1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/task.hpp"
  31 #include "runtime/threadCritical.hpp"
  32 #include "utilities/ostream.hpp"
  33 #ifdef TARGET_OS_FAMILY_linux
  34 # include "os_linux.inline.hpp"
  35 #endif
  36 #ifdef TARGET_OS_FAMILY_solaris
  37 # include "os_solaris.inline.hpp"
  38 #endif
  39 #ifdef TARGET_OS_FAMILY_windows
  40 # include "os_windows.inline.hpp"
  41 #endif
  42 
  43 void* CHeapObj::operator new(size_t size){
  44   return (void *) AllocateHeap(size, "CHeapObj-new");
  45 }
  46 
  47 void CHeapObj::operator delete(void* p){
  48  FreeHeap(p);
  49 }
  50 
  51 void* StackObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  52 void  StackObj::operator delete(void* p)   { ShouldNotCallThis(); };
  53 void* _ValueObj::operator new(size_t size)  { ShouldNotCallThis(); return 0; };
  54 void  _ValueObj::operator delete(void* p)   { ShouldNotCallThis(); };
  55 
  56 void* ResourceObj::operator new(size_t size, allocation_type type) {
  57   address res;
  58   switch (type) {
  59    case C_HEAP:
  60     res = (address)AllocateHeap(size, "C_Heap: ResourceOBJ");
  61     DEBUG_ONLY(set_allocation_type(res, C_HEAP);)
  62     break;
  63    case RESOURCE_AREA:
  64     // new(size) sets allocation type RESOURCE_AREA.
  65     res = (address)operator new(size);
  66     break;
  67    default:
  68     ShouldNotReachHere();
  69   }
  70   return res;
  71 }
  72 
  73 void ResourceObj::operator delete(void* p) {
  74   assert(((ResourceObj *)p)->allocated_on_C_heap(),
  75          "delete only allowed for C_HEAP objects");
  76   DEBUG_ONLY(((ResourceObj *)p)->_allocation = (uintptr_t)badHeapOopVal;)
  77   FreeHeap(p);
  78 }
  79 
  80 #ifdef ASSERT
  81 void ResourceObj::set_allocation_type(address res, allocation_type type) {
  82     // Set allocation type in the resource object
  83     uintptr_t allocation = (uintptr_t)res;
  84     assert((allocation & allocation_mask) == 0, "address should be aligned to 4 bytes at least");
  85     assert(type <= allocation_mask, "incorrect allocation type");
  86     ((ResourceObj *)res)->_allocation = ~(allocation + type);
  87 }
  88 
  89 ResourceObj::allocation_type ResourceObj::get_allocation_type() const {
  90     assert(~(_allocation | allocation_mask) == (uintptr_t)this, "lost resource object");
  91     return (allocation_type)((~_allocation) & allocation_mask);
  92 }
  93 
  94 ResourceObj::ResourceObj() { // default constructor
  95     if (~(_allocation | allocation_mask) != (uintptr_t)this) {
  96       set_allocation_type((address)this, STACK_OR_EMBEDDED);
  97     } else if (allocated_on_stack()) {
  98       // For some reason we got a value which looks like an allocation on stack.
  99       // Pass if it is really allocated on stack.
 100       assert(Thread::current()->on_local_stack((address)this),"should be on stack");
 101     } else {
 102       assert(allocated_on_res_area() || allocated_on_C_heap() || allocated_on_arena(),
 103              "allocation_type should be set by operator new()");
 104     }
 105 }
 106 
 107 ResourceObj::ResourceObj(const ResourceObj& r) { // default copy constructor
 108     // Used in ClassFileParser::parse_constant_pool_entries() for ClassFileStream.
 109     set_allocation_type((address)this, STACK_OR_EMBEDDED);
 110 }
 111 
 112 ResourceObj& ResourceObj::operator=(const ResourceObj& r) { // default copy assignment
 113     // Used in InlineTree::ok_to_inline() for WarmCallInfo.
