1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // A space is an abstraction for the "storage units" backing
  26 // up the generation abstraction. It includes specific
  27 // implementations for keeping track of free and used space,
  28 // for iterating over objects and free blocks, etc.
  29 
  30 // Here's the Space hierarchy:
  31 //
  32 // - Space               -- an asbtract base class describing a heap area
  33 //   - CompactibleSpace  -- a space supporting compaction
  34 //     - CompactibleFreeListSpace -- (used for CMS generation)
  35 //     - ContiguousSpace -- a compactible space in which all free space
  36 //                          is contiguous
  37 //       - EdenSpace     -- contiguous space used as nursery
  38 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
  39 //       - OffsetTableContigSpace -- contiguous space with a block offset array
  40 //                          that allows "fast" block_start calls
  41 //         - TenuredSpace -- (used for TenuredGeneration)
  42 //         - ContigPermSpace -- an offset table contiguous space for perm gen
  43 
  44 // Forward decls.
  45 class Space;
  46 class BlockOffsetArray;
  47 class BlockOffsetArrayContigSpace;
  48 class Generation;
  49 class CompactibleSpace;
  50 class BlockOffsetTable;
  51 class GenRemSet;
  52 class CardTableRS;
  53 class DirtyCardToOopClosure;
  54 
  55 // An oop closure that is circumscribed by a filtering memory region.
  56 class SpaceMemRegionOopsIterClosure: public OopClosure {
  57  private:
  58   OopClosure* _cl;
  59   MemRegion   _mr;
  60  protected:
  61   template <class T> void do_oop_work(T* p) {
  62     if (_mr.contains(p)) {
  63       _cl->do_oop(p);
  64     }
  65   }
  66  public:
  67   SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
  68     _cl(cl), _mr(mr) {}
  69   virtual void do_oop(oop* p);
  70   virtual void do_oop(narrowOop* p);
  71 };
  72 
  73 // A Space describes a heap area. Class Space is an abstract
  74 // base class.
  75 //
  76 // Space supports allocation, size computation and GC support is provided.
  77 //
  78 // Invariant: bottom() and end() are on page_size boundaries and
  79 // bottom() <= top() <= end()
  80 // top() is inclusive and end() is exclusive.
  81 
  82 class Space: public CHeapObj {
  83   friend class VMStructs;
  84  protected:
  85   HeapWord* _bottom;
  86   HeapWord* _end;
  87 
  88   // Used in support of save_marks()
  89   HeapWord* _saved_mark_word;
  90 
  91   MemRegionClosure* _preconsumptionDirtyCardClosure;
  92 
  93   // A sequential tasks done structure. This supports
  94   // parallel GC, where we have threads dynamically
  95   // claiming sub-tasks from a larger parallel task.
  96   SequentialSubTasksDone _par_seq_tasks;
  97 
  98   Space():
  99     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
 100 
 101  public:
 102   // Accessors
 103   HeapWord* bottom() const         { return _bottom; }
 104   HeapWord* end() const            { return _end;    }
 105   virtual void set_bottom(HeapWord* value) { _bottom = value; }
 106   virtual void set_end(HeapWord* value)    { _end = value; }
 107 
 108   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
 109 
 110   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
 111 
 112   MemRegionClosure* preconsumptionDirtyCardClosure() const {
 113     return _preconsumptionDirtyCardClosure;
 114   }
 115   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
 116     _preconsumptionDirtyCardClosure = cl;
 117   }
 118 
 119   // Returns a subregion of the space containing all the objects in
 120   // the space.
 121   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
 122 
 123   // Returns a region that is guaranteed to contain (at least) all objects
 124   // allocated at the time of the last call to "save_marks".  If the space
 125   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 126   // (that is, if the space is contiguous), then this region must contain only
 127   // such objects: the memregion will be from the bottom of the region to the
 128   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 129   // the space must distiguish between objects in the region allocated before
 130   // and after the call to save marks.
 131   virtual MemRegion used_region_at_save_marks() const {
 132     return MemRegion(bottom(), saved_mark_word());
 133   }
 134 
 135   // Initialization.
 136   // "initialize" should be called once on a space, before it is used for
 137   // any purpose.  The "mr" arguments gives the bounds of the space, and
 138   // the "clear_space" argument should be true unless the memory in "mr" is
 139   // known to be zeroed.
 140   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 141 
 142   // The "clear" method must be called on a region that may have
 143   // had allocation performed in it, but is now to be considered empty.
 144   virtual void clear(bool mangle_space);
 145 
 146   // For detecting GC bugs.  Should only be called at GC boundaries, since
 147   // some unused space may be used as scratch space during GC's.
 148   // Default implementation does nothing. We also call this when expanding
 149   // a space to satisfy an allocation request. See bug #4668531
 150   virtual void mangle_unused_area() {}
 151   virtual void mangle_unused_area_complete() {}
 152   virtual void mangle_region(MemRegion mr) {}
 153 
 154   // Testers
 155   bool is_empty() const              { return used() == 0; }
 156   bool not_empty() const             { return used() > 0; }
 157 
 158   // Returns true iff the given the space contains the
 159   // given address as part of an allocated object. For
 160   // ceratin kinds of spaces, this might be a potentially
 161   // expensive operation. To prevent performance problems
 162   // on account of its inadvertent use in product jvm's,
 163   // we restrict its use to assertion checks only.
