1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_interface/collectedHeap.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/referencePolicy.hpp"
  31 #include "memory/referenceProcessor.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/jniHandles.hpp"
  35 
  36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  38 oop              ReferenceProcessor::_sentinelRef = NULL;
  39 const int        subclasses_of_ref                = REF_PHANTOM - REF_OTHER;
  40 
  41 // List of discovered references.
  42 class DiscoveredList {
  43 public:
  44   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  45   oop head() const     {
  46      return UseCompressedOops ?  oopDesc::decode_heap_oop_not_null(_compressed_head) :
  47                                 _oop_head;
  48   }
  49   HeapWord* adr_head() {
  50     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  51                                (HeapWord*)&_oop_head;
  52   }
  53   void   set_head(oop o) {
  54     if (UseCompressedOops) {
  55       // Must compress the head ptr.
  56       _compressed_head = oopDesc::encode_heap_oop_not_null(o);
  57     } else {
  58       _oop_head = o;
  59     }
  60   }
  61   bool   empty() const          { return head() == ReferenceProcessor::sentinel_ref(); }
  62   size_t length()               { return _len; }
  63   void   set_length(size_t len) { _len = len;  }
  64   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  65   void   dec_length(size_t dec) { _len -= dec; }
  66 private:
  67   // Set value depending on UseCompressedOops. This could be a template class
  68   // but then we have to fix all the instantiations and declarations that use this class.
  69   oop       _oop_head;
  70   narrowOop _compressed_head;
  71   size_t _len;
  72 };
  73 
  74 void referenceProcessor_init() {
  75   ReferenceProcessor::init_statics();
  76 }
  77 
  78 void ReferenceProcessor::init_statics() {
  79   assert(_sentinelRef == NULL, "should be initialized precisely once");
  80   EXCEPTION_MARK;
  81   _sentinelRef = instanceKlass::cast(
  82                     SystemDictionary::Reference_klass())->
  83                       allocate_permanent_instance(THREAD);
  84 
  85   // Initialize the master soft ref clock.
  86   java_lang_ref_SoftReference::set_clock(os::javaTimeMillis());
  87 
  88   if (HAS_PENDING_EXCEPTION) {
  89       Handle ex(THREAD, PENDING_EXCEPTION);
  90       vm_exit_during_initialization(ex);
  91   }
  92   assert(_sentinelRef != NULL && _sentinelRef->is_oop(),
  93          "Just constructed it!");
  94   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  95   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  96                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  97   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  98     vm_exit_during_initialization("Could not allocate reference policy object");
  99   }
 100   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
 101             RefDiscoveryPolicy == ReferentBasedDiscovery,
 102             "Unrecongnized RefDiscoveryPolicy");
 103 }
 104 
 105 ReferenceProcessor*
 106 ReferenceProcessor::create_ref_processor(MemRegion          span,
 107                                          bool               atomic_discovery,
 108                                          bool               mt_discovery,
 109                                          BoolObjectClosure* is_alive_non_header,
 110                                          int                parallel_gc_threads,
 111                                          bool               mt_processing,
 112                                          bool               dl_needs_barrier) {
 113   int mt_degree = 1;
 114   if (parallel_gc_threads > 1) {
 115     mt_degree = parallel_gc_threads;
 116   }
 117   ReferenceProcessor* rp =
 118     new ReferenceProcessor(span, atomic_discovery,
 119                            mt_discovery, mt_degree,
 120                            mt_processing && (parallel_gc_threads > 0),
 121                            dl_needs_barrier);
 122   if (rp == NULL) {
 123     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 124   }
 125   rp->set_is_alive_non_header(is_alive_non_header);
 126   rp->setup_policy(false /* default soft ref policy */);
 127   return rp;
 128 }
 129 
 130 ReferenceProcessor::ReferenceProcessor(MemRegion span,
 131                                        bool      atomic_discovery,
 132                                        bool      mt_discovery,
 133                                        int       mt_degree,
 134                                        bool      mt_processing,
 135                                        bool      discovered_list_needs_barrier)  :
 136   _discovering_refs(false),
 137   _enqueuing_is_done(false),
 138   _is_alive_non_header(NULL),
 139   _discovered_list_needs_barrier(discovered_list_needs_barrier),
 140   _bs(NULL),
 141   _processing_is_mt(mt_processing),
 142   _next_id(0)
 143 {
 144   _span = span;
 145   _discovery_is_atomic = atomic_discovery;
 146   _discovery_is_mt     = mt_discovery;
 147   _num_q               = mt_degree;
 148   _discoveredSoftRefs  = NEW_C_HEAP_ARRAY(DiscoveredList, _num_q * subclasses_of_ref);
 149   if (_discoveredSoftRefs == NULL) {
 150     vm_exit_during_initialization("Could not allocated RefProc Array");
 151   }
 152   _discoveredWeakRefs    = &_discoveredSoftRefs[_num_q];
 153   _discoveredFinalRefs   = &_discoveredWeakRefs[_num_q];
 154   _discoveredPhantomRefs = &_discoveredFinalRefs[_num_q];
 155   assert(sentinel_ref() != NULL, "_sentinelRef is NULL");
 156   // Initialized all entries to _sentinelRef
 157   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 158         _discoveredSoftRefs[i].set_head(sentinel_ref());
 159     _discoveredSoftRefs[i].set_length(0);
 160   }
 161   // If we do barreirs, cache a copy of the barrier set.
 162   if (discovered_list_needs_barrier) {
 163     _bs = Universe::heap()->barrier_set();
 164   }
 165 }
 166 
 167 #ifndef PRODUCT
 168 void ReferenceProcessor::verify_no_references_recorded() {
 169   guarantee(!_discovering_refs, "Discovering refs?");
 170   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 171     guarantee(_discoveredSoftRefs[i].empty(),
 172               "Found non-empty discovered list");
 173   }
 174 }
 175 #endif
 176 
 177 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 178   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 179     if (UseCompressedOops) {
 180       f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head());
 181     } else {
 182       f->do_oop((oop*)_discoveredSoftRefs[i].adr_head());
 183     }
 184   }
 185 }
 186 
 187 void ReferenceProcessor::oops_do(OopClosure* f) {
 188   f->do_oop(adr_sentinel_ref());
 189 }
 190 
 191 void ReferenceProcessor::update_soft_ref_master_clock() {
 192   // Update (advance) the soft ref master clock field. This must be done
 193   // after processing the soft ref list.