 114     assert(allocated_on_stack(), "copy only into local");
 115     // Keep current _allocation value;
 116     return *this;
 117 }
 118 
 119 ResourceObj::~ResourceObj() {
 120     // allocated_on_C_heap() also checks that encoded (in _allocation) address == this.
 121     if (!allocated_on_C_heap()) {  // ResourceObj::delete() zaps _allocation for C_heap.
 122       _allocation = (uintptr_t)badHeapOopVal; // zap type
 123     }
 124 }
 125 #endif // ASSERT
 126 
 127 
 128 void trace_heap_malloc(size_t size, const char* name, void* p) {
 129   // A lock is not needed here - tty uses a lock internally
 130   tty->print_cr("Heap malloc " INTPTR_FORMAT " %7d %s", p, size, name == NULL ? "" : name);
 131 }
 132 
 133 
 134 void trace_heap_free(void* p) {
 135   // A lock is not needed here - tty uses a lock internally
 136   tty->print_cr("Heap free   " INTPTR_FORMAT, p);
 137 }
 138 
 139 bool warn_new_operator = false; // see vm_main
 140 
 141 //--------------------------------------------------------------------------------------
 142 // ChunkPool implementation
 143 
 144 // MT-safe pool of chunks to reduce malloc/free thrashing
 145 // NB: not using Mutex because pools are used before Threads are initialized
 146 class ChunkPool {
 147   Chunk*       _first;        // first cached Chunk; its first word points to next chunk
 148   size_t       _num_chunks;   // number of unused chunks in pool
 149   size_t       _num_used;     // number of chunks currently checked out
 150   const size_t _size;         // size of each chunk (must be uniform)
 151 
 152   // Our three static pools
 153   static ChunkPool* _large_pool;
 154   static ChunkPool* _medium_pool;
 155   static ChunkPool* _small_pool;
 156 
 157   // return first element or null
 158   void* get_first() {
 159     Chunk* c = _first;
 160     if (_first) {
 161       _first = _first->next();
 162       _num_chunks--;
 163     }
 164     return c;
 165   }
 166 
 167  public:
 168   // All chunks in a ChunkPool has the same size
 169    ChunkPool(size_t size) : _size(size) { _first = NULL; _num_chunks = _num_used = 0; }
 170 
 171   // Allocate a new chunk from the pool (might expand the pool)
 172   void* allocate(size_t bytes) {
 173     assert(bytes == _size, "bad size");
 174     void* p = NULL;
 175     { ThreadCritical tc;
 176       _num_used++;
 177       p = get_first();
 178       if (p == NULL) p = os::malloc(bytes);
 179     }
 180     if (p == NULL)
 181       vm_exit_out_of_memory(bytes, "ChunkPool::allocate");
 182 
 183     return p;
 184   }
 185 
 186   // Return a chunk to the pool
 187   void free(Chunk* chunk) {
 188     assert(chunk->length() + Chunk::aligned_overhead_size() == _size, "bad size");
 189     ThreadCritical tc;
 190     _num_used--;
 191 
 192     // Add chunk to list
 193     chunk->set_next(_first);
 194     _first = chunk;
 195     _num_chunks++;
 196   }
 197 
 198   // Prune the pool
 199   void free_all_but(size_t n) {
 200     // if we have more than n chunks, free all of them
 201     ThreadCritical tc;
 202     if (_num_chunks > n) {
 203       // free chunks at end of queue, for better locality
 204       Chunk* cur = _first;
 205       for (size_t i = 0; i < (n - 1) && cur != NULL; i++) cur = cur->next();
 206 
 207       if (cur != NULL) {
 208         Chunk* next = cur->next();
 209         cur->set_next(NULL);
 210         cur = next;
 211 
 212         // Free all remaining chunks
 213         while(cur != NULL) {
 214           next = cur->next();
 215           os::free(cur);
