pending_exception(except_oop, NULL, 0);
2320           goto handle_exception;
2321       }
2322 
2323       /* goto and jsr. They are exactly the same except jsr pushes
2324        * the address of the next instruction first.
2325        */
2326 
2327       CASE(_jsr): {
2328           /* push bytecode index on stack */
2329           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2330           MORE_STACK(1);
2331           /* FALL THROUGH */
2332       }
2333 
2334       CASE(_goto):
2335       {
2336           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2337           address branch_pc = pc;
2338           UPDATE_PC(offset);
2339           DO_BACKEDGE_CHECKS(offset, branch_pc);
2340           CONTINUE;
2341       }
2342 
2343       CASE(_jsr_w): {
2344           /* push return address on the stack */
2345           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2346           MORE_STACK(1);
2347           /* FALL THROUGH */
2348       }
2349 
2350       CASE(_goto_w):
2351       {
2352           int32_t offset = Bytes::get_Java_u4(pc + 1);
2353           address branch_pc = pc;
2354           UPDATE_PC(offset);
2355           DO_BACKEDGE_CHECKS(offset, branch_pc);
2356           CONTINUE;
2357       }
2358 
2359       /* return from a jsr or jsr_w */
2360 
2361       CASE(_ret): {
2362           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2363           UPDATE_PC_AND_CONTINUE(0);
2364       }
2365 
2366       /* debugger breakpoint */
2367 
2368       CASE(_breakpoint): {
2369           Bytecodes::Code original_bytecode;
2370           DECACHE_STATE();
2371           SET_LAST_JAVA_FRAME();
2372           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2373                               METHOD, pc);
2374           RESET_LAST_JAVA_FRAME();
2375           CACHE_STATE();
2376           if (THREAD->has_pending_exception()) goto handle_exception;
2377             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2378                                                     handle_exception);
2379 
2380           opcode = (jubyte)original_bytecode;
2381           goto opcode_switch;
2382       }
2383 
2384       DEFAULT:
2385 #ifdef ZERO
2386           // Some zero configurations use the C++ interpreter as a
2387           // fallback interpreter and have support for platform
2388           // specific fast bytecodes which aren't supported here, so
2389           // redispatch to the equivalent non-fast bytecode when they
2390           // are encountered.
2391           if (Bytecodes::is_defined((Bytecodes::Code)opcode)) {
2392               opcode = (jubyte)Bytecodes::java_code((Bytecodes::Code)opcode);
2393               goto opcode_switch;
2394           }
2395 #endif
2396           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2397                         Bytecodes::name((Bytecodes::Code)opcode)));
2398           goto finish;
2399 
2400       } /* switch(opc) */
2401 
2402 
2403 #ifdef USELABELS
2404     check_for_exception:
2405 #endif
2406     {
2407       if (!THREAD->has_pending_exception()) {
2408         CONTINUE;
2409       }
2410       /* We will be gcsafe soon, so flush our state. */
2411       DECACHE_PC();
2412       goto handle_exception;
2413     }
2414   do_continue: ;
2415 
2416   } /* while (1) interpreter loop */
2417 
2418 
2419   // An exception exists in the thread state see whether this activation can handle it
2420   handle_exception: {
2421 
2422     HandleMarkCleaner __hmc(THREAD);
2423     Handle except_oop(THREAD, THREAD->pending_exception());
2424     // Prevent any subsequent HandleMarkCleaner in the VM
2425     // from freeing the except_oop handle.
2426     HandleMark __hm(THREAD);
2427 
2428     THREAD->clear_pending_exception();
2429     assert(except_oop(), "No exception to process");
2430     intptr_t continuation_bci;
2431     // expression stack is emptied
2432     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2433     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2434             handle_exception);
2435 
2436     except_oop = (oop) THREAD->vm_result();
2437     THREAD->set_vm_result(NULL);
2438     if (continuation_bci >= 0) {
2439       // Place exception on top of stack
2440       SET_STACK_OBJECT(except_oop(), 0);
2441       MORE_STACK(1);
2442       pc = METHOD->code_base() + continuation_bci;
2443       if (TraceExceptions) {
2444         ttyLocker ttyl;
2445         ResourceMark rm;
2446         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2447         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2448         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2449                       pc - (intptr_t)METHOD->code_base(),
2450                       continuation_bci, THREAD);
2451       }
2452       // for AbortVMOnException flag
2453       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2454       goto run;
2455     }
2456     if (TraceExceptions) {
2457       ttyLocker ttyl;
2458       ResourceMark rm;
2459       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2460       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2461       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2462                     pc  - (intptr_t) METHOD->code_base(),
2463                     THREAD);
2464     }
2465     // for AbortVMOnException flag
2466     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2467     // No handler in this activation, unwind and try again
2468     THREAD->set_pending_exception(except_oop(), NULL, 0);
2469     goto handle_return;
2470   }  /* handle_exception: */
2471 
2472 
2473 
2474   // Return from an interpreter invocation with the result of the interpretation
2475   // on the top of the Java Stack (or a pending exception)
2476 
2477 handle_Pop_Frame:
2478 
2479   // We don't really do anything special here except we must be aware
2480   // that we can get here without ever locking the method (if sync).
