1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/mulnode.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/subnode.hpp"
  34 
  35 // Portions of code courtesy of Clifford Click
  36 
  37 #define MAXFLOAT        ((float)3.40282346638528860e+38)
  38 
  39 // Classic Add functionality.  This covers all the usual 'add' behaviors for
  40 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
  41 // all inherited from this class.  The various identity values are supplied
  42 // by virtual functions.
  43 
  44 
  45 //=============================================================================
  46 //------------------------------hash-------------------------------------------
  47 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
  48 // (commute) inputs to AddNodes willy-nilly so the hash function must return
  49 // the same value in the presence of edge swapping.
  50 uint AddNode::hash() const {
  51   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
  52 }
  53 
  54 //------------------------------Identity---------------------------------------
  55 // If either input is a constant 0, return the other input.
  56 Node *AddNode::Identity( PhaseTransform *phase ) {
  57   const Type *zero = add_id();  // The additive identity
  58   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
  59   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
  60   return this;
  61 }
  62 
  63 //------------------------------commute----------------------------------------
  64 // Commute operands to move loads and constants to the right.
  65 static bool commute( Node *add, int con_left, int con_right ) {
  66   Node *in1 = add->in(1);
  67   Node *in2 = add->in(2);
  68 
  69   // Convert "1+x" into "x+1".
  70   // Right is a constant; leave it
  71   if( con_right ) return false;
  72   // Left is a constant; move it right.
  73   if( con_left ) {
  74     add->swap_edges(1, 2);
  75     return true;
  76   }
  77 
  78   // Convert "Load+x" into "x+Load".
  79   // Now check for loads
  80   if (in2->is_Load()) {
  81     if (!in1->is_Load()) {
  82       // already x+Load to return
  83       return false;
  84     }
  85     // both are loads, so fall through to sort inputs by idx
  86   } else if( in1->is_Load() ) {
  87     // Left is a Load and Right is not; move it right.
  88     add->swap_edges(1, 2);
  89     return true;
  90   }
  91 
  92   PhiNode *phi;
  93   // Check for tight loop increments: Loop-phi of Add of loop-phi
  94   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
  95     return false;
  96   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
  97     add->swap_edges(1, 2);
  98     return true;
  99   }
 100 
 101   // Otherwise, sort inputs (commutativity) to help value numbering.
 102   if( in1->_idx > in2->_idx ) {
 103     add->swap_edges(1, 2);
 104     return true;
 105   }
 106   return false;
 107 }
 108 
 109 //------------------------------Idealize---------------------------------------
 110 // If we get here, we assume we are associative!
 111 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 112   const Type *t1 = phase->type( in(1) );
 113   const Type *t2 = phase->type( in(2) );
 114   int con_left  = t1->singleton();
 115   int con_right = t2->singleton();
 116 
 117   // Check for commutative operation desired
 118   if( commute(this,con_left,con_right) ) return this;
 119 
 120   AddNode *progress = NULL;             // Progress flag
 121 
 122   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
 123   // constant, and the left input is an add of a constant, flatten the
 124   // expression tree.
 125   Node *add1 = in(1);
 126   Node *add2 = in(2);
 127   int add1_op = add1->Opcode();
 128   int this_op = Opcode();
 129   if( con_right && t2 != Type::TOP && // Right input is a constant?
 130       add1_op == this_op ) { // Left input is an Add?
 131 
 132     // Type of left _in right input
 133     const Type *t12 = phase->type( add1->in(2) );
 134     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
 135       // Check for rare case of closed data cycle which can happen inside
 136       // unreachable loops. In these cases the computation is undefined.