 194   jlong now = os::javaTimeMillis();
 195   jlong clock = java_lang_ref_SoftReference::clock();
 196   NOT_PRODUCT(
 197   if (now < clock) {
 198     warning("time warp: %d to %d", clock, now);
 199   }
 200   )
 201   // In product mode, protect ourselves from system time being adjusted
 202   // externally and going backward; see note in the implementation of
 203   // GenCollectedHeap::time_since_last_gc() for the right way to fix
 204   // this uniformly throughout the VM; see bug-id 4741166. XXX
 205   if (now > clock) {
 206     java_lang_ref_SoftReference::set_clock(now);
 207   }
 208   // Else leave clock stalled at its old value until time progresses
 209   // past clock value.
 210 }
 211 
 212 void ReferenceProcessor::process_discovered_references(
 213   BoolObjectClosure*           is_alive,
 214   OopClosure*                  keep_alive,
 215   VoidClosure*                 complete_gc,
 216   AbstractRefProcTaskExecutor* task_executor) {
 217   NOT_PRODUCT(verify_ok_to_handle_reflists());
 218 
 219   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 220   // Stop treating discovered references specially.
 221   disable_discovery();
 222 
 223   bool trace_time = PrintGCDetails && PrintReferenceGC;
 224   // Soft references
 225   {
 226     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
 227     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 228                                is_alive, keep_alive, complete_gc, task_executor);
 229   }
 230 
 231   update_soft_ref_master_clock();
 232 
 233   // Weak references
 234   {
 235     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
 236     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 237                                is_alive, keep_alive, complete_gc, task_executor);
 238   }
 239 
 240   // Final references
 241   {
 242     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
 243     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 244                                is_alive, keep_alive, complete_gc, task_executor);
 245   }
 246 
 247   // Phantom references
 248   {
 249     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
 250     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 251                                is_alive, keep_alive, complete_gc, task_executor);
 252   }
 253 
 254   // Weak global JNI references. It would make more sense (semantically) to
 255   // traverse these simultaneously with the regular weak references above, but
 256   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 257   // thus use JNI weak references to circumvent the phantom references and
 258   // resurrect a "post-mortem" object.
 259   {
 260     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
 261     if (task_executor != NULL) {
 262       task_executor->set_single_threaded_mode();
 263     }
 264     process_phaseJNI(is_alive, keep_alive, complete_gc);
 265   }
 266 }
 267 
 268 #ifndef PRODUCT
 269 // Calculate the number of jni handles.
 270 uint ReferenceProcessor::count_jni_refs() {
 271   class AlwaysAliveClosure: public BoolObjectClosure {
 272   public:
 273     virtual bool do_object_b(oop obj) { return true; }
 274     virtual void do_object(oop obj) { assert(false, "Don't call"); }
 275   };
 276 
 277   class CountHandleClosure: public OopClosure {
 278   private:
 279     int _count;
 280   public:
 281     CountHandleClosure(): _count(0) {}
 282     void do_oop(oop* unused)       { _count++; }
 283     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 284     int count() { return _count; }
 285   };
 286   CountHandleClosure global_handle_count;
 287   AlwaysAliveClosure always_alive;
 288   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 289   return global_handle_count.count();
 290 }
 291 #endif
 292 
 293 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 294                                           OopClosure*        keep_alive,
 295                                           VoidClosure*       complete_gc) {
 296 #ifndef PRODUCT
 297   if (PrintGCDetails && PrintReferenceGC) {
 298     unsigned int count = count_jni_refs();
 299     gclog_or_tty->print(", %u refs", count);
 300   }
 301 #endif
 302   JNIHandles::weak_oops_do(is_alive, keep_alive);
 303   // Finally remember to keep sentinel around
 304   keep_alive->do_oop(adr_sentinel_ref());
 305   complete_gc->do_void();
 306 }
 307 
 308 
 309 template <class T>
 310 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 311                                    AbstractRefProcTaskExecutor* task_executor) {
 312 
 313   // Remember old value of pending references list
 314   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 315   T old_pending_list_value = *pending_list_addr;
 316 
 317   // Enqueue references that are not made active again, and
 318   // clear the decks for the next collection (cycle).
 319   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 320   // Do the oop-check on pending_list_addr missed in
 321   // enqueue_discovered_reflist. We should probably
 322   // do a raw oop_check so that future such idempotent
 323   // oop_stores relying on the oop-check side-effect
 324   // may be elided automatically and safely without
 325   // affecting correctness.
 326   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 327 
 328   // Stop treating discovered references specially.
 329   ref->disable_discovery();
 330 
 331   // Return true if new pending references were added
 332   return old_pending_list_value != *pending_list_addr;
 333 }
 334 
 335 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 336   NOT_PRODUCT(verify_ok_to_handle_reflists());
 337   if (UseCompressedOops) {
 338     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 339   } else {
 340     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 341   }
 342 }
 343 
 344 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 345                                                     HeapWord* pending_list_addr) {
 346   // Given a list of refs linked through the "discovered" field
 347   // (java.lang.ref.Reference.discovered) chain them through the
 348   // "next" field (java.lang.ref.Reference.next) and prepend
 349   // to the pending list.
 350   if (TraceReferenceGC && PrintGCDetails) {
 351     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 352                            INTPTR_FORMAT, (address)refs_list.head());
 353   }
 354   oop obj = refs_list.head();
 355   // Walk down the list, copying the discovered field into
 356   // the next field and clearing it (except for the last
 357   // non-sentinel object which is treated specially to avoid
 358   // confusion with an active reference).
 359   while (obj != sentinel_ref()) {
 360     assert(obj->is_instanceRef(), "should be reference object");
 361     oop next = java_lang_ref_Reference::discovered(obj);
 362     if (TraceReferenceGC && PrintGCDetails) {
 363       gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next " INTPTR_FORMAT,
 364                              obj, next);
 365     }
 366     assert(java_lang_ref_Reference::next(obj) == NULL,
 367            "The reference should not be enqueued");
 368     if (next == sentinel_ref()) {  // obj is last
 369       // Swap refs_list into pendling_list_addr and
 370       // set obj's next to what we read from pending_list_addr.