 216           _num_chunks--;
 217           cur = next;
 218         }
 219       }
 220     }
 221   }
 222 
 223   // Accessors to preallocated pool's
 224   static ChunkPool* large_pool()  { assert(_large_pool  != NULL, "must be initialized"); return _large_pool;  }
 225   static ChunkPool* medium_pool() { assert(_medium_pool != NULL, "must be initialized"); return _medium_pool; }
 226   static ChunkPool* small_pool()  { assert(_small_pool  != NULL, "must be initialized"); return _small_pool;  }
 227 
 228   static void initialize() {
 229     _large_pool  = new ChunkPool(Chunk::size        + Chunk::aligned_overhead_size());
 230     _medium_pool = new ChunkPool(Chunk::medium_size + Chunk::aligned_overhead_size());
 231     _small_pool  = new ChunkPool(Chunk::init_size   + Chunk::aligned_overhead_size());
 232   }
 233 
 234   static void clean() {
 235     enum { BlocksToKeep = 5 };
 236      _small_pool->free_all_but(BlocksToKeep);
 237      _medium_pool->free_all_but(BlocksToKeep);
 238      _large_pool->free_all_but(BlocksToKeep);
 239   }
 240 };
 241 
 242 ChunkPool* ChunkPool::_large_pool  = NULL;
 243 ChunkPool* ChunkPool::_medium_pool = NULL;
 244 ChunkPool* ChunkPool::_small_pool  = NULL;
 245 
 246 void chunkpool_init() {
 247   ChunkPool::initialize();
 248 }
 249 
 250 void
 251 Chunk::clean_chunk_pool() {
 252   ChunkPool::clean();
 253 }
 254 
 255 
 256 //--------------------------------------------------------------------------------------
 257 // ChunkPoolCleaner implementation
 258 //
 259 
 260 class ChunkPoolCleaner : public PeriodicTask {
 261   enum { CleaningInterval = 5000 };      // cleaning interval in ms
 262 
 263  public:
 264    ChunkPoolCleaner() : PeriodicTask(CleaningInterval) {}
 265    void task() {
 266      ChunkPool::clean();
 267    }
 268 };
 269 
 270 //--------------------------------------------------------------------------------------
 271 // Chunk implementation
 272 
 273 void* Chunk::operator new(size_t requested_size, size_t length) {
 274   // requested_size is equal to sizeof(Chunk) but in order for the arena
 275   // allocations to come out aligned as expected the size must be aligned
 276   // to expected arean alignment.
 277   // expect requested_size but if sizeof(Chunk) doesn't match isn't proper size we must align it.
 278   assert(ARENA_ALIGN(requested_size) == aligned_overhead_size(), "Bad alignment");
 279   size_t bytes = ARENA_ALIGN(requested_size) + length;
 280   switch (length) {
 281    case Chunk::size:        return ChunkPool::large_pool()->allocate(bytes);
 282    case Chunk::medium_size: return ChunkPool::medium_pool()->allocate(bytes);
 283    case Chunk::init_size:   return ChunkPool::small_pool()->allocate(bytes);
 284    default: {
 285      void *p =  os::malloc(bytes);
 286      if (p == NULL)
 287        vm_exit_out_of_memory(bytes, "Chunk::new");
 288      return p;
 289    }
 290   }
 291 }
 292 
 293 void Chunk::operator delete(void* p) {
 294   Chunk* c = (Chunk*)p;
 295   switch (c->length()) {
 296    case Chunk::size:        ChunkPool::large_pool()->free(c); break;
 297    case Chunk::medium_size: ChunkPool::medium_pool()->free(c); break;
 298    case Chunk::init_size:   ChunkPool::small_pool()->free(c); break;
 299    default:                 os::free(c);
 300   }
 301 }
 302 
 303 Chunk::Chunk(size_t length) : _len(length) {
 304   _next = NULL;         // Chain on the linked list
 305 }
 306 
 307 
 308 void Chunk::chop() {
 309   Chunk *k = this;
 310   while( k ) {
 311     Chunk *tmp = k->next();
