1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 137   bool inline_string_compareTo();
 138   bool inline_string_indexOf();
 139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 140   bool inline_string_equals();
 141   Node* pop_math_arg();
 142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 143   bool inline_math_native(vmIntrinsics::ID id);
 144   bool inline_trig(vmIntrinsics::ID id);
 145   bool inline_trans(vmIntrinsics::ID id);
 146   bool inline_abs(vmIntrinsics::ID id);
 147   bool inline_sqrt(vmIntrinsics::ID id);
 148   bool inline_pow(vmIntrinsics::ID id);
 149   bool inline_exp(vmIntrinsics::ID id);
 150   bool inline_min_max(vmIntrinsics::ID id);
 151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 153   int classify_unsafe_addr(Node* &base, Node* &offset);
 154   Node* make_unsafe_address(Node* base, Node* offset);
 155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 157   bool inline_unsafe_allocate();
 158   bool inline_unsafe_copyMemory();
 159   bool inline_native_currentThread();
 160   bool inline_native_time_funcs(bool isNano);
 161   bool inline_native_isInterrupted();
 162   bool inline_native_Class_query(vmIntrinsics::ID id);
 163   bool inline_native_subtype_check();
 164 
 165   bool inline_native_newArray();
 166   bool inline_native_getLength();
 167   bool inline_array_copyOf(bool is_copyOfRange);
 168   bool inline_array_equals();
 169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 170   bool inline_native_clone(bool is_virtual);
 171   bool inline_native_Reflection_getCallerClass();
 172   bool inline_native_AtomicLong_get();
 173   bool inline_native_AtomicLong_attemptUpdate();
 174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 175   // Helper function for inlining native object hash method
 176   bool inline_native_hashcode(bool is_virtual, bool is_static);
 177   bool inline_native_getClass();
 178 
 179   // Helper functions for inlining arraycopy
 180   bool inline_arraycopy();
 181   void generate_arraycopy(const TypePtr* adr_type,
 182                           BasicType basic_elem_type,
 183                           Node* src,  Node* src_offset,
 184                           Node* dest, Node* dest_offset,
 185                           Node* copy_length,
 186                           bool disjoint_bases = false,
 187                           bool length_never_negative = false,
 188                           RegionNode* slow_region = NULL);
 189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 190                                                 RegionNode* slow_region);
 191   void generate_clear_array(const TypePtr* adr_type,
 192                             Node* dest,
 193                             BasicType basic_elem_type,
 194                             Node* slice_off,
 195                             Node* slice_len,
 196                             Node* slice_end);
 197   bool generate_block_arraycopy(const TypePtr* adr_type,
 198                                 BasicType basic_elem_type,
 199                                 AllocateNode* alloc,
 200                                 Node* src,  Node* src_offset,
 201                                 Node* dest, Node* dest_offset,
 202                                 Node* dest_size);
 203   void generate_slow_arraycopy(const TypePtr* adr_type,
 204                                Node* src,  Node* src_offset,
 205                                Node* dest, Node* dest_offset,
 206                                Node* copy_length);
 207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 208                                      Node* dest_elem_klass,
 209                                      Node* src,  Node* src_offset,
 210                                      Node* dest, Node* dest_offset,
 211                                      Node* copy_length);
 212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 213                                    Node* src,  Node* src_offset,
 214                                    Node* dest, Node* dest_offset,
 215                                    Node* copy_length);
 216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 217                                     BasicType basic_elem_type,
 218                                     bool disjoint_bases,
 219                                     Node* src,  Node* src_offset,
 220                                     Node* dest, Node* dest_offset,
 221                                     Node* copy_length);
 222   bool inline_unsafe_CAS(BasicType type);
 223   bool inline_unsafe_ordered_store(BasicType type);
 224   bool inline_fp_conversions(vmIntrinsics::ID id);
 225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 227   bool inline_bitCount(vmIntrinsics::ID id);
 228   bool inline_reverseBytes(vmIntrinsics::ID id);
 229 };
 230 
 231 
 232 //---------------------------make_vm_intrinsic----------------------------
 233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 234   vmIntrinsics::ID id = m->intrinsic_id();
 235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 236 
 237   if (DisableIntrinsic[0] != '\0'
 238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 239     // disabled by a user request on the command line:
 240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 241     return NULL;
 242   }
 243 
 244   if (!m->is_loaded()) {
 245     // do not attempt to inline unloaded methods
 246     return NULL;
 247   }
 248 
 249   // Only a few intrinsics implement a virtual dispatch.
 250   // They are expensive calls which are also frequently overridden.
 251   if (is_virtual) {
 252     switch (id) {
 253     case vmIntrinsics::_hashCode:
 254     case vmIntrinsics::_clone:
 255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 256       break;
 257     default:
 258       return NULL;
 259     }
 260   }
 261 
 262   // -XX:-InlineNatives disables nearly all intrinsics:
 263   if (!InlineNatives) {
 264     switch (id) {
 265     case vmIntrinsics::_indexOf:
 266     case vmIntrinsics::_compareTo:
 267     case vmIntrinsics::_equals:
 268     case vmIntrinsics::_equalsC:
 269       break;  // InlineNatives does not control String.compareTo
 270     default:
 271       return NULL;
 272     }
 273   }
 274 
 275   switch (id) {
 276   case vmIntrinsics::_compareTo:
 277     if (!SpecialStringCompareTo)  return NULL;
 278     break;
 279   case vmIntrinsics::_indexOf:
 280     if (!SpecialStringIndexOf)  return NULL;
 281     break;
 282   case vmIntrinsics::_equals:
 283     if (!SpecialStringEquals)  return NULL;
 284     break;
 285   case vmIntrinsics::_equalsC:
 286     if (!SpecialArraysEquals)  return NULL;
 287     break;
 288   case vmIntrinsics::_arraycopy:
 289     if (!InlineArrayCopy)  return NULL;
 290     break;
 291   case vmIntrinsics::_copyMemory:
 292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 293     if (!InlineArrayCopy)  return NULL;
 294     break;
 295   case vmIntrinsics::_hashCode:
 296     if (!InlineObjectHash)  return NULL;
 297     break;
 298   case vmIntrinsics::_clone:
 299   case vmIntrinsics::_copyOf:
 300   case vmIntrinsics::_copyOfRange:
 301     if (!InlineObjectCopy)  return NULL;
 302     // These also use the arraycopy intrinsic mechanism:
 303     if (!InlineArrayCopy)  return NULL;
 304     break;
 305   case vmIntrinsics::_checkIndex:
 306     // We do not intrinsify this.  The optimizer does fine with it.
 307     return NULL;
 308 
 309   case vmIntrinsics::_get_AtomicLong:
 310   case vmIntrinsics::_attemptUpdate:
 311     if (!InlineAtomicLong)  return NULL;
 312     break;
 313 
 314   case vmIntrinsics::_getCallerClass:
 315     if (!UseNewReflection)  return NULL;
 316     if (!InlineReflectionGetCallerClass)  return NULL;
 317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 318     break;
 319 
 320   case vmIntrinsics::_bitCount_i:
 321   case vmIntrinsics::_bitCount_l:
 322     if (!UsePopCountInstruction)  return NULL;
 323     break;
 324 
 325  default:
 326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 328     break;
 329   }
 330 
 331   // -XX:-InlineClassNatives disables natives from the Class class.
 332   // The flag applies to all reflective calls, notably Array.newArray
 333   // (visible to Java programmers as Array.newInstance).
 334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 336     if (!InlineClassNatives)  return NULL;
 337   }
 338 
 339   // -XX:-InlineThreadNatives disables natives from the Thread class.
 340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 341     if (!InlineThreadNatives)  return NULL;
 342   }
 343 
 344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 346       m->holder()->name() == ciSymbol::java_lang_Float() ||
 347       m->holder()->name() == ciSymbol::java_lang_Double()) {
 348     if (!InlineMathNatives)  return NULL;
 349   }
 350 
 351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 353     if (!InlineUnsafeOps)  return NULL;
 354   }
 355 
 356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 357 }
 358 
 359 //----------------------register_library_intrinsics-----------------------
 360 // Initialize this file's data structures, for each Compile instance.
 361 void Compile::register_library_intrinsics() {
 362   // Nothing to do here.
 363 }
 364 
 365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 366   LibraryCallKit kit(jvms, this);
 367   Compile* C = kit.C;
 368   int nodes = C->unique();
 369 #ifndef PRODUCT
 370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 371     char buf[1000];
 372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 373     tty->print_cr("Intrinsic %s", str);
 374   }
 375 #endif
 376   if (kit.try_to_inline()) {
 377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 378       tty->print("Inlining intrinsic %s%s at bci:%d in",
 379                  vmIntrinsics::name_at(intrinsic_id()),
 380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 381       kit.caller()->print_short_name(tty);
 382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 383     }
 384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 385     if (C->log()) {
 386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 387                      vmIntrinsics::name_at(intrinsic_id()),
 388                      (is_virtual() ? " virtual='1'" : ""),
 389                      C->unique() - nodes);
 390     }
 391     return kit.transfer_exceptions_into_jvms();
 392   }
 393 
 394   if (PrintIntrinsics) {
 395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 396                vmIntrinsics::name_at(intrinsic_id()),
 397                (is_virtual() ? " (virtual)" : ""), kit.bci());
 398     kit.caller()->print_short_name(tty);
 399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 400   }
 401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 402   return NULL;
 403 }
 404 
 405 bool LibraryCallKit::try_to_inline() {
 406   // Handle symbolic names for otherwise undistinguished boolean switches:
 407   const bool is_store       = true;
 408   const bool is_native_ptr  = true;
 409   const bool is_static      = true;
 410 
 411   switch (intrinsic_id()) {
 412   case vmIntrinsics::_hashCode:
 413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 414   case vmIntrinsics::_identityHashCode:
 415     return inline_native_hashcode(/*!virtual*/ false, is_static);
 416   case vmIntrinsics::_getClass:
 417     return inline_native_getClass();
 418 
 419   case vmIntrinsics::_dsin:
 420   case vmIntrinsics::_dcos:
 421   case vmIntrinsics::_dtan:
 422   case vmIntrinsics::_dabs:
 423   case vmIntrinsics::_datan2:
 424   case vmIntrinsics::_dsqrt:
 425   case vmIntrinsics::_dexp:
 426   case vmIntrinsics::_dlog:
 427   case vmIntrinsics::_dlog10:
 428   case vmIntrinsics::_dpow:
 429     return inline_math_native(intrinsic_id());
 430 
 431   case vmIntrinsics::_min:
 432   case vmIntrinsics::_max:
 433     return inline_min_max(intrinsic_id());
 434 
 435   case vmIntrinsics::_arraycopy:
 436     return inline_arraycopy();
 437 
 438   case vmIntrinsics::_compareTo:
 439     return inline_string_compareTo();
 440   case vmIntrinsics::_indexOf:
 441     return inline_string_indexOf();
 442   case vmIntrinsics::_equals:
 443     return inline_string_equals();
 444 
 445   case vmIntrinsics::_getObject:
 446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 447   case vmIntrinsics::_getBoolean:
 448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 449   case vmIntrinsics::_getByte:
 450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 451   case vmIntrinsics::_getShort:
 452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 453   case vmIntrinsics::_getChar:
 454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 455   case vmIntrinsics::_getInt:
 456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 457   case vmIntrinsics::_getLong:
 458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 459   case vmIntrinsics::_getFloat:
 460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 461   case vmIntrinsics::_getDouble:
 462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 463 
 464   case vmIntrinsics::_putObject:
 465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 466   case vmIntrinsics::_putBoolean:
 467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 468   case vmIntrinsics::_putByte:
 469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 470   case vmIntrinsics::_putShort:
 471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 472   case vmIntrinsics::_putChar:
 473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 474   case vmIntrinsics::_putInt:
 475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 476   case vmIntrinsics::_putLong:
 477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 478   case vmIntrinsics::_putFloat:
 479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 480   case vmIntrinsics::_putDouble:
 481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 482 
 483   case vmIntrinsics::_getByte_raw:
 484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 485   case vmIntrinsics::_getShort_raw:
 486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 487   case vmIntrinsics::_getChar_raw:
 488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 489   case vmIntrinsics::_getInt_raw:
 490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 491   case vmIntrinsics::_getLong_raw:
 492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 493   case vmIntrinsics::_getFloat_raw:
 494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 495   case vmIntrinsics::_getDouble_raw:
 496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 497   case vmIntrinsics::_getAddress_raw:
 498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 499 
 500   case vmIntrinsics::_putByte_raw:
 501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 502   case vmIntrinsics::_putShort_raw:
 503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 504   case vmIntrinsics::_putChar_raw:
 505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 506   case vmIntrinsics::_putInt_raw:
 507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 508   case vmIntrinsics::_putLong_raw:
 509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 510   case vmIntrinsics::_putFloat_raw:
 511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 512   case vmIntrinsics::_putDouble_raw:
 513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 514   case vmIntrinsics::_putAddress_raw:
 515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 516 
 517   case vmIntrinsics::_getObjectVolatile:
 518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 519   case vmIntrinsics::_getBooleanVolatile:
 520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 521   case vmIntrinsics::_getByteVolatile:
 522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 523   case vmIntrinsics::_getShortVolatile:
 524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 525   case vmIntrinsics::_getCharVolatile:
 526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 527   case vmIntrinsics::_getIntVolatile:
 528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 529   case vmIntrinsics::_getLongVolatile:
 530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 531   case vmIntrinsics::_getFloatVolatile:
 532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 533   case vmIntrinsics::_getDoubleVolatile:
 534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 535 
 536   case vmIntrinsics::_putObjectVolatile:
 537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 538   case vmIntrinsics::_putBooleanVolatile:
 539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 540   case vmIntrinsics::_putByteVolatile:
 541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 542   case vmIntrinsics::_putShortVolatile:
 543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 544   case vmIntrinsics::_putCharVolatile:
 545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 546   case vmIntrinsics::_putIntVolatile:
 547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 548   case vmIntrinsics::_putLongVolatile:
 549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 550   case vmIntrinsics::_putFloatVolatile:
 551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 552   case vmIntrinsics::_putDoubleVolatile:
 553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 554 
 555   case vmIntrinsics::_prefetchRead:
 556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 557   case vmIntrinsics::_prefetchWrite:
 558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 559   case vmIntrinsics::_prefetchReadStatic:
 560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 561   case vmIntrinsics::_prefetchWriteStatic:
 562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 563 
 564   case vmIntrinsics::_compareAndSwapObject:
 565     return inline_unsafe_CAS(T_OBJECT);
 566   case vmIntrinsics::_compareAndSwapInt:
 567     return inline_unsafe_CAS(T_INT);
 568   case vmIntrinsics::_compareAndSwapLong:
 569     return inline_unsafe_CAS(T_LONG);
 570 
 571   case vmIntrinsics::_putOrderedObject:
 572     return inline_unsafe_ordered_store(T_OBJECT);
 573   case vmIntrinsics::_putOrderedInt:
 574     return inline_unsafe_ordered_store(T_INT);
 575   case vmIntrinsics::_putOrderedLong:
 576     return inline_unsafe_ordered_store(T_LONG);
 577 
 578   case vmIntrinsics::_currentThread:
 579     return inline_native_currentThread();
 580   case vmIntrinsics::_isInterrupted:
 581     return inline_native_isInterrupted();
 582 
 583   case vmIntrinsics::_currentTimeMillis:
 584     return inline_native_time_funcs(false);
 585   case vmIntrinsics::_nanoTime:
 586     return inline_native_time_funcs(true);
 587   case vmIntrinsics::_allocateInstance:
 588     return inline_unsafe_allocate();
 589   case vmIntrinsics::_copyMemory:
 590     return inline_unsafe_copyMemory();
 591   case vmIntrinsics::_newArray:
 592     return inline_native_newArray();
 593   case vmIntrinsics::_getLength:
 594     return inline_native_getLength();
 595   case vmIntrinsics::_copyOf:
 596     return inline_array_copyOf(false);
 597   case vmIntrinsics::_copyOfRange:
 598     return inline_array_copyOf(true);
 599   case vmIntrinsics::_equalsC:
 600     return inline_array_equals();
 601   case vmIntrinsics::_clone:
 602     return inline_native_clone(intrinsic()->is_virtual());
 603 
 604   case vmIntrinsics::_isAssignableFrom:
 605     return inline_native_subtype_check();
 606 
 607   case vmIntrinsics::_isInstance:
 608   case vmIntrinsics::_getModifiers:
 609   case vmIntrinsics::_isInterface:
 610   case vmIntrinsics::_isArray:
 611   case vmIntrinsics::_isPrimitive:
 612   case vmIntrinsics::_getSuperclass:
 613   case vmIntrinsics::_getComponentType:
 614   case vmIntrinsics::_getClassAccessFlags:
 615     return inline_native_Class_query(intrinsic_id());
 616 
 617   case vmIntrinsics::_floatToRawIntBits:
 618   case vmIntrinsics::_floatToIntBits:
 619   case vmIntrinsics::_intBitsToFloat:
 620   case vmIntrinsics::_doubleToRawLongBits:
 621   case vmIntrinsics::_doubleToLongBits:
 622   case vmIntrinsics::_longBitsToDouble:
 623     return inline_fp_conversions(intrinsic_id());
 624 
 625   case vmIntrinsics::_numberOfLeadingZeros_i:
 626   case vmIntrinsics::_numberOfLeadingZeros_l:
 627     return inline_numberOfLeadingZeros(intrinsic_id());
 628 
 629   case vmIntrinsics::_numberOfTrailingZeros_i:
 630   case vmIntrinsics::_numberOfTrailingZeros_l:
 631     return inline_numberOfTrailingZeros(intrinsic_id());
 632 
 633   case vmIntrinsics::_bitCount_i:
 634   case vmIntrinsics::_bitCount_l:
 635     return inline_bitCount(intrinsic_id());
 636 
 637   case vmIntrinsics::_reverseBytes_i:
 638   case vmIntrinsics::_reverseBytes_l:
 639   case vmIntrinsics::_reverseBytes_s:
 640   case vmIntrinsics::_reverseBytes_c:
 641     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 642 
 643   case vmIntrinsics::_get_AtomicLong:
 644     return inline_native_AtomicLong_get();
 645   case vmIntrinsics::_attemptUpdate:
 646     return inline_native_AtomicLong_attemptUpdate();
 647 
 648   case vmIntrinsics::_getCallerClass:
 649     return inline_native_Reflection_getCallerClass();
 650 
 651   default:
 652     // If you get here, it may be that someone has added a new intrinsic
 653     // to the list in vmSymbols.hpp without implementing it here.
 654 #ifndef PRODUCT
 655     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 656       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 657                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 658     }
 659 #endif
 660     return false;
 661   }
 662 }
 663 
 664 //------------------------------push_result------------------------------
 665 // Helper function for finishing intrinsics.
 666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 667   record_for_igvn(region);
 668   set_control(_gvn.transform(region));
 669   BasicType value_type = value->type()->basic_type();
 670   push_node(value_type, _gvn.transform(value));
 671 }
 672 
 673 //------------------------------generate_guard---------------------------
 674 // Helper function for generating guarded fast-slow graph structures.
 675 // The given 'test', if true, guards a slow path.  If the test fails
 676 // then a fast path can be taken.  (We generally hope it fails.)
 677 // In all cases, GraphKit::control() is updated to the fast path.
 678 // The returned value represents the control for the slow path.
 679 // The return value is never 'top'; it is either a valid control
 680 // or NULL if it is obvious that the slow path can never be taken.
 681 // Also, if region and the slow control are not NULL, the slow edge
 682 // is appended to the region.
 683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 684   if (stopped()) {
 685     // Already short circuited.
 686     return NULL;
 687   }
 688 
 689   // Build an if node and its projections.
 690   // If test is true we take the slow path, which we assume is uncommon.
 691   if (_gvn.type(test) == TypeInt::ZERO) {
 692     // The slow branch is never taken.  No need to build this guard.
 693     return NULL;
 694   }
 695 
 696   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 697 
 698   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 699   if (if_slow == top()) {
 700     // The slow branch is never taken.  No need to build this guard.
 701     return NULL;
 702   }
 703 
 704   if (region != NULL)
 705     region->add_req(if_slow);
 706 
 707   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 708   set_control(if_fast);
 709 
 710   return if_slow;
 711 }
 712 
 713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 714   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 715 }
 716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 717   return generate_guard(test, region, PROB_FAIR);
 718 }
 719 
 720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 721                                                      Node* *pos_index) {
 722   if (stopped())
 723     return NULL;                // already stopped
 724   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 725     return NULL;                // index is already adequately typed
 726   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 727   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 728   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 729   if (is_neg != NULL && pos_index != NULL) {
 730     // Emulate effect of Parse::adjust_map_after_if.