 137 #ifdef ASSERT
 138       Node *add11    = add1->in(1);
 139       int   add11_op = add11->Opcode();
 140       if( (add1 == add1->in(1))
 141          || (add11_op == this_op && add11->in(1) == add1) ) {
 142         assert(false, "dead loop in AddNode::Ideal");
 143       }
 144 #endif
 145       // The Add of the flattened expression
 146       Node *x1 = add1->in(1);
 147       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
 148       PhaseIterGVN *igvn = phase->is_IterGVN();
 149       if( igvn ) {
 150         set_req_X(2,x2,igvn);
 151         set_req_X(1,x1,igvn);
 152       } else {
 153         set_req(2,x2);
 154         set_req(1,x1);
 155       }
 156       progress = this;            // Made progress
 157       add1 = in(1);
 158       add1_op = add1->Opcode();
 159     }
 160   }
 161 
 162   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
 163   if( add1_op == this_op && !con_right ) {
 164     Node *a12 = add1->in(2);
 165     const Type *t12 = phase->type( a12 );
 166     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
 167        !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
 168       assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
 169       add2 = add1->clone();
 170       add2->set_req(2, in(2));
 171       add2 = phase->transform(add2);
 172       set_req(1, add2);
 173       set_req(2, a12);
 174       progress = this;
 175       add2 = a12;
 176     }
 177   }
 178 
 179   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
 180   int add2_op = add2->Opcode();
 181   if( add2_op == this_op && !con_left ) {
 182     Node *a22 = add2->in(2);
 183     const Type *t22 = phase->type( a22 );
 184     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
 185        !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
 186       assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
 187       Node *addx = add2->clone();
 188       addx->set_req(1, in(1));
 189       addx->set_req(2, add2->in(1));
 190       addx = phase->transform(addx);
 191       set_req(1, addx);
 192       set_req(2, a22);
 193       progress = this;
 194     }
 195   }
 196 
 197   return progress;
 198 }
 199 
 200 //------------------------------Value-----------------------------------------
 201 // An add node sums it's two _in.  If one input is an RSD, we must mixin
 202 // the other input's symbols.
 203 const Type *AddNode::Value( PhaseTransform *phase ) const {
 204   // Either input is TOP ==> the result is TOP
 205   const Type *t1 = phase->type( in(1) );
 206   const Type *t2 = phase->type( in(2) );
 207   if( t1 == Type::TOP ) return Type::TOP;
 208   if( t2 == Type::TOP ) return Type::TOP;
 209 
 210   // Either input is BOTTOM ==> the result is the local BOTTOM
 211   const Type *bot = bottom_type();
 212   if( (t1 == bot) || (t2 == bot) ||
 213       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 214     return bot;
 215 
 216   // Check for an addition involving the additive identity
 217   const Type *tadd = add_of_identity( t1, t2 );
 218   if( tadd ) return tadd;
 219 
 220   return add_ring(t1,t2);               // Local flavor of type addition
 221 }
 222 
 223 //------------------------------add_identity-----------------------------------
 224 // Check for addition of the identity
 225 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 226   const Type *zero = add_id();  // The additive identity
 227   if( t1->higher_equal( zero ) ) return t2;
 228   if( t2->higher_equal( zero ) ) return t1;
 229 
 230   return NULL;
 231 }
 232 
 233 
 234 //=============================================================================
 235 //------------------------------Idealize---------------------------------------
 236 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 237   Node* in1 = in(1);
 238   Node* in2 = in(2);
 239   int op1 = in1->Opcode();
 240   int op2 = in2->Opcode();
 241   // Fold (con1-x)+con2 into (con1+con2)-x
 242   if ( op1 == Op_AddI && op2 == Op_SubI ) {
 243     // Swap edges to try optimizations below
 244     in1 = in2;
 245     in2 = in(1);
 246     op1 = op2;
 247     op2 = in2->Opcode();