 312     // clear out this chunk (to detect allocation bugs)
 313     if (ZapResourceArea) memset(k->bottom(), badResourceValue, k->length());
 314     delete k;                   // Free chunk (was malloc'd)
 315     k = tmp;
 316   }
 317 }
 318 
 319 void Chunk::next_chop() {
 320   _next->chop();
 321   _next = NULL;
 322 }
 323 
 324 
 325 void Chunk::start_chunk_pool_cleaner_task() {
 326 #ifdef ASSERT
 327   static bool task_created = false;
 328   assert(!task_created, "should not start chuck pool cleaner twice");
 329   task_created = true;
 330 #endif
 331   ChunkPoolCleaner* cleaner = new ChunkPoolCleaner();
 332   cleaner->enroll();
 333 }
 334 
 335 //------------------------------Arena------------------------------------------
 336 
 337 Arena::Arena(size_t init_size) {
 338   size_t round_size = (sizeof (char *)) - 1;
 339   init_size = (init_size+round_size) & ~round_size;
 340   _first = _chunk = new (init_size) Chunk(init_size);
 341   _hwm = _chunk->bottom();      // Save the cached hwm, max
 342   _max = _chunk->top();
 343   set_size_in_bytes(init_size);
 344 }
 345 
 346 Arena::Arena() {
 347   _first = _chunk = new (Chunk::init_size) Chunk(Chunk::init_size);
 348   _hwm = _chunk->bottom();      // Save the cached hwm, max
 349   _max = _chunk->top();
 350   set_size_in_bytes(Chunk::init_size);
 351 }
 352 
 353 Arena::Arena(Arena *a) : _chunk(a->_chunk), _hwm(a->_hwm), _max(a->_max), _first(a->_first) {
 354   set_size_in_bytes(a->size_in_bytes());
 355 }
 356 
 357 Arena *Arena::move_contents(Arena *copy) {
 358   copy->destruct_contents();
 359   copy->_chunk = _chunk;
 360   copy->_hwm   = _hwm;
 361   copy->_max   = _max;
 362   copy->_first = _first;
 363   copy->set_size_in_bytes(size_in_bytes());
 364   // Destroy original arena
 365   reset();
 366   return copy;            // Return Arena with contents
 367 }
 368 
 369 Arena::~Arena() {
 370   destruct_contents();
 371 }
 372 
 373 // Destroy this arenas contents and reset to empty
 374 void Arena::destruct_contents() {
 375   if (UseMallocOnly && _first != NULL) {
 376     char* end = _first->next() ? _first->top() : _hwm;
 377     free_malloced_objects(_first, _first->bottom(), end, _hwm);
 378   }
 379   _first->chop();
 380   reset();
 381 }
 382 
 383 
 384 // Total of all Chunks in arena
 385 size_t Arena::used() const {
 386   size_t sum = _chunk->length() - (_max-_hwm); // Size leftover in this Chunk
 387   register Chunk *k = _first;
 388   while( k != _chunk) {         // Whilst have Chunks in a row
 389     sum += k->length();         // Total size of this Chunk
 390     k = k->next();              // Bump along to next Chunk
 391   }
 392   return sum;                   // Return total consumed space.
 393 }
 394 
 395 
 396 // Grow a new Chunk
 397 void* Arena::grow( size_t x ) {
 398   // Get minimal required size.  Either real big, or even bigger for giant objs
 399   size_t len = MAX2(x, (size_t) Chunk::size);
 400 
 401   Chunk *k = _chunk;            // Get filled-up chunk address
 402   _chunk = new (len) Chunk(len);
 403 
 404   if (_chunk == NULL)
 405       vm_exit_out_of_memory(len * Chunk::aligned_overhead_size(), "Arena::grow");
 406 
 407   if (k) k->set_next(_chunk);   // Append new chunk to end of linked list
 408   else _first = _chunk;
 409   _hwm  = _chunk->bottom();     // Save the cached hwm, max
 410   _max =  _chunk->top();
 411   set_size_in_bytes(size_in_bytes() + len);
 412   void* result = _hwm;
 413   _hwm += x;
 414   return result;
 415 }
 416 
 417 
 418 
 419 // Reallocate storage in Arena.
