1 /*
   2  * Copyright (c) 2005, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_macro.cpp.incl"
  27 
  28 
  29 //
  30 // Replace any references to "oldref" in inputs to "use" with "newref".
  31 // Returns the number of replacements made.
  32 //
  33 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  34   int nreplacements = 0;
  35   uint req = use->req();
  36   for (uint j = 0; j < use->len(); j++) {
  37     Node *uin = use->in(j);
  38     if (uin == oldref) {
  39       if (j < req)
  40         use->set_req(j, newref);
  41       else
  42         use->set_prec(j, newref);
  43       nreplacements++;
  44     } else if (j >= req && uin == NULL) {
  45       break;
  46     }
  47   }
  48   return nreplacements;
  49 }
  50 
  51 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  52   // Copy debug information and adjust JVMState information
  53   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  54   uint new_dbg_start = newcall->tf()->domain()->cnt();
  55   int jvms_adj  = new_dbg_start - old_dbg_start;
  56   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  57 
  58   Dict* sosn_map = new Dict(cmpkey,hashkey);
  59   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  60     Node* old_in = oldcall->in(i);
  61     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  62     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  63       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  64       uint old_unique = C->unique();
  65       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  66       if (old_unique != C->unique()) {
  67         new_in->set_req(0, newcall->in(0)); // reset control edge
  68         new_in = transform_later(new_in); // Register new node.
  69       }
  70       old_in = new_in;
  71     }
  72     newcall->add_req(old_in);
  73   }
  74 
  75   newcall->set_jvms(oldcall->jvms());
  76   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  77     jvms->set_map(newcall);
  78     jvms->set_locoff(jvms->locoff()+jvms_adj);
  79     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  80     jvms->set_monoff(jvms->monoff()+jvms_adj);
  81     jvms->set_scloff(jvms->scloff()+jvms_adj);
  82     jvms->set_endoff(jvms->endoff()+jvms_adj);
  83   }
  84 }
  85 
  86 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  87   Node* cmp;
  88   if (mask != 0) {
  89     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
  90     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
  91   } else {
  92     cmp = word;
  93   }
  94   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
  95   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  96   transform_later(iff);
  97 
  98   // Fast path taken.
  99   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );
 100 
 101   // Fast path not-taken, i.e. slow path
 102   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 103 
 104   if (return_fast_path) {
 105     region->init_req(edge, slow_taken); // Capture slow-control
 106     return fast_taken;
 107   } else {
 108     region->init_req(edge, fast_taken); // Capture fast-control
 109     return slow_taken;
 110   }
 111 }
 112 
 113 //--------------------copy_predefined_input_for_runtime_call--------------------
 114 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 115   // Set fixed predefined input arguments
 116   call->init_req( TypeFunc::Control, ctrl );
 117   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 118   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 119   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 120   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 121 }
 122 
 123 //------------------------------make_slow_call---------------------------------
 124 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 125 
 126   // Slow-path call
 127   int size = slow_call_type->domain()->cnt();
 128  CallNode *call = leaf_name
 129    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 130    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 131 
 132   // Slow path call has no side-effects, uses few values
 133   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 134   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 135   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 136   copy_call_debug_info(oldcall, call);
 137   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 138   _igvn.replace_node(oldcall, call);
 139   transform_later(call);
 140 
 141   return call;
 142 }
 143 
 144 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 145   _fallthroughproj = NULL;
 146   _fallthroughcatchproj = NULL;
 147   _ioproj_fallthrough = NULL;
 148   _ioproj_catchall = NULL;
 149   _catchallcatchproj = NULL;
 150   _memproj_fallthrough = NULL;
 151   _memproj_catchall = NULL;
 152   _resproj = NULL;
 153   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 154     ProjNode *pn = call->fast_out(i)->as_Proj();
 155     switch (pn->_con) {
 156       case TypeFunc::Control:
 157       {
 158         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 159         _fallthroughproj = pn;
 160         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 161         const Node *cn = pn->fast_out(j);
 162         if (cn->is_Catch()) {
 163           ProjNode *cpn = NULL;
 164           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 165             cpn = cn->fast_out(k)->as_Proj();
 166             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 167             if (cpn->_con == CatchProjNode::fall_through_index)
 168               _fallthroughcatchproj = cpn;
 169             else {
 170               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 171               _catchallcatchproj = cpn;
 172             }
 173           }
 174         }
 175         break;
 176       }
 177       case TypeFunc::I_O:
 178         if (pn->_is_io_use)
 179           _ioproj_catchall = pn;
 180         else
 181           _ioproj_fallthrough = pn;
 182         break;
 183       case TypeFunc::Memory:
 184         if (pn->_is_io_use)
 185           _memproj_catchall = pn;
 186         else
 187           _memproj_fallthrough = pn;
 188         break;
 189       case TypeFunc::Parms:
 190         _resproj = pn;
 191         break;
 192       default:
 193         assert(false, "unexpected projection from allocation node.");
 194     }
 195   }
 196 
 197 }
 198 
 199 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 200 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 201   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 202   if (!UseG1GC) {
 203     // vanilla/CMS post barrier
 204     Node *shift = p2x->unique_out();
 205     Node *addp = shift->unique_out();
 206     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 207       Node *st = addp->last_out(j);
 208       assert(st->is_Store(), "store required");
 209       _igvn.replace_node(st, st->in(MemNode::Memory));
 210     }
 211   } else {
 212     // G1 pre/post barriers
 213     assert(p2x->outcnt() == 2, "expects 2 users: Xor and URShift nodes");
 214     // It could be only one user, URShift node, in Object.clone() instrinsic
 215     // but the new allocation is passed to arraycopy stub and it could not
 216     // be scalar replaced. So we don't check the case.
 217 
 218     // Remove G1 post barrier.
 219 
 220     // Search for CastP2X->Xor->URShift->Cmp path which
 221     // checks if the store done to a different from the value's region.
 222     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 223     Node* xorx = NULL;
 224     for (DUIterator_Fast imax, i = p2x->fast_outs(imax); i < imax; i++) {
 225       Node* u = p2x->fast_out(i);
 226       if (u->Opcode() == Op_XorX) {
 227         xorx = u;
 228         break;
 229       }
 230     }
 231     assert(xorx != NULL, "missing G1 post barrier");
 232     Node* shift = xorx->unique_out();
 233     Node* cmpx = shift->unique_out();
 234     assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 235     cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 236     "missing region check in G1 post barrier");
 237     _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 238 
 239     // Remove G1 pre barrier.
 240 
 241     // Search "if (marking != 0)" check and set it to "false".
 242     Node* this_region = p2x->in(0);
 243     assert(this_region != NULL, "");
 244     // There is no G1 pre barrier if previous stored value is NULL
 245     // (for example, after initialization).
 246     if (this_region->is_Region() && this_region->req() == 3) {
 247       int ind = 1;
 248       if (!this_region->in(ind)->is_IfFalse()) {
 249         ind = 2;
 250       }
 251       if (this_region->in(ind)->is_IfFalse()) {
 252         Node* bol = this_region->in(ind)->in(0)->in(1);
 253         assert(bol->is_Bool(), "");
 254         cmpx = bol->in(1);
 255         if (bol->as_Bool()->_test._test == BoolTest::ne &&
 256             cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 257             cmpx->in(1)->is_Load()) {
 258           Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 259           const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 260                                               PtrQueue::byte_offset_of_active());
 261           if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 262               adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 263               adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 264             _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 265           }
 266         }
 267       }
 268     }
 269     // Now CastP2X can be removed since it is used only on dead path
 270     // which currently still alive until igvn optimize it.
 271     assert(p2x->unique_out()->Opcode() == Op_URShiftX, "");
 272     _igvn.replace_node(p2x, top());
 273   }
 274 }
 275 
 276 // Search for a memory operation for the specified memory slice.
 277 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 278   Node *orig_mem = mem;
 279   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 280   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 281   while (true) {
 282     if (mem == alloc_mem || mem == start_mem ) {
 283       return mem;  // hit one of our sentinels
 284     } else if (mem->is_MergeMem()) {
 285       mem = mem->as_MergeMem()->memory_at(alias_idx);
 286     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 287       Node *in = mem->in(0);
 288       // we can safely skip over safepoints, calls, locks and membars because we
 289       // already know that the object is safe to eliminate.
 290       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 291         return in;
 292       } else if (in->is_Call()) {
 293         CallNode *call = in->as_Call();
 294         if (!call->may_modify(tinst, phase)) {
 295           mem = call->in(TypeFunc::Memory);
 296         }
 297         mem = in->in(TypeFunc::Memory);
 298       } else if (in->is_MemBar()) {
 299         mem = in->in(TypeFunc::Memory);
 300       } else {
 301         assert(false, "unexpected projection");
 302       }
 303     } else if (mem->is_Store()) {
 304       const TypePtr* atype = mem->as_Store()->adr_type();
 305       int adr_idx = Compile::current()->get_alias_index(atype);
 306       if (adr_idx == alias_idx) {
 307         assert(atype->isa_oopptr(), "address type must be oopptr");
 308         int adr_offset = atype->offset();
 309         uint adr_iid = atype->is_oopptr()->instance_id();
 310         // Array elements references have the same alias_idx
 311         // but different offset and different instance_id.