 164   virtual bool is_in(const void* p) const;
 165 
 166   // Returns true iff the given reserved memory of the space contains the
 167   // given address.
 168   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 169 
 170   // Returns true iff the given block is not allocated.
 171   virtual bool is_free_block(const HeapWord* p) const = 0;
 172 
 173   // Test whether p is double-aligned
 174   static bool is_aligned(void* p) {
 175     return ((intptr_t)p & (sizeof(double)-1)) == 0;
 176   }
 177 
 178   // Size computations.  Sizes are in bytes.
 179   size_t capacity()     const { return byte_size(bottom(), end()); }
 180   virtual size_t used() const = 0;
 181   virtual size_t free() const = 0;
 182 
 183   // Iterate over all the ref-containing fields of all objects in the
 184   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 185   // applications of the closure are not included in the iteration.
 186   virtual void oop_iterate(OopClosure* cl);
 187 
 188   // Same as above, restricted to the intersection of a memory region and
 189   // the space.  Fields in objects allocated by applications of the closure
 190   // are not included in the iteration.
 191   virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
 192 
 193   // Iterate over all objects in the space, calling "cl.do_object" on
 194   // each.  Objects allocated by applications of the closure are not
 195   // included in the iteration.
 196   virtual void object_iterate(ObjectClosure* blk) = 0;
 197   // Similar to object_iterate() except only iterates over
 198   // objects whose internal references point to objects in the space.
 199   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
 200 
 201   // Iterate over all objects that intersect with mr, calling "cl->do_object"
 202   // on each.  There is an exception to this: if this closure has already
 203   // been invoked on an object, it may skip such objects in some cases.  This is
 204   // Most likely to happen in an "upwards" (ascending address) iteration of
 205   // MemRegions.
 206   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 207 
 208   // Iterate over as many initialized objects in the space as possible,
 209   // calling "cl.do_object_careful" on each. Return NULL if all objects
 210   // in the space (at the start of the iteration) were iterated over.
 211   // Return an address indicating the extent of the iteration in the
 212   // event that the iteration had to return because of finding an
 213   // uninitialized object in the space, or if the closure "cl"
 214   // signalled early termination.
 215   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 216   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
 217                                              ObjectClosureCareful* cl);
 218 
 219   // Create and return a new dirty card to oop closure. Can be
 220   // overriden to return the appropriate type of closure
 221   // depending on the type of space in which the closure will
 222   // operate. ResourceArea allocated.
 223   virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
 224                                              CardTableModRefBS::PrecisionStyle precision,
 225                                              HeapWord* boundary = NULL);
 226 
 227   // If "p" is in the space, returns the address of the start of the
 228   // "block" that contains "p".  We say "block" instead of "object" since
 229   // some heaps may not pack objects densely; a chunk may either be an
 230   // object or a non-object.  If "p" is not in the space, return NULL.
 231   virtual HeapWord* block_start_const(const void* p) const = 0;
 232 
 233   // The non-const version may have benevolent side effects on the data
 234   // structure supporting these calls, possibly speeding up future calls.
 235   // The default implementation, however, is simply to call the const
 236   // version.
 237   inline virtual HeapWord* block_start(const void* p);
 238 
 239   // Requires "addr" to be the start of a chunk, and returns its size.
 240   // "addr + size" is required to be the start of a new chunk, or the end
 241   // of the active area of the heap.
 242   virtual size_t block_size(const HeapWord* addr) const = 0;
 243 
 244   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 245   // the block is an object.
 246   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 247 
 248   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 249   // the block is an object and the object is alive.
 250   virtual bool obj_is_alive(const HeapWord* addr) const;
 251 
 252   // Allocation (return NULL if full).  Assumes the caller has established
 253   // mutually exclusive access to the space.
 254   virtual HeapWord* allocate(size_t word_size) = 0;
 255 
 256   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 257   virtual HeapWord* par_allocate(size_t word_size) = 0;
 258 
 259   // Returns true if this object has been allocated since a
 260   // generation's "save_marks" call.
 261   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
 262 
 263   // Mark-sweep-compact support: all spaces can update pointers to objects
 264   // moving as a part of compaction.
 265   virtual void adjust_pointers();
 266 
 267   // PrintHeapAtGC support
 268   virtual void print() const;
 269   virtual void print_on(outputStream* st) const;
 270   virtual void print_short() const;
 271   virtual void print_short_on(outputStream* st) const;
 272 
 273 
 274   // Accessor for parallel sequential tasks.
 275   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 276 
 277   // IF "this" is a ContiguousSpace, return it, else return NULL.
 278   virtual ContiguousSpace* toContiguousSpace() {
 279     return NULL;
 280   }
 281 
 282   // Debugging
 283   virtual void verify(bool allow_dirty) const = 0;
 284 };
 285 
 286 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 287 // OopClosure to (the addresses of) all the ref-containing fields that could
 288 // be modified by virtue of the given MemRegion being dirty. (Note that
 289 // because of the imprecise nature of the write barrier, this may iterate
 290 // over oops beyond the region.)