 420 void *Arena::Arealloc(void* old_ptr, size_t old_size, size_t new_size) {
 421   assert(new_size >= 0, "bad size");
 422   if (new_size == 0) return NULL;
 423 #ifdef ASSERT
 424   if (UseMallocOnly) {
 425     // always allocate a new object  (otherwise we'll free this one twice)
 426     char* copy = (char*)Amalloc(new_size);
 427     size_t n = MIN2(old_size, new_size);
 428     if (n > 0) memcpy(copy, old_ptr, n);
 429     Afree(old_ptr,old_size);    // Mostly done to keep stats accurate
 430     return copy;
 431   }
 432 #endif
 433   char *c_old = (char*)old_ptr; // Handy name
 434   // Stupid fast special case
 435   if( new_size <= old_size ) {  // Shrink in-place
 436     if( c_old+old_size == _hwm) // Attempt to free the excess bytes
 437       _hwm = c_old+new_size;    // Adjust hwm
 438     return c_old;
 439   }
 440 
 441   // make sure that new_size is legal
 442   size_t corrected_new_size = ARENA_ALIGN(new_size);
 443 
 444   // See if we can resize in-place
 445   if( (c_old+old_size == _hwm) &&       // Adjusting recent thing
 446       (c_old+corrected_new_size <= _max) ) {      // Still fits where it sits
 447     _hwm = c_old+corrected_new_size;      // Adjust hwm
 448     return c_old;               // Return old pointer
 449   }
 450 
 451   // Oops, got to relocate guts
 452   void *new_ptr = Amalloc(new_size);
 453   memcpy( new_ptr, c_old, old_size );
 454   Afree(c_old,old_size);        // Mostly done to keep stats accurate
 455   return new_ptr;
 456 }
 457 
 458 
 459 // Determine if pointer belongs to this Arena or not.
 460 bool Arena::contains( const void *ptr ) const {
 461 #ifdef ASSERT
 462   if (UseMallocOnly) {
 463     // really slow, but not easy to make fast
 464     if (_chunk == NULL) return false;
 465     char** bottom = (char**)_chunk->bottom();
 466     for (char** p = (char**)_hwm - 1; p >= bottom; p--) {
 467       if (*p == ptr) return true;
 468     }
 469     for (Chunk *c = _first; c != NULL; c = c->next()) {
 470       if (c == _chunk) continue;  // current chunk has been processed
 471       char** bottom = (char**)c->bottom();
 472       for (char** p = (char**)c->top() - 1; p >= bottom; p--) {
 473         if (*p == ptr) return true;
 474       }
 475     }
 476     return false;
 477   }
 478 #endif
 479   if( (void*)_chunk->bottom() <= ptr && ptr < (void*)_hwm )
 480     return true;                // Check for in this chunk
 481   for (Chunk *c = _first; c; c = c->next()) {
 482     if (c == _chunk) continue;  // current chunk has been processed
 483     if ((void*)c->bottom() <= ptr && ptr < (void*)c->top()) {
 484       return true;              // Check for every chunk in Arena
 485     }
 486   }
 487   return false;                 // Not in any Chunk, so not in Arena
 488 }
 489 
 490 
 491 #ifdef ASSERT
 492 void* Arena::malloc(size_t size) {
 493   assert(UseMallocOnly, "shouldn't call");
 494   // use malloc, but save pointer in res. area for later freeing
 495   char** save = (char**)internal_malloc_4(sizeof(char*));
 496   return (*save = (char*)os::malloc(size));
 497 }
 498 
 499 // for debugging with UseMallocOnly
 500 void* Arena::internal_malloc_4(size_t x) {
 501   assert( (x&(sizeof(char*)-1)) == 0, "misaligned size" );
 502   if (_hwm + x > _max) {
 503     return grow(x);
 504   } else {
 505     char *old = _hwm;
 506     _hwm += x;
 507     return old;
 508   }
 509 }
 510 #endif
 511 
 512 
 513 //--------------------------------------------------------------------------------------
 514 // Non-product code
 515 
 516 #ifndef PRODUCT
 517 // The global operator new should never be called since it will usually indicate
 518 // a memory leak.  Use CHeapObj as the base class of such objects to make it explicit
 519 // that they're allocated on the C heap.
 520 // Commented out in product version to avoid conflicts with third-party C++ native code.