 312         if (adr_offset == offset && adr_iid == alloc->_idx)
 313           return mem;
 314       } else {
 315         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 316       }
 317       mem = mem->in(MemNode::Memory);
 318     } else if (mem->is_ClearArray()) {
 319       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 320         // Can not bypass initialization of the instance
 321         // we are looking.
 322         debug_only(intptr_t offset;)
 323         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 324         InitializeNode* init = alloc->as_Allocate()->initialization();
 325         // We are looking for stored value, return Initialize node
 326         // or memory edge from Allocate node.
 327         if (init != NULL)
 328           return init;
 329         else
 330           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 331       }
 332       // Otherwise skip it (the call updated 'mem' value).
 333     } else if (mem->Opcode() == Op_SCMemProj) {
 334       assert(mem->in(0)->is_LoadStore(), "sanity");
 335       const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
 336       int adr_idx = Compile::current()->get_alias_index(atype);
 337       if (adr_idx == alias_idx) {
 338         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 339         return NULL;
 340       }
 341       mem = mem->in(0)->in(MemNode::Memory);
 342     } else {
 343       return mem;
 344     }
 345     assert(mem != orig_mem, "dead memory loop");
 346   }
 347 }
 348 
 349 //
 350 // Given a Memory Phi, compute a value Phi containing the values from stores
 351 // on the input paths.
 352 // Note: this function is recursive, its depth is limied by the "level" argument
 353 // Returns the computed Phi, or NULL if it cannot compute it.
 354 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 355   assert(mem->is_Phi(), "sanity");
 356   int alias_idx = C->get_alias_index(adr_t);
 357   int offset = adr_t->offset();
 358   int instance_id = adr_t->instance_id();
 359 
 360   // Check if an appropriate value phi already exists.
 361   Node* region = mem->in(0);
 362   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 363     Node* phi = region->fast_out(k);
 364     if (phi->is_Phi() && phi != mem &&
 365         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 366       return phi;
 367     }
 368   }
 369   // Check if an appropriate new value phi already exists.
 370   Node* new_phi = NULL;
 371   uint size = value_phis->size();
 372   for (uint i=0; i < size; i++) {
 373     if ( mem->_idx == value_phis->index_at(i) ) {
 374       return value_phis->node_at(i);
 375     }
 376   }
 377 
 378   if (level <= 0) {
 379     return NULL; // Give up: phi tree too deep
 380   }
 381   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 382   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 383 
 384   uint length = mem->req();
 385   GrowableArray <Node *> values(length, length, NULL);
 386 
 387   // create a new Phi for the value
 388   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 389   transform_later(phi);
 390   value_phis->push(phi, mem->_idx);
 391 
 392   for (uint j = 1; j < length; j++) {
 393     Node *in = mem->in(j);
 394     if (in == NULL || in->is_top()) {
 395       values.at_put(j, in);
 396     } else  {
 397       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 398       if (val == start_mem || val == alloc_mem) {
 399         // hit a sentinel, return appropriate 0 value
 400         values.at_put(j, _igvn.zerocon(ft));
 401         continue;
 402       }
 403       if (val->is_Initialize()) {
 404         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 405       }
 406       if (val == NULL) {
 407         return NULL;  // can't find a value on this path
 408       }
 409       if (val == mem) {
 410         values.at_put(j, mem);
 411       } else if (val->is_Store()) {
 412         values.at_put(j, val->in(MemNode::ValueIn));
 413       } else if(val->is_Proj() && val->in(0) == alloc) {
 414         values.at_put(j, _igvn.zerocon(ft));
 415       } else if (val->is_Phi()) {
 416         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 417         if (val == NULL) {
 418           return NULL;
 419         }
 420         values.at_put(j, val);
 421       } else if (val->Opcode() == Op_SCMemProj) {
 422         assert(val->in(0)->is_LoadStore(), "sanity");
 423         assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
 424         return NULL;
 425       } else {
 426 #ifdef ASSERT
 427         val->dump();
 428         assert(false, "unknown node on this path");
 429 #endif
 430         return NULL;  // unknown node on this path
 431       }
 432     }
 433   }
 434   // Set Phi's inputs
 435   for (uint j = 1; j < length; j++) {
 436     if (values.at(j) == mem) {
 437       phi->init_req(j, phi);
 438     } else {
 439       phi->init_req(j, values.at(j));
 440     }
 441   }
 442   return phi;
 443 }
 444 
 445 // Search the last value stored into the object's field.
 446 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 447   assert(adr_t->is_known_instance_field(), "instance required");
 448   int instance_id = adr_t->instance_id();
 449   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 450 
 451   int alias_idx = C->get_alias_index(adr_t);
 452   int offset = adr_t->offset();
 453   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 454   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 455   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 456   Arena *a = Thread::current()->resource_area();
 457   VectorSet visited(a);
 458 
 459 
 460   bool done = sfpt_mem == alloc_mem;
 461   Node *mem = sfpt_mem;
 462   while (!done) {
 463     if (visited.test_set(mem->_idx)) {
 464       return NULL;  // found a loop, give up
 465     }
 466     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 467     if (mem == start_mem || mem == alloc_mem) {
 468       done = true;  // hit a sentinel, return appropriate 0 value
 469     } else if (mem->is_Initialize()) {
 470       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 471       if (mem == NULL) {
 472         done = true; // Something go wrong.
 473       } else if (mem->is_Store()) {
 474         const TypePtr* atype = mem->as_Store()->adr_type();
 475         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 476         done = true;
 477       }
 478     } else if (mem->is_Store()) {
 479       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 480       assert(atype != NULL, "address type must be oopptr");
 481       assert(C->get_alias_index(atype) == alias_idx &&
 482              atype->is_known_instance_field() && atype->offset() == offset &&
 483              atype->instance_id() == instance_id, "store is correct memory slice");
 484       done = true;
 485     } else if (mem->is_Phi()) {
 486       // try to find a phi's unique input
 487       Node *unique_input = NULL;
 488       Node *top = C->top();
 489       for (uint i = 1; i < mem->req(); i++) {
 490         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 491         if (n == NULL || n == top || n == mem) {
 492           continue;
 493         } else if (unique_input == NULL) {
 494           unique_input = n;
 495         } else if (unique_input != n) {
 496           unique_input = top;
 497           break;
 498         }
 499       }
 500       if (unique_input != NULL && unique_input != top) {
 501         mem = unique_input;
 502       } else {
 503         done = true;
 504       }
 505     } else {
 506       assert(false, "unexpected node");
 507     }
 508   }
 509   if (mem != NULL) {
 510     if (mem == start_mem || mem == alloc_mem) {
 511       // hit a sentinel, return appropriate 0 value
 512       return _igvn.zerocon(ft);
 513     } else if (mem->is_Store()) {
 514       return mem->in(MemNode::ValueIn);
 515     } else if (mem->is_Phi()) {
 516       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 517       Node_Stack value_phis(a, 8);
 518       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 519       if (phi != NULL) {
 520         return phi;
 521       } else {
 522         // Kill all new Phis
 523         while(value_phis.is_nonempty()) {
 524           Node* n = value_phis.node();
 525           _igvn.replace_node(n, C->top());
 526           value_phis.pop();
 527         }
 528       }
 529     }
 530   }
 531   // Something go wrong.
 532   return NULL;
 533 }
 534 
 535 // Check the possibility of scalar replacement.
 536 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 537   //  Scan the uses of the allocation to check for anything that would
 538   //  prevent us from eliminating it.
 539   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 540   DEBUG_ONLY( Node* disq_node = NULL; )
 541   bool  can_eliminate = true;
 542 
 543   Node* res = alloc->result_cast();
 544   const TypeOopPtr* res_type = NULL;
 545   if (res == NULL) {
 546     // All users were eliminated.
 547   } else if (!res->is_CheckCastPP()) {
 548     alloc->_is_scalar_replaceable = false;  // don't try again
 549     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 550     can_eliminate = false;
 551   } else {
 552     res_type = _igvn.type(res)->isa_oopptr();
 553     if (res_type == NULL) {
 554       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 555       can_eliminate = false;
 556     } else if (res_type->isa_aryptr()) {
 557       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 558       if (length < 0) {
 559         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 560         can_eliminate = false;
 561       }
 562     }
 563   }
 564 
 565   if (can_eliminate && res != NULL) {
 566     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 567                                j < jmax && can_eliminate; j++) {
 568       Node* use = res->fast_out(j);
 569 
 570       if (use->is_AddP()) {
 571         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 572         int offset = addp_type->offset();
 573 
 574         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 575           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 576           can_eliminate = false;
 577           break;
 578         }
 579         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 580                                    k < kmax && can_eliminate; k++) {
 581           Node* n = use->fast_out(k);
 582           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 583             DEBUG_ONLY(disq_node = n;)
 584             if (n->is_Load() || n->is_LoadStore()) {
 585               NOT_PRODUCT(fail_eliminate = "Field load";)
 586             } else {
 587               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 588             }
 589             can_eliminate = false;
 590           }
 591         }
 592       } else if (use->is_SafePoint()) {
 593         SafePointNode* sfpt = use->as_SafePoint();
 594         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 595           // Object is passed as argument.