 731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 732     ccast->set_req(0, control());
 733     (*pos_index) = _gvn.transform(ccast);
 734   }
 735   return is_neg;
 736 }
 737 
 738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 739                                                         Node* *pos_index) {
 740   if (stopped())
 741     return NULL;                // already stopped
 742   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 743     return NULL;                // index is already adequately typed
 744   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 745   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 746   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 747   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 748   if (is_notp != NULL && pos_index != NULL) {
 749     // Emulate effect of Parse::adjust_map_after_if.
 750     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 751     ccast->set_req(0, control());
 752     (*pos_index) = _gvn.transform(ccast);
 753   }
 754   return is_notp;
 755 }
 756 
 757 // Make sure that 'position' is a valid limit index, in [0..length].
 758 // There are two equivalent plans for checking this:
 759 //   A. (offset + copyLength)  unsigned<=  arrayLength
 760 //   B. offset  <=  (arrayLength - copyLength)
 761 // We require that all of the values above, except for the sum and
 762 // difference, are already known to be non-negative.
 763 // Plan A is robust in the face of overflow, if offset and copyLength
 764 // are both hugely positive.
 765 //
 766 // Plan B is less direct and intuitive, but it does not overflow at
 767 // all, since the difference of two non-negatives is always
 768 // representable.  Whenever Java methods must perform the equivalent
 769 // check they generally use Plan B instead of Plan A.
 770 // For the moment we use Plan A.
 771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 772                                                   Node* subseq_length,
 773                                                   Node* array_length,
 774                                                   RegionNode* region) {
 775   if (stopped())
 776     return NULL;                // already stopped
 777   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 778   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 779     return NULL;                // common case of whole-array copy
 780   Node* last = subseq_length;
 781   if (!zero_offset)             // last += offset
 782     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 783   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 784   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 785   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 786   return is_over;
 787 }
 788 
 789 
 790 //--------------------------generate_current_thread--------------------
 791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 792   ciKlass*    thread_klass = env()->Thread_klass();
 793   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 794   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 795   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 796   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 797   tls_output = thread;
 798   return threadObj;
 799 }
 800 
 801 
 802 //------------------------------make_string_method_node------------------------
 803 // Helper method for String intrinsic finctions.
 804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 805   const int value_offset  = java_lang_String::value_offset_in_bytes();
 806   const int count_offset  = java_lang_String::count_offset_in_bytes();
 807   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 808 
 809   Node* no_ctrl = NULL;
 810 
 811   ciInstanceKlass* klass = env()->String_klass();
 812   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 813 
 814   const TypeAryPtr* value_type =
 815         TypeAryPtr::make(TypePtr::NotNull,
 816                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 817                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 818 
 819   // Get start addr of string and substring
 820   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 821   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 822   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 823   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 824   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 825 
 826   // Pin loads from String::equals() argument since it could be NULL.
 827   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
 828   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 829   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 830   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 831   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 832   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 833 
 834   Node* result = NULL;
 835   switch (opcode) {
 836   case Op_StrIndexOf:
 837     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 838                                        str1_start, cnt1, str2_start, cnt2);
 839     break;
 840   case Op_StrComp:
 841     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 842                                     str1_start, cnt1, str2_start, cnt2);
 843     break;
 844   case Op_StrEquals:
 845     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 846                                       str1_start, str2_start, cnt1);
 847     break;
 848   default:
 849     ShouldNotReachHere();
 850     return NULL;
 851   }
 852 
 853   // All these intrinsics have checks.
 854   C->set_has_split_ifs(true); // Has chance for split-if optimization
 855 
 856   return _gvn.transform(result);
 857 }
 858 
 859 //------------------------------inline_string_compareTo------------------------
 860 bool LibraryCallKit::inline_string_compareTo() {
 861 
 862   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 863 
 864   const int value_offset = java_lang_String::value_offset_in_bytes();
 865   const int count_offset = java_lang_String::count_offset_in_bytes();
 866   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 867 
 868   _sp += 2;
 869   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 870   Node *receiver = pop();
 871 
 872   // Null check on self without removing any arguments.  The argument
 873   // null check technically happens in the wrong place, which can lead to
 874   // invalid stack traces when string compare is inlined into a method
 875   // which handles NullPointerExceptions.
 876   _sp += 2;
 877   receiver = do_null_check(receiver, T_OBJECT);
 878   argument = do_null_check(argument, T_OBJECT);
 879   _sp -= 2;
 880   if (stopped()) {
 881     return true;
 882   }
 883 
 884   ciInstanceKlass* klass = env()->String_klass();
 885   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 886   Node* no_ctrl = NULL;
 887 
 888   // Get counts for string and argument
 889   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 890   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 891 
 892   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 893   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 894 
 895   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 896   push(compare);
 897   return true;
 898 }
 899 
 900 //------------------------------inline_string_equals------------------------
 901 bool LibraryCallKit::inline_string_equals() {
 902 
 903   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 904 
 905   const int value_offset = java_lang_String::value_offset_in_bytes();
 906   const int count_offset = java_lang_String::count_offset_in_bytes();
 907   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 908 
 909   int nargs = 2;
 910   _sp += nargs;
 911   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 912   Node* receiver = pop();
 913 
 914   // Null check on self without removing any arguments.  The argument
 915   // null check technically happens in the wrong place, which can lead to
 916   // invalid stack traces when string compare is inlined into a method
 917   // which handles NullPointerExceptions.
 918   _sp += nargs;
 919   receiver = do_null_check(receiver, T_OBJECT);
 920   //should not do null check for argument for String.equals(), because spec
 921   //allows to specify NULL as argument.
 922   _sp -= nargs;
 923 
 924   if (stopped()) {
 925     return true;
 926   }
 927 
 928   // paths (plus control) merge
 929   RegionNode* region = new (C, 5) RegionNode(5);
 930   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 931 
 932   // does source == target string?
 933   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 934   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 935 
 936   Node* if_eq = generate_slow_guard(bol, NULL);
 937   if (if_eq != NULL) {
 938     // receiver == argument
 939     phi->init_req(2, intcon(1));
 940     region->init_req(2, if_eq);
 941   }
 942 
 943   // get String klass for instanceOf
 944   ciInstanceKlass* klass = env()->String_klass();
 945 
 946   if (!stopped()) {
 947     _sp += nargs;          // gen_instanceof might do an uncommon trap
 948     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 949     _sp -= nargs;
 950     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 951     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 952 
 953     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 954     //instanceOf == true, fallthrough
 955 
 956     if (inst_false != NULL) {
 957       phi->init_req(3, intcon(0));
 958       region->init_req(3, inst_false);
 959     }
 960   }
 961 
 962   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
 963 
 964   Node* no_ctrl = NULL;
 965   Node* receiver_cnt;
 966   Node* argument_cnt;
 967 
 968   if (!stopped()) {
 969     // Properly cast the argument to String
 970     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
 971 
 972     // Get counts for string and argument
 973     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 974     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 975 
 976     // Pin load from argument string since it could be NULL.
 977     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 978     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 979 
 980     // Check for receiver count != argument count
 981     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
 982     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
 983     Node* if_ne = generate_slow_guard(bol, NULL);
 984     if (if_ne != NULL) {
 985       phi->init_req(4, intcon(0));
 986       region->init_req(4, if_ne);
 987     }
 988   }
 989 
 990   // Check for count == 0 is done by mach node StrEquals.
 991 
 992   if (!stopped()) {
 993     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
 994     phi->init_req(1, equals);
 995     region->init_req(1, control());
 996   }
 997 
 998   // post merge
 999   set_control(_gvn.transform(region));
1000   record_for_igvn(region);
1001 
1002   push(_gvn.transform(phi));
1003 
1004   return true;
1005 }
1006 
1007 //------------------------------inline_array_equals----------------------------
1008 bool LibraryCallKit::inline_array_equals() {
1009 
1010   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1011 
1012   _sp += 2;
1013   Node *argument2 = pop();
1014   Node *argument1 = pop();
1015 
1016   Node* equals =
1017     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1018                                         argument1, argument2) );
1019   push(equals);
1020   return true;
1021 }
1022 
1023 // Java version of String.indexOf(constant string)
1024 // class StringDecl {
1025 //   StringDecl(char[] ca) {
1026 //     offset = 0;
1027 //     count = ca.length;
1028 //     value = ca;
1029 //   }
1030 //   int offset;
1031 //   int count;
1032 //   char[] value;
1033 // }
1034 //
1035 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1036 //                             int targetOffset, int cache_i, int md2) {
1037 //   int cache = cache_i;
1038 //   int sourceOffset = string_object.offset;
1039 //   int sourceCount = string_object.count;
1040 //   int targetCount = target_object.length;
1041 //
1042 //   int targetCountLess1 = targetCount - 1;
1043 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1044 //
1045 //   char[] source = string_object.value;
1046 //   char[] target = target_object;
1047 //   int lastChar = target[targetCountLess1];
1048 //
1049 //  outer_loop:
1050 //   for (int i = sourceOffset; i < sourceEnd; ) {
1051 //     int src = source[i + targetCountLess1];
1052 //     if (src == lastChar) {
1053 //       // With random strings and a 4-character alphabet,
1054 //       // reverse matching at this point sets up 0.8% fewer
1055 //       // frames, but (paradoxically) makes 0.3% more probes.
1056 //       // Since those probes are nearer the lastChar probe,
1057 //       // there is may be a net D$ win with reverse matching.
1058 //       // But, reversing loop inhibits unroll of inner loop
1059 //       // for unknown reason.  So, does running outer loop from
1060 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1061 //       for (int j = 0; j < targetCountLess1; j++) {
1062 //         if (target[targetOffset + j] != source[i+j]) {
1063 //           if ((cache & (1 << source[i+j])) == 0) {
1064 //             if (md2 < j+1) {
1065 //               i += j+1;
1066 //               continue outer_loop;
1067 //             }
1068 //           }
1069 //           i += md2;
1070 //           continue outer_loop;
1071 //         }
1072 //       }
1073 //       return i - sourceOffset;
1074 //     }
1075 //     if ((cache & (1 << src)) == 0) {
1076 //       i += targetCountLess1;
1077 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1078 //     i++;
1079 //   }
1080 //   return -1;
1081 // }
1082 
1083 //------------------------------string_indexOf------------------------
1084 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1085                                      jint cache_i, jint md2_i) {
1086 
1087   Node* no_ctrl  = NULL;
1088   float likely   = PROB_LIKELY(0.9);
1089   float unlikely = PROB_UNLIKELY(0.9);
1090 
1091   const int value_offset  = java_lang_String::value_offset_in_bytes();
1092   const int count_offset  = java_lang_String::count_offset_in_bytes();
1093   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1094 
1095   ciInstanceKlass* klass = env()->String_klass();
1096   const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1097   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1098 
1099   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1100   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1101   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1102   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1103   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1104   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1105 
1106   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1107   jint target_length = target_array->length();
1108   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1109   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1110 
1111   IdealKit kit(gvn(), control(), merged_memory(), false, true);
1112 #define __ kit.
1113   Node* zero             = __ ConI(0);
1114   Node* one              = __ ConI(1);
1115   Node* cache            = __ ConI(cache_i);
1116   Node* md2              = __ ConI(md2_i);
1117   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1118   Node* targetCount      = __ ConI(target_length);
1119   Node* targetCountLess1 = __ ConI(target_length - 1);
1120   Node* targetOffset     = __ ConI(targetOffset_i);
1121   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1122 
1123   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1124   Node* outer_loop = __ make_label(2 /* goto */);
1125   Node* return_    = __ make_label(1);
1126 
1127   __ set(rtn,__ ConI(-1));
1128   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1129        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1130        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1131        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1132        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1133          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1134               Node* tpj = __ AddI(targetOffset, __ value(j));
1135               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1136               Node* ipj  = __ AddI(__ value(i), __ value(j));
1137               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1138               __ if_then(targ, BoolTest::ne, src2); {
1139                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1140                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1141                     __ increment(i, __ AddI(__ value(j), one));
1142                     __ goto_(outer_loop);
1143                   } __ end_if(); __ dead(j);
1144                 }__ end_if(); __ dead(j);
1145                 __ increment(i, md2);
1146                 __ goto_(outer_loop);
1147               }__ end_if();
1148               __ increment(j, one);
1149          }__ end_loop(); __ dead(j);
1150          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1151          __ goto_(return_);
1152        }__ end_if();
1153        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1154          __ increment(i, targetCountLess1);
1155        }__ end_if();
1156        __ increment(i, one);
1157        __ bind(outer_loop);
1158   }__ end_loop(); __ dead(i);
1159   __ bind(return_);
1160 
1161   // Final sync IdealKit and GraphKit.
1162   sync_kit(kit);
1163   Node* result = __ value(rtn);
1164 #undef __
1165   C->set_has_loops(true);
1166   return result;
1167 }
1168 
1169 //------------------------------inline_string_indexOf------------------------
1170 bool LibraryCallKit::inline_string_indexOf() {
1171 
1172   const int value_offset  = java_lang_String::value_offset_in_bytes();
1173   const int count_offset  = java_lang_String::count_offset_in_bytes();
1174   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1175 
1176   _sp += 2;
1177   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1178   Node *receiver = pop();
1179 
1180   Node* result;
1181   // Disable the use of pcmpestri until it can be guaranteed that
1182   // the load doesn't cross into the uncommited space.
1183   if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
1184       UseSSE42Intrinsics) {
1185     // Generate SSE4.2 version of indexOf
1186     // We currently only have match rules that use SSE4.2
1187 
1188     // Null check on self without removing any arguments.  The argument
1189     // null check technically happens in the wrong place, which can lead to
1190     // invalid stack traces when string compare is inlined into a method
1191     // which handles NullPointerExceptions.
1192     _sp += 2;
1193     receiver = do_null_check(receiver, T_OBJECT);
1194     argument = do_null_check(argument, T_OBJECT);
1195     _sp -= 2;
1196 
1197     if (stopped()) {
1198       return true;
1199     }
1200 
1201     // Make the merge point
1202     RegionNode* result_rgn = new (C, 3) RegionNode(3);
1203     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
1204     Node* no_ctrl  = NULL;
1205 
1206     ciInstanceKlass* klass = env()->String_klass();
1207     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1208 
1209     // Get counts for string and substr
1210     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1211     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1212 
1213     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1214     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1215 
1216     // Check for substr count > string count
1217     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1218     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1219     Node* if_gt = generate_slow_guard(bol, NULL);
1220     if (if_gt != NULL) {
1221       result_phi->init_req(2, intcon(-1));
1222       result_rgn->init_req(2, if_gt);
1223     }
1224 
1225     if (!stopped()) {
1226       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1227       result_phi->init_req(1, result);
1228       result_rgn->init_req(1, control());
1229     }
1230     set_control(_gvn.transform(result_rgn));
1231     record_for_igvn(result_rgn);
1232     result = _gvn.transform(result_phi);
1233 
1234   } else { //Use LibraryCallKit::string_indexOf
1235     // don't intrinsify is argument isn't a constant string.
1236     if (!argument->is_Con()) {
1237      return false;
1238     }
1239     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1240     if (str_type == NULL) {
1241       return false;
1242     }
1243     ciInstanceKlass* klass = env()->String_klass();
1244     ciObject* str_const = str_type->const_oop();
1245     if (str_const == NULL || str_const->klass() != klass) {
1246       return false;
1247     }
1248     ciInstance* str = str_const->as_instance();
1249     assert(str != NULL, "must be instance");
1250 
1251     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1252     int       o = str->field_value_by_offset(offset_offset).as_int();
1253     int       c = str->field_value_by_offset(count_offset).as_int();
1254     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1255 
1256     // constant strings have no offset and count == length which
1257     // simplifies the resulting code somewhat so lets optimize for that.
1258     if (o != 0 || c != pat->length()) {
1259      return false;
1260     }
1261 
1262     // Null check on self without removing any arguments.  The argument
1263     // null check technically happens in the wrong place, which can lead to
1264     // invalid stack traces when string compare is inlined into a method
1265     // which handles NullPointerExceptions.
1266     _sp += 2;
1267     receiver = do_null_check(receiver, T_OBJECT);
1268     // No null check on the argument is needed since it's a constant String oop.
1269     _sp -= 2;
1270     if (stopped()) {
1271      return true;
1272     }
1273 
1274     // The null string as a pattern always returns 0 (match at beginning of string)
1275     if (c == 0) {
1276       push(intcon(0));
1277       return true;
1278     }
1279 
1280     // Generate default indexOf
1281     jchar lastChar = pat->char_at(o + (c - 1));
1282     int cache = 0;
1283     int i;
1284     for (i = 0; i < c - 1; i++) {
1285       assert(i < pat->length(), "out of range");
1286       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1287     }
1288 
1289     int md2 = c;
1290     for (i = 0; i < c - 1; i++) {
1291       assert(i < pat->length(), "out of range");
1292       if (pat->char_at(o + i) == lastChar) {
1293         md2 = (c - 1) - i;
1294       }
1295     }
1296 
1297     result = string_indexOf(receiver, pat, o, cache, md2);
1298   }
1299 
1300   push(result);
1301   return true;
1302 }
1303 
1304 //--------------------------pop_math_arg--------------------------------
1305 // Pop a double argument to a math function from the stack
1306 // rounding it if necessary.
1307 Node * LibraryCallKit::pop_math_arg() {
1308   Node *arg = pop_pair();
1309   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1310     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1311   return arg;
1312 }
1313 
1314 //------------------------------inline_trig----------------------------------
1315 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1316 // argument reduction which will turn into a fast/slow diamond.
1317 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1318   _sp += arg_size();            // restore stack pointer
1319   Node* arg = pop_math_arg();
1320   Node* trig = NULL;
1321 
1322   switch (id) {
1323   case vmIntrinsics::_dsin:
1324     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1325     break;
1326   case vmIntrinsics::_dcos:
1327     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1328     break;
1329   case vmIntrinsics::_dtan:
1330     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1331     break;
1332   default:
1333     assert(false, "bad intrinsic was passed in");
1334     return false;
1335   }
1336 
1337   // Rounding required?  Check for argument reduction!
1338   if( Matcher::strict_fp_requires_explicit_rounding ) {
1339 
1340     static const double     pi_4 =  0.7853981633974483;
1341     static const double neg_pi_4 = -0.7853981633974483;
1342     // pi/2 in 80-bit extended precision
1343     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1344     // -pi/2 in 80-bit extended precision
1345     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1346     // Cutoff value for using this argument reduction technique
1347     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1348     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1349 
1350     // Pseudocode for sin:
1351     // if (x <= Math.PI / 4.0) {
1352     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1353     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1354     // } else {
1355     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1356     // }
1357     // return StrictMath.sin(x);
1358 
1359     // Pseudocode for cos:
1360     // if (x <= Math.PI / 4.0) {
1361     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1362     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1363     // } else {
1364     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1365     // }
1366     // return StrictMath.cos(x);
1367 
1368     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1369     // requires a special machine instruction to load it.  Instead we'll try
1370     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1371     // probably do the math inside the SIN encoding.
1372 
1373     // Make the merge point
1374     RegionNode *r = new (C, 3) RegionNode(3);
1375     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1376 
1377     // Flatten arg so we need only 1 test
1378     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1379     // Node for PI/4 constant
1380     Node *pi4 = makecon(TypeD::make(pi_4));
1381     // Check PI/4 : abs(arg)
1382     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1383     // Check: If PI/4 < abs(arg) then go slow
1384     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1385     // Branch either way
1386     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1387     set_control(opt_iff(r,iff));
1388 
1389     // Set fast path result
1390     phi->init_req(2,trig);
1391 
1392     // Slow path - non-blocking leaf call
1393     Node* call = NULL;
1394     switch (id) {
1395     case vmIntrinsics::_dsin:
1396       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1397                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1398                                "Sin", NULL, arg, top());
1399       break;
1400     case vmIntrinsics::_dcos:
1401       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1402                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1403                                "Cos", NULL, arg, top());
1404       break;
1405     case vmIntrinsics::_dtan:
1406       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1407                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1408                                "Tan", NULL, arg, top());
1409       break;
1410     }
1411     assert(control()->in(0) == call, "");
1412     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1413     r->init_req(1,control());
1414     phi->init_req(1,slow_result);
1415 
1416     // Post-merge
1417     set_control(_gvn.transform(r));
1418     record_for_igvn(r);
1419     trig = _gvn.transform(phi);
1420 
1421     C->set_has_split_ifs(true); // Has chance for split-if optimization
1422   }
1423   // Push result back on JVM stack
1424   push_pair(trig);
1425   return true;
1426 }
1427 
1428 //------------------------------inline_sqrt-------------------------------------
1429 // Inline square root instruction, if possible.
1430 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1431   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1432   _sp += arg_size();        // restore stack pointer
1433   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1434   return true;
1435 }
1436 
1437 //------------------------------inline_abs-------------------------------------
1438 // Inline absolute value instruction, if possible.