 248   }
 249   if( op1 == Op_SubI ) {
 250     const Type *t_sub1 = phase->type( in1->in(1) );
 251     const Type *t_2    = phase->type( in2        );
 252     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
 253       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
 254                               in1->in(2) );
 255     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
 256     if( op2 == Op_SubI ) {
 257       // Check for dead cycle: d = (a-b)+(c-d)
 258       assert( in1->in(2) != this && in2->in(2) != this,
 259               "dead loop in AddINode::Ideal" );
 260       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
 261       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
 262       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
 263       return sub;
 264     }
 265     // Convert "(a-b)+(b+c)" into "(a+c)"
 266     if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
 267       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
 268       return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
 269     }
 270     // Convert "(a-b)+(c+b)" into "(a+c)"
 271     if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
 272       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
 273       return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
 274     }
 275     // Convert "(a-b)+(b-c)" into "(a-c)"
 276     if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
 277       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
 278       return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
 279     }
 280     // Convert "(a-b)+(c-a)" into "(c-b)"
 281     if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
 282       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
 283       return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
 284     }
 285   }
 286 
 287   // Convert "x+(0-y)" into "(x-y)"
 288   if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
 289     return new (phase->C, 3) SubINode(in1, in2->in(2) );
 290 
 291   // Convert "(0-y)+x" into "(x-y)"
 292   if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
 293     return new (phase->C, 3) SubINode( in2, in1->in(2) );
 294 
 295   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
 296   // Helps with array allocation math constant folding
 297   // See 4790063:
 298   // Unrestricted transformation is unsafe for some runtime values of 'x'
 299   // ( x ==  0, z == 1, y == -1 ) fails
 300   // ( x == -5, z == 1, y ==  1 ) fails
 301   // Transform works for small z and small negative y when the addition
 302   // (x + (y << z)) does not cross zero.
 303   // Implement support for negative y and (x >= -(y << z))
 304   // Have not observed cases where type information exists to support
 305   // positive y and (x <= -(y << z))
 306   if( op1 == Op_URShiftI && op2 == Op_ConI &&
 307       in1->in(2)->Opcode() == Op_ConI ) {
 308     jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
 309     jint y = phase->type( in2 )->is_int()->get_con();
 310 
 311     if( z < 5 && -5 < y && y < 0 ) {
 312       const Type *t_in11 = phase->type(in1->in(1));
 313       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
 314         Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
 315         return new (phase->C, 3) URShiftINode( a, in1->in(2) );
 316       }
 317     }
 318   }
 319 
 320   return AddNode::Ideal(phase, can_reshape);
 321 }
 322 
 323 
 324 //------------------------------Identity---------------------------------------
 325 // Fold (x-y)+y  OR  y+(x-y)  into  x
 326 Node *AddINode::Identity( PhaseTransform *phase ) {
 327   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
 328     return in(1)->in(1);
 329   }
 330   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
 331     return in(2)->in(1);
 332   }
 333   return AddNode::Identity(phase);
 334 }
 335 
 336 
 337 //------------------------------add_ring---------------------------------------
 338 // Supplied function returns the sum of the inputs.  Guaranteed never
 339 // to be passed a TOP or BOTTOM type, these are filtered out by
 340 // pre-check.