 371       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 372       // Need oop_check on pending_list_addr above;
 373       // see special oop-check code at the end of
 374       // enqueue_discovered_reflists() further below.
 375       if (old == NULL) {
 376         // obj should be made to point to itself, since
 377         // pending list was empty.
 378         java_lang_ref_Reference::set_next(obj, obj);
 379       } else {
 380         java_lang_ref_Reference::set_next(obj, old);
 381       }
 382     } else {
 383       java_lang_ref_Reference::set_next(obj, next);
 384     }
 385     java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 386     obj = next;
 387   }
 388 }
 389 
 390 // Parallel enqueue task
 391 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 392 public:
 393   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 394                      DiscoveredList      discovered_refs[],
 395                      HeapWord*           pending_list_addr,
 396                      oop                 sentinel_ref,
 397                      int                 n_queues)
 398     : EnqueueTask(ref_processor, discovered_refs,
 399                   pending_list_addr, sentinel_ref, n_queues)
 400   { }
 401 
 402   virtual void work(unsigned int work_id) {
 403     assert(work_id < (unsigned int)_ref_processor.num_q(), "Index out-of-bounds");
 404     // Simplest first cut: static partitioning.
 405     int index = work_id;
 406     for (int j = 0; j < subclasses_of_ref; j++, index += _n_queues) {
 407       _ref_processor.enqueue_discovered_reflist(
 408         _refs_lists[index], _pending_list_addr);
 409       _refs_lists[index].set_head(_sentinel_ref);
 410       _refs_lists[index].set_length(0);
 411     }
 412   }
 413 };
 414 
 415 // Enqueue references that are not made active again
 416 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 417   AbstractRefProcTaskExecutor* task_executor) {
 418   if (_processing_is_mt && task_executor != NULL) {
 419     // Parallel code
 420     RefProcEnqueueTask tsk(*this, _discoveredSoftRefs,
 421                            pending_list_addr, sentinel_ref(), _num_q);
 422     task_executor->execute(tsk);
 423   } else {
 424     // Serial code: call the parent class's implementation
 425     for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 426       enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr);
 427       _discoveredSoftRefs[i].set_head(sentinel_ref());
 428       _discoveredSoftRefs[i].set_length(0);
 429     }
 430   }
 431 }
 432 
 433 // Iterator for the list of discovered references.
 434 class DiscoveredListIterator {
 435 public:
 436   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 437                                 OopClosure*        keep_alive,
 438                                 BoolObjectClosure* is_alive);
 439 
 440   // End Of List.
 441   inline bool has_next() const { return _next != ReferenceProcessor::sentinel_ref(); }
 442 
 443   // Get oop to the Reference object.
 444   inline oop obj() const { return _ref; }
 445 
 446   // Get oop to the referent object.
 447   inline oop referent() const { return _referent; }
 448 
 449   // Returns true if referent is alive.
 450   inline bool is_referent_alive() const;
 451 
 452   // Loads data for the current reference.
 453   // The "allow_null_referent" argument tells us to allow for the possibility
 454   // of a NULL referent in the discovered Reference object. This typically
 455   // happens in the case of concurrent collectors that may have done the
 456   // discovery concurrently, or interleaved, with mutator execution.
 457   inline void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 458 
 459   // Move to the next discovered reference.
 460   inline void next();
 461 
 462   // Remove the current reference from the list
 463   inline void remove();
 464 
 465   // Make the Reference object active again.
 466   inline void make_active() { java_lang_ref_Reference::set_next(_ref, NULL); }
 467 
 468   // Make the referent alive.
 469   inline void make_referent_alive() {
 470     if (UseCompressedOops) {
 471       _keep_alive->do_oop((narrowOop*)_referent_addr);
 472     } else {
 473       _keep_alive->do_oop((oop*)_referent_addr);
 474     }
 475   }
 476 
 477   // Update the discovered field.
 478   inline void update_discovered() {
 479     // First _prev_next ref actually points into DiscoveredList (gross).
 480     if (UseCompressedOops) {
 481       _keep_alive->do_oop((narrowOop*)_prev_next);
 482     } else {
 483       _keep_alive->do_oop((oop*)_prev_next);
 484     }
 485   }
 486 
 487   // NULL out referent pointer.
 488   inline void clear_referent() { oop_store_raw(_referent_addr, NULL); }
 489 
 490   // Statistics
 491   NOT_PRODUCT(
 492   inline size_t processed() const { return _processed; }
 493   inline size_t removed() const   { return _removed; }
 494   )
 495 
 496   inline void move_to_next();
 497 
 498 private:
 499   DiscoveredList&    _refs_list;
 500   HeapWord*          _prev_next;
 501   oop                _ref;
 502   HeapWord*          _discovered_addr;
 503   oop                _next;
 504   HeapWord*          _referent_addr;
 505   oop                _referent;
 506   OopClosure*        _keep_alive;
 507   BoolObjectClosure* _is_alive;
 508   DEBUG_ONLY(
 509   oop                _first_seen; // cyclic linked list check
 510   )
 511   NOT_PRODUCT(
 512   size_t             _processed;
 513   size_t             _removed;
 514   )
 515 };
 516 
 517 inline DiscoveredListIterator::DiscoveredListIterator(DiscoveredList&    refs_list,
 518                                                       OopClosure*        keep_alive,
 519                                                       BoolObjectClosure* is_alive)
 520   : _refs_list(refs_list),
 521     _prev_next(refs_list.adr_head()),
 522     _ref(refs_list.head()),
 523 #ifdef ASSERT
 524     _first_seen(refs_list.head()),
 525 #endif
 526 #ifndef PRODUCT
 527     _processed(0),
 528     _removed(0),
 529 #endif
 530     _next(refs_list.head()),
 531     _keep_alive(keep_alive),
 532     _is_alive(is_alive)
 533 { }
 534 
 535 inline bool DiscoveredListIterator::is_referent_alive() const {
 536   return _is_alive->do_object_b(_referent);
 537 }
 538 
 539 inline void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 540   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 541   oop discovered = java_lang_ref_Reference::discovered(_ref);
 542   assert(_discovered_addr && discovered->is_oop_or_null(),
 543          "discovered field is bad");
 544   _next = discovered;
 545   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 546   _referent = java_lang_ref_Reference::referent(_ref);
 547   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 548          "Wrong oop found in java.lang.Reference object");
 549   assert(allow_null_referent ?