1439 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1440   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1441   _sp += arg_size();        // restore stack pointer
1442   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1443   return true;
1444 }
1445 
1446 //------------------------------inline_exp-------------------------------------
1447 // Inline exp instructions, if possible.  The Intel hardware only misses
1448 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1449 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1450   assert(id == vmIntrinsics::_dexp, "Not exp");
1451 
1452   // If this inlining ever returned NaN in the past, we do not intrinsify it
1453   // every again.  NaN results requires StrictMath.exp handling.
1454   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1455 
1456   // Do not intrinsify on older platforms which lack cmove.
1457   if (ConditionalMoveLimit == 0)  return false;
1458 
1459   _sp += arg_size();        // restore stack pointer
1460   Node *x = pop_math_arg();
1461   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1462 
1463   //-------------------
1464   //result=(result.isNaN())? StrictMath::exp():result;
1465   // Check: If isNaN() by checking result!=result? then go to Strict Math
1466   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1467   // Build the boolean node
1468   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1469 
1470   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1471     // End the current control-flow path
1472     push_pair(x);
1473     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1474     // to handle.  Recompile without intrinsifying Math.exp
1475     uncommon_trap(Deoptimization::Reason_intrinsic,
1476                   Deoptimization::Action_make_not_entrant);
1477   }
1478 
1479   C->set_has_split_ifs(true); // Has chance for split-if optimization
1480 
1481   push_pair(result);
1482 
1483   return true;
1484 }
1485 
1486 //------------------------------inline_pow-------------------------------------
1487 // Inline power instructions, if possible.
1488 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1489   assert(id == vmIntrinsics::_dpow, "Not pow");
1490 
1491   // If this inlining ever returned NaN in the past, we do not intrinsify it
1492   // every again.  NaN results requires StrictMath.pow handling.
1493   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1494 
1495   // Do not intrinsify on older platforms which lack cmove.
1496   if (ConditionalMoveLimit == 0)  return false;
1497 
1498   // Pseudocode for pow
1499   // if (x <= 0.0) {
1500   //   if ((double)((int)y)==y) { // if y is int
1501   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1502   //   } else {
1503   //     result = NaN;
1504   //   }
1505   // } else {
1506   //   result = DPow(x,y);
1507   // }
1508   // if (result != result)?  {
1509   //   uncommon_trap();
1510   // }
1511   // return result;
1512 
1513   _sp += arg_size();        // restore stack pointer
1514   Node* y = pop_math_arg();
1515   Node* x = pop_math_arg();
1516 
1517   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1518 
1519   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1520   // inside of something) then skip the fancy tests and just check for
1521   // NaN result.
1522   Node *result = NULL;
1523   if( jvms()->depth() >= 1 ) {
1524     result = fast_result;
1525   } else {
1526 
1527     // Set the merge point for If node with condition of (x <= 0.0)
1528     // There are four possible paths to region node and phi node
1529     RegionNode *r = new (C, 4) RegionNode(4);
1530     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1531 
1532     // Build the first if node: if (x <= 0.0)
1533     // Node for 0 constant
1534     Node *zeronode = makecon(TypeD::ZERO);
1535     // Check x:0
1536     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1537     // Check: If (x<=0) then go complex path
1538     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1539     // Branch either way
1540     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1541     Node *opt_test = _gvn.transform(if1);
1542     //assert( opt_test->is_If(), "Expect an IfNode");
1543     IfNode *opt_if1 = (IfNode*)opt_test;
1544     // Fast path taken; set region slot 3
1545     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1546     r->init_req(3,fast_taken); // Capture fast-control
1547 
1548     // Fast path not-taken, i.e. slow path
1549     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1550 
1551     // Set fast path result
1552     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1553     phi->init_req(3, fast_result);
1554 
1555     // Complex path
1556     // Build the second if node (if y is int)
1557     // Node for (int)y
1558     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1559     // Node for (double)((int) y)
1560     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1561     // Check (double)((int) y) : y
1562     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1563     // Check if (y isn't int) then go to slow path
1564 
1565     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1566     // Branch either way
1567     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1568     Node *slow_path = opt_iff(r,if2); // Set region path 2
1569 
1570     // Calculate DPow(abs(x), y)*(1 & (int)y)
1571     // Node for constant 1
1572     Node *conone = intcon(1);
1573     // 1& (int)y
1574     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1575     // zero node
1576     Node *conzero = intcon(0);
1577     // Check (1&(int)y)==0?
1578     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1579     // Check if (1&(int)y)!=0?, if so the result is negative
1580     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1581     // abs(x)
1582     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1583     // abs(x)^y
1584     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1585     // -abs(x)^y
1586     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1587     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1588     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1589     // Set complex path fast result
1590     phi->init_req(2, signresult);
1591 
1592     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1593     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1594     r->init_req(1,slow_path);
1595     phi->init_req(1,slow_result);
1596 
1597     // Post merge
1598     set_control(_gvn.transform(r));
1599     record_for_igvn(r);
1600     result=_gvn.transform(phi);
1601   }
1602 
1603   //-------------------
1604   //result=(result.isNaN())? uncommon_trap():result;
1605   // Check: If isNaN() by checking result!=result? then go to Strict Math
1606   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1607   // Build the boolean node
1608   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1609 
1610   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1611     // End the current control-flow path
1612     push_pair(x);
1613     push_pair(y);
1614     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1615     // to handle.  Recompile without intrinsifying Math.pow.
1616     uncommon_trap(Deoptimization::Reason_intrinsic,
1617                   Deoptimization::Action_make_not_entrant);
1618   }
1619 
1620   C->set_has_split_ifs(true); // Has chance for split-if optimization
1621 
1622   push_pair(result);
1623 
1624   return true;
1625 }
1626 
1627 //------------------------------inline_trans-------------------------------------
1628 // Inline transcendental instructions, if possible.  The Intel hardware gets
1629 // these right, no funny corner cases missed.
1630 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1631   _sp += arg_size();        // restore stack pointer
1632   Node* arg = pop_math_arg();
1633   Node* trans = NULL;
1634 
1635   switch (id) {
1636   case vmIntrinsics::_dlog:
1637     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1638     break;
1639   case vmIntrinsics::_dlog10:
1640     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1641     break;
1642   default:
1643     assert(false, "bad intrinsic was passed in");
1644     return false;
1645   }
1646 
1647   // Push result back on JVM stack
1648   push_pair(trans);
1649   return true;
1650 }
1651 
1652 //------------------------------runtime_math-----------------------------
1653 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1654   Node* a = NULL;
1655   Node* b = NULL;
1656 
1657   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1658          "must be (DD)D or (D)D type");
1659 
1660   // Inputs
1661   _sp += arg_size();        // restore stack pointer
1662   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1663     b = pop_math_arg();
1664   }
1665   a = pop_math_arg();
1666 
1667   const TypePtr* no_memory_effects = NULL;
1668   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1669                                  no_memory_effects,
1670                                  a, top(), b, b ? top() : NULL);
1671   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1672 #ifdef ASSERT
1673   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1674   assert(value_top == top(), "second value must be top");
1675 #endif
1676 
1677   push_pair(value);
1678   return true;
1679 }
1680 
1681 //------------------------------inline_math_native-----------------------------
1682 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1683   switch (id) {
1684     // These intrinsics are not properly supported on all hardware
1685   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1686     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1687   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1688     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1689   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1690     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1691 
1692   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1693     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1694   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1695     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1696 
1697     // These intrinsics are supported on all hardware
1698   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1699   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1700 
1701     // These intrinsics don't work on X86.  The ad implementation doesn't
1702     // handle NaN's properly.  Instead of returning infinity, the ad
1703     // implementation returns a NaN on overflow. See bug: 6304089
1704     // Once the ad implementations are fixed, change the code below
1705     // to match the intrinsics above
1706 
1707   case vmIntrinsics::_dexp:  return
1708     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1709   case vmIntrinsics::_dpow:  return
1710     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1711 
1712    // These intrinsics are not yet correctly implemented
1713   case vmIntrinsics::_datan2:
1714     return false;
1715 
1716   default:
1717     ShouldNotReachHere();
1718     return false;
1719   }
1720 }
1721 
1722 static bool is_simple_name(Node* n) {
1723   return (n->req() == 1         // constant
1724           || (n->is_Type() && n->as_Type()->type()->singleton())
1725           || n->is_Proj()       // parameter or return value
1726           || n->is_Phi()        // local of some sort
1727           );
1728 }
1729 
1730 //----------------------------inline_min_max-----------------------------------
1731 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1732   push(generate_min_max(id, argument(0), argument(1)));
1733 
1734   return true;
1735 }
1736 
1737 Node*
1738 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1739   // These are the candidate return value:
1740   Node* xvalue = x0;
1741   Node* yvalue = y0;
1742 
1743   if (xvalue == yvalue) {
1744     return xvalue;
1745   }
1746 
1747   bool want_max = (id == vmIntrinsics::_max);
1748 
1749   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1750   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1751   if (txvalue == NULL || tyvalue == NULL)  return top();
1752   // This is not really necessary, but it is consistent with a
1753   // hypothetical MaxINode::Value method:
1754   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1755 
1756   // %%% This folding logic should (ideally) be in a different place.
1757   // Some should be inside IfNode, and there to be a more reliable
1758   // transformation of ?: style patterns into cmoves.  We also want
1759   // more powerful optimizations around cmove and min/max.
1760 
1761   // Try to find a dominating comparison of these guys.
1762   // It can simplify the index computation for Arrays.copyOf
1763   // and similar uses of System.arraycopy.
1764   // First, compute the normalized version of CmpI(x, y).
1765   int   cmp_op = Op_CmpI;
1766   Node* xkey = xvalue;
1767   Node* ykey = yvalue;
1768   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1769   if (ideal_cmpxy->is_Cmp()) {
1770     // E.g., if we have CmpI(length - offset, count),
1771     // it might idealize to CmpI(length, count + offset)
1772     cmp_op = ideal_cmpxy->Opcode();
1773     xkey = ideal_cmpxy->in(1);
1774     ykey = ideal_cmpxy->in(2);
1775   }
1776 
1777   // Start by locating any relevant comparisons.
1778   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1779   Node* cmpxy = NULL;
1780   Node* cmpyx = NULL;
1781   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1782     Node* cmp = start_from->fast_out(k);
1783     if (cmp->outcnt() > 0 &&            // must have prior uses
1784         cmp->in(0) == NULL &&           // must be context-independent
1785         cmp->Opcode() == cmp_op) {      // right kind of compare
1786       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1787       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1788     }
1789   }
1790 
1791   const int NCMPS = 2;
1792   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1793   int cmpn;
1794   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1795     if (cmps[cmpn] != NULL)  break;     // find a result
1796   }
1797   if (cmpn < NCMPS) {
1798     // Look for a dominating test that tells us the min and max.
1799     int depth = 0;                // Limit search depth for speed
1800     Node* dom = control();
1801     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1802       if (++depth >= 100)  break;
1803       Node* ifproj = dom;
1804       if (!ifproj->is_Proj())  continue;
1805       Node* iff = ifproj->in(0);
1806       if (!iff->is_If())  continue;
1807       Node* bol = iff->in(1);
1808       if (!bol->is_Bool())  continue;
1809       Node* cmp = bol->in(1);
1810       if (cmp == NULL)  continue;
1811       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1812         if (cmps[cmpn] == cmp)  break;
1813       if (cmpn == NCMPS)  continue;
1814       BoolTest::mask btest = bol->as_Bool()->_test._test;
1815       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1816       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1817       // At this point, we know that 'x btest y' is true.
1818       switch (btest) {
1819       case BoolTest::eq:
1820         // They are proven equal, so we can collapse the min/max.
1821         // Either value is the answer.  Choose the simpler.
1822         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1823           return yvalue;
1824         return xvalue;
1825       case BoolTest::lt:          // x < y
1826       case BoolTest::le:          // x <= y
1827         return (want_max ? yvalue : xvalue);
1828       case BoolTest::gt:          // x > y
1829       case BoolTest::ge:          // x >= y
1830         return (want_max ? xvalue : yvalue);
1831       }
1832     }
1833   }
1834 
1835   // We failed to find a dominating test.
1836   // Let's pick a test that might GVN with prior tests.
1837   Node*          best_bol   = NULL;
1838   BoolTest::mask best_btest = BoolTest::illegal;
1839   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1840     Node* cmp = cmps[cmpn];
1841     if (cmp == NULL)  continue;
1842     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1843       Node* bol = cmp->fast_out(j);
1844       if (!bol->is_Bool())  continue;
1845       BoolTest::mask btest = bol->as_Bool()->_test._test;
1846       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1847       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1848       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1849         best_bol   = bol->as_Bool();
1850         best_btest = btest;
1851       }
1852     }
1853   }
1854 
1855   Node* answer_if_true  = NULL;
1856   Node* answer_if_false = NULL;
1857   switch (best_btest) {
1858   default:
1859     if (cmpxy == NULL)
1860       cmpxy = ideal_cmpxy;
1861     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1862     // and fall through:
1863   case BoolTest::lt:          // x < y
1864   case BoolTest::le:          // x <= y
1865     answer_if_true  = (want_max ? yvalue : xvalue);
1866     answer_if_false = (want_max ? xvalue : yvalue);
1867     break;
1868   case BoolTest::gt:          // x > y
1869   case BoolTest::ge:          // x >= y
1870     answer_if_true  = (want_max ? xvalue : yvalue);
1871     answer_if_false = (want_max ? yvalue : xvalue);
1872     break;
1873   }
1874 
1875   jint hi, lo;
1876   if (want_max) {
1877     // We can sharpen the minimum.
1878     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1879     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1880   } else {
1881     // We can sharpen the maximum.
1882     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1883     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1884   }
1885 
1886   // Use a flow-free graph structure, to avoid creating excess control edges
1887   // which could hinder other optimizations.
1888   // Since Math.min/max is often used with arraycopy, we want
1889   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1890   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1891                                answer_if_false, answer_if_true,
1892                                TypeInt::make(lo, hi, widen));
1893 
1894   return _gvn.transform(cmov);
1895 
1896   /*
1897   // This is not as desirable as it may seem, since Min and Max
1898   // nodes do not have a full set of optimizations.
1899   // And they would interfere, anyway, with 'if' optimizations
1900   // and with CMoveI canonical forms.
1901   switch (id) {
1902   case vmIntrinsics::_min:
1903     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1904   case vmIntrinsics::_max:
1905     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1906   default:
1907     ShouldNotReachHere();
1908   }
1909   */
1910 }
1911 
1912 inline int
1913 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1914   const TypePtr* base_type = TypePtr::NULL_PTR;
1915   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1916   if (base_type == NULL) {
1917     // Unknown type.
1918     return Type::AnyPtr;
1919   } else if (base_type == TypePtr::NULL_PTR) {
1920     // Since this is a NULL+long form, we have to switch to a rawptr.
1921     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1922     offset = MakeConX(0);
1923     return Type::RawPtr;
1924   } else if (base_type->base() == Type::RawPtr) {
1925     return Type::RawPtr;
1926   } else if (base_type->isa_oopptr()) {
1927     // Base is never null => always a heap address.
1928     if (base_type->ptr() == TypePtr::NotNull) {
1929       return Type::OopPtr;
1930     }
1931     // Offset is small => always a heap address.
1932     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1933     if (offset_type != NULL &&
1934         base_type->offset() == 0 &&     // (should always be?)
1935         offset_type->_lo >= 0 &&
1936         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1937       return Type::OopPtr;
1938     }
1939     // Otherwise, it might either be oop+off or NULL+addr.
1940     return Type::AnyPtr;
1941   } else {
1942     // No information:
1943     return Type::AnyPtr;
1944   }
1945 }
1946 
1947 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1948   int kind = classify_unsafe_addr(base, offset);
1949   if (kind == Type::RawPtr) {
1950     return basic_plus_adr(top(), base, offset);
1951   } else {
1952     return basic_plus_adr(base, offset);
1953   }
1954 }
1955 
1956 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1957 // inline int Integer.numberOfLeadingZeros(int)
1958 // inline int Long.numberOfLeadingZeros(long)
1959 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1960   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1961   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1962   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1963   _sp += arg_size();  // restore stack pointer
1964   switch (id) {
1965   case vmIntrinsics::_numberOfLeadingZeros_i:
1966     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1967     break;
1968   case vmIntrinsics::_numberOfLeadingZeros_l:
1969     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1970     break;
1971   default:
1972     ShouldNotReachHere();
1973   }
1974   return true;
1975 }
1976 
1977 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1978 // inline int Integer.numberOfTrailingZeros(int)
1979 // inline int Long.numberOfTrailingZeros(long)
1980 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1981   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1982   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1983   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1984   _sp += arg_size();  // restore stack pointer
1985   switch (id) {
1986   case vmIntrinsics::_numberOfTrailingZeros_i:
1987     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1988     break;
1989   case vmIntrinsics::_numberOfTrailingZeros_l:
1990     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1991     break;
1992   default:
1993     ShouldNotReachHere();
1994   }
1995   return true;
1996 }
1997 
1998 //----------------------------inline_bitCount_int/long-----------------------
1999 // inline int Integer.bitCount(int)
2000 // inline int Long.bitCount(long)
2001 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2002   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2003   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2004   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2005   _sp += arg_size();  // restore stack pointer
2006   switch (id) {
2007   case vmIntrinsics::_bitCount_i:
2008     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2009     break;
2010   case vmIntrinsics::_bitCount_l:
2011     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2012     break;
2013   default:
2014     ShouldNotReachHere();
2015   }
2016   return true;
2017 }
2018 
2019 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2020 // inline Integer.reverseBytes(int)
2021 // inline Long.reverseBytes(long)
2022 // inline Character.reverseBytes(char)
2023 // inline Short.reverseBytes(short)
2024 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2025   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2026          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2027          "not reverse Bytes");
2028   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2029   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2030   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2031   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2032   _sp += arg_size();        // restore stack pointer
2033   switch (id) {
2034   case vmIntrinsics::_reverseBytes_i:
2035     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2036     break;
2037   case vmIntrinsics::_reverseBytes_l:
2038     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2039     break;
2040   case vmIntrinsics::_reverseBytes_c:
2041     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2042     break;
2043   case vmIntrinsics::_reverseBytes_s:
2044     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2045     break;
2046   default:
2047     ;
2048   }
2049   return true;
2050 }
2051 
2052 //----------------------------inline_unsafe_access----------------------------
2053 
2054 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2055 
2056 // Interpret Unsafe.fieldOffset cookies correctly:
2057 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2058 
2059 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2060   if (callee()->is_static())  return false;  // caller must have the capability!
2061 
2062 #ifndef PRODUCT
2063   {
2064     ResourceMark rm;
2065     // Check the signatures.
2066     ciSignature* sig = signature();
2067 #ifdef ASSERT
2068     if (!is_store) {
2069       // Object getObject(Object base, int/long offset), etc.
2070       BasicType rtype = sig->return_type()->basic_type();
2071       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2072           rtype = T_ADDRESS;  // it is really a C void*
2073       assert(rtype == type, "getter must return the expected value");
2074       if (!is_native_ptr) {
2075         assert(sig->count() == 2, "oop getter has 2 arguments");
2076         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2077         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2078       } else {
2079         assert(sig->count() == 1, "native getter has 1 argument");
2080         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2081       }
2082     } else {
2083       // void putObject(Object base, int/long offset, Object x), etc.
2084       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2085       if (!is_native_ptr) {
2086         assert(sig->count() == 3, "oop putter has 3 arguments");
2087         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2088         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2089       } else {
2090         assert(sig->count() == 2, "native putter has 2 arguments");
2091         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2092       }
2093       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2094       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2095         vtype = T_ADDRESS;  // it is really a C void*
2096       assert(vtype == type, "putter must accept the expected value");
2097     }
2098 #endif // ASSERT
2099  }
2100 #endif //PRODUCT
2101 
2102   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2103 
2104   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2105 
2106   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2107   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2108 
2109   debug_only(int saved_sp = _sp);
2110   _sp += nargs;
2111 
2112   Node* val;
2113   debug_only(val = (Node*)(uintptr_t)-1);
2114 
2115 
2116   if (is_store) {
2117     // Get the value being stored.  (Pop it first; it was pushed last.)
2118     switch (type) {
2119     case T_DOUBLE:
2120     case T_LONG:
2121     case T_ADDRESS:
2122       val = pop_pair();
2123       break;
2124     default:
2125       val = pop();
2126     }
2127   }
2128 
2129   // Build address expression.  See the code in inline_unsafe_prefetch.
2130   Node *adr;
2131   Node *heap_base_oop = top();
2132   if (!is_native_ptr) {
2133     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2134     Node* offset = pop_pair();
2135     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2136     Node* base   = pop();
2137     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2138     // to be plain byte offsets, which are also the same as those accepted
2139     // by oopDesc::field_base.
2140     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2141            "fieldOffset must be byte-scaled");
2142     // 32-bit machines ignore the high half!