 291 // This base type for dirty card to oop closures handles memory regions
 292 // in non-contiguous spaces with no boundaries, and should be sub-classed
 293 // to support other space types. See ContiguousDCTOC for a sub-class
 294 // that works with ContiguousSpaces.
 295 
 296 class DirtyCardToOopClosure: public MemRegionClosureRO {
 297 protected:
 298   OopClosure* _cl;
 299   Space* _sp;
 300   CardTableModRefBS::PrecisionStyle _precision;
 301   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 302                                 // pointing below boundary.
 303   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 304                                 // a downwards traversal; this is the
 305                                 // lowest location already done (or,
 306                                 // alternatively, the lowest address that
 307                                 // shouldn't be done again.  NULL means infinity.)
 308   NOT_PRODUCT(HeapWord* _last_bottom;)
 309   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 310 
 311   // Get the actual top of the area on which the closure will
 312   // operate, given where the top is assumed to be (the end of the
 313   // memory region passed to do_MemRegion) and where the object
 314   // at the top is assumed to start. For example, an object may
 315   // start at the top but actually extend past the assumed top,
 316   // in which case the top becomes the end of the object.
 317   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 318 
 319   // Walk the given memory region from bottom to (actual) top
 320   // looking for objects and applying the oop closure (_cl) to
 321   // them. The base implementation of this treats the area as
 322   // blocks, where a block may or may not be an object. Sub-
 323   // classes should override this to provide more accurate
 324   // or possibly more efficient walking.
 325   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 326 
 327 public:
 328   DirtyCardToOopClosure(Space* sp, OopClosure* cl,
 329                         CardTableModRefBS::PrecisionStyle precision,
 330                         HeapWord* boundary) :
 331     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
 332     _min_done(NULL) {
 333     NOT_PRODUCT(_last_bottom = NULL);
 334     NOT_PRODUCT(_last_explicit_min_done = NULL);
 335   }
 336 
 337   void do_MemRegion(MemRegion mr);
 338 
 339   void set_min_done(HeapWord* min_done) {
 340     _min_done = min_done;
 341     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 342   }
 343 #ifndef PRODUCT
 344   void set_last_bottom(HeapWord* last_bottom) {
 345     _last_bottom = last_bottom;
 346   }
 347 #endif
 348 };
 349 
 350 // A structure to represent a point at which objects are being copied
 351 // during compaction.
 352 class CompactPoint : public StackObj {
 353 public:
 354   Generation* gen;
 355   CompactibleSpace* space;
 356   HeapWord* threshold;
 357   CompactPoint(Generation* _gen, CompactibleSpace* _space,
 358                HeapWord* _threshold) :
 359     gen(_gen), space(_space), threshold(_threshold) {}
 360 };
 361 
 362 
 363 // A space that supports compaction operations.  This is usually, but not
 364 // necessarily, a space that is normally contiguous.  But, for example, a
 365 // free-list-based space whose normal collection is a mark-sweep without
 366 // compaction could still support compaction in full GC's.
 367 
 368 class CompactibleSpace: public Space {
 369   friend class VMStructs;
 370   friend class CompactibleFreeListSpace;
 371   friend class CompactingPermGenGen;
 372   friend class CMSPermGenGen;
 373 private:
 374   HeapWord* _compaction_top;
 375   CompactibleSpace* _next_compaction_space;
 376 
 377 public:
 378   CompactibleSpace() :
 379    _compaction_top(NULL), _next_compaction_space(NULL) {}
 380 
 381   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 382   virtual void clear(bool mangle_space);
 383 
 384   // Used temporarily during a compaction phase to hold the value
 385   // top should have when compaction is complete.
 386   HeapWord* compaction_top() const { return _compaction_top;    }
 387 
 388   void set_compaction_top(HeapWord* value) {
 389     assert(value == NULL || (value >= bottom() && value <= end()),
 390       "should point inside space");
 391     _compaction_top = value;
 392   }
 393 
 394   // Perform operations on the space needed after a compaction
 395   // has been performed.
 396   virtual void reset_after_compaction() {}
 397 
 398   // Returns the next space (in the current generation) to be compacted in
 399   // the global compaction order.  Also is used to select the next
 400   // space into which to compact.
 401 
 402   virtual CompactibleSpace* next_compaction_space() const {
 403     return _next_compaction_space;
 404   }
 405 
 406   void set_next_compaction_space(CompactibleSpace* csp) {
 407     _next_compaction_space = csp;
 408   }
 409 
 410   // MarkSweep support phase2
 411 
 412   // Start the process of compaction of the current space: compute
 413   // post-compaction addresses, and insert forwarding pointers.  The fields
 414   // "cp->gen" and "cp->compaction_space" are the generation and space into
 415   // which we are currently compacting.  This call updates "cp" as necessary,
 416   // and leaves the "compaction_top" of the final value of
 417   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 418   // this phase as if the final copy had occurred; if so, "cp->threshold"
 419   // indicates when the next such action should be taken.
 420   virtual void prepare_for_compaction(CompactPoint* cp);
 421   // MarkSweep support phase3
 422   virtual void adjust_pointers();
 423   // MarkSweep support phase4
 424   virtual void compact();
 425 
 426   // The maximum percentage of objects that can be dead in the compacted
 427   // live part of a compacted space ("deadwood" support.)