 550              _referent->is_oop_or_null()
 551            : _referent->is_oop(),
 552          "bad referent");
 553 }
 554 
 555 inline void DiscoveredListIterator::next() {
 556   _prev_next = _discovered_addr;
 557   move_to_next();
 558 }
 559 
 560 inline void DiscoveredListIterator::remove() {
 561   assert(_ref->is_oop(), "Dropping a bad reference");
 562   oop_store_raw(_discovered_addr, NULL);
 563   // First _prev_next ref actually points into DiscoveredList (gross).
 564   if (UseCompressedOops) {
 565     // Remove Reference object from list.
 566     oopDesc::encode_store_heap_oop_not_null((narrowOop*)_prev_next, _next);
 567   } else {
 568     // Remove Reference object from list.
 569     oopDesc::store_heap_oop((oop*)_prev_next, _next);
 570   }
 571   NOT_PRODUCT(_removed++);
 572   _refs_list.dec_length(1);
 573 }
 574 
 575 inline void DiscoveredListIterator::move_to_next() {
 576   _ref = _next;
 577   assert(_ref != _first_seen, "cyclic ref_list found");
 578   NOT_PRODUCT(_processed++);
 579 }
 580 
 581 // NOTE: process_phase*() are largely similar, and at a high level
 582 // merely iterate over the extant list applying a predicate to
 583 // each of its elements and possibly removing that element from the
 584 // list and applying some further closures to that element.
 585 // We should consider the possibility of replacing these
 586 // process_phase*() methods by abstracting them into
 587 // a single general iterator invocation that receives appropriate
 588 // closures that accomplish this work.
 589 
 590 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 591 // referents are not alive, but that should be kept alive for policy reasons.
 592 // Keep alive the transitive closure of all such referents.
 593 void
 594 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 595                                    ReferencePolicy*   policy,
 596                                    BoolObjectClosure* is_alive,
 597                                    OopClosure*        keep_alive,
 598                                    VoidClosure*       complete_gc) {
 599   assert(policy != NULL, "Must have a non-NULL policy");
 600   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 601   // Decide which softly reachable refs should be kept alive.
 602   while (iter.has_next()) {
 603     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 604     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 605     if (referent_is_dead && !policy->should_clear_reference(iter.obj())) {
 606       if (TraceReferenceGC) {
 607         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 608                                iter.obj(), iter.obj()->blueprint()->internal_name());
 609       }
 610       // Remove Reference object from list
 611       iter.remove();
 612       // Make the Reference object active again
 613       iter.make_active();
 614       // keep the referent around
 615       iter.make_referent_alive();
 616       iter.move_to_next();
 617     } else {
 618       iter.next();
 619     }
 620   }
 621   // Close the reachable set
 622   complete_gc->do_void();
 623   NOT_PRODUCT(
 624     if (PrintGCDetails && TraceReferenceGC) {
 625       gclog_or_tty->print(" Dropped %d dead Refs out of %d "
 626         "discovered Refs by policy ", iter.removed(), iter.processed());
 627     }
 628   )
 629 }
 630 
 631 // Traverse the list and remove any Refs that are not active, or
 632 // whose referents are either alive or NULL.
 633 void
 634 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 635                              BoolObjectClosure* is_alive,
 636                              OopClosure*        keep_alive) {
 637   assert(discovery_is_atomic(), "Error");
 638   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 639   while (iter.has_next()) {
 640     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 641     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 642     assert(next == NULL, "Should not discover inactive Reference");
 643     if (iter.is_referent_alive()) {
 644       if (TraceReferenceGC) {
 645         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 646                                iter.obj(), iter.obj()->blueprint()->internal_name());
 647       }
 648       // The referent is reachable after all.
 649       // Remove Reference object from list.
 650       iter.remove();
 651       // Update the referent pointer as necessary: Note that this
 652       // should not entail any recursive marking because the
 653       // referent must already have been traversed.
 654       iter.make_referent_alive();
 655       iter.move_to_next();
 656     } else {
 657       iter.next();
 658     }
 659   }
 660   NOT_PRODUCT(
 661     if (PrintGCDetails && TraceReferenceGC) {
 662       gclog_or_tty->print(" Dropped %d active Refs out of %d "
 663         "Refs in discovered list ", iter.removed(), iter.processed());
 664     }
 665   )
 666 }
 667 
 668 void
 669 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 670                                                   BoolObjectClosure* is_alive,
 671                                                   OopClosure*        keep_alive,
 672                                                   VoidClosure*       complete_gc) {
 673   assert(!discovery_is_atomic(), "Error");
 674   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 675   while (iter.has_next()) {
 676     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 677     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 678     oop next = java_lang_ref_Reference::next(iter.obj());
 679     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 680          next != NULL)) {
 681       assert(next->is_oop_or_null(), "bad next field");
 682       // Remove Reference object from list
 683       iter.remove();
 684       // Trace the cohorts
 685       iter.make_referent_alive();
 686       if (UseCompressedOops) {
 687         keep_alive->do_oop((narrowOop*)next_addr);
 688       } else {
 689         keep_alive->do_oop((oop*)next_addr);
 690       }
 691       iter.move_to_next();
 692     } else {
 693       iter.next();
 694     }
 695   }
 696   // Now close the newly reachable set
 697   complete_gc->do_void();
 698   NOT_PRODUCT(
 699     if (PrintGCDetails && TraceReferenceGC) {
 700       gclog_or_tty->print(" Dropped %d active Refs out of %d "
 701         "Refs in discovered list ", iter.removed(), iter.processed());
 702     }
 703   )
 704 }
 705 
 706 // Traverse the list and process the referents, by either
 707 // clearing them or keeping them (and their reachable
 708 // closure) alive.