 341 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
 342   const TypeInt *r0 = t0->is_int(); // Handy access
 343   const TypeInt *r1 = t1->is_int();
 344   int lo = r0->_lo + r1->_lo;
 345   int hi = r0->_hi + r1->_hi;
 346   if( !(r0->is_con() && r1->is_con()) ) {
 347     // Not both constants, compute approximate result
 348     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 349       lo = min_jint; hi = max_jint; // Underflow on the low side
 350     }
 351     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 352       lo = min_jint; hi = max_jint; // Overflow on the high side
 353     }
 354     if( lo > hi ) {               // Handle overflow
 355       lo = min_jint; hi = max_jint;
 356     }
 357   } else {
 358     // both constants, compute precise result using 'lo' and 'hi'
 359     // Semantics define overflow and underflow for integer addition
 360     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 361   }
 362   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 363 }
 364 
 365 
 366 //=============================================================================
 367 //------------------------------Idealize---------------------------------------
 368 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 369   Node* in1 = in(1);
 370   Node* in2 = in(2);
 371   int op1 = in1->Opcode();
 372   int op2 = in2->Opcode();
 373   // Fold (con1-x)+con2 into (con1+con2)-x
 374   if ( op1 == Op_AddL && op2 == Op_SubL ) {
 375     // Swap edges to try optimizations below
 376     in1 = in2;
 377     in2 = in(1);
 378     op1 = op2;
 379     op2 = in2->Opcode();
 380   }
 381   // Fold (con1-x)+con2 into (con1+con2)-x
 382   if( op1 == Op_SubL ) {
 383     const Type *t_sub1 = phase->type( in1->in(1) );
 384     const Type *t_2    = phase->type( in2        );
 385     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
 386       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
 387                               in1->in(2) );
 388     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
 389     if( op2 == Op_SubL ) {
 390       // Check for dead cycle: d = (a-b)+(c-d)
 391       assert( in1->in(2) != this && in2->in(2) != this,
 392               "dead loop in AddLNode::Ideal" );
 393       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
 394       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
 395       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
 396       return sub;
 397     }
 398     // Convert "(a-b)+(b+c)" into "(a+c)"
 399     if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
 400       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
 401       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
 402     }
 403     // Convert "(a-b)+(c+b)" into "(a+c)"
 404     if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
 405       assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
 406       return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
 407     }
 408     // Convert "(a-b)+(b-c)" into "(a-c)"
 409     if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
 410       assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
 411       return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
 412     }
 413     // Convert "(a-b)+(c-a)" into "(c-b)"
 414     if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
 415       assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
 416       return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
 417     }
 418   }
 419 
 420   // Convert "x+(0-y)" into "(x-y)"
 421   if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
 422     return new (phase->C, 3) SubLNode( in1, in2->in(2) );
 423 
 424   // Convert "(0-y)+x" into "(x-y)"
 425   if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
 426     return new (phase->C, 3) SubLNode( in2, in1->in(2) );
 427 
 428   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
 429   // into "(X<<1)+Y" and let shift-folding happen.
 430   if( op2 == Op_AddL &&
 431       in2->in(1) == in1 &&
 432       op1 != Op_ConL &&
 433       0 ) {
 434     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
 435     return new (phase->C, 3) AddLNode(shift,in2->in(2));
 436   }
 437 
 438   return AddNode::Ideal(phase, can_reshape);
 439 }
 440 
 441 
 442 //------------------------------Identity---------------------------------------
 443 // Fold (x-y)+y  OR  y+(x-y)  into  x
 444 Node *AddLNode::Identity( PhaseTransform *phase ) {
 445   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
 446     return in(1)->in(1);
 447   }
 448   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
 449     return in(2)->in(1);
 450   }
 451   return AddNode::Identity(phase);
 452 }
 453 
 454 
 455 //------------------------------add_ring---------------------------------------
 456 // Supplied function returns the sum of the inputs.  Guaranteed never
 457 // to be passed a TOP or BOTTOM type, these are filtered out by
 458 // pre-check.
 459 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
 460   const TypeLong *r0 = t0->is_long(); // Handy access
 461   const TypeLong *r1 = t1->is_long();
 462   jlong lo = r0->_lo + r1->_lo;
 463   jlong hi = r0->_hi + r1->_hi;
 464   if( !(r0->is_con() && r1->is_con()) ) {
 465     // Not both constants, compute approximate result
 466     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
 467       lo =min_jlong; hi = max_jlong; // Underflow on the low side
 468     }
 469     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
 470       lo = min_jlong; hi = max_jlong; // Overflow on the high side
 471     }
 472     if( lo > hi ) {               // Handle overflow
 473       lo = min_jlong; hi = max_jlong;
 474     }
 475   } else {
 476     // both constants, compute precise result using 'lo' and 'hi'
 477     // Semantics define overflow and underflow for integer addition
 478     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
 479   }
 480   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
 481 }
 482 
 483 
 484 //=============================================================================
 485 //------------------------------add_of_identity--------------------------------
 486 // Check for addition of the identity
 487 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 488   // x ADD 0  should return x unless 'x' is a -zero
 489   //
 490   // const Type *zero = add_id();     // The additive identity
 491   // jfloat f1 = t1->getf();
 492   // jfloat f2 = t2->getf();
 493   //
 494   // if( t1->higher_equal( zero ) ) return t2;
 495   // if( t2->higher_equal( zero ) ) return t1;
 496 
 497   return NULL;
 498 }
 499 
 500 //------------------------------add_ring---------------------------------------
 501 // Supplied function returns the sum of the inputs.