2143     offset = ConvL2X(offset);
2144     adr = make_unsafe_address(base, offset);
2145     heap_base_oop = base;
2146   } else {
2147     Node* ptr = pop_pair();
2148     // Adjust Java long to machine word:
2149     ptr = ConvL2X(ptr);
2150     adr = make_unsafe_address(NULL, ptr);
2151   }
2152 
2153   // Pop receiver last:  it was pushed first.
2154   Node *receiver = pop();
2155 
2156   assert(saved_sp == _sp, "must have correct argument count");
2157 
2158   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2159 
2160   // First guess at the value type.
2161   const Type *value_type = Type::get_const_basic_type(type);
2162 
2163   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2164   // there was not enough information to nail it down.
2165   Compile::AliasType* alias_type = C->alias_type(adr_type);
2166   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2167 
2168   // We will need memory barriers unless we can determine a unique
2169   // alias category for this reference.  (Note:  If for some reason
2170   // the barriers get omitted and the unsafe reference begins to "pollute"
2171   // the alias analysis of the rest of the graph, either Compile::can_alias
2172   // or Compile::must_alias will throw a diagnostic assert.)
2173   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2174 
2175   if (!is_store && type == T_OBJECT) {
2176     // Attempt to infer a sharper value type from the offset and base type.
2177     ciKlass* sharpened_klass = NULL;
2178 
2179     // See if it is an instance field, with an object type.
2180     if (alias_type->field() != NULL) {
2181       assert(!is_native_ptr, "native pointer op cannot use a java address");
2182       if (alias_type->field()->type()->is_klass()) {
2183         sharpened_klass = alias_type->field()->type()->as_klass();
2184       }
2185     }
2186 
2187     // See if it is a narrow oop array.
2188     if (adr_type->isa_aryptr()) {
2189       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2190         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2191         if (elem_type != NULL) {
2192           sharpened_klass = elem_type->klass();
2193         }
2194       }
2195     }
2196 
2197     if (sharpened_klass != NULL) {
2198       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2199 
2200       // Sharpen the value type.
2201       value_type = tjp;
2202 
2203 #ifndef PRODUCT
2204       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2205         tty->print("  from base type:  ");   adr_type->dump();
2206         tty->print("  sharpened value: "); value_type->dump();
2207       }
2208 #endif
2209     }
2210   }
2211 
2212   // Null check on self without removing any arguments.  The argument
2213   // null check technically happens in the wrong place, which can lead to
2214   // invalid stack traces when the primitive is inlined into a method
2215   // which handles NullPointerExceptions.
2216   _sp += nargs;
2217   do_null_check(receiver, T_OBJECT);
2218   _sp -= nargs;
2219   if (stopped()) {
2220     return true;
2221   }
2222   // Heap pointers get a null-check from the interpreter,
2223   // as a courtesy.  However, this is not guaranteed by Unsafe,
2224   // and it is not possible to fully distinguish unintended nulls
2225   // from intended ones in this API.
2226 
2227   if (is_volatile) {
2228     // We need to emit leading and trailing CPU membars (see below) in
2229     // addition to memory membars when is_volatile. This is a little
2230     // too strong, but avoids the need to insert per-alias-type
2231     // volatile membars (for stores; compare Parse::do_put_xxx), which
2232     // we cannot do effectively here because we probably only have a
2233     // rough approximation of type.
2234     need_mem_bar = true;
2235     // For Stores, place a memory ordering barrier now.
2236     if (is_store)
2237       insert_mem_bar(Op_MemBarRelease);
2238   }
2239 
2240   // Memory barrier to prevent normal and 'unsafe' accesses from
2241   // bypassing each other.  Happens after null checks, so the
2242   // exception paths do not take memory state from the memory barrier,
2243   // so there's no problems making a strong assert about mixing users
2244   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2245   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2246   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2247 
2248   if (!is_store) {
2249     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2250     // load value and push onto stack
2251     switch (type) {
2252     case T_BOOLEAN:
2253     case T_CHAR:
2254     case T_BYTE:
2255     case T_SHORT:
2256     case T_INT:
2257     case T_FLOAT:
2258     case T_OBJECT:
2259       push( p );
2260       break;
2261     case T_ADDRESS:
2262       // Cast to an int type.
2263       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2264       p = ConvX2L(p);
2265       push_pair(p);
2266       break;
2267     case T_DOUBLE:
2268     case T_LONG:
2269       push_pair( p );
2270       break;
2271     default: ShouldNotReachHere();
2272     }
2273   } else {
2274     // place effect of store into memory
2275     switch (type) {
2276     case T_DOUBLE:
2277       val = dstore_rounding(val);
2278       break;
2279     case T_ADDRESS:
2280       // Repackage the long as a pointer.
2281       val = ConvL2X(val);
2282       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2283       break;
2284     }
2285 
2286     if (type != T_OBJECT ) {
2287       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2288     } else {
2289       // Possibly an oop being stored to Java heap or native memory
2290       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2291         // oop to Java heap.
2292         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2293       } else {
2294         // We can't tell at compile time if we are storing in the Java heap or outside
2295         // of it. So we need to emit code to conditionally do the proper type of
2296         // store.
2297 
2298         IdealKit ideal(gvn(), control(),  merged_memory());
2299 #define __ ideal.
2300         // QQQ who knows what probability is here??
2301         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2302           // Sync IdealKit and graphKit.
2303           set_all_memory( __ merged_memory());
2304           set_control(__ ctrl());
2305           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2306           // Update IdealKit memory.
2307           __ set_all_memory(merged_memory());
2308           __ set_ctrl(control());
2309         } __ else_(); {
2310           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2311         } __ end_if();
2312         // Final sync IdealKit and GraphKit.
2313         sync_kit(ideal);
2314 #undef __
2315       }
2316     }
2317   }
2318 
2319   if (is_volatile) {
2320     if (!is_store)
2321       insert_mem_bar(Op_MemBarAcquire);
2322     else
2323       insert_mem_bar(Op_MemBarVolatile);
2324   }
2325 
2326   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2327 
2328   return true;
2329 }
2330 
2331 //----------------------------inline_unsafe_prefetch----------------------------
2332 
2333 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2334 #ifndef PRODUCT
2335   {
2336     ResourceMark rm;
2337     // Check the signatures.
2338     ciSignature* sig = signature();
2339 #ifdef ASSERT
2340     // Object getObject(Object base, int/long offset), etc.
2341     BasicType rtype = sig->return_type()->basic_type();
2342     if (!is_native_ptr) {
2343       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2344       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2345       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2346     } else {
2347       assert(sig->count() == 1, "native prefetch has 1 argument");
2348       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2349     }
2350 #endif // ASSERT
2351   }
2352 #endif // !PRODUCT
2353 
2354   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2355 
2356   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2357   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2358 
2359   debug_only(int saved_sp = _sp);
2360   _sp += nargs;
2361 
2362   // Build address expression.  See the code in inline_unsafe_access.
2363   Node *adr;
2364   if (!is_native_ptr) {
2365     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2366     Node* offset = pop_pair();
2367     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2368     Node* base   = pop();
2369     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2370     // to be plain byte offsets, which are also the same as those accepted
2371     // by oopDesc::field_base.
2372     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2373            "fieldOffset must be byte-scaled");
2374     // 32-bit machines ignore the high half!
2375     offset = ConvL2X(offset);
2376     adr = make_unsafe_address(base, offset);
2377   } else {
2378     Node* ptr = pop_pair();
2379     // Adjust Java long to machine word:
2380     ptr = ConvL2X(ptr);
2381     adr = make_unsafe_address(NULL, ptr);
2382   }
2383 
2384   if (is_static) {
2385     assert(saved_sp == _sp, "must have correct argument count");
2386   } else {
2387     // Pop receiver last:  it was pushed first.
2388     Node *receiver = pop();
2389     assert(saved_sp == _sp, "must have correct argument count");
2390 
2391     // Null check on self without removing any arguments.  The argument
2392     // null check technically happens in the wrong place, which can lead to
2393     // invalid stack traces when the primitive is inlined into a method
2394     // which handles NullPointerExceptions.
2395     _sp += nargs;
2396     do_null_check(receiver, T_OBJECT);
2397     _sp -= nargs;
2398     if (stopped()) {
2399       return true;
2400     }
2401   }
2402 
2403   // Generate the read or write prefetch
2404   Node *prefetch;
2405   if (is_store) {
2406     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2407   } else {
2408     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2409   }
2410   prefetch->init_req(0, control());
2411   set_i_o(_gvn.transform(prefetch));
2412 
2413   return true;
2414 }
2415 
2416 //----------------------------inline_unsafe_CAS----------------------------
2417 
2418 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2419   // This basic scheme here is the same as inline_unsafe_access, but
2420   // differs in enough details that combining them would make the code
2421   // overly confusing.  (This is a true fact! I originally combined
2422   // them, but even I was confused by it!) As much code/comments as
2423   // possible are retained from inline_unsafe_access though to make
2424   // the correspondences clearer. - dl
2425 
2426   if (callee()->is_static())  return false;  // caller must have the capability!
2427 
2428 #ifndef PRODUCT
2429   {
2430     ResourceMark rm;
2431     // Check the signatures.
2432     ciSignature* sig = signature();
2433 #ifdef ASSERT
2434     BasicType rtype = sig->return_type()->basic_type();
2435     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2436     assert(sig->count() == 4, "CAS has 4 arguments");
2437     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2438     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2439 #endif // ASSERT
2440   }
2441 #endif //PRODUCT
2442 
2443   // number of stack slots per value argument (1 or 2)
2444   int type_words = type2size[type];
2445 
2446   // Cannot inline wide CAS on machines that don't support it natively
2447   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2448     return false;
2449 
2450   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2451 
2452   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2453   int nargs = 1 + 1 + 2  + type_words + type_words;
2454 
2455   // pop arguments: newval, oldval, offset, base, and receiver
2456   debug_only(int saved_sp = _sp);
2457   _sp += nargs;
2458   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2459   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2460   Node *offset   = pop_pair();
2461   Node *base     = pop();
2462   Node *receiver = pop();
2463   assert(saved_sp == _sp, "must have correct argument count");
2464 
2465   //  Null check receiver.
2466   _sp += nargs;
2467   do_null_check(receiver, T_OBJECT);
2468   _sp -= nargs;
2469   if (stopped()) {
2470     return true;
2471   }
2472 
2473   // Build field offset expression.
2474   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2475   // to be plain byte offsets, which are also the same as those accepted
2476   // by oopDesc::field_base.
2477   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2478   // 32-bit machines ignore the high half of long offsets
2479   offset = ConvL2X(offset);
2480   Node* adr = make_unsafe_address(base, offset);
2481   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2482 
2483   // (Unlike inline_unsafe_access, there seems no point in trying
2484   // to refine types. Just use the coarse types here.
2485   const Type *value_type = Type::get_const_basic_type(type);
2486   Compile::AliasType* alias_type = C->alias_type(adr_type);
2487   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2488   int alias_idx = C->get_alias_index(adr_type);
2489 
2490   // Memory-model-wise, a CAS acts like a little synchronized block,
2491   // so needs barriers on each side.  These don't translate into
2492   // actual barriers on most machines, but we still need rest of
2493   // compiler to respect ordering.
2494 
2495   insert_mem_bar(Op_MemBarRelease);
2496   insert_mem_bar(Op_MemBarCPUOrder);
2497 
2498   // 4984716: MemBars must be inserted before this
2499   //          memory node in order to avoid a false
2500   //          dependency which will confuse the scheduler.
2501   Node *mem = memory(alias_idx);
2502 
2503   // For now, we handle only those cases that actually exist: ints,
2504   // longs, and Object. Adding others should be straightforward.
2505   Node* cas;
2506   switch(type) {
2507   case T_INT:
2508     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2509     break;
2510   case T_LONG:
2511     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2512     break;
2513   case T_OBJECT:
2514      // reference stores need a store barrier.
2515     // (They don't if CAS fails, but it isn't worth checking.)
2516     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2517 #ifdef _LP64
2518     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2519       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2520       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2521       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2522                                                           newval_enc, oldval_enc));
2523     } else
2524 #endif
2525     {
2526       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2527     }
2528     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2529     break;
2530   default:
2531     ShouldNotReachHere();
2532     break;
2533   }
2534 
2535   // SCMemProjNodes represent the memory state of CAS. Their main
2536   // role is to prevent CAS nodes from being optimized away when their
2537   // results aren't used.
2538   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2539   set_memory(proj, alias_idx);
2540 
2541   // Add the trailing membar surrounding the access
2542   insert_mem_bar(Op_MemBarCPUOrder);
2543   insert_mem_bar(Op_MemBarAcquire);
2544 
2545   push(cas);
2546   return true;
2547 }
2548 
2549 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2550   // This is another variant of inline_unsafe_access, differing in
2551   // that it always issues store-store ("release") barrier and ensures
2552   // store-atomicity (which only matters for "long").
2553 
2554   if (callee()->is_static())  return false;  // caller must have the capability!
2555 
2556 #ifndef PRODUCT
2557   {
2558     ResourceMark rm;
2559     // Check the signatures.
2560     ciSignature* sig = signature();
2561 #ifdef ASSERT
2562     BasicType rtype = sig->return_type()->basic_type();
2563     assert(rtype == T_VOID, "must return void");
2564     assert(sig->count() == 3, "has 3 arguments");
2565     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2566     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2567 #endif // ASSERT
2568   }
2569 #endif //PRODUCT
2570 
2571   // number of stack slots per value argument (1 or 2)
2572   int type_words = type2size[type];
2573 
2574   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2575 
2576   // Argument words:  "this" plus oop plus offset plus value;
2577   int nargs = 1 + 1 + 2 + type_words;
2578 
2579   // pop arguments: val, offset, base, and receiver
2580   debug_only(int saved_sp = _sp);
2581   _sp += nargs;
2582   Node* val      = (type_words == 1) ? pop() : pop_pair();
2583   Node *offset   = pop_pair();
2584   Node *base     = pop();
2585   Node *receiver = pop();
2586   assert(saved_sp == _sp, "must have correct argument count");
2587 
2588   //  Null check receiver.
2589   _sp += nargs;
2590   do_null_check(receiver, T_OBJECT);
2591   _sp -= nargs;
2592   if (stopped()) {
2593     return true;
2594   }
2595 
2596   // Build field offset expression.
2597   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2598   // 32-bit machines ignore the high half of long offsets
2599   offset = ConvL2X(offset);
2600   Node* adr = make_unsafe_address(base, offset);
2601   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2602   const Type *value_type = Type::get_const_basic_type(type);
2603   Compile::AliasType* alias_type = C->alias_type(adr_type);
2604 
2605   insert_mem_bar(Op_MemBarRelease);
2606   insert_mem_bar(Op_MemBarCPUOrder);
2607   // Ensure that the store is atomic for longs:
2608   bool require_atomic_access = true;
2609   Node* store;
2610   if (type == T_OBJECT) // reference stores need a store barrier.
2611     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2612   else {
2613     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2614   }
2615   insert_mem_bar(Op_MemBarCPUOrder);
2616   return true;
2617 }
2618 
2619 bool LibraryCallKit::inline_unsafe_allocate() {
2620   if (callee()->is_static())  return false;  // caller must have the capability!
2621   int nargs = 1 + 1;
2622   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2623   null_check_receiver(callee());  // check then ignore argument(0)
2624   _sp += nargs;  // set original stack for use by uncommon_trap
2625   Node* cls = do_null_check(argument(1), T_OBJECT);
2626   _sp -= nargs;
2627   if (stopped())  return true;
2628 
2629   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2630   _sp += nargs;  // set original stack for use by uncommon_trap
2631   kls = do_null_check(kls, T_OBJECT);
2632   _sp -= nargs;
2633   if (stopped())  return true;  // argument was like int.class
2634 
2635   // Note:  The argument might still be an illegal value like
2636   // Serializable.class or Object[].class.   The runtime will handle it.
2637   // But we must make an explicit check for initialization.
2638   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2639   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2640   Node* bits = intcon(instanceKlass::fully_initialized);
2641   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2642   // The 'test' is non-zero if we need to take a slow path.
2643 
2644   Node* obj = new_instance(kls, test);
2645   push(obj);
2646 
2647   return true;
2648 }
2649 
2650 //------------------------inline_native_time_funcs--------------
2651 // inline code for System.currentTimeMillis() and System.nanoTime()
2652 // these have the same type and signature
2653 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2654   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2655                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2656   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2657   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2658   const TypePtr* no_memory_effects = NULL;
2659   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2660   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2661 #ifdef ASSERT
2662   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2663   assert(value_top == top(), "second value must be top");
2664 #endif
2665   push_pair(value);
2666   return true;
2667 }
2668 
2669 //------------------------inline_native_currentThread------------------
2670 bool LibraryCallKit::inline_native_currentThread() {
2671   Node* junk = NULL;
2672   push(generate_current_thread(junk));
2673   return true;
2674 }
2675 
2676 //------------------------inline_native_isInterrupted------------------
2677 bool LibraryCallKit::inline_native_isInterrupted() {
2678   const int nargs = 1+1;  // receiver + boolean
2679   assert(nargs == arg_size(), "sanity");
2680   // Add a fast path to t.isInterrupted(clear_int):
2681   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2682   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2683   // So, in the common case that the interrupt bit is false,
2684   // we avoid making a call into the VM.  Even if the interrupt bit
2685   // is true, if the clear_int argument is false, we avoid the VM call.
2686   // However, if the receiver is not currentThread, we must call the VM,
2687   // because there must be some locking done around the operation.
2688 
2689   // We only go to the fast case code if we pass two guards.
2690   // Paths which do not pass are accumulated in the slow_region.
2691   RegionNode* slow_region = new (C, 1) RegionNode(1);
2692   record_for_igvn(slow_region);
2693   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2694   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2695   enum { no_int_result_path   = 1,
2696          no_clear_result_path = 2,
2697          slow_result_path     = 3
2698   };
2699 
2700   // (a) Receiving thread must be the current thread.
2701   Node* rec_thr = argument(0);
2702   Node* tls_ptr = NULL;
2703   Node* cur_thr = generate_current_thread(tls_ptr);
2704   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2705   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2706 
2707   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2708   if (!known_current_thread)
2709     generate_slow_guard(bol_thr, slow_region);
2710 
2711   // (b) Interrupt bit on TLS must be false.
2712   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2713   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2714   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2715   // Set the control input on the field _interrupted read to prevent it floating up.
2716   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2717   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2718   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2719 
2720   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2721 
2722   // First fast path:  if (!TLS._interrupted) return false;
2723   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2724   result_rgn->init_req(no_int_result_path, false_bit);
2725   result_val->init_req(no_int_result_path, intcon(0));
2726 
2727   // drop through to next case
2728   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2729 
2730   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2731   Node* clr_arg = argument(1);
2732   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2733   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2734   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2735 
2736   // Second fast path:  ... else if (!clear_int) return true;
2737   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2738   result_rgn->init_req(no_clear_result_path, false_arg);
2739   result_val->init_req(no_clear_result_path, intcon(1));
2740 
2741   // drop through to next case
2742   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2743 
2744   // (d) Otherwise, go to the slow path.
2745   slow_region->add_req(control());
2746   set_control( _gvn.transform(slow_region) );
2747 
2748   if (stopped()) {
2749     // There is no slow path.
2750     result_rgn->init_req(slow_result_path, top());
2751     result_val->init_req(slow_result_path, top());
2752   } else {
2753     // non-virtual because it is a private non-static
2754     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2755 
2756     Node* slow_val = set_results_for_java_call(slow_call);
2757     // this->control() comes from set_results_for_java_call
2758 
2759     // If we know that the result of the slow call will be true, tell the optimizer!
2760     if (known_current_thread)  slow_val = intcon(1);
2761 
2762     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2763     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2764     // These two phis are pre-filled with copies of of the fast IO and Memory
2765     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2766     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2767 
2768     result_rgn->init_req(slow_result_path, control());
2769     io_phi    ->init_req(slow_result_path, i_o());
2770     mem_phi   ->init_req(slow_result_path, reset_memory());
2771     result_val->init_req(slow_result_path, slow_val);
2772 
2773     set_all_memory( _gvn.transform(mem_phi) );
2774     set_i_o(        _gvn.transform(io_phi) );
2775   }
2776 
2777   push_result(result_rgn, result_val);
2778   C->set_has_split_ifs(true); // Has chance for split-if optimization
2779 
2780   return true;
2781 }
2782 
2783 //---------------------------load_mirror_from_klass----------------------------
2784 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2785 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2786   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2787   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2788 }
2789 
2790 //-----------------------load_klass_from_mirror_common-------------------------
2791 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2792 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2793 // and branch to the given path on the region.
2794 // If never_see_null, take an uncommon trap on null, so we can optimistically
2795 // compile for the non-null case.
2796 // If the region is NULL, force never_see_null = true.