 709 void
 710 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 711                                    bool               clear_referent,
 712                                    BoolObjectClosure* is_alive,
 713                                    OopClosure*        keep_alive,
 714                                    VoidClosure*       complete_gc) {
 715   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 716   while (iter.has_next()) {
 717     iter.update_discovered();
 718     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 719     if (clear_referent) {
 720       // NULL out referent pointer
 721       iter.clear_referent();
 722     } else {
 723       // keep the referent around
 724       iter.make_referent_alive();
 725     }
 726     if (TraceReferenceGC) {
 727       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 728                              clear_referent ? "cleared " : "",
 729                              iter.obj(), iter.obj()->blueprint()->internal_name());
 730     }
 731     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 732     iter.next();
 733   }
 734   // Remember to keep sentinel pointer around
 735   iter.update_discovered();
 736   // Close the reachable set
 737   complete_gc->do_void();
 738 }
 739 
 740 void
 741 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 742   oop obj = refs_list.head();
 743   while (obj != sentinel_ref()) {
 744     oop discovered = java_lang_ref_Reference::discovered(obj);
 745     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 746     obj = discovered;
 747   }
 748   refs_list.set_head(sentinel_ref());
 749   refs_list.set_length(0);
 750 }
 751 
 752 void ReferenceProcessor::abandon_partial_discovery() {
 753   // loop over the lists
 754   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 755     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
 756       gclog_or_tty->print_cr(
 757         "\nAbandoning %s discovered list",
 758         list_name(i));
 759     }
 760     abandon_partial_discovered_list(_discoveredSoftRefs[i]);
 761   }
 762 }
 763 
 764 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 765 public:
 766   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 767                     DiscoveredList      refs_lists[],
 768                     ReferencePolicy*    policy,
 769                     bool                marks_oops_alive)
 770     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 771       _policy(policy)
 772   { }
 773   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 774                     OopClosure& keep_alive,
 775                     VoidClosure& complete_gc)
 776   {
 777     _ref_processor.process_phase1(_refs_lists[i], _policy,
 778                                   &is_alive, &keep_alive, &complete_gc);
 779   }
 780 private:
 781   ReferencePolicy* _policy;
 782 };
 783 
 784 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 785 public:
 786   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 787                     DiscoveredList      refs_lists[],
 788                     bool                marks_oops_alive)
 789     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 790   { }
 791   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 792                     OopClosure& keep_alive,
 793                     VoidClosure& complete_gc)
 794   {
 795     _ref_processor.process_phase2(_refs_lists[i],
 796                                   &is_alive, &keep_alive, &complete_gc);
 797   }
 798 };
 799 
 800 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 801 public:
 802   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 803                     DiscoveredList      refs_lists[],
 804                     bool                clear_referent,
 805                     bool                marks_oops_alive)
 806     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 807       _clear_referent(clear_referent)
 808   { }
 809   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 810                     OopClosure& keep_alive,
 811                     VoidClosure& complete_gc)
 812   {
 813     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 814                                   &is_alive, &keep_alive, &complete_gc);
 815   }
 816 private:
 817   bool _clear_referent;
 818 };
 819 
 820 // Balances reference queues.
 821 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 822 {
 823   // calculate total length
 824   size_t total_refs = 0;
 825   for (int i = 0; i < _num_q; ++i) {
 826     total_refs += ref_lists[i].length();
 827   }
 828   size_t avg_refs = total_refs / _num_q + 1;
 829   int to_idx = 0;
 830   for (int from_idx = 0; from_idx < _num_q; from_idx++) {
 831     while (ref_lists[from_idx].length() > avg_refs) {
 832       assert(to_idx < _num_q, "Sanity Check!");
 833       if (ref_lists[to_idx].length() < avg_refs) {
 834         // move superfluous refs
 835         size_t refs_to_move =
 836           MIN2(ref_lists[from_idx].length() - avg_refs,
 837                avg_refs - ref_lists[to_idx].length());
 838         oop move_head = ref_lists[from_idx].head();
 839         oop move_tail = move_head;
 840         oop new_head  = move_head;
 841         // find an element to split the list on
 842         for (size_t j = 0; j < refs_to_move; ++j) {
 843           move_tail = new_head;
 844           new_head = java_lang_ref_Reference::discovered(new_head);
 845         }
 846         java_lang_ref_Reference::set_discovered(move_tail, ref_lists[to_idx].head());
 847         ref_lists[to_idx].set_head(move_head);
 848         ref_lists[to_idx].inc_length(refs_to_move);
 849         ref_lists[from_idx].set_head(new_head);
 850         ref_lists[from_idx].dec_length(refs_to_move);
 851       } else {
 852         ++to_idx;
 853       }
 854     }
 855   }
 856 }
 857 
 858 void
 859 ReferenceProcessor::process_discovered_reflist(
 860   DiscoveredList               refs_lists[],
 861   ReferencePolicy*             policy,
 862   bool                         clear_referent,
 863   BoolObjectClosure*           is_alive,
 864   OopClosure*                  keep_alive,
 865   VoidClosure*                 complete_gc,
 866   AbstractRefProcTaskExecutor* task_executor)
 867 {
 868   bool mt = task_executor != NULL && _processing_is_mt;
 869   if (mt && ParallelRefProcBalancingEnabled) {
 870     balance_queues(refs_lists);
 871   }
 872   if (PrintReferenceGC && PrintGCDetails) {
 873     size_t total = 0;
 874     for (int i = 0; i < _num_q; ++i) {
 875       total += refs_lists[i].length();
 876     }
 877     gclog_or_tty->print(", %u refs", total);
 878   }
 879 
 880   // Phase 1 (soft refs only):
 881   // . Traverse the list and remove any SoftReferences whose
 882   //   referents are not alive, but that should be kept alive for
 883   //   policy reasons. Keep alive the transitive closure of all
 884   //   such referents.