 428   virtual size_t allowed_dead_ratio() const { return 0; };
 429 
 430   // Some contiguous spaces may maintain some data structures that should
 431   // be updated whenever an allocation crosses a boundary.  This function
 432   // returns the first such boundary.
 433   // (The default implementation returns the end of the space, so the
 434   // boundary is never crossed.)
 435   virtual HeapWord* initialize_threshold() { return end(); }
 436 
 437   // "q" is an object of the given "size" that should be forwarded;
 438   // "cp" names the generation ("gen") and containing "this" (which must
 439   // also equal "cp->space").  "compact_top" is where in "this" the
 440   // next object should be forwarded to.  If there is room in "this" for
 441   // the object, insert an appropriate forwarding pointer in "q".
 442   // If not, go to the next compaction space (there must
 443   // be one, since compaction must succeed -- we go to the first space of
 444   // the previous generation if necessary, updating "cp"), reset compact_top
 445   // and then forward.  In either case, returns the new value of "compact_top".
 446   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
 447   // function of the then-current compaction space, and updates "cp->threshold
 448   // accordingly".
 449   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 450                     HeapWord* compact_top);
 451 
 452   // Return a size with adjusments as required of the space.
 453   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 454 
 455 protected:
 456   // Used during compaction.
 457   HeapWord* _first_dead;
 458   HeapWord* _end_of_live;
 459 
 460   // Minimum size of a free block.
 461   virtual size_t minimum_free_block_size() const = 0;
 462 
 463   // This the function is invoked when an allocation of an object covering
 464   // "start" to "end occurs crosses the threshold; returns the next
 465   // threshold.  (The default implementation does nothing.)
 466   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 467     return end();
 468   }
 469 
 470   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
 471   // free block of the given "word_len", and that "q", were it an object,
 472   // would not move if forwared.  If the size allows, fill the free
 473   // block with an object, to prevent excessive compaction.  Returns "true"
 474   // iff the free region was made deadspace, and modifies
 475   // "allowed_deadspace_words" to reflect the number of available deadspace
 476   // words remaining after this operation.
 477   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
 478                         size_t word_len);
 479 };
 480 
 481 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
 482   /* Compute the new addresses for the live objects and store it in the mark \
 483    * Used by universe::mark_sweep_phase2()                                   \
 484    */                                                                        \
 485   HeapWord* compact_top; /* This is where we are currently compacting to. */ \
 486                                                                              \
 487   /* We're sure to be here before any objects are compacted into this        \
 488    * space, so this is a good time to initialize this:                       \
 489    */                                                                        \
 490   set_compaction_top(bottom());                                              \
 491                                                                              \
 492   if (cp->space == NULL) {                                                   \
 493     assert(cp->gen != NULL, "need a generation");                            \
 494     assert(cp->threshold == NULL, "just checking");                          \
 495     assert(cp->gen->first_compaction_space() == this, "just checking");      \
 496     cp->space = cp->gen->first_compaction_space();                           \
 497     compact_top = cp->space->bottom();                                       \
 498     cp->space->set_compaction_top(compact_top);                              \
 499     cp->threshold = cp->space->initialize_threshold();                       \
 500   } else {                                                                   \
 501     compact_top = cp->space->compaction_top();                               \
 502   }                                                                          \
 503                                                                              \
 504   /* We allow some amount of garbage towards the bottom of the space, so     \
 505    * we don't start compacting before there is a significant gain to be made.\
 506    * Occasionally, we want to ensure a full compaction, which is determined  \
 507    * by the MarkSweepAlwaysCompactCount parameter.                           \
 508    */                                                                        \
 509   int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
 510   bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);       \
 511                                                                              \
 512   size_t allowed_deadspace = 0;                                              \
 513   if (skip_dead) {                                                           \
 514     const size_t ratio = allowed_dead_ratio();                               \
 515     allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
 516   }                                                                          \
 517                                                                              \
 518   HeapWord* q = bottom();                                                    \
 519   HeapWord* t = scan_limit();                                                \
 520                                                                              \
 521   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
 522                                    live object. */                           \
 523   HeapWord*  first_dead = end();/* The first dead object. */                 \
 524   LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
 525                                    first header of preceding free area. */   \
 526   _first_dead = first_dead;                                                  \
 527                                                                              \
 528   const intx interval = PrefetchScanIntervalInBytes;                         \
 529                                                                              \
 530   while (q < t) {                                                            \
 531     assert(!block_is_obj(q) ||                                               \
 532            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
 533            oop(q)->mark()->has_bias_pattern(),                               \
 534            "these are the only valid states during a mark sweep");           \
 535     if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
 536       /* prefetch beyond q */                                                \
 537       Prefetch::write(q, interval);                                          \
 538       /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
 539       size_t size = block_size(q);                                           \
 540       compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
 541       q += size;                                                             \
 542       end_of_live = q;                                                       \
 543     } else {                                                                 \
 544       /* run over all the contiguous dead objects */                         \
 545       HeapWord* end = q;                                                     \
 546       do {                                                                   \
 547         /* prefetch beyond end */                                            \
 548         Prefetch::write(end, interval);                                      \
 549         end += block_size(end);                                              \
 550       } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
 551                                                                              \
 552       /* see if we might want to pretend this object is alive so that        \
 553        * we don't have to compact quite as often.                            \
 554        */                                                                    \
 555       if (allowed_deadspace > 0 && q == compact_top) {                       \
 556         size_t sz = pointer_delta(end, q);                                   \
 557         if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
 558           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
 559           q = end;                                                           \
 560           end_of_live = end;                                                 \