 502 // This also type-checks the inputs for sanity.  Guaranteed never to
 503 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 504 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
 505   // We must be adding 2 float constants.
 506   return TypeF::make( t0->getf() + t1->getf() );
 507 }
 508 
 509 //------------------------------Ideal------------------------------------------
 510 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 511   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 512     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
 513   }
 514 
 515   // Floating point additions are not associative because of boundary conditions (infinity)
 516   return commute(this,
 517                  phase->type( in(1) )->singleton(),
 518                  phase->type( in(2) )->singleton() ) ? this : NULL;
 519 }
 520 
 521 
 522 //=============================================================================
 523 //------------------------------add_of_identity--------------------------------
 524 // Check for addition of the identity
 525 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
 526   // x ADD 0  should return x unless 'x' is a -zero
 527   //
 528   // const Type *zero = add_id();     // The additive identity
 529   // jfloat f1 = t1->getf();
 530   // jfloat f2 = t2->getf();
 531   //
 532   // if( t1->higher_equal( zero ) ) return t2;
 533   // if( t2->higher_equal( zero ) ) return t1;
 534 
 535   return NULL;
 536 }
 537 //------------------------------add_ring---------------------------------------
 538 // Supplied function returns the sum of the inputs.
 539 // This also type-checks the inputs for sanity.  Guaranteed never to
 540 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 541 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
 542   // We must be adding 2 double constants.
 543   return TypeD::make( t0->getd() + t1->getd() );
 544 }
 545 
 546 //------------------------------Ideal------------------------------------------
 547 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 548   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
 549     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
 550   }
 551 
 552   // Floating point additions are not associative because of boundary conditions (infinity)
 553   return commute(this,
 554                  phase->type( in(1) )->singleton(),
 555                  phase->type( in(2) )->singleton() ) ? this : NULL;
 556 }
 557 
 558 
 559 //=============================================================================
 560 //------------------------------Identity---------------------------------------
 561 // If one input is a constant 0, return the other input.
 562 Node *AddPNode::Identity( PhaseTransform *phase ) {
 563   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
 564 }
 565 
 566 //------------------------------Idealize---------------------------------------
 567 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 568   // Bail out if dead inputs
 569   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
 570 
 571   // If the left input is an add of a constant, flatten the expression tree.
 572   const Node *n = in(Address);
 573   if (n->is_AddP() && n->in(Base) == in(Base)) {
 574     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
 575     assert( !addp->in(Address)->is_AddP() ||
 576              addp->in(Address)->as_AddP() != addp,
 577             "dead loop in AddPNode::Ideal" );
 578     // Type of left input's right input
 579     const Type *t = phase->type( addp->in(Offset) );
 580     if( t == Type::TOP ) return NULL;
 581     const TypeX *t12 = t->is_intptr_t();
 582     if( t12->is_con() ) {       // Left input is an add of a constant?