2481   // Also we skip the notification of the exit.
2482 
2483   istate->set_msg(popping_frame);
2484   // Clear pending so while the pop is in process
2485   // we don't start another one if a call_vm is done.
2486   THREAD->clr_pop_frame_pending();
2487   // Let interpreter (only) see the we're in the process of popping a frame
2488   THREAD->set_pop_frame_in_process();
2489 
2490 handle_return:
2491   {
2492     DECACHE_STATE();
2493 
2494     bool suppress_error = istate->msg() == popping_frame;
2495     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2496     Handle original_exception(THREAD, THREAD->pending_exception());
2497     Handle illegal_state_oop(THREAD, NULL);
2498 
2499     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2500     // in any following VM entries from freeing our live handles, but illegal_state_oop
2501     // isn't really allocated yet and so doesn't become live until later and
2502     // in unpredicatable places. Instead we must protect the places where we enter the
2503     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2504     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2505     // unfortunately isn't possible.
2506 
2507     THREAD->clear_pending_exception();
2508 
2509     //
2510     // As far as we are concerned we have returned. If we have a pending exception
2511     // that will be returned as this invocation's result. However if we get any
2512     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2513     // will be our final result (i.e. monitor exception trumps a pending exception).
2514     //
2515 
2516     // If we never locked the method (or really passed the point where we would have),
2517     // there is no need to unlock it (or look for other monitors), since that
2518     // could not have happened.
2519 
2520     if (THREAD->do_not_unlock()) {
2521 
2522       // Never locked, reset the flag now because obviously any caller must
2523       // have passed their point of locking for us to have gotten here.
2524 
2525       THREAD->clr_do_not_unlock();
2526     } else {
2527       // At this point we consider that we have returned. We now check that the
2528       // locks were properly block structured. If we find that they were not
2529       // used properly we will return with an illegal monitor exception.
2530       // The exception is checked by the caller not the callee since this
2531       // checking is considered to be part of the invocation and therefore
2532       // in the callers scope (JVM spec 8.13).
2533       //
2534       // Another weird thing to watch for is if the method was locked
2535       // recursively and then not exited properly. This means we must
2536       // examine all the entries in reverse time(and stack) order and
2537       // unlock as we find them. If we find the method monitor before
2538       // we are at the initial entry then we should throw an exception.
2539       // It is not clear the template based interpreter does this
2540       // correctly
2541 
2542       BasicObjectLock* base = istate->monitor_base();
2543       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2544       bool method_unlock_needed = METHOD->is_synchronized();
2545       // We know the initial monitor was used for the method don't check that
2546       // slot in the loop
2547       if (method_unlock_needed) base--;
2548 
2549       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2550       while (end < base) {
2551         oop lockee = end->obj();
2552         if (lockee != NULL) {
2553           BasicLock* lock = end->lock();
2554           markOop header = lock->displaced_header();
2555           end->set_obj(NULL);
2556           // If it isn't recursive we either must swap old header or call the runtime
2557           if (header != NULL) {
2558             if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2559               // restore object for the slow case
2560               end->set_obj(lockee);
2561               {
2562                 // Prevent any HandleMarkCleaner from freeing our live handles
2563                 HandleMark __hm(THREAD);
2564                 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2565               }
2566             }
2567           }
2568           // One error is plenty
2569           if (illegal_state_oop() == NULL && !suppress_error) {
2570             {
2571               // Prevent any HandleMarkCleaner from freeing our live handles
2572               HandleMark __hm(THREAD);
2573               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2574             }
2575             assert(THREAD->has_pending_exception(), "Lost our exception!");
2576             illegal_state_oop = THREAD->pending_exception();
2577             THREAD->clear_pending_exception();
2578           }
2579         }
2580         end++;
2581       }
2582       // Unlock the method if needed
2583       if (method_unlock_needed) {
2584         if (base->obj() == NULL) {
2585           // The method is already unlocked this is not good.