 596           DEBUG_ONLY(disq_node = use;)
 597           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 598           can_eliminate = false;
 599         }
 600         Node* sfptMem = sfpt->memory();
 601         if (sfptMem == NULL || sfptMem->is_top()) {
 602           DEBUG_ONLY(disq_node = use;)
 603           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 604           can_eliminate = false;
 605         } else {
 606           safepoints.append_if_missing(sfpt);
 607         }
 608       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 609         if (use->is_Phi()) {
 610           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 611             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 612           } else {
 613             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 614           }
 615           DEBUG_ONLY(disq_node = use;)
 616         } else {
 617           if (use->Opcode() == Op_Return) {
 618             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 619           }else {
 620             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 621           }
 622           DEBUG_ONLY(disq_node = use;)
 623         }
 624         can_eliminate = false;
 625       }
 626     }
 627   }
 628 
 629 #ifndef PRODUCT
 630   if (PrintEliminateAllocations) {
 631     if (can_eliminate) {
 632       tty->print("Scalar ");
 633       if (res == NULL)
 634         alloc->dump();
 635       else
 636         res->dump();
 637     } else {
 638       tty->print("NotScalar (%s)", fail_eliminate);
 639       if (res == NULL)
 640         alloc->dump();
 641       else
 642         res->dump();
 643 #ifdef ASSERT
 644       if (disq_node != NULL) {
 645           tty->print("  >>>> ");
 646           disq_node->dump();
 647       }
 648 #endif /*ASSERT*/
 649     }
 650   }
 651 #endif
 652   return can_eliminate;
 653 }
 654 
 655 // Do scalar replacement.
 656 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 657   GrowableArray <SafePointNode *> safepoints_done;
 658 
 659   ciKlass* klass = NULL;
 660   ciInstanceKlass* iklass = NULL;
 661   int nfields = 0;
 662   int array_base;
 663   int element_size;
 664   BasicType basic_elem_type;
 665   ciType* elem_type;
 666 
 667   Node* res = alloc->result_cast();
 668   const TypeOopPtr* res_type = NULL;
 669   if (res != NULL) { // Could be NULL when there are no users
 670     res_type = _igvn.type(res)->isa_oopptr();
 671   }
 672 
 673   if (res != NULL) {
 674     klass = res_type->klass();
 675     if (res_type->isa_instptr()) {
 676       // find the fields of the class which will be needed for safepoint debug information
 677       assert(klass->is_instance_klass(), "must be an instance klass.");
 678       iklass = klass->as_instance_klass();
 679       nfields = iklass->nof_nonstatic_fields();
 680     } else {
 681       // find the array's elements which will be needed for safepoint debug information
 682       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 683       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 684       elem_type = klass->as_array_klass()->element_type();
 685       basic_elem_type = elem_type->basic_type();
 686       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 687       element_size = type2aelembytes(basic_elem_type);
 688     }
 689   }
 690   //
 691   // Process the safepoint uses
 692   //
 693   while (safepoints.length() > 0) {
 694     SafePointNode* sfpt = safepoints.pop();
 695     Node* mem = sfpt->memory();
 696     uint first_ind = sfpt->req();
 697     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 698 #ifdef ASSERT
 699                                                  alloc,
 700 #endif
 701                                                  first_ind, nfields);
 702     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 703     transform_later(sobj);
 704 
 705     // Scan object's fields adding an input to the safepoint for each field.
 706     for (int j = 0; j < nfields; j++) {
 707       intptr_t offset;
 708       ciField* field = NULL;
 709       if (iklass != NULL) {
 710         field = iklass->nonstatic_field_at(j);
 711         offset = field->offset();
 712         elem_type = field->type();
 713         basic_elem_type = field->layout_type();
 714       } else {
 715         offset = array_base + j * (intptr_t)element_size;
 716       }
 717 
 718       const Type *field_type;
 719       // The next code is taken from Parse::do_get_xxx().
 720       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 721         if (!elem_type->is_loaded()) {
 722           field_type = TypeInstPtr::BOTTOM;
 723         } else if (field != NULL && field->is_constant() && field->is_static()) {
 724           // This can happen if the constant oop is non-perm.
 725           ciObject* con = field->constant_value().as_object();
 726           // Do not "join" in the previous type; it doesn't add value,
 727           // and may yield a vacuous result if the field is of interface type.
 728           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 729           assert(field_type != NULL, "field singleton type must be consistent");
 730         } else {
 731           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 732         }
 733         if (UseCompressedOops) {
 734           field_type = field_type->make_narrowoop();
 735           basic_elem_type = T_NARROWOOP;
 736         }
 737       } else {
 738         field_type = Type::get_const_basic_type(basic_elem_type);
 739       }
 740 
 741       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 742 
 743       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 744       if (field_val == NULL) {
 745         // we weren't able to find a value for this field,
 746         // give up on eliminating this allocation
 747         alloc->_is_scalar_replaceable = false;  // don't try again
 748         // remove any extra entries we added to the safepoint
 749         uint last = sfpt->req() - 1;
 750         for (int k = 0;  k < j; k++) {
 751           sfpt->del_req(last--);
 752         }
 753         // rollback processed safepoints
 754         while (safepoints_done.length() > 0) {
 755           SafePointNode* sfpt_done = safepoints_done.pop();
 756           // remove any extra entries we added to the safepoint
 757           last = sfpt_done->req() - 1;
 758           for (int k = 0;  k < nfields; k++) {
 759             sfpt_done->del_req(last--);
 760           }
 761           JVMState *jvms = sfpt_done->jvms();
 762           jvms->set_endoff(sfpt_done->req());
 763           // Now make a pass over the debug information replacing any references
 764           // to SafePointScalarObjectNode with the allocated object.
 765           int start = jvms->debug_start();
 766           int end   = jvms->debug_end();
 767           for (int i = start; i < end; i++) {
 768             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 769               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 770               if (scobj->first_index() == sfpt_done->req() &&
 771                   scobj->n_fields() == (uint)nfields) {
 772                 assert(scobj->alloc() == alloc, "sanity");
 773                 sfpt_done->set_req(i, res);
 774               }
 775             }
 776           }
 777         }
 778 #ifndef PRODUCT
 779         if (PrintEliminateAllocations) {
 780           if (field != NULL) {
 781             tty->print("=== At SafePoint node %d can't find value of Field: ",
 782                        sfpt->_idx);
 783             field->print();
 784             int field_idx = C->get_alias_index(field_addr_type);
 785             tty->print(" (alias_idx=%d)", field_idx);
 786           } else { // Array's element
 787             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 788                        sfpt->_idx, j);
 789           }
 790           tty->print(", which prevents elimination of: ");
 791           if (res == NULL)
 792             alloc->dump();
 793           else
 794             res->dump();
 795         }
 796 #endif
 797         return false;
 798       }
 799       if (UseCompressedOops && field_type->isa_narrowoop()) {
 800         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 801         // to be able scalar replace the allocation.
 802         if (field_val->is_EncodeP()) {
 803           field_val = field_val->in(1);
 804         } else {
 805           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 806         }
 807       }
 808       sfpt->add_req(field_val);
 809     }
 810     JVMState *jvms = sfpt->jvms();
 811     jvms->set_endoff(sfpt->req());
 812     // Now make a pass over the debug information replacing any references
 813     // to the allocated object with "sobj"
 814     int start = jvms->debug_start();
 815     int end   = jvms->debug_end();
 816     for (int i = start; i < end; i++) {
 817       if (sfpt->in(i) == res) {
 818         sfpt->set_req(i, sobj);
 819       }
 820     }
 821     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 822   }
 823   return true;
 824 }
 825 
 826 // Process users of eliminated allocation.
 827 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 828   Node* res = alloc->result_cast();
 829   if (res != NULL) {
 830     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 831       Node *use = res->last_out(j);
 832       uint oc1 = res->outcnt();
 833 
 834       if (use->is_AddP()) {
 835         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 836           Node *n = use->last_out(k);
 837           uint oc2 = use->outcnt();
 838           if (n->is_Store()) {
 839 #ifdef ASSERT
 840             // Verify that there is no dependent MemBarVolatile nodes,
 841             // they should be removed during IGVN, see MemBarNode::Ideal().