 583       // If the right input is a constant, combine constants
 584       const Type *temp_t2 = phase->type( in(Offset) );
 585       if( temp_t2 == Type::TOP ) return NULL;
 586       const TypeX *t2 = temp_t2->is_intptr_t();
 587       Node* address;
 588       Node* offset;
 589       if( t2->is_con() ) {
 590         // The Add of the flattened expression
 591         address = addp->in(Address);
 592         offset  = phase->MakeConX(t2->get_con() + t12->get_con());
 593       } else {
 594         // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
 595         address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
 596         offset  = addp->in(Offset);
 597       }
 598       PhaseIterGVN *igvn = phase->is_IterGVN();
 599       if( igvn ) {
 600         set_req_X(Address,address,igvn);
 601         set_req_X(Offset,offset,igvn);
 602       } else {
 603         set_req(Address,address);
 604         set_req(Offset,offset);
 605       }
 606       return this;
 607     }
 608   }
 609 
 610   // Raw pointers?
 611   if( in(Base)->bottom_type() == Type::TOP ) {
 612     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
 613     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
 614       Node* offset = in(Offset);
 615       return new (phase->C, 2) CastX2PNode(offset);
 616     }
 617   }
 618 
 619   // If the right is an add of a constant, push the offset down.
 620   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
 621   // The idea is to merge array_base+scaled_index groups together,
 622   // and only have different constant offsets from the same base.
 623   const Node *add = in(Offset);
 624   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
 625     const Type *t22 = phase->type( add->in(2) );
 626     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
 627       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
 628       set_req(Offset, add->in(2));
 629       return this;              // Made progress
 630     }
 631   }
 632 
 633   return NULL;                  // No progress
 634 }
 635 
 636 //------------------------------bottom_type------------------------------------
 637 // Bottom-type is the pointer-type with unknown offset.
 638 const Type *AddPNode::bottom_type() const {
 639   if (in(Address) == NULL)  return TypePtr::BOTTOM;
 640   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
 641   if( !tp ) return Type::TOP;   // TOP input means TOP output
 642   assert( in(Offset)->Opcode() != Op_ConP, "" );
 643   const Type *t = in(Offset)->bottom_type();
 644   if( t == Type::TOP )
 645     return tp->add_offset(Type::OffsetTop);
 646   const TypeX *tx = t->is_intptr_t();
 647   intptr_t txoffset = Type::OffsetBot;
 648   if (tx->is_con()) {   // Left input is an add of a constant?
 649     txoffset = tx->get_con();
 650   }
 651   return tp->add_offset(txoffset);
 652 }
 653 
 654 //------------------------------Value------------------------------------------
 655 const Type *AddPNode::Value( PhaseTransform *phase ) const {
 656   // Either input is TOP ==> the result is TOP
 657   const Type *t1 = phase->type( in(Address) );
 658   const Type *t2 = phase->type( in(Offset) );
 659   if( t1 == Type::TOP ) return Type::TOP;
 660   if( t2 == Type::TOP ) return Type::TOP;
 661 
 662   // Left input is a pointer
 663   const TypePtr *p1 = t1->isa_ptr();
 664   // Right input is an int
 665   const TypeX *p2 = t2->is_intptr_t();
 666   // Add 'em
 667   intptr_t p2offset = Type::OffsetBot;
 668   if (p2->is_con()) {   // Left input is an add of a constant?
 669     p2offset = p2->get_con();
 670   }
 671   return p1->add_offset(p2offset);
 672 }
 673 
 674 //------------------------Ideal_base_and_offset--------------------------------
 675 // Split an oop pointer into a base and offset.
 676 // (The offset might be Type::OffsetBot in the case of an array.)
 677 // Return the base, or NULL if failure.
 678 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
 679                                       // second return value:
 680                                       intptr_t& offset) {
 681   if (ptr->is_AddP()) {
 682     Node* base = ptr->in(AddPNode::Base);
 683     Node* addr = ptr->in(AddPNode::Address);
 684     Node* offs = ptr->in(AddPNode::Offset);
 685     if (base == addr || base->is_top()) {
 686       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
 687       if (offset != Type::OffsetBot) {
 688         return addr;
 689       }
 690     }
 691   }
 692   offset = Type::OffsetBot;
 693   return NULL;
 694 }
 695 
 696 //------------------------------unpack_offsets----------------------------------
 697 // Collect the AddP offset values into the elements array, giving up
 698 // if there are more than length.