 561           continue;                                                          \
 562         }                                                                    \
 563       }                                                                      \
 564                                                                              \
 565       /* otherwise, it really is a free region. */                           \
 566                                                                              \
 567       /* for the previous LiveRange, record the end of the live objects. */  \
 568       if (liveRange) {                                                       \
 569         liveRange->set_end(q);                                               \
 570       }                                                                      \
 571                                                                              \
 572       /* record the current LiveRange object.                                \
 573        * liveRange->start() is overlaid on the mark word.                    \
 574        */                                                                    \
 575       liveRange = (LiveRange*)q;                                             \
 576       liveRange->set_start(end);                                             \
 577       liveRange->set_end(end);                                               \
 578                                                                              \
 579       /* see if this is the first dead region. */                            \
 580       if (q < first_dead) {                                                  \
 581         first_dead = q;                                                      \
 582       }                                                                      \
 583                                                                              \
 584       /* move on to the next object */                                       \
 585       q = end;                                                               \
 586     }                                                                        \
 587   }                                                                          \
 588                                                                              \
 589   assert(q == t, "just checking");                                           \
 590   if (liveRange != NULL) {                                                   \
 591     liveRange->set_end(q);                                                   \
 592   }                                                                          \
 593   _end_of_live = end_of_live;                                                \
 594   if (end_of_live < first_dead) {                                            \
 595     first_dead = end_of_live;                                                \
 596   }                                                                          \
 597   _first_dead = first_dead;                                                  \
 598                                                                              \
 599   /* save the compaction_top of the compaction space. */                     \
 600   cp->space->set_compaction_top(compact_top);                                \
 601 }
 602 
 603 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
 604   /* adjust all the interior pointers to point at the new locations of objects  \
 605    * Used by MarkSweep::mark_sweep_phase3() */                                  \
 606                                                                                 \
 607   HeapWord* q = bottom();                                                       \
 608   HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
 609                                                                                 \
 610   assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
 611                                                                                 \
 612   if (q < t && _first_dead > q &&                                               \
 613       !oop(q)->is_gc_marked()) {                                                \
 614     /* we have a chunk of the space which hasn't moved and we've                \
 615      * reinitialized the mark word during the previous pass, so we can't        \
 616      * use is_gc_marked for the traversal. */                                   \
 617     HeapWord* end = _first_dead;                                                \
 618                                                                                 \
 619     while (q < end) {                                                           \
 620       /* I originally tried to conjoin "block_start(q) == q" to the             \
 621        * assertion below, but that doesn't work, because you can't              \
 622        * accurately traverse previous objects to get to the current one         \
 623        * after their pointers (including pointers into permGen) have been       \
 624        * updated, until the actual compaction is done.  dld, 4/00 */            \
 625       assert(block_is_obj(q),                                                   \
 626              "should be at block boundaries, and should be looking at objs");   \
 627                                                                                 \
 628       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
 629                                                                                 \
 630       /* point all the oops to the new location */                              \
 631       size_t size = oop(q)->adjust_pointers();                                  \
 632       size = adjust_obj_size(size);                                             \
 633                                                                                 \
 634       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
 635                                                                                 \
 636       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
 637                                                                                 \
 638       q += size;                                                                \
 639     }                                                                           \
 640                                                                                 \
 641     if (_first_dead == t) {                                                     \
 642       q = t;                                                                    \
 643     } else {                                                                    \
 644       /* $$$ This is funky.  Using this to read the previously written          \
 645        * LiveRange.  See also use below. */                                     \
 646       q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
 647     }                                                                           \
 648   }                                                                             \
 649                                                                                 \
 650   const intx interval = PrefetchScanIntervalInBytes;                            \
 651                                                                                 \
 652   debug_only(HeapWord* prev_q = NULL);                                          \
 653   while (q < t) {                                                               \
 654     /* prefetch beyond q */                                                     \
 655     Prefetch::write(q, interval);                                               \
 656     if (oop(q)->is_gc_marked()) {                                               \
 657       /* q is alive */                                                          \
 658       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
 659       /* point all the oops to the new location */                              \
 660       size_t size = oop(q)->adjust_pointers();                                  \
 661       size = adjust_obj_size(size);                                             \
 662       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
 663       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
 664       debug_only(prev_q = q);                                                   \
 665       q += size;                                                                \
 666     } else {                                                                    \
 667       /* q is not a live object, so its mark should point at the next           \
 668        * live object */                                                         \
 669       debug_only(prev_q = q);                                                   \
 670       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
 671       assert(q > prev_q, "we should be moving forward through memory");         \
 672     }                                                                           \