2797 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2798                                                     bool never_see_null,
2799                                                     int nargs,
2800                                                     RegionNode* region,
2801                                                     int null_path,
2802                                                     int offset) {
2803   if (region == NULL)  never_see_null = true;
2804   Node* p = basic_plus_adr(mirror, offset);
2805   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2806   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2807   _sp += nargs; // any deopt will start just before call to enclosing method
2808   Node* null_ctl = top();
2809   kls = null_check_oop(kls, &null_ctl, never_see_null);
2810   if (region != NULL) {
2811     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2812     region->init_req(null_path, null_ctl);
2813   } else {
2814     assert(null_ctl == top(), "no loose ends");
2815   }
2816   _sp -= nargs;
2817   return kls;
2818 }
2819 
2820 //--------------------(inline_native_Class_query helpers)---------------------
2821 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2822 // Fall through if (mods & mask) == bits, take the guard otherwise.
2823 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2824   // Branch around if the given klass has the given modifier bit set.
2825   // Like generate_guard, adds a new path onto the region.
2826   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2827   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2828   Node* mask = intcon(modifier_mask);
2829   Node* bits = intcon(modifier_bits);
2830   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2831   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2832   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2833   return generate_fair_guard(bol, region);
2834 }
2835 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2836   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2837 }
2838 
2839 //-------------------------inline_native_Class_query-------------------
2840 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2841   int nargs = 1+0;  // just the Class mirror, in most cases
2842   const Type* return_type = TypeInt::BOOL;
2843   Node* prim_return_value = top();  // what happens if it's a primitive class?
2844   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2845   bool expect_prim = false;     // most of these guys expect to work on refs
2846 
2847   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2848 
2849   switch (id) {
2850   case vmIntrinsics::_isInstance:
2851     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2852     // nothing is an instance of a primitive type
2853     prim_return_value = intcon(0);
2854     break;
2855   case vmIntrinsics::_getModifiers:
2856     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2857     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2858     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2859     break;
2860   case vmIntrinsics::_isInterface:
2861     prim_return_value = intcon(0);
2862     break;
2863   case vmIntrinsics::_isArray:
2864     prim_return_value = intcon(0);
2865     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2866     break;
2867   case vmIntrinsics::_isPrimitive:
2868     prim_return_value = intcon(1);
2869     expect_prim = true;  // obviously
2870     break;
2871   case vmIntrinsics::_getSuperclass:
2872     prim_return_value = null();
2873     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2874     break;
2875   case vmIntrinsics::_getComponentType:
2876     prim_return_value = null();
2877     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2878     break;
2879   case vmIntrinsics::_getClassAccessFlags:
2880     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2881     return_type = TypeInt::INT;  // not bool!  6297094
2882     break;
2883   default:
2884     ShouldNotReachHere();
2885   }
2886 
2887   Node* mirror =                      argument(0);
2888   Node* obj    = (nargs <= 1)? top(): argument(1);
2889 
2890   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2891   if (mirror_con == NULL)  return false;  // cannot happen?
2892 
2893 #ifndef PRODUCT
2894   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2895     ciType* k = mirror_con->java_mirror_type();
2896     if (k) {
2897       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2898       k->print_name();
2899       tty->cr();
2900     }
2901   }
2902 #endif
2903 
2904   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2905   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2906   record_for_igvn(region);
2907   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2908 
2909   // The mirror will never be null of Reflection.getClassAccessFlags, however
2910   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2911   // if it is. See bug 4774291.
2912 
2913   // For Reflection.getClassAccessFlags(), the null check occurs in
2914   // the wrong place; see inline_unsafe_access(), above, for a similar
2915   // situation.
2916   _sp += nargs;  // set original stack for use by uncommon_trap
2917   mirror = do_null_check(mirror, T_OBJECT);
2918   _sp -= nargs;
2919   // If mirror or obj is dead, only null-path is taken.
2920   if (stopped())  return true;
2921 
2922   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2923 
2924   // Now load the mirror's klass metaobject, and null-check it.
2925   // Side-effects region with the control path if the klass is null.
2926   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2927                                      region, _prim_path);
2928   // If kls is null, we have a primitive mirror.
2929   phi->init_req(_prim_path, prim_return_value);
2930   if (stopped()) { push_result(region, phi); return true; }
2931 
2932   Node* p;  // handy temp
2933   Node* null_ctl;
2934 
2935   // Now that we have the non-null klass, we can perform the real query.
2936   // For constant classes, the query will constant-fold in LoadNode::Value.
2937   Node* query_value = top();
2938   switch (id) {
2939   case vmIntrinsics::_isInstance:
2940     // nothing is an instance of a primitive type
2941     _sp += nargs;          // gen_instanceof might do an uncommon trap
2942     query_value = gen_instanceof(obj, kls);
2943     _sp -= nargs;
2944     break;
2945 
2946   case vmIntrinsics::_getModifiers:
2947     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2948     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2949     break;
2950 
2951   case vmIntrinsics::_isInterface:
2952     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2953     if (generate_interface_guard(kls, region) != NULL)
2954       // A guard was added.  If the guard is taken, it was an interface.
2955       phi->add_req(intcon(1));
2956     // If we fall through, it's a plain class.
2957     query_value = intcon(0);
2958     break;
2959 
2960   case vmIntrinsics::_isArray:
2961     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2962     if (generate_array_guard(kls, region) != NULL)
2963       // A guard was added.  If the guard is taken, it was an array.
2964       phi->add_req(intcon(1));
2965     // If we fall through, it's a plain class.
2966     query_value = intcon(0);
2967     break;
2968 
2969   case vmIntrinsics::_isPrimitive:
2970     query_value = intcon(0); // "normal" path produces false
2971     break;
2972 
2973   case vmIntrinsics::_getSuperclass:
2974     // The rules here are somewhat unfortunate, but we can still do better
2975     // with random logic than with a JNI call.
2976     // Interfaces store null or Object as _super, but must report null.
2977     // Arrays store an intermediate super as _super, but must report Object.
2978     // Other types can report the actual _super.
2979     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2980     if (generate_interface_guard(kls, region) != NULL)
2981       // A guard was added.  If the guard is taken, it was an interface.
2982       phi->add_req(null());
2983     if (generate_array_guard(kls, region) != NULL)
2984       // A guard was added.  If the guard is taken, it was an array.
2985       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2986     // If we fall through, it's a plain class.  Get its _super.
2987     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2988     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2989     null_ctl = top();
2990     kls = null_check_oop(kls, &null_ctl);
2991     if (null_ctl != top()) {
2992       // If the guard is taken, Object.superClass is null (both klass and mirror).
2993       region->add_req(null_ctl);
2994       phi   ->add_req(null());
2995     }
2996     if (!stopped()) {
2997       query_value = load_mirror_from_klass(kls);
2998     }
2999     break;
3000 
3001   case vmIntrinsics::_getComponentType:
3002     if (generate_array_guard(kls, region) != NULL) {
3003       // Be sure to pin the oop load to the guard edge just created:
3004       Node* is_array_ctrl = region->in(region->req()-1);
3005       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3006       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3007       phi->add_req(cmo);
3008     }
3009     query_value = null();  // non-array case is null
3010     break;
3011 
3012   case vmIntrinsics::_getClassAccessFlags:
3013     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3014     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3015     break;
3016 
3017   default:
3018     ShouldNotReachHere();
3019   }
3020 
3021   // Fall-through is the normal case of a query to a real class.
3022   phi->init_req(1, query_value);
3023   region->init_req(1, control());
3024 
3025   push_result(region, phi);
3026   C->set_has_split_ifs(true); // Has chance for split-if optimization
3027 
3028   return true;
3029 }
3030 
3031 //--------------------------inline_native_subtype_check------------------------
3032 // This intrinsic takes the JNI calls out of the heart of
3033 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3034 bool LibraryCallKit::inline_native_subtype_check() {
3035   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3036 
3037   // Pull both arguments off the stack.
3038   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3039   args[0] = argument(0);
3040   args[1] = argument(1);
3041   Node* klasses[2];             // corresponding Klasses: superk, subk
3042   klasses[0] = klasses[1] = top();
3043 
3044   enum {
3045     // A full decision tree on {superc is prim, subc is prim}:
3046     _prim_0_path = 1,           // {P,N} => false
3047                                 // {P,P} & superc!=subc => false
3048     _prim_same_path,            // {P,P} & superc==subc => true
3049     _prim_1_path,               // {N,P} => false
3050     _ref_subtype_path,          // {N,N} & subtype check wins => true
3051     _both_ref_path,             // {N,N} & subtype check loses => false
3052     PATH_LIMIT
3053   };
3054 
3055   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3056   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3057   record_for_igvn(region);
3058 
3059   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3060   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3061   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3062 
3063   // First null-check both mirrors and load each mirror's klass metaobject.
3064   int which_arg;
3065   for (which_arg = 0; which_arg <= 1; which_arg++) {
3066     Node* arg = args[which_arg];
3067     _sp += nargs;  // set original stack for use by uncommon_trap
3068     arg = do_null_check(arg, T_OBJECT);
3069     _sp -= nargs;
3070     if (stopped())  break;
3071     args[which_arg] = _gvn.transform(arg);
3072 
3073     Node* p = basic_plus_adr(arg, class_klass_offset);
3074     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3075     klasses[which_arg] = _gvn.transform(kls);
3076   }
3077 
3078   // Having loaded both klasses, test each for null.
3079   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3080   for (which_arg = 0; which_arg <= 1; which_arg++) {
3081     Node* kls = klasses[which_arg];
3082     Node* null_ctl = top();
3083     _sp += nargs;  // set original stack for use by uncommon_trap
3084     kls = null_check_oop(kls, &null_ctl, never_see_null);
3085     _sp -= nargs;
3086     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3087     region->init_req(prim_path, null_ctl);
3088     if (stopped())  break;
3089     klasses[which_arg] = kls;
3090   }
3091 
3092   if (!stopped()) {
3093     // now we have two reference types, in klasses[0..1]
3094     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3095     Node* superk = klasses[0];  // the receiver
3096     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3097     // now we have a successful reference subtype check
3098     region->set_req(_ref_subtype_path, control());
3099   }
3100 
3101   // If both operands are primitive (both klasses null), then
3102   // we must return true when they are identical primitives.
3103   // It is convenient to test this after the first null klass check.
3104   set_control(region->in(_prim_0_path)); // go back to first null check
3105   if (!stopped()) {
3106     // Since superc is primitive, make a guard for the superc==subc case.
3107     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3108     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3109     generate_guard(bol_eq, region, PROB_FAIR);
3110     if (region->req() == PATH_LIMIT+1) {
3111       // A guard was added.  If the added guard is taken, superc==subc.
3112       region->swap_edges(PATH_LIMIT, _prim_same_path);
3113       region->del_req(PATH_LIMIT);
3114     }
3115     region->set_req(_prim_0_path, control()); // Not equal after all.
3116   }
3117 
3118   // these are the only paths that produce 'true':
3119   phi->set_req(_prim_same_path,   intcon(1));
3120   phi->set_req(_ref_subtype_path, intcon(1));
3121 
3122   // pull together the cases:
3123   assert(region->req() == PATH_LIMIT, "sane region");
3124   for (uint i = 1; i < region->req(); i++) {
3125     Node* ctl = region->in(i);
3126     if (ctl == NULL || ctl == top()) {
3127       region->set_req(i, top());
3128       phi   ->set_req(i, top());
3129     } else if (phi->in(i) == NULL) {
3130       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3131     }
3132   }
3133 
3134   set_control(_gvn.transform(region));
3135   push(_gvn.transform(phi));
3136 
3137   return true;
3138 }
3139 
3140 //---------------------generate_array_guard_common------------------------
3141 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3142                                                   bool obj_array, bool not_array) {
3143   // If obj_array/non_array==false/false:
3144   // Branch around if the given klass is in fact an array (either obj or prim).
3145   // If obj_array/non_array==false/true:
3146   // Branch around if the given klass is not an array klass of any kind.
3147   // If obj_array/non_array==true/true:
3148   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3149   // If obj_array/non_array==true/false:
3150   // Branch around if the kls is an oop array (Object[] or subtype)
3151   //
3152   // Like generate_guard, adds a new path onto the region.
3153   jint  layout_con = 0;
3154   Node* layout_val = get_layout_helper(kls, layout_con);
3155   if (layout_val == NULL) {
3156     bool query = (obj_array
3157                   ? Klass::layout_helper_is_objArray(layout_con)
3158                   : Klass::layout_helper_is_javaArray(layout_con));
3159     if (query == not_array) {
3160       return NULL;                       // never a branch
3161     } else {                             // always a branch
3162       Node* always_branch = control();
3163       if (region != NULL)
3164         region->add_req(always_branch);
3165       set_control(top());
3166       return always_branch;
3167     }
3168   }
3169   // Now test the correct condition.
3170   jint  nval = (obj_array
3171                 ? ((jint)Klass::_lh_array_tag_type_value
3172                    <<    Klass::_lh_array_tag_shift)
3173                 : Klass::_lh_neutral_value);
3174   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3175   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3176   // invert the test if we are looking for a non-array
3177   if (not_array)  btest = BoolTest(btest).negate();
3178   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3179   return generate_fair_guard(bol, region);
3180 }
3181 
3182 
3183 //-----------------------inline_native_newArray--------------------------
3184 bool LibraryCallKit::inline_native_newArray() {
3185   int nargs = 2;
3186   Node* mirror    = argument(0);
3187   Node* count_val = argument(1);
3188 
3189   _sp += nargs;  // set original stack for use by uncommon_trap
3190   mirror = do_null_check(mirror, T_OBJECT);
3191   _sp -= nargs;
3192   // If mirror or obj is dead, only null-path is taken.
3193   if (stopped())  return true;
3194 
3195   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3196   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3197   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3198                                                       TypeInstPtr::NOTNULL);
3199   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3200   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3201                                                       TypePtr::BOTTOM);
3202 
3203   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3204   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3205                                                   nargs,
3206                                                   result_reg, _slow_path);
3207   Node* normal_ctl   = control();
3208   Node* no_array_ctl = result_reg->in(_slow_path);
3209 
3210   // Generate code for the slow case.  We make a call to newArray().
3211   set_control(no_array_ctl);
3212   if (!stopped()) {
3213     // Either the input type is void.class, or else the
3214     // array klass has not yet been cached.  Either the
3215     // ensuing call will throw an exception, or else it
3216     // will cache the array klass for next time.
3217     PreserveJVMState pjvms(this);
3218     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3219     Node* slow_result = set_results_for_java_call(slow_call);
3220     // this->control() comes from set_results_for_java_call
3221     result_reg->set_req(_slow_path, control());
3222     result_val->set_req(_slow_path, slow_result);
3223     result_io ->set_req(_slow_path, i_o());
3224     result_mem->set_req(_slow_path, reset_memory());
3225   }
3226 
3227   set_control(normal_ctl);
3228   if (!stopped()) {
3229     // Normal case:  The array type has been cached in the java.lang.Class.
3230     // The following call works fine even if the array type is polymorphic.
3231     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3232     Node* obj = new_array(klass_node, count_val, nargs);
3233     result_reg->init_req(_normal_path, control());
3234     result_val->init_req(_normal_path, obj);
3235     result_io ->init_req(_normal_path, i_o());
3236     result_mem->init_req(_normal_path, reset_memory());
3237   }
3238 
3239   // Return the combined state.
3240   set_i_o(        _gvn.transform(result_io)  );
3241   set_all_memory( _gvn.transform(result_mem) );
3242   push_result(result_reg, result_val);
3243   C->set_has_split_ifs(true); // Has chance for split-if optimization
3244 
3245   return true;
3246 }
3247 
3248 //----------------------inline_native_getLength--------------------------
3249 bool LibraryCallKit::inline_native_getLength() {
3250   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3251 
3252   int nargs = 1;
3253   Node* array = argument(0);
3254 
3255   _sp += nargs;  // set original stack for use by uncommon_trap
3256   array = do_null_check(array, T_OBJECT);
3257   _sp -= nargs;
3258 
3259   // If array is dead, only null-path is taken.
3260   if (stopped())  return true;
3261 
3262   // Deoptimize if it is a non-array.
3263   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3264 
3265   if (non_array != NULL) {
3266     PreserveJVMState pjvms(this);
3267     set_control(non_array);
3268     _sp += nargs;  // push the arguments back on the stack
3269     uncommon_trap(Deoptimization::Reason_intrinsic,
3270                   Deoptimization::Action_maybe_recompile);
3271   }
3272 
3273   // If control is dead, only non-array-path is taken.
3274   if (stopped())  return true;
3275 
3276   // The works fine even if the array type is polymorphic.
3277   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3278   push( load_array_length(array) );
3279 
3280   C->set_has_split_ifs(true); // Has chance for split-if optimization
3281 
3282   return true;
3283 }
3284 
3285 //------------------------inline_array_copyOf----------------------------
3286 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3287   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3288 
3289   // Restore the stack and pop off the arguments.
3290   int nargs = 3 + (is_copyOfRange? 1: 0);
3291   Node* original          = argument(0);
3292   Node* start             = is_copyOfRange? argument(1): intcon(0);
3293   Node* end               = is_copyOfRange? argument(2): argument(1);
3294   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3295 
3296   Node* newcopy;
3297 
3298   //set the original stack and the reexecute bit for the interpreter to reexecute
3299   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3300   { PreserveReexecuteState preexecs(this);
3301     _sp += nargs;
3302     jvms()->set_should_reexecute(true);
3303 
3304     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3305     original          = do_null_check(original, T_OBJECT);
3306 
3307     // Check if a null path was taken unconditionally.
3308     if (stopped())  return true;
3309 
3310     Node* orig_length = load_array_length(original);
3311 
3312     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3313                                               NULL, 0);
3314     klass_node = do_null_check(klass_node, T_OBJECT);
3315 
3316     RegionNode* bailout = new (C, 1) RegionNode(1);
3317     record_for_igvn(bailout);
3318 
3319     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3320     // Bail out if that is so.
3321     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3322     if (not_objArray != NULL) {
3323       // Improve the klass node's type from the new optimistic assumption:
3324       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3325       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3326       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3327       cast->init_req(0, control());
3328       klass_node = _gvn.transform(cast);
3329     }
3330 
3331     // Bail out if either start or end is negative.
3332     generate_negative_guard(start, bailout, &start);
3333     generate_negative_guard(end,   bailout, &end);
3334 
3335     Node* length = end;
3336     if (_gvn.type(start) != TypeInt::ZERO) {
3337       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3338     }
3339 
3340     // Bail out if length is negative.
3341     // ...Not needed, since the new_array will throw the right exception.
3342     //generate_negative_guard(length, bailout, &length);
3343 
3344     if (bailout->req() > 1) {
3345       PreserveJVMState pjvms(this);
3346       set_control( _gvn.transform(bailout) );
3347       uncommon_trap(Deoptimization::Reason_intrinsic,
3348                     Deoptimization::Action_maybe_recompile);
3349     }
3350 
3351     if (!stopped()) {
3352 
3353       // How many elements will we copy from the original?
3354       // The answer is MinI(orig_length - start, length).
3355       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3356       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3357 
3358       const bool raw_mem_only = true;
3359       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3360 
3361       // Generate a direct call to the right arraycopy function(s).
3362       // We know the copy is disjoint but we might not know if the
3363       // oop stores need checking.
3364       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3365       // This will fail a store-check if x contains any non-nulls.
3366       bool disjoint_bases = true;
3367       bool length_never_negative = true;
3368       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3369                          original, start, newcopy, intcon(0), moved,
3370                          disjoint_bases, length_never_negative);
3371     }
3372   } //original reexecute and sp are set back here
3373 
3374   if(!stopped()) {
3375     push(newcopy);
3376   }
3377 
3378   C->set_has_split_ifs(true); // Has chance for split-if optimization
3379 
3380   return true;
3381 }
3382 
3383 
3384 //----------------------generate_virtual_guard---------------------------
3385 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3386 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3387                                              RegionNode* slow_region) {
3388   ciMethod* method = callee();
3389   int vtable_index = method->vtable_index();
3390   // Get the methodOop out of the appropriate vtable entry.
3391   int entry_offset  = (instanceKlass::vtable_start_offset() +
3392                      vtable_index*vtableEntry::size()) * wordSize +
3393                      vtableEntry::method_offset_in_bytes();
3394   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3395   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3396 
3397   // Compare the target method with the expected method (e.g., Object.hashCode).
3398   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3399 
3400   Node* native_call = makecon(native_call_addr);
3401   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3402   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3403 
3404   return generate_slow_guard(test_native, slow_region);
3405 }
3406 
3407 //-----------------------generate_method_call----------------------------
3408 // Use generate_method_call to make a slow-call to the real
3409 // method if the fast path fails.  An alternative would be to
3410 // use a stub like OptoRuntime::slow_arraycopy_Java.
3411 // This only works for expanding the current library call,
3412 // not another intrinsic.  (E.g., don't use this for making an
3413 // arraycopy call inside of the copyOf intrinsic.)
3414 CallJavaNode*
3415 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3416   // When compiling the intrinsic method itself, do not use this technique.