2586           if (illegal_state_oop() == NULL && !suppress_error) {
2587             {
2588               // Prevent any HandleMarkCleaner from freeing our live handles
2589               HandleMark __hm(THREAD);
2590               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2591             }
2592             assert(THREAD->has_pending_exception(), "Lost our exception!");
2593             illegal_state_oop = THREAD->pending_exception();
2594             THREAD->clear_pending_exception();
2595           }
2596         } else {
2597           //
2598           // The initial monitor is always used for the method
2599           // However if that slot is no longer the oop for the method it was unlocked
2600           // and reused by something that wasn't unlocked!
2601           //
2602           // deopt can come in with rcvr dead because c2 knows
2603           // its value is preserved in the monitor. So we can't use locals[0] at all
2604           // and must use first monitor slot.
2605           //
2606           oop rcvr = base->obj();
2607           if (rcvr == NULL) {
2608             if (!suppress_error) {
2609               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2610               illegal_state_oop = THREAD->pending_exception();
2611               THREAD->clear_pending_exception();
2612             }
2613           } else {
2614             BasicLock* lock = base->lock();
2615             markOop header = lock->displaced_header();
2616             base->set_obj(NULL);
2617             // If it isn't recursive we either must swap old header or call the runtime
2618             if (header != NULL) {
2619               if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2620                 // restore object for the slow case
2621                 base->set_obj(rcvr);
2622                 {
2623                   // Prevent any HandleMarkCleaner from freeing our live handles
2624                   HandleMark __hm(THREAD);
2625                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2626                 }
2627                 if (THREAD->has_pending_exception()) {
2628                   if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2629                   THREAD->clear_pending_exception();
2630                 }
2631               }
2632             }
2633           }
2634         }
2635       }
2636     }
2637 
2638     //
2639     // Notify jvmti/jvmdi
2640     //
2641     // NOTE: we do not notify a method_exit if we have a pending exception,
2642     // including an exception we generate for unlocking checks.  In the former
2643     // case, JVMDI has already been notified by our call for the exception handler
2644     // and in both cases as far as JVMDI is concerned we have already returned.
2645     // If we notify it again JVMDI will be all confused about how many frames
2646     // are still on the stack (4340444).
2647     //
2648     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2649     // method_exit events whenever we leave an activation unless it was done
2650     // for popframe. This is nothing like jvmdi. However we are passing the
2651     // tests at the moment (apparently because they are jvmdi based) so rather
2652     // than change this code and possibly fail tests we will leave it alone
2653     // (with this note) in anticipation of changing the vm and the tests
2654     // simultaneously.
2655 
2656 
2657     //
2658     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2659 
2660 
2661 
2662 #ifdef VM_JVMTI
2663       if (_jvmti_interp_events) {
2664         // Whenever JVMTI puts a thread in interp_only_mode, method
2665         // entry/exit events are sent for that thread to track stack depth.
2666         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2667           {
2668             // Prevent any HandleMarkCleaner from freeing our live handles
2669             HandleMark __hm(THREAD);
2670             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2671           }
2672         }
2673       }
2674 #endif /* VM_JVMTI */
2675 
2676     //
2677     // See if we are returning any exception
2678     // A pending exception that was pending prior to a possible popping frame
2679     // overrides the popping frame.
2680     //
2681     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2682     if (illegal_state_oop() != NULL || original_exception() != NULL) {
2683       // inform the frame manager we have no result
2684       istate->set_msg(throwing_exception);
2685       if (illegal_state_oop() != NULL)
2686         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2687       else
2688         THREAD->set_pending_exception(original_exception(), NULL, 0);
2689       istate->set_return_kind((Bytecodes::Code)opcode);
2690       UPDATE_PC_AND_RETURN(0);
2691     }
2692 
2693     if (istate->msg() == popping_frame) {
2694       // Make it simpler on the assembly code and set the message for the frame pop.