 842             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
 843                                        p < pmax; p++) {
 844               Node* mb = n->fast_out(p);
 845               assert(mb->is_Initialize() || !mb->is_MemBar() ||
 846                      mb->req() <= MemBarNode::Precedent ||
 847                      mb->in(MemBarNode::Precedent) != n,
 848                      "MemBarVolatile should be eliminated for non-escaping object");
 849             }
 850 #endif
 851             _igvn.replace_node(n, n->in(MemNode::Memory));
 852           } else {
 853             eliminate_card_mark(n);
 854           }
 855           k -= (oc2 - use->outcnt());
 856         }
 857       } else {
 858         eliminate_card_mark(use);
 859       }
 860       j -= (oc1 - res->outcnt());
 861     }
 862     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 863     _igvn.remove_dead_node(res);
 864   }
 865 
 866   //
 867   // Process other users of allocation's projections
 868   //
 869   if (_resproj != NULL && _resproj->outcnt() != 0) {
 870     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 871       Node *use = _resproj->last_out(j);
 872       uint oc1 = _resproj->outcnt();
 873       if (use->is_Initialize()) {
 874         // Eliminate Initialize node.
 875         InitializeNode *init = use->as_Initialize();
 876         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 877         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 878         if (ctrl_proj != NULL) {
 879            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 880           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 881         }
 882         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 883         if (mem_proj != NULL) {
 884           Node *mem = init->in(TypeFunc::Memory);
 885 #ifdef ASSERT
 886           if (mem->is_MergeMem()) {
 887             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 888           } else {
 889             assert(mem == _memproj_fallthrough, "allocation memory projection");
 890           }
 891 #endif
 892           _igvn.replace_node(mem_proj, mem);
 893         }
 894       } else if (use->is_AddP()) {
 895         // raw memory addresses used only by the initialization
 896         _igvn.replace_node(use, C->top());
 897       } else  {
 898         assert(false, "only Initialize or AddP expected");
 899       }
 900       j -= (oc1 - _resproj->outcnt());
 901     }
 902   }
 903   if (_fallthroughcatchproj != NULL) {
 904     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 905   }
 906   if (_memproj_fallthrough != NULL) {
 907     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 908   }
 909   if (_memproj_catchall != NULL) {
 910     _igvn.replace_node(_memproj_catchall, C->top());
 911   }
 912   if (_ioproj_fallthrough != NULL) {
 913     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 914   }
 915   if (_ioproj_catchall != NULL) {
 916     _igvn.replace_node(_ioproj_catchall, C->top());
 917   }
 918   if (_catchallcatchproj != NULL) {
 919     _igvn.replace_node(_catchallcatchproj, C->top());
 920   }
 921 }
 922 
 923 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 924 
 925   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 926     return false;
 927   }
 928 
 929   extract_call_projections(alloc);
 930 
 931   GrowableArray <SafePointNode *> safepoints;
 932   if (!can_eliminate_allocation(alloc, safepoints)) {
 933     return false;
 934   }
 935 
 936   if (!scalar_replacement(alloc, safepoints)) {
 937     return false;
 938   }
 939 
 940   CompileLog* log = C->log();
 941   if (log != NULL) {
 942     Node* klass = alloc->in(AllocateNode::KlassNode);
 943     const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
 944     log->head("eliminate_allocation type='%d'",
 945               log->identify(tklass->klass()));
 946     JVMState* p = alloc->jvms();
 947     while (p != NULL) {
 948       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
 949       p = p->caller();
 950     }
 951     log->tail("eliminate_allocation");
 952   }
 953 
 954   process_users_of_allocation(alloc);
 955 
 956 #ifndef PRODUCT
 957   if (PrintEliminateAllocations) {
 958     if (alloc->is_AllocateArray())
 959       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 960     else
 961       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 962   }
 963 #endif
 964 
 965   return true;
 966 }
 967 
 968 
 969 //---------------------------set_eden_pointers-------------------------
 970 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 971   if (UseTLAB) {                // Private allocation: load from TLS
 972     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 973     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 974     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 975     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 976     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 977   } else {                      // Shared allocation: load from globals
 978     CollectedHeap* ch = Universe::heap();
 979     address top_adr = (address)ch->top_addr();
 980     address end_adr = (address)ch->end_addr();
 981     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
 982     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
 983   }
 984 }
 985 
 986 
 987 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
 988   Node* adr = basic_plus_adr(base, offset);
 989   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
 990   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
 991   transform_later(value);
 992   return value;
 993 }
 994 
 995 
 996 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
 997   Node* adr = basic_plus_adr(base, offset);
 998   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
 999   transform_later(mem);
1000   return mem;
1001 }
1002 
1003 //=============================================================================
1004 //
1005 //                              A L L O C A T I O N
1006 //
1007 // Allocation attempts to be fast in the case of frequent small objects.
1008 // It breaks down like this:
1009 //
1010 // 1) Size in doublewords is computed.  This is a constant for objects and
1011 // variable for most arrays.  Doubleword units are used to avoid size
1012 // overflow of huge doubleword arrays.  We need doublewords in the end for
1013 // rounding.
1014 //
1015 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1016 // the slow path into the VM.  The slow path can throw any required
1017 // exceptions, and does all the special checks for very large arrays.  The
1018 // size test can constant-fold away for objects.  For objects with
1019 // finalizers it constant-folds the otherway: you always go slow with
1020 // finalizers.
1021 //
1022 // 3) If NOT using TLABs, this is the contended loop-back point.
1023 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1024 //
1025 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1026 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1027 // "size*8" we always enter the VM, where "largish" is a constant picked small
1028 // enough that there's always space between the eden max and 4Gig (old space is
1029 // there so it's quite large) and large enough that the cost of entering the VM
1030 // is dwarfed by the cost to initialize the space.
1031 //
1032 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1033 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1034 // adjusted heap top back down; there is no contention.
1035 //
1036 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1037 // fields.
1038 //
1039 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1040 // oop flavor.
1041 //
1042 //=============================================================================
1043 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1044 // Allocations bigger than this always go the slow route.
1045 // This value must be small enough that allocation attempts that need to
1046 // trigger exceptions go the slow route.  Also, it must be small enough so
1047 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1048 //=============================================================================j//
1049 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1050 // The allocator will coalesce int->oop copies away.  See comment in
1051 // coalesce.cpp about how this works.  It depends critically on the exact
1052 // code shape produced here, so if you are changing this code shape
1053 // make sure the GC info for the heap-top is correct in and around the
1054 // slow-path call.
1055 //
1056 
1057 void PhaseMacroExpand::expand_allocate_common(
1058             AllocateNode* alloc, // allocation node to be expanded
1059             Node* length,  // array length for an array allocation
1060             const TypeFunc* slow_call_type, // Type of slow call
1061             address slow_call_address  // Address of slow call
1062     )
1063 {
1064 
1065   Node* ctrl = alloc->in(TypeFunc::Control);
1066   Node* mem  = alloc->in(TypeFunc::Memory);
1067   Node* i_o  = alloc->in(TypeFunc::I_O);
1068   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1069   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1070   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1071 
1072   assert(ctrl != NULL, "must have control");
1073   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1074   // they will not be used if "always_slow" is set
1075   enum { slow_result_path = 1, fast_result_path = 2 };
1076   Node *result_region;
1077   Node *result_phi_rawmem;
1078   Node *result_phi_rawoop;
1079   Node *result_phi_i_o;
1080 
1081   // The initial slow comparison is a size check, the comparison
1082   // we want to do is a BoolTest::gt
1083   bool always_slow = false;
1084   int tv = _igvn.find_int_con(initial_slow_test, -1);
1085   if (tv >= 0) {
1086     always_slow = (tv == 1);
1087     initial_slow_test = NULL;
1088   } else {
1089     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1090   }
1091 
1092   if (C->env()->dtrace_alloc_probes() ||
1093       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
1094                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
1095     // Force slow-path allocation
1096     always_slow = true;
1097     initial_slow_test = NULL;
1098   }
1099 
1100 
1101   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1102   Node *slow_region = NULL;
1103   Node *toobig_false = ctrl;
1104 
1105   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1106   // generate the initial test if necessary
1107   if (initial_slow_test != NULL ) {
1108     slow_region = new (C, 3) RegionNode(3);
1109 
1110     // Now make the initial failure test.  Usually a too-big test but
1111     // might be a TRUE for finalizers or a fancy class check for
1112     // newInstance0.
1113     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1114     transform_later(toobig_iff);
1115     // Plug the failing-too-big test into the slow-path region
1116     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1117     transform_later(toobig_true);
1118     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1119     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1120     transform_later(toobig_false);
1121   } else {         // No initial test, just fall into next case
1122     toobig_false = ctrl;
1123     debug_only(slow_region = NodeSentinel);
1124   }
1125 
1126   Node *slow_mem = mem;  // save the current memory state for slow path
1127   // generate the fast allocation code unless we know that the initial test will always go slow
1128   if (!always_slow) {
1129     // Fast path modifies only raw memory.
1130     if (mem->is_MergeMem()) {
1131       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1132     }
1133 
1134     Node* eden_top_adr;
1135     Node* eden_end_adr;
1136 
1137     set_eden_pointers(eden_top_adr, eden_end_adr);
1138 
1139     // Load Eden::end.  Loop invariant and hoisted.