 673   }                                                                             \
 674                                                                                 \
 675   assert(q == t, "just checking");                                              \
 676 }
 677 
 678 #define SCAN_AND_COMPACT(obj_size) {                                            \
 679   /* Copy all live objects to their new location                                \
 680    * Used by MarkSweep::mark_sweep_phase4() */                                  \
 681                                                                                 \
 682   HeapWord*       q = bottom();                                                 \
 683   HeapWord* const t = _end_of_live;                                             \
 684   debug_only(HeapWord* prev_q = NULL);                                          \
 685                                                                                 \
 686   if (q < t && _first_dead > q &&                                               \
 687       !oop(q)->is_gc_marked()) {                                                \
 688     debug_only(                                                                 \
 689     /* we have a chunk of the space which hasn't moved and we've reinitialized  \
 690      * the mark word during the previous pass, so we can't use is_gc_marked for \
 691      * the traversal. */                                                        \
 692     HeapWord* const end = _first_dead;                                          \
 693                                                                                 \
 694     while (q < end) {                                                           \
 695       size_t size = obj_size(q);                                                \
 696       assert(!oop(q)->is_gc_marked(),                                           \
 697              "should be unmarked (special dense prefix handling)");             \
 698       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
 699       debug_only(prev_q = q);                                                   \
 700       q += size;                                                                \
 701     }                                                                           \
 702     )  /* debug_only */                                                         \
 703                                                                                 \
 704     if (_first_dead == t) {                                                     \
 705       q = t;                                                                    \
 706     } else {                                                                    \
 707       /* $$$ Funky */                                                           \
 708       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
 709     }                                                                           \
 710   }                                                                             \
 711                                                                                 \
 712   const intx scan_interval = PrefetchScanIntervalInBytes;                       \
 713   const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
 714   while (q < t) {                                                               \
 715     if (!oop(q)->is_gc_marked()) {                                              \
 716       /* mark is pointer to next marked oop */                                  \
 717       debug_only(prev_q = q);                                                   \
 718       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
 719       assert(q > prev_q, "we should be moving forward through memory");         \
 720     } else {                                                                    \
 721       /* prefetch beyond q */                                                   \
 722       Prefetch::read(q, scan_interval);                                         \
 723                                                                                 \
 724       /* size and destination */                                                \
 725       size_t size = obj_size(q);                                                \
 726       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
 727                                                                                 \
 728       /* prefetch beyond compaction_top */                                      \
 729       Prefetch::write(compaction_top, copy_interval);                           \
 730                                                                                 \
 731       /* copy object and reinit its mark */                                     \
 732       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
 733                                                             compaction_top));   \
 734       assert(q != compaction_top, "everything in this pass should be moving");  \
 735       Copy::aligned_conjoint_words(q, compaction_top, size);                    \
 736       oop(compaction_top)->init_mark();                                         \
 737       assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
 738                                                                                 \
 739       debug_only(prev_q = q);                                                   \
 740       q += size;                                                                \
 741     }                                                                           \
 742   }                                                                             \
 743                                                                                 \
 744   /* Let's remember if we were empty before we did the compaction. */           \
 745   bool was_empty = used_region().is_empty();                                    \
 746   /* Reset space after compaction is complete */                                \
 747   reset_after_compaction();                                                     \
 748   /* We do this clear, below, since it has overloaded meanings for some */      \
 749   /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
 750   /* compacted into will have had their offset table thresholds updated */      \
 751   /* continuously, but those that weren't need to have their thresholds */      \
 752   /* re-initialized.  Also mangles unused area for debugging.           */      \
 753   if (used_region().is_empty()) {                                               \
 754     if (!was_empty) clear(SpaceDecorator::Mangle);                              \
 755   } else {                                                                      \
 756     if (ZapUnusedHeapArea) mangle_unused_area();                                \
 757   }                                                                             \
 758 }
 759 
 760 class GenSpaceMangler;
 761 
 762 // A space in which the free area is contiguous.  It therefore supports
 763 // faster allocation, and compaction.
 764 class ContiguousSpace: public CompactibleSpace {
 765   friend class OneContigSpaceCardGeneration;
 766   friend class VMStructs;
 767  protected:
 768   HeapWord* _top;
 769   HeapWord* _concurrent_iteration_safe_limit;
 770   // A helper for mangling the unused area of the space in debug builds.
 771   GenSpaceMangler* _mangler;
 772 
 773   GenSpaceMangler* mangler() { return _mangler; }
 774 
 775   // Allocation helpers (return NULL if full).
 776   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 777   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 778 
 779  public:
 780   ContiguousSpace();
 781   ~ContiguousSpace();
 782 
 783   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 784   virtual void clear(bool mangle_space);
 785 
 786   // Accessors
 787   HeapWord* top() const            { return _top;    }
 788   void set_top(HeapWord* value)    { _top = value; }
 789 
 790   virtual void set_saved_mark()    { _saved_mark_word = top();    }
 791   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 792 
 793   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
 794   WaterMark top_mark()        { return WaterMark(this, top()); }
 795   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
 796   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 797 
 798   // In debug mode mangle (write it with a particular bit
 799   // pattern) the unused part of a space.
 800 
 801   // Used to save the an address in a space for later use during mangling.
 802   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 803   // Used to save the space's current top for later use during mangling.
 804   void set_top_for_allocations() PRODUCT_RETURN;
 805 
 806   // Mangle regions in the space from the current top up to the
 807   // previously mangled part of the space.
 808   void mangle_unused_area() PRODUCT_RETURN;
 809   // Mangle [top, end)
 810   void mangle_unused_area_complete() PRODUCT_RETURN;
 811   // Mangle the given MemRegion.