 885   if (policy != NULL) {
 886     if (mt) {
 887       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 888       task_executor->execute(phase1);
 889     } else {
 890       for (int i = 0; i < _num_q; i++) {
 891         process_phase1(refs_lists[i], policy,
 892                        is_alive, keep_alive, complete_gc);
 893       }
 894     }
 895   } else { // policy == NULL
 896     assert(refs_lists != _discoveredSoftRefs,
 897            "Policy must be specified for soft references.");
 898   }
 899 
 900   // Phase 2:
 901   // . Traverse the list and remove any refs whose referents are alive.
 902   if (mt) {
 903     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 904     task_executor->execute(phase2);
 905   } else {
 906     for (int i = 0; i < _num_q; i++) {
 907       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 908     }
 909   }
 910 
 911   // Phase 3:
 912   // . Traverse the list and process referents as appropriate.
 913   if (mt) {
 914     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 915     task_executor->execute(phase3);
 916   } else {
 917     for (int i = 0; i < _num_q; i++) {
 918       process_phase3(refs_lists[i], clear_referent,
 919                      is_alive, keep_alive, complete_gc);
 920     }
 921   }
 922 }
 923 
 924 void ReferenceProcessor::clean_up_discovered_references() {
 925   // loop over the lists
 926   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
 927     if (TraceReferenceGC && PrintGCDetails && ((i % _num_q) == 0)) {
 928       gclog_or_tty->print_cr(
 929         "\nScrubbing %s discovered list of Null referents",
 930         list_name(i));
 931     }
 932     clean_up_discovered_reflist(_discoveredSoftRefs[i]);
 933   }
 934 }
 935 
 936 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 937   assert(!discovery_is_atomic(), "Else why call this method?");
 938   DiscoveredListIterator iter(refs_list, NULL, NULL);
 939   while (iter.has_next()) {
 940     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 941     oop next = java_lang_ref_Reference::next(iter.obj());
 942     assert(next->is_oop_or_null(), "bad next field");
 943     // If referent has been cleared or Reference is not active,
 944     // drop it.
 945     if (iter.referent() == NULL || next != NULL) {
 946       debug_only(
 947         if (PrintGCDetails && TraceReferenceGC) {
 948           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 949             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 950             " and referent: " INTPTR_FORMAT,
 951             iter.obj(), next, iter.referent());
 952         }
 953       )
 954       // Remove Reference object from list
 955       iter.remove();
 956       iter.move_to_next();
 957     } else {
 958       iter.next();
 959     }
 960   }
 961   NOT_PRODUCT(
 962     if (PrintGCDetails && TraceReferenceGC) {
 963       gclog_or_tty->print(
 964         " Removed %d Refs with NULL referents out of %d discovered Refs",
 965         iter.removed(), iter.processed());
 966     }
 967   )
 968 }
 969 
 970 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 971   int id = 0;
 972   // Determine the queue index to use for this object.
 973   if (_discovery_is_mt) {
 974     // During a multi-threaded discovery phase,
 975     // each thread saves to its "own" list.
 976     Thread* thr = Thread::current();
 977     assert(thr->is_GC_task_thread(),
 978            "Dubious cast from Thread* to WorkerThread*?");
 979     id = ((WorkerThread*)thr)->id();
 980   } else {
 981     // single-threaded discovery, we save in round-robin
 982     // fashion to each of the lists.
 983     if (_processing_is_mt) {
 984       id = next_id();
 985     }
 986   }
 987   assert(0 <= id && id < _num_q, "Id is out-of-bounds (call Freud?)");
 988 
 989   // Get the discovered queue to which we will add
 990   DiscoveredList* list = NULL;
 991   switch (rt) {
 992     case REF_OTHER:
 993       // Unknown reference type, no special treatment
 994       break;
 995     case REF_SOFT:
 996       list = &_discoveredSoftRefs[id];
 997       break;
 998     case REF_WEAK:
 999       list = &_discoveredWeakRefs[id];
1000       break;
1001     case REF_FINAL:
1002       list = &_discoveredFinalRefs[id];
1003       break;
1004     case REF_PHANTOM:
1005       list = &_discoveredPhantomRefs[id];
1006       break;
1007     case REF_NONE:
1008       // we should not reach here if we are an instanceRefKlass
1009     default:
1010       ShouldNotReachHere();
1011   }
1012   return list;
1013 }
1014 
1015 inline void
1016 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1017                                               oop             obj,
1018                                               HeapWord*       discovered_addr) {
1019   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1020   // First we must make sure this object is only enqueued once. CAS in a non null
1021   // discovered_addr.
1022   oop current_head = refs_list.head();
1023 
1024   // Note: In the case of G1, this specific pre-barrier is strictly
1025   // not necessary because the only case we are interested in
1026   // here is when *discovered_addr is NULL (see the CAS further below),
1027   // so this will expand to nothing. As a result, we have manually
1028   // elided this out for G1, but left in the test for some future
1029   // collector that might have need for a pre-barrier here.
1030   if (_discovered_list_needs_barrier && !UseG1GC) {
1031     if (UseCompressedOops) {
1032       _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1033     } else {
1034       _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1035     }
1036     guarantee(false, "Need to check non-G1 collector");
1037   }
1038   oop retest = oopDesc::atomic_compare_exchange_oop(current_head, discovered_addr,
1039                                                     NULL);
1040   if (retest == NULL) {
1041     // This thread just won the right to enqueue the object.
1042     // We have separate lists for enqueueing so no synchronization
1043     // is necessary.
1044     refs_list.set_head(obj);
1045     refs_list.inc_length(1);
1046     if (_discovered_list_needs_barrier) {
1047       _bs->write_ref_field((void*)discovered_addr, current_head);
1048     }
1049   } else {
1050     // If retest was non NULL, another thread beat us to it:
1051     // The reference has already been discovered...
1052     if (TraceReferenceGC) {
1053       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1054                              obj, obj->blueprint()->internal_name());
1055     }
1056   }
1057 }
1058 
1059 // We mention two of several possible choices here:
1060 // #0: if the reference object is not in the "originating generation"
1061 //     (or part of the heap being collected, indicated by our "span"
1062 //     we don't treat it specially (i.e. we scan it as we would
1063 //     a normal oop, treating its references as strong references).