2695       // returns
2696       if (istate->prev() == NULL) {
2697         // We must be returning to a deoptimized frame (because popframe only happens between
2698         // two interpreted frames). We need to save the current arguments in C heap so that
2699         // the deoptimized frame when it restarts can copy the arguments to its expression
2700         // stack and re-execute the call. We also have to notify deoptimization that this
2701         // has occurred and to pick the preserved args copy them to the deoptimized frame's
2702         // java expression stack. Yuck.
2703         //
2704         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2705                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2706         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2707       }
2708       THREAD->clr_pop_frame_in_process();
2709     }
2710 
2711     // Normal return
2712     // Advance the pc and return to frame manager
2713     istate->set_msg(return_from_method);
2714     istate->set_return_kind((Bytecodes::Code)opcode);
2715     UPDATE_PC_AND_RETURN(1);
2716   } /* handle_return: */
2717 
2718 // This is really a fatal error return
2719 
2720 finish:
2721   DECACHE_TOS();
2722   DECACHE_PC();
2723 
2724   return;
2725 }
2726 
2727 /*
2728  * All the code following this point is only produced once and is not present
2729  * in the JVMTI version of the interpreter
2730 */
2731 
2732 #ifndef VM_JVMTI
2733 
2734 // This constructor should only be used to contruct the object to signal
2735 // interpreter initialization. All other instances should be created by
2736 // the frame manager.
2737 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2738   if (msg != initialize) ShouldNotReachHere();
2739   _msg = msg;
2740   _self_link = this;
2741   _prev_link = NULL;
2742 }
2743 
2744 // Inline static functions for Java Stack and Local manipulation
2745 
2746 // The implementations are platform dependent. We have to worry about alignment
2747 // issues on some machines which can change on the same platform depending on
2748 // whether it is an LP64 machine also.
2749 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
2750   return (address) tos[Interpreter::expr_index_at(-offset)];
2751 }
2752 
2753 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
2754   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
2755 }
2756 
2757 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
2758   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
2759 }
2760 
2761 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
2762   return (oop)tos [Interpreter::expr_index_at(-offset)];
2763 }
2764 
2765 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
2766   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
2767 }
2768 
2769 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
2770   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
2771 }
2772 
2773 // only used for value types
2774 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
2775                                                         int offset) {
2776   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2777 }
2778 
2779 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
2780                                                        int offset) {
2781   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2782 }
2783 
2784 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
2785                                                          int offset) {
2786   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2787 }
2788 
2789 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
2790                                                           int offset) {
2791   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
2792 }
2793 
2794 // needs to be platform dep for the 32 bit platforms.
2795 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
2796                                                           int offset) {
2797   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
2798 }
2799 
2800 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
2801                                               address addr, int offset) {
2802   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
2803                         ((VMJavaVal64*)addr)->d);
2804 }
2805 
2806 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
2807                                                         int offset) {
2808   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2809   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
2810 }
2811 
2812 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
2813                                             address addr, int offset) {
2814   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
2815   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
2816                         ((VMJavaVal64*)addr)->l;
2817 }
2818 
2819 // Locals
2820 
2821 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
2822   return (address)locals[Interpreter::local_index_at(-offset)];
2823 }
2824 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
2825   return (jint)locals[Interpreter::local_index_at(-offset)];
2826 }
2827 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
2828   return (jfloat)locals[Interpreter::local_index_at(-offset)];
2829 }
2830 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
2831   return (oop)locals[Interpreter::local_index_at(-offset)];
2832 }
2833 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
2834   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
2835 }
2836 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
2837   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
2838 }
2839 
2840 // Returns the address of locals value.