 812   void mangle_region(MemRegion mr) PRODUCT_RETURN;
 813 
 814   // Do some sparse checking on the area that should have been mangled.
 815   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 816   // Check the complete area that should have been mangled.
 817   // This code may be NULL depending on the macro DEBUG_MANGLING.
 818   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 819 
 820   // Size computations: sizes in bytes.
 821   size_t capacity() const        { return byte_size(bottom(), end()); }
 822   size_t used() const            { return byte_size(bottom(), top()); }
 823   size_t free() const            { return byte_size(top(),    end()); }
 824 
 825   // Override from space.
 826   bool is_in(const void* p) const;
 827 
 828   virtual bool is_free_block(const HeapWord* p) const;
 829 
 830   // In a contiguous space we have a more obvious bound on what parts
 831   // contain objects.
 832   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 833 
 834   MemRegion used_region_at_save_marks() const {
 835     return MemRegion(bottom(), saved_mark_word());
 836   }
 837 
 838   // Allocation (return NULL if full)
 839   virtual HeapWord* allocate(size_t word_size);
 840   virtual HeapWord* par_allocate(size_t word_size);
 841 
 842   virtual bool obj_allocated_since_save_marks(const oop obj) const {
 843     return (HeapWord*)obj >= saved_mark_word();
 844   }
 845 
 846   // Iteration
 847   void oop_iterate(OopClosure* cl);
 848   void oop_iterate(MemRegion mr, OopClosure* cl);
 849   void object_iterate(ObjectClosure* blk);
 850   // For contiguous spaces this method will iterate safely over objects
 851   // in the space (i.e., between bottom and top) when at a safepoint.
 852   void safe_object_iterate(ObjectClosure* blk);
 853   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
 854   // iterates on objects up to the safe limit
 855   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 856   inline HeapWord* concurrent_iteration_safe_limit();
 857   // changes the safe limit, all objects from bottom() to the new
 858   // limit should be properly initialized
 859   inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
 860 
 861 #ifndef SERIALGC
 862   // In support of parallel oop_iterate.
 863   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
 864     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 865 
 866     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
 867   #undef ContigSpace_PAR_OOP_ITERATE_DECL
 868 #endif // SERIALGC
 869 
 870   // Compaction support
 871   virtual void reset_after_compaction() {
 872     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 873     set_top(compaction_top());
 874     // set new iteration safe limit
 875     set_concurrent_iteration_safe_limit(compaction_top());
 876   }
 877   virtual size_t minimum_free_block_size() const { return 0; }
 878 
 879   // Override.
 880   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
 881                                      CardTableModRefBS::PrecisionStyle precision,
 882                                      HeapWord* boundary = NULL);
 883 
 884   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 885   // starting with the _saved_mark_word, which was noted during a generation's
 886   // save_marks and is required to denote the head of an object.
 887   // Fields in objects allocated by applications of the closure
 888   // *are* included in the iteration.
 889   // Updates _saved_mark_word to point to just after the last object
 890   // iterated over.
 891 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 892   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 893 
 894   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
 895 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
 896 
 897   // Same as object_iterate, but starting from "mark", which is required
 898   // to denote the start of an object.  Objects allocated by
 899   // applications of the closure *are* included in the iteration.
 900   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
 901 
 902   // Very inefficient implementation.
 903   virtual HeapWord* block_start_const(const void* p) const;
 904   size_t block_size(const HeapWord* p) const;
 905   // If a block is in the allocated area, it is an object.
 906   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 907 
 908   // Addresses for inlined allocation
 909   HeapWord** top_addr() { return &_top; }
 910   HeapWord** end_addr() { return &_end; }
 911 
 912   // Overrides for more efficient compaction support.
 913   void prepare_for_compaction(CompactPoint* cp);
 914 
 915   // PrintHeapAtGC support.
 916   virtual void print_on(outputStream* st) const;
 917 
 918   // Checked dynamic downcasts.
 919   virtual ContiguousSpace* toContiguousSpace() {
 920     return this;
 921   }
 922 
 923   // Debugging
 924   virtual void verify(bool allow_dirty) const;
 925 
 926   // Used to increase collection frequency.  "factor" of 0 means entire
 927   // space.
 928   void allocate_temporary_filler(int factor);
 929 
 930 };
 931 
 932 
 933 // A dirty card to oop closure that does filtering.
 934 // It knows how to filter out objects that are outside of the _boundary.
 935 class Filtering_DCTOC : public DirtyCardToOopClosure {
 936 protected:
 937   // Override.
 938   void walk_mem_region(MemRegion mr,
 939                        HeapWord* bottom, HeapWord* top);
 940 
 941   // Walk the given memory region, from bottom to top, applying
 942   // the given oop closure to (possibly) all objects found. The
 943   // given oop closure may or may not be the same as the oop
 944   // closure with which this closure was created, as it may
 945   // be a filtering closure which makes use of the _boundary.
 946   // We offer two signatures, so the FilteringClosure static type is
 947   // apparent.