1140     //
1141     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1142     //       a TLAB to work around a bug where these values were being moved across
1143     //       a safepoint.  These are not oops, so they cannot be include in the oop
1144     //       map, but the can be changed by a GC.   The proper way to fix this would
1145     //       be to set the raw memory state when generating a  SafepointNode.  However
1146     //       this will require extensive changes to the loop optimization in order to
1147     //       prevent a degradation of the optimization.
1148     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1149     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1150 
1151     // allocate the Region and Phi nodes for the result
1152     result_region = new (C, 3) RegionNode(3);
1153     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1154     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1155     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1156 
1157     // We need a Region for the loop-back contended case.
1158     enum { fall_in_path = 1, contended_loopback_path = 2 };
1159     Node *contended_region;
1160     Node *contended_phi_rawmem;
1161     if( UseTLAB ) {
1162       contended_region = toobig_false;
1163       contended_phi_rawmem = mem;
1164     } else {
1165       contended_region = new (C, 3) RegionNode(3);
1166       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1167       // Now handle the passing-too-big test.  We fall into the contended
1168       // loop-back merge point.
1169       contended_region    ->init_req( fall_in_path, toobig_false );
1170       contended_phi_rawmem->init_req( fall_in_path, mem );
1171       transform_later(contended_region);
1172       transform_later(contended_phi_rawmem);
1173     }
1174 
1175     // Load(-locked) the heap top.
1176     // See note above concerning the control input when using a TLAB
1177     Node *old_eden_top = UseTLAB
1178       ? new (C, 3) LoadPNode     ( ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM )
1179       : new (C, 3) LoadPLockedNode( contended_region, contended_phi_rawmem, eden_top_adr );
1180 
1181     transform_later(old_eden_top);
1182     // Add to heap top to get a new heap top
1183     Node *new_eden_top = new (C, 4) AddPNode( top(), old_eden_top, size_in_bytes );
1184     transform_later(new_eden_top);
1185     // Check for needing a GC; compare against heap end
1186     Node *needgc_cmp = new (C, 3) CmpPNode( new_eden_top, eden_end );
1187     transform_later(needgc_cmp);
1188     Node *needgc_bol = new (C, 2) BoolNode( needgc_cmp, BoolTest::ge );
1189     transform_later(needgc_bol);
1190     IfNode *needgc_iff = new (C, 2) IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1191     transform_later(needgc_iff);
1192 
1193     // Plug the failing-heap-space-need-gc test into the slow-path region
1194     Node *needgc_true = new (C, 1) IfTrueNode( needgc_iff );
1195     transform_later(needgc_true);
1196     if( initial_slow_test ) {
1197       slow_region    ->init_req( need_gc_path, needgc_true );
1198       // This completes all paths into the slow merge point
1199       transform_later(slow_region);
1200     } else {                      // No initial slow path needed!
1201       // Just fall from the need-GC path straight into the VM call.
1202       slow_region    = needgc_true;
1203     }
1204     // No need for a GC.  Setup for the Store-Conditional
1205     Node *needgc_false = new (C, 1) IfFalseNode( needgc_iff );
1206     transform_later(needgc_false);
1207 
1208     // Grab regular I/O before optional prefetch may change it.
1209     // Slow-path does no I/O so just set it to the original I/O.
1210     result_phi_i_o->init_req( slow_result_path, i_o );
1211 
1212     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1213                               old_eden_top, new_eden_top, length);
1214 
1215     // Store (-conditional) the modified eden top back down.
1216     // StorePConditional produces flags for a test PLUS a modified raw
1217     // memory state.
1218     Node *store_eden_top;
1219     Node *fast_oop_ctrl;
1220     if( UseTLAB ) {
1221       store_eden_top = new (C, 4) StorePNode( needgc_false, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, new_eden_top );
1222       transform_later(store_eden_top);
1223       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1224     } else {
1225       store_eden_top = new (C, 5) StorePConditionalNode( needgc_false, contended_phi_rawmem, eden_top_adr, new_eden_top, old_eden_top );
1226       transform_later(store_eden_top);
1227       Node *contention_check = new (C, 2) BoolNode( store_eden_top, BoolTest::ne );
1228       transform_later(contention_check);
1229       store_eden_top = new (C, 1) SCMemProjNode(store_eden_top);
1230       transform_later(store_eden_top);
1231 
1232       // If not using TLABs, check to see if there was contention.
1233       IfNode *contention_iff = new (C, 2) IfNode ( needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN );
1234       transform_later(contention_iff);
1235       Node *contention_true = new (C, 1) IfTrueNode( contention_iff );
1236       transform_later(contention_true);
1237       // If contention, loopback and try again.
1238       contended_region->init_req( contended_loopback_path, contention_true );
1239       contended_phi_rawmem->init_req( contended_loopback_path, store_eden_top );
1240 
1241       // Fast-path succeeded with no contention!
1242       Node *contention_false = new (C, 1) IfFalseNode( contention_iff );
1243       transform_later(contention_false);
1244       fast_oop_ctrl = contention_false;
1245     }
1246 
1247     // Rename successful fast-path variables to make meaning more obvious
1248     Node* fast_oop        = old_eden_top;
1249     Node* fast_oop_rawmem = store_eden_top;
1250     fast_oop_rawmem = initialize_object(alloc,
1251                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1252                                         klass_node, length, size_in_bytes);
1253 
1254     if (C->env()->dtrace_extended_probes()) {
1255       // Slow-path call
1256       int size = TypeFunc::Parms + 2;
1257       CallLeafNode *call = new (C, size) CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1258                                                       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1259                                                       "dtrace_object_alloc",
1260                                                       TypeRawPtr::BOTTOM);
1261 
1262       // Get base of thread-local storage area
1263       Node* thread = new (C, 1) ThreadLocalNode();
1264       transform_later(thread);
1265 
1266       call->init_req(TypeFunc::Parms+0, thread);
1267       call->init_req(TypeFunc::Parms+1, fast_oop);
1268       call->init_req( TypeFunc::Control, fast_oop_ctrl );
1269       call->init_req( TypeFunc::I_O    , top() )        ;   // does no i/o
1270       call->init_req( TypeFunc::Memory , fast_oop_rawmem );
1271       call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1272       call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1273       transform_later(call);
1274       fast_oop_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
1275       transform_later(fast_oop_ctrl);
1276       fast_oop_rawmem = new (C, 1) ProjNode(call,TypeFunc::Memory);
1277       transform_later(fast_oop_rawmem);
1278     }
1279 
1280     // Plug in the successful fast-path into the result merge point
1281     result_region    ->init_req( fast_result_path, fast_oop_ctrl );
1282     result_phi_rawoop->init_req( fast_result_path, fast_oop );
1283     result_phi_i_o   ->init_req( fast_result_path, i_o );
1284     result_phi_rawmem->init_req( fast_result_path, fast_oop_rawmem );
1285   } else {
1286     slow_region = ctrl;
1287   }
1288 
1289   // Generate slow-path call
1290   CallNode *call = new (C, slow_call_type->domain()->cnt())
1291     CallStaticJavaNode(slow_call_type, slow_call_address,
1292                        OptoRuntime::stub_name(slow_call_address),
1293                        alloc->jvms()->bci(),
1294                        TypePtr::BOTTOM);
1295   call->init_req( TypeFunc::Control, slow_region );
1296   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1297   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1298   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1299   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1300 
1301   call->init_req(TypeFunc::Parms+0, klass_node);
1302   if (length != NULL) {
1303     call->init_req(TypeFunc::Parms+1, length);
1304   }
1305 
1306   // Copy debug information and adjust JVMState information, then replace
1307   // allocate node with the call
1308   copy_call_debug_info((CallNode *) alloc,  call);
1309   if (!always_slow) {
1310     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1311   }
1312   _igvn.replace_node(alloc, call);
1313   transform_later(call);
1314 
1315   // Identify the output projections from the allocate node and
1316   // adjust any references to them.
1317   // The control and io projections look like:
1318   //
1319   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1320   //  Allocate                   Catch
1321   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1322   //
1323   //  We are interested in the CatchProj nodes.