1064 //     This means that references can't be enqueued unless their
1065 //     referent is also in the same span. This is the simplest,
1066 //     most "local" and most conservative approach, albeit one
1067 //     that may cause weak references to be enqueued least promptly.
1068 //     We call this choice the "ReferenceBasedDiscovery" policy.
1069 // #1: the reference object may be in any generation (span), but if
1070 //     the referent is in the generation (span) being currently collected
1071 //     then we can discover the reference object, provided
1072 //     the object has not already been discovered by
1073 //     a different concurrently running collector (as may be the
1074 //     case, for instance, if the reference object is in CMS and
1075 //     the referent in DefNewGeneration), and provided the processing
1076 //     of this reference object by the current collector will
1077 //     appear atomic to every other collector in the system.
1078 //     (Thus, for instance, a concurrent collector may not
1079 //     discover references in other generations even if the
1080 //     referent is in its own generation). This policy may,
1081 //     in certain cases, enqueue references somewhat sooner than
1082 //     might Policy #0 above, but at marginally increased cost
1083 //     and complexity in processing these references.
1084 //     We call this choice the "RefeferentBasedDiscovery" policy.
1085 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1086   // We enqueue references only if we are discovering refs
1087   // (rather than processing discovered refs).
1088   if (!_discovering_refs || !RegisterReferences) {
1089     return false;
1090   }
1091   // We only enqueue active references.
1092   oop next = java_lang_ref_Reference::next(obj);
1093   if (next != NULL) {
1094     return false;
1095   }
1096 
1097   HeapWord* obj_addr = (HeapWord*)obj;
1098   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1099       !_span.contains(obj_addr)) {
1100     // Reference is not in the originating generation;
1101     // don't treat it specially (i.e. we want to scan it as a normal
1102     // object with strong references).
1103     return false;
1104   }
1105 
1106   // We only enqueue references whose referents are not (yet) strongly
1107   // reachable.
1108   if (is_alive_non_header() != NULL) {
1109     oop referent = java_lang_ref_Reference::referent(obj);
1110     // In the case of non-concurrent discovery, the last
1111     // disjunct below should hold. It may not hold in the
1112     // case of concurrent discovery because mutators may
1113     // concurrently clear() a Reference.
1114     assert(UseConcMarkSweepGC || UseG1GC || referent != NULL,
1115            "Refs with null referents already filtered");
1116     if (is_alive_non_header()->do_object_b(referent)) {
1117       return false;  // referent is reachable
1118     }
1119   }
1120   if (rt == REF_SOFT) {
1121     // For soft refs we can decide now if these are not
1122     // current candidates for clearing, in which case we
1123     // can mark through them now, rather than delaying that
1124     // to the reference-processing phase. Since all current
1125     // time-stamp policies advance the soft-ref clock only
1126     // at a major collection cycle, this is always currently
1127     // accurate.
1128     if (!_current_soft_ref_policy->should_clear_reference(obj)) {
1129       return false;
1130     }
1131   }
1132 
1133   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1134   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1135   assert(discovered->is_oop_or_null(), "bad discovered field");
1136   if (discovered != NULL) {
1137     // The reference has already been discovered...
1138     if (TraceReferenceGC) {
1139       gclog_or_tty->print_cr("Already enqueued reference (" INTPTR_FORMAT ": %s)",
1140                              obj, obj->blueprint()->internal_name());
1141     }
1142     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1143       // assumes that an object is not processed twice;
1144       // if it's been already discovered it must be on another
1145       // generation's discovered list; so we won't discover it.
1146       return false;
1147     } else {
1148       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1149              "Unrecognized policy");
1150       // Check assumption that an object is not potentially
1151       // discovered twice except by concurrent collectors that potentially
1152       // trace the same Reference object twice.
1153       assert(UseConcMarkSweepGC,
1154              "Only possible with an incremental-update concurrent collector");
1155       return true;
1156     }
1157   }
1158 
1159   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1160     oop referent = java_lang_ref_Reference::referent(obj);
1161     assert(referent->is_oop(), "bad referent");
1162     // enqueue if and only if either:
1163     // reference is in our span or
1164     // we are an atomic collector and referent is in our span
1165     if (_span.contains(obj_addr) ||
1166         (discovery_is_atomic() && _span.contains(referent))) {
1167       // should_enqueue = true;
1168     } else {
1169       return false;
1170     }
1171   } else {
1172     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1173            _span.contains(obj_addr), "code inconsistency");
1174   }
1175 
1176   // Get the right type of discovered queue head.
1177   DiscoveredList* list = get_discovered_list(rt);
1178   if (list == NULL) {
1179     return false;   // nothing special needs to be done
1180   }
1181 
1182   if (_discovery_is_mt) {
1183     add_to_discovered_list_mt(*list, obj, discovered_addr);
1184   } else {
1185     // If "_discovered_list_needs_barrier", we do write barriers when
1186     // updating the discovered reference list.  Otherwise, we do a raw store
1187     // here: the field will be visited later when processing the discovered
1188     // references.
1189     oop current_head = list->head();
1190     // As in the case further above, since we are over-writing a NULL
1191     // pre-value, we can safely elide the pre-barrier here for the case of G1.
1192     assert(discovered == NULL, "control point invariant");
1193     if (_discovered_list_needs_barrier && !UseG1GC) { // safe to elide for G1
1194       if (UseCompressedOops) {
1195         _bs->write_ref_field_pre((narrowOop*)discovered_addr, current_head);
1196       } else {
1197         _bs->write_ref_field_pre((oop*)discovered_addr, current_head);
1198       }
1199       guarantee(false, "Need to check non-G1 collector");
1200     }
1201     oop_store_raw(discovered_addr, current_head);
1202     if (_discovered_list_needs_barrier) {
1203       _bs->write_ref_field((void*)discovered_addr, current_head);
1204     }
1205     list->set_head(obj);
1206     list->inc_length(1);
1207   }
1208 
1209   // In the MT discovery case, it is currently possible to see
1210   // the following message multiple times if several threads
1211   // discover a reference about the same time. Only one will
1212   // however have actually added it to the disocvered queue.