 699 int AddPNode::unpack_offsets(Node* elements[], int length) {
 700   int count = 0;
 701   Node* addr = this;
 702   Node* base = addr->in(AddPNode::Base);
 703   while (addr->is_AddP()) {
 704     if (addr->in(AddPNode::Base) != base) {
 705       // give up
 706       return -1;
 707     }
 708     elements[count++] = addr->in(AddPNode::Offset);
 709     if (count == length) {
 710       // give up
 711       return -1;
 712     }
 713     addr = addr->in(AddPNode::Address);
 714   }
 715   if (addr != base) {
 716     return -1;
 717   }
 718   return count;
 719 }
 720 
 721 //------------------------------match_edge-------------------------------------
 722 // Do we Match on this edge index or not?  Do not match base pointer edge
 723 uint AddPNode::match_edge(uint idx) const {
 724   return idx > Base;
 725 }
 726 
 727 //=============================================================================
 728 //------------------------------Identity---------------------------------------
 729 Node *OrINode::Identity( PhaseTransform *phase ) {
 730   // x | x => x
 731   if (phase->eqv(in(1), in(2))) {
 732     return in(1);
 733   }
 734 
 735   return AddNode::Identity(phase);
 736 }
 737 
 738 //------------------------------add_ring---------------------------------------
 739 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
 740 // the logical operations the ring's ADD is really a logical OR function.
 741 // This also type-checks the inputs for sanity.  Guaranteed never to
 742 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 743 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
 744   const TypeInt *r0 = t0->is_int(); // Handy access
 745   const TypeInt *r1 = t1->is_int();
 746 
 747   // If both args are bool, can figure out better types
 748   if ( r0 == TypeInt::BOOL ) {
 749     if ( r1 == TypeInt::ONE) {
 750       return TypeInt::ONE;
 751     } else if ( r1 == TypeInt::BOOL ) {
 752       return TypeInt::BOOL;
 753     }
 754   } else if ( r0 == TypeInt::ONE ) {
 755     if ( r1 == TypeInt::BOOL ) {
 756       return TypeInt::ONE;
 757     }
 758   }
 759 
 760   // If either input is not a constant, just return all integers.
 761   if( !r0->is_con() || !r1->is_con() )
 762     return TypeInt::INT;        // Any integer, but still no symbols.
 763 
 764   // Otherwise just OR them bits.
 765   return TypeInt::make( r0->get_con() | r1->get_con() );
 766 }
 767 
 768 //=============================================================================
 769 //------------------------------Identity---------------------------------------
 770 Node *OrLNode::Identity( PhaseTransform *phase ) {
 771   // x | x => x
 772   if (phase->eqv(in(1), in(2))) {
 773     return in(1);
 774   }
 775 
 776   return AddNode::Identity(phase);
 777 }
 778 
 779 //------------------------------add_ring---------------------------------------
 780 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
 781   const TypeLong *r0 = t0->is_long(); // Handy access
 782   const TypeLong *r1 = t1->is_long();
 783 
 784   // If either input is not a constant, just return all integers.
 785   if( !r0->is_con() || !r1->is_con() )
 786     return TypeLong::LONG;      // Any integer, but still no symbols.
 787 
 788   // Otherwise just OR them bits.
 789   return TypeLong::make( r0->get_con() | r1->get_con() );
 790 }
 791 
 792 //=============================================================================
 793 //------------------------------add_ring---------------------------------------
 794 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
 795 // the logical operations the ring's ADD is really a logical OR function.
 796 // This also type-checks the inputs for sanity.  Guaranteed never to
 797 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
 798 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
 799   const TypeInt *r0 = t0->is_int(); // Handy access
 800   const TypeInt *r1 = t1->is_int();
 801 
 802   // Complementing a boolean?