3417   guarantee(callee() != C->method(), "cannot make slow-call to self");
3418 
3419   ciMethod* method = callee();
3420   // ensure the JVMS we have will be correct for this call
3421   guarantee(method_id == method->intrinsic_id(), "must match");
3422 
3423   const TypeFunc* tf = TypeFunc::make(method);
3424   int tfdc = tf->domain()->cnt();
3425   CallJavaNode* slow_call;
3426   if (is_static) {
3427     assert(!is_virtual, "");
3428     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3429                                 SharedRuntime::get_resolve_static_call_stub(),
3430                                 method, bci());
3431   } else if (is_virtual) {
3432     null_check_receiver(method);
3433     int vtable_index = methodOopDesc::invalid_vtable_index;
3434     if (UseInlineCaches) {
3435       // Suppress the vtable call
3436     } else {
3437       // hashCode and clone are not a miranda methods,
3438       // so the vtable index is fixed.
3439       // No need to use the linkResolver to get it.
3440        vtable_index = method->vtable_index();
3441     }
3442     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3443                                 SharedRuntime::get_resolve_virtual_call_stub(),
3444                                 method, vtable_index, bci());
3445   } else {  // neither virtual nor static:  opt_virtual
3446     null_check_receiver(method);
3447     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3448                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3449                                 method, bci());
3450     slow_call->set_optimized_virtual(true);
3451   }
3452   set_arguments_for_java_call(slow_call);
3453   set_edges_for_java_call(slow_call);
3454   return slow_call;
3455 }
3456 
3457 
3458 //------------------------------inline_native_hashcode--------------------
3459 // Build special case code for calls to hashCode on an object.
3460 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3461   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3462   assert(!(is_virtual && is_static), "either virtual, special, or static");
3463 
3464   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3465 
3466   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3467   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3468                                                       TypeInt::INT);
3469   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3470   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3471                                                       TypePtr::BOTTOM);
3472   Node* obj = NULL;
3473   if (!is_static) {
3474     // Check for hashing null object
3475     obj = null_check_receiver(callee());
3476     if (stopped())  return true;        // unconditionally null
3477     result_reg->init_req(_null_path, top());
3478     result_val->init_req(_null_path, top());
3479   } else {
3480     // Do a null check, and return zero if null.
3481     // System.identityHashCode(null) == 0
3482     obj = argument(0);
3483     Node* null_ctl = top();
3484     obj = null_check_oop(obj, &null_ctl);
3485     result_reg->init_req(_null_path, null_ctl);
3486     result_val->init_req(_null_path, _gvn.intcon(0));
3487   }
3488 
3489   // Unconditionally null?  Then return right away.
3490   if (stopped()) {
3491     set_control( result_reg->in(_null_path) );
3492     if (!stopped())
3493       push(      result_val ->in(_null_path) );
3494     return true;
3495   }
3496 
3497   // After null check, get the object's klass.
3498   Node* obj_klass = load_object_klass(obj);
3499 
3500   // This call may be virtual (invokevirtual) or bound (invokespecial).
3501   // For each case we generate slightly different code.
3502 
3503   // We only go to the fast case code if we pass a number of guards.  The
3504   // paths which do not pass are accumulated in the slow_region.
3505   RegionNode* slow_region = new (C, 1) RegionNode(1);
3506   record_for_igvn(slow_region);
3507 
3508   // If this is a virtual call, we generate a funny guard.  We pull out
3509   // the vtable entry corresponding to hashCode() from the target object.
3510   // If the target method which we are calling happens to be the native
3511   // Object hashCode() method, we pass the guard.  We do not need this
3512   // guard for non-virtual calls -- the caller is known to be the native
3513   // Object hashCode().
3514   if (is_virtual) {
3515     generate_virtual_guard(obj_klass, slow_region);
3516   }
3517 
3518   // Get the header out of the object, use LoadMarkNode when available
3519   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3520   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3521 
3522   // Test the header to see if it is unlocked.
3523   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3524   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3525   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3526   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3527   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3528 
3529   generate_slow_guard(test_unlocked, slow_region);
3530 
3531   // Get the hash value and check to see that it has been properly assigned.
3532   // We depend on hash_mask being at most 32 bits and avoid the use of
3533   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3534   // vm: see markOop.hpp.
3535   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3536   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3537   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3538   // This hack lets the hash bits live anywhere in the mark object now, as long
3539   // as the shift drops the relevant bits into the low 32 bits.  Note that
3540   // Java spec says that HashCode is an int so there's no point in capturing
3541   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3542   hshifted_header      = ConvX2I(hshifted_header);
3543   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3544 
3545   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3546   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3547   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3548 
3549   generate_slow_guard(test_assigned, slow_region);
3550 
3551   Node* init_mem = reset_memory();
3552   // fill in the rest of the null path:
3553   result_io ->init_req(_null_path, i_o());
3554   result_mem->init_req(_null_path, init_mem);
3555 
3556   result_val->init_req(_fast_path, hash_val);
3557   result_reg->init_req(_fast_path, control());
3558   result_io ->init_req(_fast_path, i_o());
3559   result_mem->init_req(_fast_path, init_mem);
3560 
3561   // Generate code for the slow case.  We make a call to hashCode().
3562   set_control(_gvn.transform(slow_region));
3563   if (!stopped()) {
3564     // No need for PreserveJVMState, because we're using up the present state.
3565     set_all_memory(init_mem);
3566     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3567     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3568     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3569     Node* slow_result = set_results_for_java_call(slow_call);
3570     // this->control() comes from set_results_for_java_call
3571     result_reg->init_req(_slow_path, control());
3572     result_val->init_req(_slow_path, slow_result);
3573     result_io  ->set_req(_slow_path, i_o());
3574     result_mem ->set_req(_slow_path, reset_memory());
3575   }
3576 
3577   // Return the combined state.
3578   set_i_o(        _gvn.transform(result_io)  );
3579   set_all_memory( _gvn.transform(result_mem) );
3580   push_result(result_reg, result_val);
3581 
3582   return true;
3583 }
3584 
3585 //---------------------------inline_native_getClass----------------------------
3586 // Build special case code for calls to getClass on an object.
3587 bool LibraryCallKit::inline_native_getClass() {
3588   Node* obj = null_check_receiver(callee());
3589   if (stopped())  return true;
3590   push( load_mirror_from_klass(load_object_klass(obj)) );
3591   return true;
3592 }
3593 
3594 //-----------------inline_native_Reflection_getCallerClass---------------------
3595 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3596 //
3597 // NOTE that this code must perform the same logic as
3598 // vframeStream::security_get_caller_frame in that it must skip
3599 // Method.invoke() and auxiliary frames.
3600 
3601 
3602 
3603 
3604 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3605   ciMethod*       method = callee();
3606 
3607 #ifndef PRODUCT
3608   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3609     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3610   }
3611 #endif
3612 
3613   debug_only(int saved_sp = _sp);
3614 
3615   // Argument words:  (int depth)
3616   int nargs = 1;
3617 
3618   _sp += nargs;
3619   Node* caller_depth_node = pop();
3620 
3621   assert(saved_sp == _sp, "must have correct argument count");
3622 
3623   // The depth value must be a constant in order for the runtime call
3624   // to be eliminated.
3625   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3626   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3627 #ifndef PRODUCT
3628     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3629       tty->print_cr("  Bailing out because caller depth was not a constant");
3630     }
3631 #endif
3632     return false;
3633   }
3634   // Note that the JVM state at this point does not include the
3635   // getCallerClass() frame which we are trying to inline. The
3636   // semantics of getCallerClass(), however, are that the "first"
3637   // frame is the getCallerClass() frame, so we subtract one from the
3638   // requested depth before continuing. We don't inline requests of
3639   // getCallerClass(0).
3640   int caller_depth = caller_depth_type->get_con() - 1;
3641   if (caller_depth < 0) {
3642 #ifndef PRODUCT
3643     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3644       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3645     }
3646 #endif
3647     return false;
3648   }
3649 
3650   if (!jvms()->has_method()) {
3651 #ifndef PRODUCT
3652     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3653       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3654     }
3655 #endif
3656     return false;
3657   }
3658   int _depth = jvms()->depth();  // cache call chain depth
3659 
3660   // Walk back up the JVM state to find the caller at the required
3661   // depth. NOTE that this code must perform the same logic as
3662   // vframeStream::security_get_caller_frame in that it must skip
3663   // Method.invoke() and auxiliary frames. Note also that depth is
3664   // 1-based (1 is the bottom of the inlining).
3665   int inlining_depth = _depth;
3666   JVMState* caller_jvms = NULL;
3667 
3668   if (inlining_depth > 0) {
3669     caller_jvms = jvms();
3670     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3671     do {
3672       // The following if-tests should be performed in this order
3673       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3674         // Skip a Method.invoke() or auxiliary frame
3675       } else if (caller_depth > 0) {
3676         // Skip real frame
3677         --caller_depth;
3678       } else {
3679         // We're done: reached desired caller after skipping.
3680         break;
3681       }
3682       caller_jvms = caller_jvms->caller();
3683       --inlining_depth;
3684     } while (inlining_depth > 0);
3685   }
3686 
3687   if (inlining_depth == 0) {
3688 #ifndef PRODUCT
3689     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3690       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3691       tty->print_cr("  JVM state at this point:");
3692       for (int i = _depth; i >= 1; i--) {
3693         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3694       }
3695     }
3696 #endif
3697     return false; // Reached end of inlining
3698   }
3699 
3700   // Acquire method holder as java.lang.Class
3701   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3702   ciInstance*      caller_mirror = caller_klass->java_mirror();
3703   // Push this as a constant
3704   push(makecon(TypeInstPtr::make(caller_mirror)));
3705 #ifndef PRODUCT
3706   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3707     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3708     tty->print_cr("  JVM state at this point:");
3709     for (int i = _depth; i >= 1; i--) {
3710       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3711     }
3712   }
3713 #endif
3714   return true;
3715 }
3716 
3717 // Helper routine for above
3718 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3719   ciMethod* method = jvms->method();
3720 
3721   // Is this the Method.invoke method itself?
3722   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3723     return true;
3724 
3725   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3726   ciKlass* k = method->holder();
3727   if (k->is_instance_klass()) {
3728     ciInstanceKlass* ik = k->as_instance_klass();
3729     for (; ik != NULL; ik = ik->super()) {
3730       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3731           ik == env()->find_system_klass(ik->name())) {
3732         return true;
3733       }
3734     }
3735   }
3736   else if (method->is_method_handle_adapter()) {
3737     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3738     return true;
3739   }
3740 
3741   return false;
3742 }
3743 
3744 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3745                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3746                                      // computing it since there is no lookup field by name function in the
3747                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3748                                      // Using a static variable here is safe even if we have multiple compilation
3749                                      // threads because the offset is constant.  At worst the same offset will be
3750                                      // computed and  stored multiple
3751 
3752 bool LibraryCallKit::inline_native_AtomicLong_get() {
3753   // Restore the stack and pop off the argument
3754   _sp+=1;
3755   Node *obj = pop();
3756 
3757   // get the offset of the "value" field. Since the CI interfaces
3758   // does not provide a way to look up a field by name, we scan the bytecodes
3759   // to get the field index.  We expect the first 2 instructions of the method
3760   // to be:
3761   //    0 aload_0
3762   //    1 getfield "value"
3763   ciMethod* method = callee();
3764   if (value_field_offset == -1)
3765   {
3766     ciField* value_field;
3767     ciBytecodeStream iter(method);
3768     Bytecodes::Code bc = iter.next();
3769 
3770     if ((bc != Bytecodes::_aload_0) &&
3771               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3772       return false;
3773     bc = iter.next();
3774     if (bc != Bytecodes::_getfield)
3775       return false;
3776     bool ignore;
3777     value_field = iter.get_field(ignore);
3778     value_field_offset = value_field->offset_in_bytes();
3779   }
3780 
3781   // Null check without removing any arguments.
3782   _sp++;
3783   obj = do_null_check(obj, T_OBJECT);
3784   _sp--;
3785   // Check for locking null object
3786   if (stopped()) return true;
3787 
3788   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3789   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3790   int alias_idx = C->get_alias_index(adr_type);
3791 
3792   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3793 
3794   push_pair(result);
3795 
3796   return true;
3797 }
3798 
3799 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3800   // Restore the stack and pop off the arguments
3801   _sp+=5;
3802   Node *newVal = pop_pair();
3803   Node *oldVal = pop_pair();
3804   Node *obj = pop();
3805 
3806   // we need the offset of the "value" field which was computed when
3807   // inlining the get() method.  Give up if we don't have it.
3808   if (value_field_offset == -1)
3809     return false;
3810 
3811   // Null check without removing any arguments.
3812   _sp+=5;
3813   obj = do_null_check(obj, T_OBJECT);
3814   _sp-=5;
3815   // Check for locking null object
3816   if (stopped()) return true;
3817 
3818   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3819   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3820   int alias_idx = C->get_alias_index(adr_type);
3821 
3822   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3823   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3824   set_memory(store_proj, alias_idx);
3825   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3826 
3827   Node *result;
3828   // CMove node is not used to be able fold a possible check code
3829   // after attemptUpdate() call. This code could be transformed
3830   // into CMove node by loop optimizations.
3831   {
3832     RegionNode *r = new (C, 3) RegionNode(3);
3833     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3834 
3835     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3836     Node *iftrue = opt_iff(r, iff);
3837     r->init_req(1, iftrue);
3838     result->init_req(1, intcon(1));
3839     result->init_req(2, intcon(0));
3840 
3841     set_control(_gvn.transform(r));
3842     record_for_igvn(r);
3843 
3844     C->set_has_split_ifs(true); // Has chance for split-if optimization
3845   }
3846 
3847   push(_gvn.transform(result));
3848   return true;
3849 }
3850 
3851 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3852   // restore the arguments
3853   _sp += arg_size();
3854 
3855   switch (id) {
3856   case vmIntrinsics::_floatToRawIntBits:
3857     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3858     break;
3859 
3860   case vmIntrinsics::_intBitsToFloat:
3861     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3862     break;
3863 
3864   case vmIntrinsics::_doubleToRawLongBits:
3865     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3866     break;
3867 
3868   case vmIntrinsics::_longBitsToDouble:
3869     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3870     break;
3871 
3872   case vmIntrinsics::_doubleToLongBits: {
3873     Node* value = pop_pair();
3874 
3875     // two paths (plus control) merge in a wood
3876     RegionNode *r = new (C, 3) RegionNode(3);
3877     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3878 
3879     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3880     // Build the boolean node
3881     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3882 
3883     // Branch either way.
3884     // NaN case is less traveled, which makes all the difference.
3885     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3886     Node *opt_isnan = _gvn.transform(ifisnan);
3887     assert( opt_isnan->is_If(), "Expect an IfNode");
3888     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3889     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3890 
3891     set_control(iftrue);
3892 
3893     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3894     Node *slow_result = longcon(nan_bits); // return NaN
3895     phi->init_req(1, _gvn.transform( slow_result ));
3896     r->init_req(1, iftrue);
3897 
3898     // Else fall through
3899     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3900     set_control(iffalse);
3901 
3902     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3903     r->init_req(2, iffalse);
3904 
3905     // Post merge
3906     set_control(_gvn.transform(r));
3907     record_for_igvn(r);
3908 
3909     Node* result = _gvn.transform(phi);
3910     assert(result->bottom_type()->isa_long(), "must be");
3911     push_pair(result);
3912 
3913     C->set_has_split_ifs(true); // Has chance for split-if optimization
3914 
3915     break;
3916   }
3917 
3918   case vmIntrinsics::_floatToIntBits: {
3919     Node* value = pop();
3920 
3921     // two paths (plus control) merge in a wood
3922     RegionNode *r = new (C, 3) RegionNode(3);
3923     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3924 
3925     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3926     // Build the boolean node
3927     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3928 
3929     // Branch either way.
3930     // NaN case is less traveled, which makes all the difference.
3931     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3932     Node *opt_isnan = _gvn.transform(ifisnan);
3933     assert( opt_isnan->is_If(), "Expect an IfNode");
3934     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3935     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3936 
3937     set_control(iftrue);
3938 
3939     static const jint nan_bits = 0x7fc00000;
3940     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3941     phi->init_req(1, _gvn.transform( slow_result ));
3942     r->init_req(1, iftrue);
3943 
3944     // Else fall through
3945     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3946     set_control(iffalse);
3947 
3948     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3949     r->init_req(2, iffalse);
3950 
3951     // Post merge
3952     set_control(_gvn.transform(r));
3953     record_for_igvn(r);
3954 
3955     Node* result = _gvn.transform(phi);
3956     assert(result->bottom_type()->isa_int(), "must be");
3957     push(result);
3958 
3959     C->set_has_split_ifs(true); // Has chance for split-if optimization
3960 
3961     break;
3962   }
3963 
3964   default:
3965     ShouldNotReachHere();
3966   }
3967 
3968   return true;
3969 }
3970 
3971 #ifdef _LP64
3972 #define XTOP ,top() /*additional argument*/
3973 #else  //_LP64
3974 #define XTOP        /*no additional argument*/
3975 #endif //_LP64
3976 
3977 //----------------------inline_unsafe_copyMemory-------------------------
3978 bool LibraryCallKit::inline_unsafe_copyMemory() {
3979   if (callee()->is_static())  return false;  // caller must have the capability!
3980   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3981   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3982   null_check_receiver(callee());  // check then ignore argument(0)
3983   if (stopped())  return true;
3984 
3985   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3986 
3987   Node* src_ptr = argument(1);
3988   Node* src_off = ConvL2X(argument(2));
3989   assert(argument(3)->is_top(), "2nd half of long");
3990   Node* dst_ptr = argument(4);
3991   Node* dst_off = ConvL2X(argument(5));
3992   assert(argument(6)->is_top(), "2nd half of long");
3993   Node* size    = ConvL2X(argument(7));
3994   assert(argument(8)->is_top(), "2nd half of long");
3995 
3996   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3997          "fieldOffset must be byte-scaled");
3998 
3999   Node* src = make_unsafe_address(src_ptr, src_off);
4000   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4001 
4002   // Conservatively insert a memory barrier on all memory slices.
4003   // Do not let writes of the copy source or destination float below the copy.
4004   insert_mem_bar(Op_MemBarCPUOrder);
4005 
4006   // Call it.  Note that the length argument is not scaled.
4007   make_runtime_call(RC_LEAF|RC_NO_FP,
4008                     OptoRuntime::fast_arraycopy_Type(),
4009                     StubRoutines::unsafe_arraycopy(),
4010                     "unsafe_arraycopy",
4011                     TypeRawPtr::BOTTOM,
4012                     src, dst, size XTOP);
4013 
4014   // Do not let reads of the copy destination float above the copy.
4015   insert_mem_bar(Op_MemBarCPUOrder);
4016 
4017   return true;
4018 }
4019 
4020 //------------------------clone_coping-----------------------------------
4021 // Helper function for inline_native_clone.
4022 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4023   assert(obj_size != NULL, "");
4024   Node* raw_obj = alloc_obj->in(1);
4025   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4026 
4027   if (ReduceBulkZeroing) {
4028     // We will be completely responsible for initializing this object -
4029     // mark Initialize node as complete.
4030     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4031     // The object was just allocated - there should be no any stores!
4032     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4033   }
4034 
4035   // Copy the fastest available way.
4036   // TODO: generate fields copies for small objects instead.
4037   Node* src  = obj;
4038   Node* dest = alloc_obj;
4039   Node* size = _gvn.transform(obj_size);
4040 
4041   // Exclude the header but include array length to copy by 8 bytes words.
4042   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4043   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4044                             instanceOopDesc::base_offset_in_bytes();
4045   // base_off:
4046   // 8  - 32-bit VM
4047   // 12 - 64-bit VM, compressed oops
4048   // 16 - 64-bit VM, normal oops
4049   if (base_off % BytesPerLong != 0) {
4050     assert(UseCompressedOops, "");
4051     if (is_array) {
4052       // Exclude length to copy by 8 bytes words.
4053       base_off += sizeof(int);
4054     } else {
4055       // Include klass to copy by 8 bytes words.
4056       base_off = instanceOopDesc::klass_offset_in_bytes();
4057     }
4058     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4059   }
4060   src  = basic_plus_adr(src,  base_off);
4061   dest = basic_plus_adr(dest, base_off);
4062 
4063   // Compute the length also, if needed:
4064   Node* countx = size;
4065   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4066   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4067 
4068   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4069   bool disjoint_bases = true;
4070   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4071                                src, NULL, dest, NULL, countx);
4072 
4073   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4074   if (card_mark) {
4075     assert(!is_array, "");
4076     // Put in store barrier for any and all oops we are sticking
4077     // into this object.  (We could avoid this if we could prove
4078     // that the object type contains no oop fields at all.)