1213   // One could let add_to_discovered_list_mt() return an
1214   // indication for success in queueing (by 1 thread) or
1215   // failure (by all other threads), but I decided the extra
1216   // code was not worth the effort for something that is
1217   // only used for debugging support.
1218   if (TraceReferenceGC) {
1219     oop referent = java_lang_ref_Reference::referent(obj);
1220     if (PrintGCDetails) {
1221       gclog_or_tty->print_cr("Enqueued reference (" INTPTR_FORMAT ": %s)",
1222                              obj, obj->blueprint()->internal_name());
1223     }
1224     assert(referent->is_oop(), "Enqueued a bad referent");
1225   }
1226   assert(obj->is_oop(), "Enqueued a bad reference");
1227   return true;
1228 }
1229 
1230 // Preclean the discovered references by removing those
1231 // whose referents are alive, and by marking from those that
1232 // are not active. These lists can be handled here
1233 // in any order and, indeed, concurrently.
1234 void ReferenceProcessor::preclean_discovered_references(
1235   BoolObjectClosure* is_alive,
1236   OopClosure* keep_alive,
1237   VoidClosure* complete_gc,
1238   YieldClosure* yield,
1239   bool should_unload_classes) {
1240 
1241   NOT_PRODUCT(verify_ok_to_handle_reflists());
1242 
1243 #ifdef ASSERT
1244   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
1245                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
1246                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
1247                                  UseConcMarkSweepGC && should_unload_classes;
1248   RememberKlassesChecker mx(must_remember_klasses);
1249 #endif
1250   // Soft references
1251   {
1252     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1253               false, gclog_or_tty);
1254     for (int i = 0; i < _num_q; i++) {
1255       if (yield->should_return()) {
1256         return;
1257       }
1258       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1259                                   keep_alive, complete_gc, yield);
1260     }
1261   }
1262 
1263   // Weak references
1264   {
1265     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1266               false, gclog_or_tty);
1267     for (int i = 0; i < _num_q; i++) {
1268       if (yield->should_return()) {
1269         return;
1270       }
1271       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1272                                   keep_alive, complete_gc, yield);
1273     }
1274   }
1275 
1276   // Final references
1277   {
1278     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1279               false, gclog_or_tty);
1280     for (int i = 0; i < _num_q; i++) {
1281       if (yield->should_return()) {
1282         return;
1283       }
1284       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1285                                   keep_alive, complete_gc, yield);
1286     }
1287   }
1288 
1289   // Phantom references
1290   {
1291     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1292               false, gclog_or_tty);
1293     for (int i = 0; i < _num_q; i++) {
1294       if (yield->should_return()) {
1295         return;
1296       }
1297       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1298                                   keep_alive, complete_gc, yield);
1299     }
1300   }
1301 }
1302 
1303 // Walk the given discovered ref list, and remove all reference objects
1304 // whose referents are still alive, whose referents are NULL or which
1305 // are not active (have a non-NULL next field). NOTE: When we are
1306 // thus precleaning the ref lists (which happens single-threaded today),
1307 // we do not disable refs discovery to honour the correct semantics of
1308 // java.lang.Reference. As a result, we need to be careful below
1309 // that ref removal steps interleave safely with ref discovery steps
1310 // (in this thread).
1311 void
1312 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1313                                                 BoolObjectClosure* is_alive,
1314                                                 OopClosure*        keep_alive,
1315                                                 VoidClosure*       complete_gc,
1316                                                 YieldClosure*      yield) {
1317   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1318   while (iter.has_next()) {
1319     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1320     oop obj = iter.obj();
1321     oop next = java_lang_ref_Reference::next(obj);
1322     if (iter.referent() == NULL || iter.is_referent_alive() ||
1323         next != NULL) {
1324       // The referent has been cleared, or is alive, or the Reference is not
1325       // active; we need to trace and mark its cohort.
1326       if (TraceReferenceGC) {
1327         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1328                                iter.obj(), iter.obj()->blueprint()->internal_name());
1329       }
1330       // Remove Reference object from list
1331       iter.remove();
1332       // Keep alive its cohort.
1333       iter.make_referent_alive();
1334       if (UseCompressedOops) {
1335         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1336         keep_alive->do_oop(next_addr);
1337       } else {
1338         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1339         keep_alive->do_oop(next_addr);
1340       }
1341       iter.move_to_next();
1342     } else {
1343       iter.next();
1344     }
1345   }
1346   // Close the reachable set
1347   complete_gc->do_void();
1348 
1349   NOT_PRODUCT(
1350     if (PrintGCDetails && PrintReferenceGC) {
1351       gclog_or_tty->print(" Dropped %d Refs out of %d "
1352         "Refs in discovered list ", iter.removed(), iter.processed());
1353     }
1354   )
1355 }
1356 
1357 const char* ReferenceProcessor::list_name(int i) {
1358    assert(i >= 0 && i <= _num_q * subclasses_of_ref, "Out of bounds index");
1359    int j = i / _num_q;
1360    switch (j) {
1361      case 0: return "SoftRef";
1362      case 1: return "WeakRef";
1363      case 2: return "FinalRef";
1364      case 3: return "PhantomRef";
1365    }
1366    ShouldNotReachHere();
1367    return NULL;
1368 }
1369 
1370 #ifndef PRODUCT
1371 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1372   // empty for now
1373 }
1374 #endif
1375 
1376 void ReferenceProcessor::verify() {
1377   guarantee(sentinel_ref() != NULL && sentinel_ref()->is_oop(), "Lost _sentinelRef");
1378 }
1379 
1380 #ifndef PRODUCT
1381 void ReferenceProcessor::clear_discovered_references() {
1382   guarantee(!_discovering_refs, "Discovering refs?");
1383   for (int i = 0; i < _num_q * subclasses_of_ref; i++) {
1384     oop obj = _discoveredSoftRefs[i].head();
1385     while (obj != sentinel_ref()) {
1386       oop next = java_lang_ref_Reference::discovered(obj);
1387       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
1388       obj = next;
1389     }
1390     _discoveredSoftRefs[i].set_head(sentinel_ref());
1391     _discoveredSoftRefs[i].set_length(0);
1392   }
1393 }
1394 #endif // PRODUCT