 521 // %% note this is causing a problem on solaris debug build. the global
 522 // new is being called from jdk source and causing data corruption.
 523 // src/share/native/sun/awt/font/fontmanager/textcache/hsMemory.cpp::hsSoftNew
 524 // define CATCH_OPERATOR_NEW_USAGE if you want to use this.
 525 #ifdef CATCH_OPERATOR_NEW_USAGE
 526 void* operator new(size_t size){
 527   static bool warned = false;
 528   if (!warned && warn_new_operator)
 529     warning("should not call global (default) operator new");
 530   warned = true;
 531   return (void *) AllocateHeap(size, "global operator new");
 532 }
 533 #endif
 534 
 535 void AllocatedObj::print() const       { print_on(tty); }
 536 void AllocatedObj::print_value() const { print_value_on(tty); }
 537 
 538 void AllocatedObj::print_on(outputStream* st) const {
 539   st->print_cr("AllocatedObj(" INTPTR_FORMAT ")", this);
 540 }
 541 
 542 void AllocatedObj::print_value_on(outputStream* st) const {
 543   st->print("AllocatedObj(" INTPTR_FORMAT ")", this);
 544 }
 545 
 546 size_t Arena::_bytes_allocated = 0;
 547 
 548 AllocStats::AllocStats() {
 549   start_mallocs = os::num_mallocs;
 550   start_frees = os::num_frees;
 551   start_malloc_bytes = os::alloc_bytes;
 552   start_res_bytes = Arena::_bytes_allocated;
 553 }
 554 
 555 int     AllocStats::num_mallocs() { return os::num_mallocs - start_mallocs; }
 556 size_t  AllocStats::alloc_bytes() { return os::alloc_bytes - start_malloc_bytes; }
 557 size_t  AllocStats::resource_bytes() { return Arena::_bytes_allocated - start_res_bytes; }
 558 int     AllocStats::num_frees() { return os::num_frees - start_frees; }
 559 void    AllocStats::print() {
 560   tty->print("%d mallocs (%ldK), %d frees, %ldK resrc",
 561              num_mallocs(), alloc_bytes()/K, num_frees(), resource_bytes()/K);
 562 }
 563 
 564 
 565 // debugging code
 566 inline void Arena::free_all(char** start, char** end) {
 567   for (char** p = start; p < end; p++) if (*p) os::free(*p);
 568 }
 569 
 570 void Arena::free_malloced_objects(Chunk* chunk, char* hwm, char* max, char* hwm2) {
 571   assert(UseMallocOnly, "should not call");
 572   // free all objects malloced since resource mark was created; resource area
 573   // contains their addresses
 574   if (chunk->next()) {
 575     // this chunk is full, and some others too
 576     for (Chunk* c = chunk->next(); c != NULL; c = c->next()) {
 577       char* top = c->top();
 578       if (c->next() == NULL) {
 579         top = hwm2;     // last junk is only used up to hwm2
 580         assert(c->contains(hwm2), "bad hwm2");
 581       }
 582       free_all((char**)c->bottom(), (char**)top);
 583     }
 584     assert(chunk->contains(hwm), "bad hwm");
 585     assert(chunk->contains(max), "bad max");
 586     free_all((char**)hwm, (char**)max);
 587   } else {
 588     // this chunk was partially used
 589     assert(chunk->contains(hwm), "bad hwm");
 590     assert(chunk->contains(hwm2), "bad hwm2");
 591     free_all((char**)hwm, (char**)hwm2);
 592   }
 593 }
 594 
 595 
 596 ReallocMark::ReallocMark() {
 597 #ifdef ASSERT
 598   Thread *thread = ThreadLocalStorage::get_thread_slow();
 599   _nesting = thread->resource_area()->nesting();
 600 #endif
 601 }
 602 
 603 void ReallocMark::check() {
 604 #ifdef ASSERT
 605   if (_nesting != Thread::current()->resource_area()->nesting()) {
 606     fatal("allocation bug: array could grow within nested ResourceMark");
 607   }
 608 #endif
 609 }
 610 
 611 #endif // Non-product