 948   virtual void walk_mem_region_with_cl(MemRegion mr,
 949                                        HeapWord* bottom, HeapWord* top,
 950                                        OopClosure* cl) = 0;
 951   virtual void walk_mem_region_with_cl(MemRegion mr,
 952                                        HeapWord* bottom, HeapWord* top,
 953                                        FilteringClosure* cl) = 0;
 954 
 955 public:
 956   Filtering_DCTOC(Space* sp, OopClosure* cl,
 957                   CardTableModRefBS::PrecisionStyle precision,
 958                   HeapWord* boundary) :
 959     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 960 };
 961 
 962 // A dirty card to oop closure for contiguous spaces
 963 // (ContiguousSpace and sub-classes).
 964 // It is a FilteringClosure, as defined above, and it knows:
 965 //
 966 // 1. That the actual top of any area in a memory region
 967 //    contained by the space is bounded by the end of the contiguous
 968 //    region of the space.
 969 // 2. That the space is really made up of objects and not just
 970 //    blocks.
 971 
 972 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
 973 protected:
 974   // Overrides.
 975   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 976 
 977   virtual void walk_mem_region_with_cl(MemRegion mr,
 978                                        HeapWord* bottom, HeapWord* top,
 979                                        OopClosure* cl);
 980   virtual void walk_mem_region_with_cl(MemRegion mr,
 981                                        HeapWord* bottom, HeapWord* top,
 982                                        FilteringClosure* cl);
 983 
 984 public:
 985   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
 986                        CardTableModRefBS::PrecisionStyle precision,
 987                        HeapWord* boundary) :
 988     Filtering_DCTOC(sp, cl, precision, boundary)
 989   {}
 990 };
 991 
 992 
 993 // Class EdenSpace describes eden-space in new generation.
 994 
 995 class DefNewGeneration;
 996 
 997 class EdenSpace : public ContiguousSpace {
 998   friend class VMStructs;
 999  private:
1000   DefNewGeneration* _gen;
1001 
1002   // _soft_end is used as a soft limit on allocation.  As soft limits are
1003   // reached, the slow-path allocation code can invoke other actions and then
1004   // adjust _soft_end up to a new soft limit or to end().
1005   HeapWord* _soft_end;
1006 
1007  public:
1008   EdenSpace(DefNewGeneration* gen) :
1009    _gen(gen), _soft_end(NULL) {}
1010 
1011   // Get/set just the 'soft' limit.
1012   HeapWord* soft_end()               { return _soft_end; }
1013   HeapWord** soft_end_addr()         { return &_soft_end; }
1014   void set_soft_end(HeapWord* value) { _soft_end = value; }
1015 
1016   // Override.
1017   void clear(bool mangle_space);
1018 
1019   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
1020   void set_end(HeapWord* value) {
1021     set_soft_end(value);
1022     ContiguousSpace::set_end(value);
1023   }
1024 
1025   // Allocation (return NULL if full)
1026   HeapWord* allocate(size_t word_size);
1027   HeapWord* par_allocate(size_t word_size);
1028 };
1029 
1030 // Class ConcEdenSpace extends EdenSpace for the sake of safe
1031 // allocation while soft-end is being modified concurrently
1032 
1033 class ConcEdenSpace : public EdenSpace {
1034  public:
1035   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
1036 
1037   // Allocation (return NULL if full)
1038   HeapWord* par_allocate(size_t word_size);
1039 };
1040 
1041 
1042 // A ContigSpace that Supports an efficient "block_start" operation via
1043 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
1044 // other spaces.)  This is the abstract base class for old generation
1045 // (tenured, perm) spaces.
1046 
1047 class OffsetTableContigSpace: public ContiguousSpace {
1048   friend class VMStructs;
1049  protected:
1050   BlockOffsetArrayContigSpace _offsets;
1051   Mutex _par_alloc_lock;
1052 
1053  public:
1054   // Constructor
1055   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
1056                          MemRegion mr);
1057 
1058   void set_bottom(HeapWord* value);
1059   void set_end(HeapWord* value);
1060 
1061   void clear(bool mangle_space);
1062 
1063   inline HeapWord* block_start_const(const void* p) const;
1064 
1065   // Add offset table update.
1066   virtual inline HeapWord* allocate(size_t word_size);
1067   inline HeapWord* par_allocate(size_t word_size);
1068 
1069   // MarkSweep support phase3
1070   virtual HeapWord* initialize_threshold();
1071   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
1072 
1073   virtual void print_on(outputStream* st) const;
1074 
1075   // Debugging
1076   void verify(bool allow_dirty) const;
1077 
1078   // Shared space support
1079   void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
1080 };
1081 
1082 
1083 // Class TenuredSpace is used by TenuredGeneration
1084 
1085 class TenuredSpace: public OffsetTableContigSpace {
1086   friend class VMStructs;
1087  protected:
1088   // Mark sweep support
1089   size_t allowed_dead_ratio() const;
1090  public:
1091   // Constructor
1092   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
1093                MemRegion mr) :
1094     OffsetTableContigSpace(sharedOffsetArray, mr) {}
1095 };
1096 
1097 
1098 // Class ContigPermSpace is used by CompactingPermGen
1099 
1100 class ContigPermSpace: public OffsetTableContigSpace {
1101   friend class VMStructs;
1102  protected:
1103   // Mark sweep support
1104   size_t allowed_dead_ratio() const;
1105  public:
1106   // Constructor
1107   ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
1108     OffsetTableContigSpace(sharedOffsetArray, mr) {}
1109 };