4079     Node* no_particular_value = NULL;
4080     Node* no_particular_field = NULL;
4081     int raw_adr_idx = Compile::AliasIdxRaw;
4082     post_barrier(control(),
4083                  memory(raw_adr_type),
4084                  alloc_obj,
4085                  no_particular_field,
4086                  raw_adr_idx,
4087                  no_particular_value,
4088                  T_OBJECT,
4089                  false);
4090   }
4091 
4092   // Do not let reads from the cloned object float above the arraycopy.
4093   insert_mem_bar(Op_MemBarCPUOrder);
4094 }
4095 
4096 //------------------------inline_native_clone----------------------------
4097 // Here are the simple edge cases:
4098 //  null receiver => normal trap
4099 //  virtual and clone was overridden => slow path to out-of-line clone
4100 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4101 //
4102 // The general case has two steps, allocation and copying.
4103 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4104 //
4105 // Copying also has two cases, oop arrays and everything else.
4106 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4107 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4108 //
4109 // These steps fold up nicely if and when the cloned object's klass
4110 // can be sharply typed as an object array, a type array, or an instance.
4111 //
4112 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4113   int nargs = 1;
4114   PhiNode* result_val;
4115 
4116   //set the original stack and the reexecute bit for the interpreter to reexecute
4117   //the bytecode that invokes Object.clone if deoptimization happens
4118   { PreserveReexecuteState preexecs(this);
4119     jvms()->set_should_reexecute(true);
4120 
4121     //null_check_receiver will adjust _sp (push and pop)
4122     Node* obj = null_check_receiver(callee());
4123     if (stopped())  return true;
4124 
4125     _sp += nargs;
4126 
4127     Node* obj_klass = load_object_klass(obj);
4128     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4129     const TypeOopPtr*   toop   = ((tklass != NULL)
4130                                 ? tklass->as_instance_type()
4131                                 : TypeInstPtr::NOTNULL);
4132 
4133     // Conservatively insert a memory barrier on all memory slices.
4134     // Do not let writes into the original float below the clone.
4135     insert_mem_bar(Op_MemBarCPUOrder);
4136 
4137     // paths into result_reg:
4138     enum {
4139       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4140       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4141       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4142       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4143       PATH_LIMIT
4144     };
4145     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4146     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4147                                                         TypeInstPtr::NOTNULL);
4148     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4149     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4150                                                         TypePtr::BOTTOM);
4151     record_for_igvn(result_reg);
4152 
4153     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4154     int raw_adr_idx = Compile::AliasIdxRaw;
4155     const bool raw_mem_only = true;
4156 
4157 
4158     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4159     if (array_ctl != NULL) {
4160       // It's an array.
4161       PreserveJVMState pjvms(this);
4162       set_control(array_ctl);
4163       Node* obj_length = load_array_length(obj);
4164       Node* obj_size  = NULL;
4165       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4166                                   raw_mem_only, &obj_size);
4167 
4168       if (!use_ReduceInitialCardMarks()) {
4169         // If it is an oop array, it requires very special treatment,
4170         // because card marking is required on each card of the array.
4171         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4172         if (is_obja != NULL) {
4173           PreserveJVMState pjvms2(this);
4174           set_control(is_obja);
4175           // Generate a direct call to the right arraycopy function(s).
4176           bool disjoint_bases = true;
4177           bool length_never_negative = true;
4178           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4179                              obj, intcon(0), alloc_obj, intcon(0),
4180                              obj_length,
4181                              disjoint_bases, length_never_negative);
4182           result_reg->init_req(_objArray_path, control());
4183           result_val->init_req(_objArray_path, alloc_obj);
4184           result_i_o ->set_req(_objArray_path, i_o());
4185           result_mem ->set_req(_objArray_path, reset_memory());
4186         }
4187       }
4188       // Otherwise, there are no card marks to worry about.
4189       // (We can dispense with card marks if we know the allocation
4190       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4191       //  causes the non-eden paths to take compensating steps to
4192       //  simulate a fresh allocation, so that no further
4193       //  card marks are required in compiled code to initialize
4194       //  the object.)
4195 
4196       if (!stopped()) {
4197         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4198 
4199         // Present the results of the copy.
4200         result_reg->init_req(_array_path, control());
4201         result_val->init_req(_array_path, alloc_obj);
4202         result_i_o ->set_req(_array_path, i_o());
4203         result_mem ->set_req(_array_path, reset_memory());
4204       }
4205     }
4206 
4207     // We only go to the instance fast case code if we pass a number of guards.
4208     // The paths which do not pass are accumulated in the slow_region.
4209     RegionNode* slow_region = new (C, 1) RegionNode(1);
4210     record_for_igvn(slow_region);
4211     if (!stopped()) {
4212       // It's an instance (we did array above).  Make the slow-path tests.
4213       // If this is a virtual call, we generate a funny guard.  We grab
4214       // the vtable entry corresponding to clone() from the target object.
4215       // If the target method which we are calling happens to be the
4216       // Object clone() method, we pass the guard.  We do not need this
4217       // guard for non-virtual calls; the caller is known to be the native
4218       // Object clone().
4219       if (is_virtual) {
4220         generate_virtual_guard(obj_klass, slow_region);
4221       }
4222 
4223       // The object must be cloneable and must not have a finalizer.
4224       // Both of these conditions may be checked in a single test.
4225       // We could optimize the cloneable test further, but we don't care.
4226       generate_access_flags_guard(obj_klass,
4227                                   // Test both conditions:
4228                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4229                                   // Must be cloneable but not finalizer:
4230                                   JVM_ACC_IS_CLONEABLE,
4231                                   slow_region);
4232     }
4233 
4234     if (!stopped()) {
4235       // It's an instance, and it passed the slow-path tests.
4236       PreserveJVMState pjvms(this);
4237       Node* obj_size  = NULL;
4238       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4239 
4240       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4241 
4242       // Present the results of the slow call.
4243       result_reg->init_req(_instance_path, control());
4244       result_val->init_req(_instance_path, alloc_obj);
4245       result_i_o ->set_req(_instance_path, i_o());
4246       result_mem ->set_req(_instance_path, reset_memory());
4247     }
4248 
4249     // Generate code for the slow case.  We make a call to clone().
4250     set_control(_gvn.transform(slow_region));
4251     if (!stopped()) {
4252       PreserveJVMState pjvms(this);
4253       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4254       Node* slow_result = set_results_for_java_call(slow_call);
4255       // this->control() comes from set_results_for_java_call
4256       result_reg->init_req(_slow_path, control());
4257       result_val->init_req(_slow_path, slow_result);
4258       result_i_o ->set_req(_slow_path, i_o());
4259       result_mem ->set_req(_slow_path, reset_memory());
4260     }
4261 
4262     // Return the combined state.
4263     set_control(    _gvn.transform(result_reg) );
4264     set_i_o(        _gvn.transform(result_i_o) );
4265     set_all_memory( _gvn.transform(result_mem) );
4266   } //original reexecute and sp are set back here
4267 
4268   push(_gvn.transform(result_val));
4269 
4270   return true;
4271 }
4272 
4273 
4274 // constants for computing the copy function
4275 enum {
4276   COPYFUNC_UNALIGNED = 0,
4277   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4278   COPYFUNC_CONJOINT = 0,
4279   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4280 };
4281 
4282 // Note:  The condition "disjoint" applies also for overlapping copies
4283 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4284 static address
4285 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4286   int selector =
4287     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4288     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4289 
4290 #define RETURN_STUB(xxx_arraycopy) { \
4291   name = #xxx_arraycopy; \
4292   return StubRoutines::xxx_arraycopy(); }
4293 
4294   switch (t) {
4295   case T_BYTE:
4296   case T_BOOLEAN:
4297     switch (selector) {
4298     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4299     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4300     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4301     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4302     }
4303   case T_CHAR:
4304   case T_SHORT:
4305     switch (selector) {
4306     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4307     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4308     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4309     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4310     }
4311   case T_INT:
4312   case T_FLOAT:
4313     switch (selector) {
4314     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4315     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4316     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4317     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4318     }
4319   case T_DOUBLE:
4320   case T_LONG:
4321     switch (selector) {
4322     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4323     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4324     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4325     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4326     }
4327   case T_ARRAY:
4328   case T_OBJECT:
4329     switch (selector) {
4330     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4331     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4332     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4333     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4334     }
4335   default:
4336     ShouldNotReachHere();
4337     return NULL;
4338   }
4339 
4340 #undef RETURN_STUB
4341 }
4342 
4343 //------------------------------basictype2arraycopy----------------------------
4344 address LibraryCallKit::basictype2arraycopy(BasicType t,
4345                                             Node* src_offset,
4346                                             Node* dest_offset,
4347                                             bool disjoint_bases,
4348                                             const char* &name) {
4349   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4350   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4351 
4352   bool aligned = false;
4353   bool disjoint = disjoint_bases;
4354 
4355   // if the offsets are the same, we can treat the memory regions as
4356   // disjoint, because either the memory regions are in different arrays,
4357   // or they are identical (which we can treat as disjoint.)  We can also
4358   // treat a copy with a destination index  less that the source index
4359   // as disjoint since a low->high copy will work correctly in this case.
4360   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4361       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4362     // both indices are constants
4363     int s_offs = src_offset_inttype->get_con();
4364     int d_offs = dest_offset_inttype->get_con();
4365     int element_size = type2aelembytes(t);
4366     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4367               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4368     if (s_offs >= d_offs)  disjoint = true;
4369   } else if (src_offset == dest_offset && src_offset != NULL) {
4370     // This can occur if the offsets are identical non-constants.
4371     disjoint = true;
4372   }
4373 
4374   return select_arraycopy_function(t, aligned, disjoint, name);
4375 }
4376 
4377 
4378 //------------------------------inline_arraycopy-----------------------
4379 bool LibraryCallKit::inline_arraycopy() {
4380   // Restore the stack and pop off the arguments.
4381   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4382   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4383 
4384   Node *src         = argument(0);
4385   Node *src_offset  = argument(1);
4386   Node *dest        = argument(2);
4387   Node *dest_offset = argument(3);
4388   Node *length      = argument(4);
4389 
4390   // Compile time checks.  If any of these checks cannot be verified at compile time,
4391   // we do not make a fast path for this call.  Instead, we let the call remain as it
4392   // is.  The checks we choose to mandate at compile time are:
4393   //
4394   // (1) src and dest are arrays.
4395   const Type* src_type = src->Value(&_gvn);
4396   const Type* dest_type = dest->Value(&_gvn);
4397   const TypeAryPtr* top_src = src_type->isa_aryptr();
4398   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4399   if (top_src  == NULL || top_src->klass()  == NULL ||
4400       top_dest == NULL || top_dest->klass() == NULL) {
4401     // Conservatively insert a memory barrier on all memory slices.
4402     // Do not let writes into the source float below the arraycopy.
4403     insert_mem_bar(Op_MemBarCPUOrder);
4404 
4405     // Call StubRoutines::generic_arraycopy stub.
4406     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4407                        src, src_offset, dest, dest_offset, length);
4408 
4409     // Do not let reads from the destination float above the arraycopy.
4410     // Since we cannot type the arrays, we don't know which slices
4411     // might be affected.  We could restrict this barrier only to those
4412     // memory slices which pertain to array elements--but don't bother.
4413     if (!InsertMemBarAfterArraycopy)
4414       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4415       insert_mem_bar(Op_MemBarCPUOrder);
4416     return true;
4417   }
4418 
4419   // (2) src and dest arrays must have elements of the same BasicType
4420   // Figure out the size and type of the elements we will be copying.
4421   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4422   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4423   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4424   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4425 
4426   if (src_elem != dest_elem || dest_elem == T_VOID) {
4427     // The component types are not the same or are not recognized.  Punt.
4428     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4429     generate_slow_arraycopy(TypePtr::BOTTOM,
4430                             src, src_offset, dest, dest_offset, length);
4431     return true;
4432   }
4433 
4434   //---------------------------------------------------------------------------
4435   // We will make a fast path for this call to arraycopy.
4436 
4437   // We have the following tests left to perform:
4438   //
4439   // (3) src and dest must not be null.
4440   // (4) src_offset must not be negative.
4441   // (5) dest_offset must not be negative.
4442   // (6) length must not be negative.
4443   // (7) src_offset + length must not exceed length of src.
4444   // (8) dest_offset + length must not exceed length of dest.
4445   // (9) each element of an oop array must be assignable
4446 
4447   RegionNode* slow_region = new (C, 1) RegionNode(1);
4448   record_for_igvn(slow_region);
4449 
4450   // (3) operands must not be null
4451   // We currently perform our null checks with the do_null_check routine.
4452   // This means that the null exceptions will be reported in the caller
4453   // rather than (correctly) reported inside of the native arraycopy call.
4454   // This should be corrected, given time.  We do our null check with the
4455   // stack pointer restored.
4456   _sp += nargs;
4457   src  = do_null_check(src,  T_ARRAY);
4458   dest = do_null_check(dest, T_ARRAY);
4459   _sp -= nargs;
4460 
4461   // (4) src_offset must not be negative.
4462   generate_negative_guard(src_offset, slow_region);
4463 
4464   // (5) dest_offset must not be negative.
4465   generate_negative_guard(dest_offset, slow_region);
4466 
4467   // (6) length must not be negative (moved to generate_arraycopy()).
4468   // generate_negative_guard(length, slow_region);
4469 
4470   // (7) src_offset + length must not exceed length of src.
4471   generate_limit_guard(src_offset, length,
4472                        load_array_length(src),
4473                        slow_region);
4474 
4475   // (8) dest_offset + length must not exceed length of dest.
4476   generate_limit_guard(dest_offset, length,
4477                        load_array_length(dest),
4478                        slow_region);
4479 
4480   // (9) each element of an oop array must be assignable
4481   // The generate_arraycopy subroutine checks this.
4482 
4483   // This is where the memory effects are placed:
4484   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4485   generate_arraycopy(adr_type, dest_elem,
4486                      src, src_offset, dest, dest_offset, length,
4487                      false, false, slow_region);
4488 
4489   return true;
4490 }
4491 
4492 //-----------------------------generate_arraycopy----------------------
4493 // Generate an optimized call to arraycopy.
4494 // Caller must guard against non-arrays.
4495 // Caller must determine a common array basic-type for both arrays.
4496 // Caller must validate offsets against array bounds.
4497 // The slow_region has already collected guard failure paths
4498 // (such as out of bounds length or non-conformable array types).
4499 // The generated code has this shape, in general:
4500 //
4501 //     if (length == 0)  return   // via zero_path
4502 //     slowval = -1
4503 //     if (types unknown) {
4504 //       slowval = call generic copy loop
4505 //       if (slowval == 0)  return  // via checked_path
4506 //     } else if (indexes in bounds) {
4507 //       if ((is object array) && !(array type check)) {
4508 //         slowval = call checked copy loop
4509 //         if (slowval == 0)  return  // via checked_path
4510 //       } else {
4511 //         call bulk copy loop
4512 //         return  // via fast_path
4513 //       }
4514 //     }
4515 //     // adjust params for remaining work:
4516 //     if (slowval != -1) {
4517 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4518 //     }
4519 //   slow_region:
4520 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4521 //     return  // via slow_call_path
4522 //
4523 // This routine is used from several intrinsics:  System.arraycopy,
4524 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4525 //
4526 void
4527 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4528                                    BasicType basic_elem_type,
4529                                    Node* src,  Node* src_offset,
4530                                    Node* dest, Node* dest_offset,
4531                                    Node* copy_length,
4532                                    bool disjoint_bases,
4533                                    bool length_never_negative,
4534                                    RegionNode* slow_region) {
4535 
4536   if (slow_region == NULL) {
4537     slow_region = new(C,1) RegionNode(1);
4538     record_for_igvn(slow_region);
4539   }
4540 
4541   Node* original_dest      = dest;
4542   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4543   bool  must_clear_dest    = false;
4544 
4545   // See if this is the initialization of a newly-allocated array.
4546   // If so, we will take responsibility here for initializing it to zero.
4547   // (Note:  Because tightly_coupled_allocation performs checks on the
4548   // out-edges of the dest, we need to avoid making derived pointers
4549   // from it until we have checked its uses.)
4550   if (ReduceBulkZeroing
4551       && !ZeroTLAB              // pointless if already zeroed
4552       && basic_elem_type != T_CONFLICT // avoid corner case
4553       && !_gvn.eqv_uncast(src, dest)
4554       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4555           != NULL)
4556       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4557       && alloc->maybe_set_complete(&_gvn)) {
4558     // "You break it, you buy it."
4559     InitializeNode* init = alloc->initialization();
4560     assert(init->is_complete(), "we just did this");
4561     assert(dest->is_CheckCastPP(), "sanity");
4562     assert(dest->in(0)->in(0) == init, "dest pinned");
4563     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4564     // From this point on, every exit path is responsible for
4565     // initializing any non-copied parts of the object to zero.
4566     must_clear_dest = true;
4567   } else {
4568     // No zeroing elimination here.
4569     alloc             = NULL;
4570     //original_dest   = dest;
4571     //must_clear_dest = false;
4572   }
4573 
4574   // Results are placed here:
4575   enum { fast_path        = 1,  // normal void-returning assembly stub
4576          checked_path     = 2,  // special assembly stub with cleanup
4577          slow_call_path   = 3,  // something went wrong; call the VM
4578          zero_path        = 4,  // bypass when length of copy is zero
4579          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4580          PATH_LIMIT       = 6
4581   };
4582   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4583   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4584   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4585   record_for_igvn(result_region);
4586   _gvn.set_type_bottom(result_i_o);
4587   _gvn.set_type_bottom(result_memory);
4588   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4589 
4590   // The slow_control path:
4591   Node* slow_control;
4592   Node* slow_i_o = i_o();
4593   Node* slow_mem = memory(adr_type);
4594   debug_only(slow_control = (Node*) badAddress);
4595 
4596   // Checked control path:
4597   Node* checked_control = top();
4598   Node* checked_mem     = NULL;
4599   Node* checked_i_o     = NULL;
4600   Node* checked_value   = NULL;
4601 
4602   if (basic_elem_type == T_CONFLICT) {
4603     assert(!must_clear_dest, "");
4604     Node* cv = generate_generic_arraycopy(adr_type,
4605                                           src, src_offset, dest, dest_offset,
4606                                           copy_length);
4607     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4608     checked_control = control();
4609     checked_i_o     = i_o();
4610     checked_mem     = memory(adr_type);
4611     checked_value   = cv;
4612     set_control(top());         // no fast path
4613   }
4614 
4615   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4616   if (not_pos != NULL) {
4617     PreserveJVMState pjvms(this);
4618     set_control(not_pos);
4619 
4620     // (6) length must not be negative.
4621     if (!length_never_negative) {
4622       generate_negative_guard(copy_length, slow_region);
4623     }
4624 
4625     // copy_length is 0.
4626     if (!stopped() && must_clear_dest) {
4627       Node* dest_length = alloc->in(AllocateNode::ALength);
4628       if (_gvn.eqv_uncast(copy_length, dest_length)
4629           || _gvn.find_int_con(dest_length, 1) <= 0) {
4630         // There is no zeroing to do. No need for a secondary raw memory barrier.
4631       } else {
4632         // Clear the whole thing since there are no source elements to copy.
4633         generate_clear_array(adr_type, dest, basic_elem_type,
4634                              intcon(0), NULL,
4635                              alloc->in(AllocateNode::AllocSize));
4636         // Use a secondary InitializeNode as raw memory barrier.
4637         // Currently it is needed only on this path since other
4638         // paths have stub or runtime calls as raw memory barriers.
4639         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4640                                                        Compile::AliasIdxRaw,
4641                                                        top())->as_Initialize();
4642         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4643       }
4644     }
4645 
4646     // Present the results of the fast call.
4647     result_region->init_req(zero_path, control());
4648     result_i_o   ->init_req(zero_path, i_o());
4649     result_memory->init_req(zero_path, memory(adr_type));
4650   }
4651 
4652   if (!stopped() && must_clear_dest) {
4653     // We have to initialize the *uncopied* part of the array to zero.
4654     // The copy destination is the slice dest[off..off+len].  The other slices
4655     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4656     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4657     Node* dest_length = alloc->in(AllocateNode::ALength);
4658     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4659                                                           copy_length) );
4660 
4661     // If there is a head section that needs zeroing, do it now.
4662     if (find_int_con(dest_offset, -1) != 0) {
4663       generate_clear_array(adr_type, dest, basic_elem_type,
4664                            intcon(0), dest_offset,
4665                            NULL);
4666     }
4667 
4668     // Next, perform a dynamic check on the tail length.
4669     // It is often zero, and we can win big if we prove this.
4670     // There are two wins:  Avoid generating the ClearArray
4671     // with its attendant messy index arithmetic, and upgrade
4672     // the copy to a more hardware-friendly word size of 64 bits.
4673     Node* tail_ctl = NULL;
4674     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4675       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4676       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4677       tail_ctl = generate_slow_guard(bol_lt, NULL);
4678       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4679     }
4680 
4681     // At this point, let's assume there is no tail.