2841 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
2842   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2843 }
2844 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
2845   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
2846 }
2847 
2848 // Used for local value or returnAddress
2849 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
2850                                    address value, int offset) {
2851   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
2852 }
2853 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
2854                                    jint value, int offset) {
2855   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
2856 }
2857 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
2858                                    jfloat value, int offset) {
2859   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
2860 }
2861 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
2862                                    oop value, int offset) {
2863   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
2864 }
2865 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
2866                                    jdouble value, int offset) {
2867   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
2868 }
2869 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
2870                                    jlong value, int offset) {
2871   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
2872 }
2873 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
2874                                    address addr, int offset) {
2875   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
2876 }
2877 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
2878                                    address addr, int offset) {
2879   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
2880 }
2881 
2882 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
2883                           intptr_t* locals, int locals_offset) {
2884   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
2885   locals[Interpreter::local_index_at(-locals_offset)] = value;
2886 }
2887 
2888 
2889 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
2890                                    int to_offset) {
2891   tos[Interpreter::expr_index_at(-to_offset)] =
2892                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
2893 }
2894 
2895 void BytecodeInterpreter::dup(intptr_t *tos) {
2896   copy_stack_slot(tos, -1, 0);
2897 }
2898 void BytecodeInterpreter::dup2(intptr_t *tos) {
2899   copy_stack_slot(tos, -2, 0);
2900   copy_stack_slot(tos, -1, 1);
2901 }
2902 
2903 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
2904   /* insert top word two down */
2905   copy_stack_slot(tos, -1, 0);
2906   copy_stack_slot(tos, -2, -1);
2907   copy_stack_slot(tos, 0, -2);
2908 }
2909 
2910 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
2911   /* insert top word three down  */
2912   copy_stack_slot(tos, -1, 0);
2913   copy_stack_slot(tos, -2, -1);
2914   copy_stack_slot(tos, -3, -2);
2915   copy_stack_slot(tos, 0, -3);
2916 }
2917 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
2918   /* insert top 2 slots three down */
2919   copy_stack_slot(tos, -1, 1);
2920   copy_stack_slot(tos, -2, 0);
2921   copy_stack_slot(tos, -3, -1);
2922   copy_stack_slot(tos, 1, -2);
2923   copy_stack_slot(tos, 0, -3);
2924 }
2925 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
2926   /* insert top 2 slots four down */
2927   copy_stack_slot(tos, -1, 1);
2928   copy_stack_slot(tos, -2, 0);
2929   copy_stack_slot(tos, -3, -1);
2930   copy_stack_slot(tos, -4, -2);
2931   copy_stack_slot(tos, 1, -3);
2932   copy_stack_slot(tos, 0, -4);
2933 }
2934 
2935 
2936 void BytecodeInterpreter::swap(intptr_t *tos) {
2937   // swap top two elements
2938   intptr_t val = tos[Interpreter::expr_index_at(1)];
2939   // Copy -2 entry to -1
2940   copy_stack_slot(tos, -2, -1);
2941   // Store saved -1 entry into -2
2942   tos[Interpreter::expr_index_at(2)] = val;
2943 }
2944 // --------------------------------------------------------------------------------
2945 // Non-product code
2946 #ifndef PRODUCT
2947 
2948 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
2949   switch (msg) {
2950      case BytecodeInterpreter::no_request:  return("no_request");
2951      case BytecodeInterpreter::initialize:  return("initialize");
2952      // status message to C++ interpreter
2953      case BytecodeInterpreter::method_entry:  return("method_entry");
2954      case BytecodeInterpreter::method_resume:  return("method_resume");
2955      case BytecodeInterpreter::got_monitors:  return("got_monitors");
2956      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
2957      // requests to frame manager from C++ interpreter
2958      case BytecodeInterpreter::call_method:  return("call_method");
2959      case BytecodeInterpreter::return_from_method:  return("return_from_method");
2960      case BytecodeInterpreter::more_monitors:  return("more_monitors");
2961      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
2962      case BytecodeInterpreter::popping_frame:  return("popping_frame");
2963      case BytecodeInterpreter::do_osr:  return("do_osr");
2964      // deopt
2965      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
2966      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
2967      default: return("BAD MSG");
2968   }
2969 }
2970 void
2971 BytecodeInterpreter::print() {
2972   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
2973   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
2974   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
2975   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
2976   {
2977     ResourceMark rm;
2978     char *method_name = _method->name_and_sig_as_C_string();
2979     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
2980   }
2981   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
2982   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
2983   tty->print_cr("msg: %s", C_msg(this->_msg));
2984   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
2985   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
2986   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
2987   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
2988   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
2989   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
2990   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
2991   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
2992   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
2993   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
2994   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
2995 #ifdef SPARC
2996   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
2997   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
2998   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
2999   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3000 #endif
3001 #if defined(IA64) && !defined(ZERO)
3002   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3003 #endif // IA64 && !ZERO
3004   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3005 }
3006 
3007 extern "C" {
3008     void PI(uintptr_t arg) {
3009         ((BytecodeInterpreter*)arg)->print();
3010     }
3011 }
3012 #endif // PRODUCT
3013 
3014 #endif // JVMTI
3015 #endif // CC_INTERP