1324   //
1325   extract_call_projections(call);
1326 
1327   // An allocate node has separate memory projections for the uses on the control and i_o paths
1328   // Replace uses of the control memory projection with result_phi_rawmem (unless we are only generating a slow call)
1329   if (!always_slow && _memproj_fallthrough != NULL) {
1330     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1331       Node *use = _memproj_fallthrough->fast_out(i);
1332       _igvn.hash_delete(use);
1333       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1334       _igvn._worklist.push(use);
1335       // back up iterator
1336       --i;
1337     }
1338   }
1339   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete _memproj_catchall so
1340   // we end up with a call that has only 1 memory projection
1341   if (_memproj_catchall != NULL ) {
1342     if (_memproj_fallthrough == NULL) {
1343       _memproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::Memory);
1344       transform_later(_memproj_fallthrough);
1345     }
1346     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1347       Node *use = _memproj_catchall->fast_out(i);
1348       _igvn.hash_delete(use);
1349       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1350       _igvn._worklist.push(use);
1351       // back up iterator
1352       --i;
1353     }
1354   }
1355 
1356   // An allocate node has separate i_o projections for the uses on the control and i_o paths
1357   // Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
1358   if (_ioproj_fallthrough == NULL) {
1359     _ioproj_fallthrough = new (C, 1) ProjNode(call, TypeFunc::I_O);
1360     transform_later(_ioproj_fallthrough);
1361   } else if (!always_slow) {
1362     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1363       Node *use = _ioproj_fallthrough->fast_out(i);
1364 
1365       _igvn.hash_delete(use);
1366       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1367       _igvn._worklist.push(use);
1368       // back up iterator
1369       --i;
1370     }
1371   }
1372   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete _ioproj_catchall so
1373   // we end up with a call that has only 1 control projection
1374   if (_ioproj_catchall != NULL ) {
1375     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1376       Node *use = _ioproj_catchall->fast_out(i);
1377       _igvn.hash_delete(use);
1378       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1379       _igvn._worklist.push(use);
1380       // back up iterator
1381       --i;
1382     }
1383   }
1384 
1385   // if we generated only a slow call, we are done
1386   if (always_slow)
1387     return;
1388 
1389 
1390   if (_fallthroughcatchproj != NULL) {
1391     ctrl = _fallthroughcatchproj->clone();
1392     transform_later(ctrl);
1393     _igvn.replace_node(_fallthroughcatchproj, result_region);
1394   } else {
1395     ctrl = top();
1396   }
1397   Node *slow_result;
1398   if (_resproj == NULL) {
1399     // no uses of the allocation result
1400     slow_result = top();
1401   } else {
1402     slow_result = _resproj->clone();
1403     transform_later(slow_result);
1404     _igvn.replace_node(_resproj, result_phi_rawoop);
1405   }
1406 
1407   // Plug slow-path into result merge point
1408   result_region    ->init_req( slow_result_path, ctrl );
1409   result_phi_rawoop->init_req( slow_result_path, slow_result);
1410   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1411   transform_later(result_region);
1412   transform_later(result_phi_rawoop);
1413   transform_later(result_phi_rawmem);
1414   transform_later(result_phi_i_o);
1415   // This completes all paths into the result merge point
1416 }
1417 
1418 
1419 // Helper for PhaseMacroExpand::expand_allocate_common.
1420 // Initializes the newly-allocated storage.
1421 Node*
1422 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1423                                     Node* control, Node* rawmem, Node* object,
1424                                     Node* klass_node, Node* length,
1425                                     Node* size_in_bytes) {
1426   InitializeNode* init = alloc->initialization();
1427   // Store the klass & mark bits
1428   Node* mark_node = NULL;
1429   // For now only enable fast locking for non-array types
1430   if (UseBiasedLocking && (length == NULL)) {
1431     mark_node = make_load(control, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1432   } else {
1433     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1434   }
1435   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1436 
1437   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1438   int header_size = alloc->minimum_header_size();  // conservatively small
1439 
1440   // Array length
1441   if (length != NULL) {         // Arrays need length field
1442     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1443     // conservatively small header size:
1444     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1445     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1446     if (k->is_array_klass())    // we know the exact header size in most cases:
1447       header_size = Klass::layout_helper_header_size(k->layout_helper());
1448   }
1449 
1450   // Clear the object body, if necessary.
1451   if (init == NULL) {
1452     // The init has somehow disappeared; be cautious and clear everything.
1453     //
1454     // This can happen if a node is allocated but an uncommon trap occurs
1455     // immediately.  In this case, the Initialize gets associated with the
1456     // trap, and may be placed in a different (outer) loop, if the Allocate
1457     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1458     // there can be two Allocates to one Initialize.  The answer in all these
1459     // edge cases is safety first.  It is always safe to clear immediately
1460     // within an Allocate, and then (maybe or maybe not) clear some more later.
1461     if (!ZeroTLAB)
1462       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1463                                             header_size, size_in_bytes,
1464                                             &_igvn);
1465   } else {
1466     if (!init->is_complete()) {
1467       // Try to win by zeroing only what the init does not store.
1468       // We can also try to do some peephole optimizations,
1469       // such as combining some adjacent subword stores.
1470       rawmem = init->complete_stores(control, rawmem, object,
1471                                      header_size, size_in_bytes, &_igvn);
1472     }
1473     // We have no more use for this link, since the AllocateNode goes away:
1474     init->set_req(InitializeNode::RawAddress, top());
1475     // (If we keep the link, it just confuses the register allocator,
1476     // who thinks he sees a real use of the address by the membar.)
1477   }
1478 
1479   return rawmem;
1480 }
1481 
1482 // Generate prefetch instructions for next allocations.
1483 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1484                                         Node*& contended_phi_rawmem,
1485                                         Node* old_eden_top, Node* new_eden_top,
1486                                         Node* length) {
1487    enum { fall_in_path = 1, pf_path = 2 };
1488    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1489       // Generate prefetch allocation with watermark check.
1490       // As an allocation hits the watermark, we will prefetch starting
1491       // at a "distance" away from watermark.
1492 
1493       Node *pf_region = new (C, 3) RegionNode(3);
1494       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1495                                                 TypeRawPtr::BOTTOM );
1496       // I/O is used for Prefetch
1497       Node *pf_phi_abio = new (C, 3) PhiNode( pf_region, Type::ABIO );
1498 
1499       Node *thread = new (C, 1) ThreadLocalNode();
1500       transform_later(thread);
1501 
1502       Node *eden_pf_adr = new (C, 4) AddPNode( top()/*not oop*/, thread,
1503                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1504       transform_later(eden_pf_adr);
1505 
1506       Node *old_pf_wm = new (C, 3) LoadPNode( needgc_false,
1507                                    contended_phi_rawmem, eden_pf_adr,
1508                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM );
1509       transform_later(old_pf_wm);
1510 
1511       // check against new_eden_top
1512       Node *need_pf_cmp = new (C, 3) CmpPNode( new_eden_top, old_pf_wm );
1513       transform_later(need_pf_cmp);
1514       Node *need_pf_bol = new (C, 2) BoolNode( need_pf_cmp, BoolTest::ge );
1515       transform_later(need_pf_bol);
1516       IfNode *need_pf_iff = new (C, 2) IfNode( needgc_false, need_pf_bol,
1517                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1518       transform_later(need_pf_iff);
1519 
1520       // true node, add prefetchdistance
1521       Node *need_pf_true = new (C, 1) IfTrueNode( need_pf_iff );
1522       transform_later(need_pf_true);
1523 
1524       Node *need_pf_false = new (C, 1) IfFalseNode( need_pf_iff );
1525       transform_later(need_pf_false);
1526 
1527       Node *new_pf_wmt = new (C, 4) AddPNode( top(), old_pf_wm,
1528                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1529       transform_later(new_pf_wmt );
1530       new_pf_wmt->set_req(0, need_pf_true);
1531 
1532       Node *store_new_wmt = new (C, 4) StorePNode( need_pf_true,
1533                                        contended_phi_rawmem, eden_pf_adr,
1534                                        TypeRawPtr::BOTTOM, new_pf_wmt );
1535       transform_later(store_new_wmt);
1536 
1537       // adding prefetches
1538       pf_phi_abio->init_req( fall_in_path, i_o );
1539 
1540       Node *prefetch_adr;
1541       Node *prefetch;
1542       uint lines = AllocatePrefetchDistance / AllocatePrefetchStepSize;
1543       uint step_size = AllocatePrefetchStepSize;
1544       uint distance = 0;
1545 
1546       for ( uint i = 0; i < lines; i++ ) {
1547         prefetch_adr = new (C, 4) AddPNode( old_pf_wm, new_pf_wmt,
1548                                             _igvn.MakeConX(distance) );
1549         transform_later(prefetch_adr);
1550         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1551         transform_later(prefetch);
1552         distance += step_size;
1553         i_o = prefetch;
1554       }
1555       pf_phi_abio->set_req( pf_path, i_o );
1556 
1557       pf_region->init_req( fall_in_path, need_pf_false );
1558       pf_region->init_req( pf_path, need_pf_true );
1559 
1560       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
1561       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
1562 
1563       transform_later(pf_region);
1564       transform_later(pf_phi_rawmem);
1565       transform_later(pf_phi_abio);
1566 
1567       needgc_false = pf_region;
1568       contended_phi_rawmem = pf_phi_rawmem;
1569       i_o = pf_phi_abio;
1570    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
1571       // Insert a prefetch for each allocation only on the fast-path
1572       Node *pf_region = new (C, 3) RegionNode(3);
1573       Node *pf_phi_rawmem = new (C, 3) PhiNode( pf_region, Type::MEMORY,
1574                                                 TypeRawPtr::BOTTOM );
1575 
1576       // Generate several prefetch instructions only for arrays.
1577       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1578       uint step_size = AllocatePrefetchStepSize;
1579       uint distance = AllocatePrefetchDistance;
1580 
1581       // Next cache address.