4682     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4683       // There is no tail.  Try an upgrade to a 64-bit copy.
4684       bool didit = false;
4685       { PreserveJVMState pjvms(this);
4686         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4687                                          src, src_offset, dest, dest_offset,
4688                                          dest_size);
4689         if (didit) {
4690           // Present the results of the block-copying fast call.
4691           result_region->init_req(bcopy_path, control());
4692           result_i_o   ->init_req(bcopy_path, i_o());
4693           result_memory->init_req(bcopy_path, memory(adr_type));
4694         }
4695       }
4696       if (didit)
4697         set_control(top());     // no regular fast path
4698     }
4699 
4700     // Clear the tail, if any.
4701     if (tail_ctl != NULL) {
4702       Node* notail_ctl = stopped() ? NULL : control();
4703       set_control(tail_ctl);
4704       if (notail_ctl == NULL) {
4705         generate_clear_array(adr_type, dest, basic_elem_type,
4706                              dest_tail, NULL,
4707                              dest_size);
4708       } else {
4709         // Make a local merge.
4710         Node* done_ctl = new(C,3) RegionNode(3);
4711         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4712         done_ctl->init_req(1, notail_ctl);
4713         done_mem->init_req(1, memory(adr_type));
4714         generate_clear_array(adr_type, dest, basic_elem_type,
4715                              dest_tail, NULL,
4716                              dest_size);
4717         done_ctl->init_req(2, control());
4718         done_mem->init_req(2, memory(adr_type));
4719         set_control( _gvn.transform(done_ctl) );
4720         set_memory(  _gvn.transform(done_mem), adr_type );
4721       }
4722     }
4723   }
4724 
4725   BasicType copy_type = basic_elem_type;
4726   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4727   if (!stopped() && copy_type == T_OBJECT) {
4728     // If src and dest have compatible element types, we can copy bits.
4729     // Types S[] and D[] are compatible if D is a supertype of S.
4730     //
4731     // If they are not, we will use checked_oop_disjoint_arraycopy,
4732     // which performs a fast optimistic per-oop check, and backs off
4733     // further to JVM_ArrayCopy on the first per-oop check that fails.
4734     // (Actually, we don't move raw bits only; the GC requires card marks.)
4735 
4736     // Get the klassOop for both src and dest
4737     Node* src_klass  = load_object_klass(src);
4738     Node* dest_klass = load_object_klass(dest);
4739 
4740     // Generate the subtype check.
4741     // This might fold up statically, or then again it might not.
4742     //
4743     // Non-static example:  Copying List<String>.elements to a new String[].
4744     // The backing store for a List<String> is always an Object[],
4745     // but its elements are always type String, if the generic types
4746     // are correct at the source level.
4747     //
4748     // Test S[] against D[], not S against D, because (probably)
4749     // the secondary supertype cache is less busy for S[] than S.
4750     // This usually only matters when D is an interface.
4751     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4752     // Plug failing path into checked_oop_disjoint_arraycopy
4753     if (not_subtype_ctrl != top()) {
4754       PreserveJVMState pjvms(this);
4755       set_control(not_subtype_ctrl);
4756       // (At this point we can assume disjoint_bases, since types differ.)
4757       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4758       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4759       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4760       Node* dest_elem_klass = _gvn.transform(n1);
4761       Node* cv = generate_checkcast_arraycopy(adr_type,
4762                                               dest_elem_klass,
4763                                               src, src_offset, dest, dest_offset,
4764                                               copy_length);
4765       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4766       checked_control = control();
4767       checked_i_o     = i_o();
4768       checked_mem     = memory(adr_type);
4769       checked_value   = cv;
4770     }
4771     // At this point we know we do not need type checks on oop stores.
4772 
4773     // Let's see if we need card marks:
4774     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4775       // If we do not need card marks, copy using the jint or jlong stub.
4776       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4777       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4778              "sizes agree");
4779     }
4780   }
4781 
4782   if (!stopped()) {
4783     // Generate the fast path, if possible.
4784     PreserveJVMState pjvms(this);
4785     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4786                                  src, src_offset, dest, dest_offset,
4787                                  ConvI2X(copy_length));
4788 
4789     // Present the results of the fast call.
4790     result_region->init_req(fast_path, control());
4791     result_i_o   ->init_req(fast_path, i_o());
4792     result_memory->init_req(fast_path, memory(adr_type));
4793   }
4794 
4795   // Here are all the slow paths up to this point, in one bundle:
4796   slow_control = top();
4797   if (slow_region != NULL)
4798     slow_control = _gvn.transform(slow_region);
4799   debug_only(slow_region = (RegionNode*)badAddress);
4800 
4801   set_control(checked_control);
4802   if (!stopped()) {
4803     // Clean up after the checked call.
4804     // The returned value is either 0 or -1^K,
4805     // where K = number of partially transferred array elements.
4806     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4807     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4808     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4809 
4810     // If it is 0, we are done, so transfer to the end.
4811     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4812     result_region->init_req(checked_path, checks_done);
4813     result_i_o   ->init_req(checked_path, checked_i_o);
4814     result_memory->init_req(checked_path, checked_mem);
4815 
4816     // If it is not zero, merge into the slow call.
4817     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4818     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4819     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4820     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4821     record_for_igvn(slow_reg2);
4822     slow_reg2  ->init_req(1, slow_control);
4823     slow_i_o2  ->init_req(1, slow_i_o);
4824     slow_mem2  ->init_req(1, slow_mem);
4825     slow_reg2  ->init_req(2, control());
4826     slow_i_o2  ->init_req(2, checked_i_o);
4827     slow_mem2  ->init_req(2, checked_mem);
4828 
4829     slow_control = _gvn.transform(slow_reg2);
4830     slow_i_o     = _gvn.transform(slow_i_o2);
4831     slow_mem     = _gvn.transform(slow_mem2);
4832 
4833     if (alloc != NULL) {
4834       // We'll restart from the very beginning, after zeroing the whole thing.
4835       // This can cause double writes, but that's OK since dest is brand new.
4836       // So we ignore the low 31 bits of the value returned from the stub.
4837     } else {
4838       // We must continue the copy exactly where it failed, or else
4839       // another thread might see the wrong number of writes to dest.
4840       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4841       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4842       slow_offset->init_req(1, intcon(0));
4843       slow_offset->init_req(2, checked_offset);
4844       slow_offset  = _gvn.transform(slow_offset);
4845 
4846       // Adjust the arguments by the conditionally incoming offset.
4847       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4848       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4849       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4850 
4851       // Tweak the node variables to adjust the code produced below:
4852       src_offset  = src_off_plus;
4853       dest_offset = dest_off_plus;
4854       copy_length = length_minus;
4855     }
4856   }
4857 
4858   set_control(slow_control);
4859   if (!stopped()) {
4860     // Generate the slow path, if needed.
4861     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4862 
4863     set_memory(slow_mem, adr_type);
4864     set_i_o(slow_i_o);
4865 
4866     if (must_clear_dest) {
4867       generate_clear_array(adr_type, dest, basic_elem_type,
4868                            intcon(0), NULL,
4869                            alloc->in(AllocateNode::AllocSize));
4870     }
4871 
4872     generate_slow_arraycopy(adr_type,
4873                             src, src_offset, dest, dest_offset,
4874                             copy_length);
4875 
4876     result_region->init_req(slow_call_path, control());
4877     result_i_o   ->init_req(slow_call_path, i_o());
4878     result_memory->init_req(slow_call_path, memory(adr_type));
4879   }
4880 
4881   // Remove unused edges.
4882   for (uint i = 1; i < result_region->req(); i++) {
4883     if (result_region->in(i) == NULL)
4884       result_region->init_req(i, top());
4885   }
4886 
4887   // Finished; return the combined state.
4888   set_control( _gvn.transform(result_region) );
4889   set_i_o(     _gvn.transform(result_i_o)    );
4890   set_memory(  _gvn.transform(result_memory), adr_type );
4891 
4892   // The memory edges above are precise in order to model effects around
4893   // array copies accurately to allow value numbering of field loads around
4894   // arraycopy.  Such field loads, both before and after, are common in Java
4895   // collections and similar classes involving header/array data structures.
4896   //
4897   // But with low number of register or when some registers are used or killed
4898   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4899   // The next memory barrier is added to avoid it. If the arraycopy can be
4900   // optimized away (which it can, sometimes) then we can manually remove
4901   // the membar also.
4902   //
4903   // Do not let reads from the cloned object float above the arraycopy.
4904   if (InsertMemBarAfterArraycopy || alloc != NULL)
4905     insert_mem_bar(Op_MemBarCPUOrder);
4906 }
4907 
4908 
4909 // Helper function which determines if an arraycopy immediately follows
4910 // an allocation, with no intervening tests or other escapes for the object.
4911 AllocateArrayNode*
4912 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4913                                            RegionNode* slow_region) {
4914   if (stopped())             return NULL;  // no fast path
4915   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4916 
4917   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4918   if (alloc == NULL)  return NULL;
4919 
4920   Node* rawmem = memory(Compile::AliasIdxRaw);
4921   // Is the allocation's memory state untouched?
4922   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4923     // Bail out if there have been raw-memory effects since the allocation.
4924     // (Example:  There might have been a call or safepoint.)
4925     return NULL;
4926   }
4927   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4928   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4929     return NULL;
4930   }
4931 
4932   // There must be no unexpected observers of this allocation.
4933   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4934     Node* obs = ptr->fast_out(i);
4935     if (obs != this->map()) {
4936       return NULL;
4937     }
4938   }
4939 
4940   // This arraycopy must unconditionally follow the allocation of the ptr.
4941   Node* alloc_ctl = ptr->in(0);
4942   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4943 
4944   Node* ctl = control();
4945   while (ctl != alloc_ctl) {
4946     // There may be guards which feed into the slow_region.
4947     // Any other control flow means that we might not get a chance
4948     // to finish initializing the allocated object.
4949     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4950       IfNode* iff = ctl->in(0)->as_If();
4951       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4952       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4953       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4954         ctl = iff->in(0);       // This test feeds the known slow_region.
4955         continue;
4956       }
4957       // One more try:  Various low-level checks bottom out in
4958       // uncommon traps.  If the debug-info of the trap omits
4959       // any reference to the allocation, as we've already
4960       // observed, then there can be no objection to the trap.
4961       bool found_trap = false;
4962       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4963         Node* obs = not_ctl->fast_out(j);
4964         if (obs->in(0) == not_ctl && obs->is_Call() &&
4965             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4966           found_trap = true; break;
4967         }
4968       }
4969       if (found_trap) {
4970         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4971         continue;
4972       }
4973     }
4974     return NULL;
4975   }
4976 
4977   // If we get this far, we have an allocation which immediately
4978   // precedes the arraycopy, and we can take over zeroing the new object.
4979   // The arraycopy will finish the initialization, and provide
4980   // a new control state to which we will anchor the destination pointer.
4981 
4982   return alloc;
4983 }
4984 
4985 // Helper for initialization of arrays, creating a ClearArray.
4986 // It writes zero bits in [start..end), within the body of an array object.
4987 // The memory effects are all chained onto the 'adr_type' alias category.
4988 //
4989 // Since the object is otherwise uninitialized, we are free
4990 // to put a little "slop" around the edges of the cleared area,
4991 // as long as it does not go back into the array's header,
4992 // or beyond the array end within the heap.
4993 //
4994 // The lower edge can be rounded down to the nearest jint and the
4995 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4996 //
4997 // Arguments:
4998 //   adr_type           memory slice where writes are generated
4999 //   dest               oop of the destination array
5000 //   basic_elem_type    element type of the destination
5001 //   slice_idx          array index of first element to store
5002 //   slice_len          number of elements to store (or NULL)
5003 //   dest_size          total size in bytes of the array object
5004 //
5005 // Exactly one of slice_len or dest_size must be non-NULL.
5006 // If dest_size is non-NULL, zeroing extends to the end of the object.
5007 // If slice_len is non-NULL, the slice_idx value must be a constant.
5008 void
5009 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5010                                      Node* dest,
5011                                      BasicType basic_elem_type,
5012                                      Node* slice_idx,
5013                                      Node* slice_len,
5014                                      Node* dest_size) {
5015   // one or the other but not both of slice_len and dest_size:
5016   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5017   if (slice_len == NULL)  slice_len = top();
5018   if (dest_size == NULL)  dest_size = top();
5019 
5020   // operate on this memory slice:
5021   Node* mem = memory(adr_type); // memory slice to operate on
5022 
5023   // scaling and rounding of indexes:
5024   int scale = exact_log2(type2aelembytes(basic_elem_type));
5025   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5026   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5027   int bump_bit  = (-1 << scale) & BytesPerInt;
5028 
5029   // determine constant starts and ends
5030   const intptr_t BIG_NEG = -128;
5031   assert(BIG_NEG + 2*abase < 0, "neg enough");
5032   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5033   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5034   if (slice_len_con == 0) {
5035     return;                     // nothing to do here
5036   }
5037   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5038   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5039   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5040     assert(end_con < 0, "not two cons");
5041     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5042                        BytesPerLong);
5043   }
5044 
5045   if (start_con >= 0 && end_con >= 0) {
5046     // Constant start and end.  Simple.
5047     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5048                                        start_con, end_con, &_gvn);
5049   } else if (start_con >= 0 && dest_size != top()) {
5050     // Constant start, pre-rounded end after the tail of the array.
5051     Node* end = dest_size;
5052     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5053                                        start_con, end, &_gvn);
5054   } else if (start_con >= 0 && slice_len != top()) {
5055     // Constant start, non-constant end.  End needs rounding up.
5056     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5057     intptr_t end_base  = abase + (slice_idx_con << scale);
5058     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5059     Node*    end       = ConvI2X(slice_len);
5060     if (scale != 0)
5061       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5062     end_base += end_round;
5063     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5064     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5065     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5066                                        start_con, end, &_gvn);
5067   } else if (start_con < 0 && dest_size != top()) {
5068     // Non-constant start, pre-rounded end after the tail of the array.
5069     // This is almost certainly a "round-to-end" operation.
5070     Node* start = slice_idx;
5071     start = ConvI2X(start);
5072     if (scale != 0)
5073       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5074     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5075     if ((bump_bit | clear_low) != 0) {
5076       int to_clear = (bump_bit | clear_low);
5077       // Align up mod 8, then store a jint zero unconditionally
5078       // just before the mod-8 boundary.
5079       if (((abase + bump_bit) & ~to_clear) - bump_bit
5080           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5081         bump_bit = 0;
5082         assert((abase & to_clear) == 0, "array base must be long-aligned");
5083       } else {
5084         // Bump 'start' up to (or past) the next jint boundary:
5085         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5086         assert((abase & clear_low) == 0, "array base must be int-aligned");
5087       }
5088       // Round bumped 'start' down to jlong boundary in body of array.
5089       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5090       if (bump_bit != 0) {
5091         // Store a zero to the immediately preceding jint:
5092         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5093         Node* p1 = basic_plus_adr(dest, x1);
5094         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5095         mem = _gvn.transform(mem);
5096       }
5097     }
5098     Node* end = dest_size; // pre-rounded
5099     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5100                                        start, end, &_gvn);
5101   } else {
5102     // Non-constant start, unrounded non-constant end.
5103     // (Nobody zeroes a random midsection of an array using this routine.)
5104     ShouldNotReachHere();       // fix caller
5105   }
5106 
5107   // Done.
5108   set_memory(mem, adr_type);
5109 }
5110 
5111 
5112 bool
5113 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5114                                          BasicType basic_elem_type,
5115                                          AllocateNode* alloc,
5116                                          Node* src,  Node* src_offset,
5117                                          Node* dest, Node* dest_offset,
5118                                          Node* dest_size) {
5119   // See if there is an advantage from block transfer.
5120   int scale = exact_log2(type2aelembytes(basic_elem_type));
5121   if (scale >= LogBytesPerLong)
5122     return false;               // it is already a block transfer
5123 
5124   // Look at the alignment of the starting offsets.
5125   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5126   const intptr_t BIG_NEG = -128;
5127   assert(BIG_NEG + 2*abase < 0, "neg enough");
5128 
5129   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5130   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5131   if (src_off < 0 || dest_off < 0)
5132     // At present, we can only understand constants.
5133     return false;
5134 
5135   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5136     // Non-aligned; too bad.
5137     // One more chance:  Pick off an initial 32-bit word.
5138     // This is a common case, since abase can be odd mod 8.
5139     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5140         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5141       Node* sptr = basic_plus_adr(src,  src_off);
5142       Node* dptr = basic_plus_adr(dest, dest_off);
5143       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5144       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5145       src_off += BytesPerInt;
5146       dest_off += BytesPerInt;
5147     } else {
5148       return false;
5149     }
5150   }
5151   assert(src_off % BytesPerLong == 0, "");
5152   assert(dest_off % BytesPerLong == 0, "");
5153 
5154   // Do this copy by giant steps.
5155   Node* sptr  = basic_plus_adr(src,  src_off);
5156   Node* dptr  = basic_plus_adr(dest, dest_off);
5157   Node* countx = dest_size;
5158   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5159   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5160 
5161   bool disjoint_bases = true;   // since alloc != NULL
5162   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5163                                sptr, NULL, dptr, NULL, countx);
5164 
5165   return true;
5166 }
5167 
5168 
5169 // Helper function; generates code for the slow case.
5170 // We make a call to a runtime method which emulates the native method,
5171 // but without the native wrapper overhead.
5172 void
5173 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5174                                         Node* src,  Node* src_offset,
5175                                         Node* dest, Node* dest_offset,
5176                                         Node* copy_length) {
5177   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5178                                  OptoRuntime::slow_arraycopy_Type(),
5179                                  OptoRuntime::slow_arraycopy_Java(),
5180                                  "slow_arraycopy", adr_type,
5181                                  src, src_offset, dest, dest_offset,
5182                                  copy_length);
5183 
5184   // Handle exceptions thrown by this fellow:
5185   make_slow_call_ex(call, env()->Throwable_klass(), false);
5186 }
5187 
5188 // Helper function; generates code for cases requiring runtime checks.
5189 Node*
5190 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5191                                              Node* dest_elem_klass,
5192                                              Node* src,  Node* src_offset,
5193                                              Node* dest, Node* dest_offset,
5194                                              Node* copy_length) {
5195   if (stopped())  return NULL;
5196 
5197   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5198   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5199     return NULL;
5200   }
5201 
5202   // Pick out the parameters required to perform a store-check
5203   // for the target array.  This is an optimistic check.  It will
5204   // look in each non-null element's class, at the desired klass's
5205   // super_check_offset, for the desired klass.
5206   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5207   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5208   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5209   Node* check_offset = _gvn.transform(n3);
5210   Node* check_value  = dest_elem_klass;
5211 
5212   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5213   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5214 
5215   // (We know the arrays are never conjoint, because their types differ.)
5216   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5217                                  OptoRuntime::checkcast_arraycopy_Type(),
5218                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5219                                  // five arguments, of which two are
5220                                  // intptr_t (jlong in LP64)
5221                                  src_start, dest_start,
5222                                  copy_length XTOP,
5223                                  check_offset XTOP,
5224                                  check_value);
5225 
5226   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5227 }
5228 
5229 
5230 // Helper function; generates code for cases requiring runtime checks.
5231 Node*
5232 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5233                                            Node* src,  Node* src_offset,
5234                                            Node* dest, Node* dest_offset,
5235                                            Node* copy_length) {
5236   if (stopped())  return NULL;
5237 
5238   address copyfunc_addr = StubRoutines::generic_arraycopy();
5239   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5240     return NULL;
5241   }
5242 
5243   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5244                     OptoRuntime::generic_arraycopy_Type(),
5245                     copyfunc_addr, "generic_arraycopy", adr_type,
5246                     src, src_offset, dest, dest_offset, copy_length);
5247 
5248   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5249 }
5250 
5251 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5252 void
5253 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5254                                              BasicType basic_elem_type,
5255                                              bool disjoint_bases,
5256                                              Node* src,  Node* src_offset,
5257                                              Node* dest, Node* dest_offset,
5258                                              Node* copy_length) {
5259   if (stopped())  return;               // nothing to do
5260 
5261   Node* src_start  = src;
5262   Node* dest_start = dest;
5263   if (src_offset != NULL || dest_offset != NULL) {
5264     assert(src_offset != NULL && dest_offset != NULL, "");
5265     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5266     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5267   }
5268 
5269   // Figure out which arraycopy runtime method to call.
5270   const char* copyfunc_name = "arraycopy";
5271   address     copyfunc_addr =
5272       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5273                           disjoint_bases, copyfunc_name);
5274 
5275   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5276   make_runtime_call(RC_LEAF|RC_NO_FP,
5277                     OptoRuntime::fast_arraycopy_Type(),
5278                     copyfunc_addr, copyfunc_name, adr_type,
5279                     src_start, dest_start, copy_length XTOP);
5280 }