 803   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
 804                                || r1 == TypeInt::BOOL))
 805     return TypeInt::BOOL;
 806 
 807   if( !r0->is_con() || !r1->is_con() ) // Not constants
 808     return TypeInt::INT;        // Any integer, but still no symbols.
 809 
 810   // Otherwise just XOR them bits.
 811   return TypeInt::make( r0->get_con() ^ r1->get_con() );
 812 }
 813 
 814 //=============================================================================
 815 //------------------------------add_ring---------------------------------------
 816 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
 817   const TypeLong *r0 = t0->is_long(); // Handy access
 818   const TypeLong *r1 = t1->is_long();
 819 
 820   // If either input is not a constant, just return all integers.
 821   if( !r0->is_con() || !r1->is_con() )
 822     return TypeLong::LONG;      // Any integer, but still no symbols.
 823 
 824   // Otherwise just OR them bits.
 825   return TypeLong::make( r0->get_con() ^ r1->get_con() );
 826 }
 827 
 828 //=============================================================================
 829 //------------------------------add_ring---------------------------------------
 830 // Supplied function returns the sum of the inputs.
 831 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
 832   const TypeInt *r0 = t0->is_int(); // Handy access
 833   const TypeInt *r1 = t1->is_int();
 834 
 835   // Otherwise just MAX them bits.
 836   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
 837 }
 838 
 839 //=============================================================================
 840 //------------------------------Idealize---------------------------------------
 841 // MINs show up in range-check loop limit calculations.  Look for
 842 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
 843 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
 844   Node *progress = NULL;
 845   // Force a right-spline graph
 846   Node *l = in(1);
 847   Node *r = in(2);
 848   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
 849   // to force a right-spline graph for the rest of MinINode::Ideal().
 850   if( l->Opcode() == Op_MinI ) {
 851     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
 852     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
 853     l = l->in(1);
 854     set_req(1, l);
 855     set_req(2, r);
 856     return this;
 857   }
 858 
 859   // Get left input & constant
 860   Node *x = l;
 861   int x_off = 0;
 862   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
 863       x->in(2)->is_Con() ) {
 864     const Type *t = x->in(2)->bottom_type();
 865     if( t == Type::TOP ) return NULL;  // No progress
 866     x_off = t->is_int()->get_con();
 867     x = x->in(1);
 868   }
 869 
 870   // Scan a right-spline-tree for MINs
 871   Node *y = r;
 872   int y_off = 0;
 873   // Check final part of MIN tree
 874   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
 875       y->in(2)->is_Con() ) {
 876     const Type *t = y->in(2)->bottom_type();
 877     if( t == Type::TOP ) return NULL;  // No progress
 878     y_off = t->is_int()->get_con();
 879     y = y->in(1);
 880   }
 881   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
 882     swap_edges(1, 2);
 883     return this;
 884   }
 885 
 886 
 887   if( r->Opcode() == Op_MinI ) {
 888     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
 889     y = r->in(1);
 890     // Check final part of MIN tree
 891     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
 892         y->in(2)->is_Con() ) {
 893       const Type *t = y->in(2)->bottom_type();
 894       if( t == Type::TOP ) return NULL;  // No progress
 895       y_off = t->is_int()->get_con();
 896       y = y->in(1);
 897     }
 898 
 899     if( x->_idx > y->_idx )
 900       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
 901 
 902     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
 903     if( !phase->eqv(x,y) ) return NULL;
 904     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
 905     // MIN2(x+c0 or x+c1 which less, z).
 906     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
 907   } else {
 908     // See if covers: MIN2(x+c0,y+c1)
 909     if( !phase->eqv(x,y) ) return NULL;
 910     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
 911     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
 912   }
 913 
 914 }
 915 
 916 //------------------------------add_ring---------------------------------------
 917 // Supplied function returns the sum of the inputs.
 918 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
 919   const TypeInt *r0 = t0->is_int(); // Handy access
 920   const TypeInt *r1 = t1->is_int();
 921 
 922   // Otherwise just MIN them bits.
 923   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
 924 }