1582       Node *cache_adr = new (C, 4) AddPNode(old_eden_top, old_eden_top,
1583                                             _igvn.MakeConX(distance));
1584       transform_later(cache_adr);
1585       cache_adr = new (C, 2) CastP2XNode(needgc_false, cache_adr);
1586       transform_later(cache_adr);
1587       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
1588       cache_adr = new (C, 3) AndXNode(cache_adr, mask);
1589       transform_later(cache_adr);
1590       cache_adr = new (C, 2) CastX2PNode(cache_adr);
1591       transform_later(cache_adr);
1592 
1593       // Prefetch
1594       Node *prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, cache_adr );
1595       prefetch->set_req(0, needgc_false);
1596       transform_later(prefetch);
1597       contended_phi_rawmem = prefetch;
1598       Node *prefetch_adr;
1599       distance = step_size;
1600       for ( uint i = 1; i < lines; i++ ) {
1601         prefetch_adr = new (C, 4) AddPNode( cache_adr, cache_adr,
1602                                             _igvn.MakeConX(distance) );
1603         transform_later(prefetch_adr);
1604         prefetch = new (C, 3) PrefetchWriteNode( contended_phi_rawmem, prefetch_adr );
1605         transform_later(prefetch);
1606         distance += step_size;
1607         contended_phi_rawmem = prefetch;
1608       }
1609    } else if( AllocatePrefetchStyle > 0 ) {
1610       // Insert a prefetch for each allocation only on the fast-path
1611       Node *prefetch_adr;
1612       Node *prefetch;
1613       // Generate several prefetch instructions only for arrays.
1614       uint lines = (length != NULL) ? AllocatePrefetchLines : 1;
1615       uint step_size = AllocatePrefetchStepSize;
1616       uint distance = AllocatePrefetchDistance;
1617       for ( uint i = 0; i < lines; i++ ) {
1618         prefetch_adr = new (C, 4) AddPNode( old_eden_top, new_eden_top,
1619                                             _igvn.MakeConX(distance) );
1620         transform_later(prefetch_adr);
1621         prefetch = new (C, 3) PrefetchWriteNode( i_o, prefetch_adr );
1622         // Do not let it float too high, since if eden_top == eden_end,
1623         // both might be null.
1624         if( i == 0 ) { // Set control for first prefetch, next follows it
1625           prefetch->init_req(0, needgc_false);
1626         }
1627         transform_later(prefetch);
1628         distance += step_size;
1629         i_o = prefetch;
1630       }
1631    }
1632    return i_o;
1633 }
1634 
1635 
1636 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1637   expand_allocate_common(alloc, NULL,
1638                          OptoRuntime::new_instance_Type(),
1639                          OptoRuntime::new_instance_Java());
1640 }
1641 
1642 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1643   Node* length = alloc->in(AllocateNode::ALength);
1644   expand_allocate_common(alloc, length,
1645                          OptoRuntime::new_array_Type(),
1646                          OptoRuntime::new_array_Java());
1647 }
1648 
1649 
1650 // we have determined that this lock/unlock can be eliminated, we simply
1651 // eliminate the node without expanding it.
1652 //
1653 // Note:  The membar's associated with the lock/unlock are currently not
1654 //        eliminated.  This should be investigated as a future enhancement.
1655 //
1656 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1657 
1658   if (!alock->is_eliminated()) {
1659     return false;
1660   }
1661   if (alock->is_Lock() && !alock->is_coarsened()) {
1662       // Create new "eliminated" BoxLock node and use it
1663       // in monitor debug info for the same object.
1664       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1665       Node* obj = alock->obj_node();
1666       if (!oldbox->is_eliminated()) {
1667         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1668         newbox->set_eliminated();
1669         transform_later(newbox);
1670         // Replace old box node with new box for all users
1671         // of the same object.
1672         for (uint i = 0; i < oldbox->outcnt();) {
1673 
1674           bool next_edge = true;
1675           Node* u = oldbox->raw_out(i);
1676           if (u == alock) {
1677             i++;
1678             continue; // It will be removed below
1679           }
1680           if (u->is_Lock() &&
1681               u->as_Lock()->obj_node() == obj &&
1682               // oldbox could be referenced in debug info also
1683               u->as_Lock()->box_node() == oldbox) {
1684             assert(u->as_Lock()->is_eliminated(), "sanity");
1685             _igvn.hash_delete(u);
1686             u->set_req(TypeFunc::Parms + 1, newbox);
1687             next_edge = false;
1688 #ifdef ASSERT
1689           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1690             assert(u->as_Unlock()->is_eliminated(), "sanity");
1691 #endif
1692           }
1693           // Replace old box in monitor debug info.
1694           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1695             SafePointNode* sfn = u->as_SafePoint();
1696             JVMState* youngest_jvms = sfn->jvms();
1697             int max_depth = youngest_jvms->depth();
1698             for (int depth = 1; depth <= max_depth; depth++) {
1699               JVMState* jvms = youngest_jvms->of_depth(depth);
1700               int num_mon  = jvms->nof_monitors();
1701               // Loop over monitors
1702               for (int idx = 0; idx < num_mon; idx++) {
1703                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1704                 Node* box_node = sfn->monitor_box(jvms, idx);
1705                 if (box_node == oldbox && obj_node == obj) {
1706                   int j = jvms->monitor_box_offset(idx);
1707                   _igvn.hash_delete(u);
1708                   u->set_req(j, newbox);
1709                   next_edge = false;
1710                 }
1711               } // for (int idx = 0;
1712             } // for (int depth = 1;
1713           } // if (u->is_SafePoint()
1714           if (next_edge) i++;
1715         } // for (uint i = 0; i < oldbox->outcnt();)
1716       } // if (!oldbox->is_eliminated())
1717   } // if (alock->is_Lock() && !lock->is_coarsened())
1718 
1719   CompileLog* log = C->log();
1720   if (log != NULL) {
1721     log->head("eliminate_lock lock='%d'",
1722               alock->is_Lock());
1723     JVMState* p = alock->jvms();
1724     while (p != NULL) {
1725       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1726       p = p->caller();
1727     }
1728     log->tail("eliminate_lock");
1729   }
1730 
1731   #ifndef PRODUCT
1732   if (PrintEliminateLocks) {
1733     if (alock->is_Lock()) {
1734       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1735     } else {
1736       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1737     }
1738   }
1739   #endif
1740 
1741   Node* mem  = alock->in(TypeFunc::Memory);
1742   Node* ctrl = alock->in(TypeFunc::Control);
1743 
1744   extract_call_projections(alock);
1745   // There are 2 projections from the lock.  The lock node will
1746   // be deleted when its last use is subsumed below.
1747   assert(alock->outcnt() == 2 &&
1748          _fallthroughproj != NULL &&
1749          _memproj_fallthrough != NULL,
1750          "Unexpected projections from Lock/Unlock");
1751 
1752   Node* fallthroughproj = _fallthroughproj;
1753   Node* memproj_fallthrough = _memproj_fallthrough;
1754 
1755   // The memory projection from a lock/unlock is RawMem
1756   // The input to a Lock is merged memory, so extract its RawMem input
1757   // (unless the MergeMem has been optimized away.)
1758   if (alock->is_Lock()) {
1759     // Seach for MemBarAcquire node and delete it also.
1760     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1761     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1762     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1763     Node* memproj = membar->proj_out(TypeFunc::Memory);
1764     _igvn.replace_node(ctrlproj, fallthroughproj);
1765     _igvn.replace_node(memproj, memproj_fallthrough);
1766 
1767     // Delete FastLock node also if this Lock node is unique user
1768     // (a loop peeling may clone a Lock node).
1769     Node* flock = alock->as_Lock()->fastlock_node();
1770     if (flock->outcnt() == 1) {
1771       assert(flock->unique_out() == alock, "sanity");
1772       _igvn.replace_node(flock, top());
1773     }
1774   }
1775 
1776   // Seach for MemBarRelease node and delete it also.
1777   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1778       ctrl->in(0)->is_MemBar()) {
1779     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1780     assert(membar->Opcode() == Op_MemBarRelease &&
1781            mem->is_Proj() && membar == mem->in(0), "");
1782     _igvn.replace_node(fallthroughproj, ctrl);
1783     _igvn.replace_node(memproj_fallthrough, mem);
1784     fallthroughproj = ctrl;
1785     memproj_fallthrough = mem;
1786     ctrl = membar->in(TypeFunc::Control);
1787     mem  = membar->in(TypeFunc::Memory);
1788   }
1789 
1790   _igvn.replace_node(fallthroughproj, ctrl);
1791   _igvn.replace_node(memproj_fallthrough, mem);
1792   return true;
1793 }
1794 
1795 
1796 //------------------------------expand_lock_node----------------------
1797 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1798 
1799   Node* ctrl = lock->in(TypeFunc::Control);
1800   Node* mem = lock->in(TypeFunc::Memory);
1801   Node* obj = lock->obj_node();
1802   Node* box = lock->box_node();
1803   Node* flock = lock->fastlock_node();
1804 
1805   // Make the merge point
1806   Node *region;
1807   Node *mem_phi;
1808   Node *slow_path;
1809 
1810   if (UseOptoBiasInlining) {
1811     /*
1812      *  See the full description in MacroAssembler::biased_locking_enter().
1813      *
1814      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1815      *    // The object is biased.
1816      *    proto_node = klass->prototype_header;
1817      *    o_node = thread | proto_node;
1818      *    x_node = o_node ^ mark_word;
1819      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1820      *      // Done.
1821      *    } else {
1822      *      if( (x_node & biased_lock_mask) != 0 ) {
1823      *        // The klass's prototype header is no longer biased.
1824      *        cas(&mark_word, mark_word, proto_node)
1825      *        goto cas_lock;
1826      *      } else {
1827      *        // The klass's prototype header is still biased.
1828      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1829      *          old = mark_word;
1830      *          new = o_node;
1831      *        } else {
1832      *          // Different thread or anonymous biased.
1833      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1834      *          new = thread | old;
1835      *        }
1836      *        // Try to rebias.
1837      *        if( cas(&mark_word, old, new) == 0 ) {
1838      *          // Done.
1839      *        } else {
1840      *          goto slow_path; // Failed.
1841      *        }
1842      *      }
1843      *    }
1844      *  } else {
1845      *    // The object is not biased.
1846      *    cas_lock:
1847      *    if( FastLock(obj) == 0 ) {
1848      *      // Done.
1849      *    } else {
1850      *      slow_path:
1851      *      OptoRuntime::complete_monitor_locking_Java(obj);
1852      *    }
1853      *  }
1854      */
1855 
1856     region  = new (C, 5) RegionNode(5);
1857     // create a Phi for the memory state
1858     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1859 
1860     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1861     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1862 
1863     // First, check mark word for the biased lock pattern.
1864     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1865 
1866     // Get fast path - mark word has the biased lock pattern.
1867     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1868                          markOopDesc::biased_lock_mask_in_place,
1869                          markOopDesc::biased_lock_pattern, true);
1870     // fast_lock_region->in(1) is set to slow path.
1871     fast_lock_mem_phi->init_req(1, mem);
1872 
1873     // Now check that the lock is biased to the current thread and has
1874     // the same epoch and bias as Klass::_prototype_header.
1875 
1876     // Special-case a fresh allocation to avoid building nodes:
1877     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1878     if (klass_node == NULL) {
1879       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1880       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1881 #ifdef _LP64
1882       if (UseCompressedOops && klass_node->is_DecodeN()) {
1883         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1884         klass_node->in(1)->init_req(0, ctrl);
1885       } else
1886 #endif
1887       klass_node->init_req(0, ctrl);
1888     }
1889     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1890 
1891     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1892     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1893     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1894     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1895 
1896     // Get slow path - mark word does NOT match the value.
1897     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1898                                       (~markOopDesc::age_mask_in_place), 0);
1899     // region->in(3) is set to fast path - the object is biased to the current thread.
1900     mem_phi->init_req(3, mem);
1901 
1902 
1903     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1904 
1905 
1906     // First, check biased pattern.
1907     // Get fast path - _prototype_header has the same biased lock pattern.
1908     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1909                           markOopDesc::biased_lock_mask_in_place, 0, true);
1910 
1911     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1912     // fast_lock_region->in(2) - the prototype header is no longer biased
1913     // and we have to revoke the bias on this object.
1914     // We are going to try to reset the mark of this object to the prototype
1915     // value and fall through to the CAS-based locking scheme.
1916     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1917     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1918                                                  proto_node, mark_node);
1919     transform_later(cas);
1920     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1921     fast_lock_mem_phi->init_req(2, proj);
1922 
1923 
1924     // Second, check epoch bits.
1925     Node* rebiased_region  = new (C, 3) RegionNode(3);
1926     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1927     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1928 
1929     // Get slow path - mark word does NOT match epoch bits.
1930     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1931                                       markOopDesc::epoch_mask_in_place, 0);
1932     // The epoch of the current bias is not valid, attempt to rebias the object
1933     // toward the current thread.
1934     rebiased_region->init_req(2, epoch_ctrl);
1935     old_phi->init_req(2, mark_node);
1936     new_phi->init_req(2, o_node);
1937 
1938     // rebiased_region->in(1) is set to fast path.
1939     // The epoch of the current bias is still valid but we know
1940     // nothing about the owner; it might be set or it might be clear.
1941     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1942                              markOopDesc::age_mask_in_place |
1943                              markOopDesc::epoch_mask_in_place);
1944     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1945     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1946     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1947     old_phi->init_req(1, old);
1948     new_phi->init_req(1, new_mark);
1949 
1950     transform_later(rebiased_region);
1951     transform_later(old_phi);
1952     transform_later(new_phi);
1953 
1954     // Try to acquire the bias of the object using an atomic operation.
1955     // If this fails we will go in to the runtime to revoke the object's bias.
1956     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1957                                            new_phi, old_phi);
1958     transform_later(cas);
1959     proj = transform_later( new (C, 1) SCMemProjNode(cas));
1960 
1961     // Get slow path - Failed to CAS.
1962     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1963     mem_phi->init_req(4, proj);
1964     // region->in(4) is set to fast path - the object is rebiased to the current thread.
1965 
1966     // Failed to CAS.
1967     slow_path  = new (C, 3) RegionNode(3);
1968     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1969 
1970     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1971     slow_mem->init_req(1, proj);
1972 
1973     // Call CAS-based locking scheme (FastLock node).
1974 
1975     transform_later(fast_lock_region);
1976     transform_later(fast_lock_mem_phi);
1977 
1978     // Get slow path - FastLock failed to lock the object.
1979     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1980     mem_phi->init_req(2, fast_lock_mem_phi);
1981     // region->in(2) is set to fast path - the object is locked to the current thread.
1982 
1983     slow_path->init_req(2, ctrl); // Capture slow-control
1984     slow_mem->init_req(2, fast_lock_mem_phi);
1985 
1986     transform_later(slow_path);
1987     transform_later(slow_mem);
1988     // Reset lock's memory edge.
1989     lock->set_req(TypeFunc::Memory, slow_mem);
1990 
1991   } else {
1992     region  = new (C, 3) RegionNode(3);
1993     // create a Phi for the memory state
1994     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1995 
1996     // Optimize test; set region slot 2
1997     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
1998     mem_phi->init_req(2, mem);
1999   }
2000 
2001   // Make slow path call
2002   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
2003 
2004   extract_call_projections(call);
2005 
2006   // Slow path can only throw asynchronous exceptions, which are always
2007   // de-opted.  So the compiler thinks the slow-call can never throw an
2008   // exception.  If it DOES throw an exception we would need the debug
2009   // info removed first (since if it throws there is no monitor).
2010   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2011            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2012 
2013   // Capture slow path
2014   // disconnect fall-through projection from call and create a new one
2015   // hook up users of fall-through projection to region
2016   Node *slow_ctrl = _fallthroughproj->clone();
2017   transform_later(slow_ctrl);
2018   _igvn.hash_delete(_fallthroughproj);
2019   _fallthroughproj->disconnect_inputs(NULL);
2020   region->init_req(1, slow_ctrl);
2021   // region inputs are now complete
2022   transform_later(region);
2023   _igvn.replace_node(_fallthroughproj, region);
2024 
2025   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2026   mem_phi->init_req(1, memproj );
2027   transform_later(mem_phi);
2028   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2029 }
2030 
2031 //------------------------------expand_unlock_node----------------------
2032 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2033 
2034   Node* ctrl = unlock->in(TypeFunc::Control);
2035   Node* mem = unlock->in(TypeFunc::Memory);
2036   Node* obj = unlock->obj_node();
2037   Node* box = unlock->box_node();
2038 
2039   // No need for a null check on unlock
2040 
2041   // Make the merge point
2042   Node *region;
2043   Node *mem_phi;
2044 
2045   if (UseOptoBiasInlining) {
2046     // Check for biased locking unlock case, which is a no-op.
2047     // See the full description in MacroAssembler::biased_locking_exit().
2048     region  = new (C, 4) RegionNode(4);
2049     // create a Phi for the memory state
2050     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2051     mem_phi->init_req(3, mem);
2052 
2053     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2054     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2055                          markOopDesc::biased_lock_mask_in_place,
2056                          markOopDesc::biased_lock_pattern);
2057   } else {
2058     region  = new (C, 3) RegionNode(3);
2059     // create a Phi for the memory state
2060     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2061   }
2062 
2063   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
2064   funlock = transform_later( funlock )->as_FastUnlock();
2065   // Optimize test; set region slot 2
2066   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2067 
2068   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
2069 
2070   extract_call_projections(call);
2071 
2072   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2073            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2074 
2075   // No exceptions for unlocking
2076   // Capture slow path
2077   // disconnect fall-through projection from call and create a new one
2078   // hook up users of fall-through projection to region
2079   Node *slow_ctrl = _fallthroughproj->clone();
2080   transform_later(slow_ctrl);
2081   _igvn.hash_delete(_fallthroughproj);
2082   _fallthroughproj->disconnect_inputs(NULL);
2083   region->init_req(1, slow_ctrl);
2084   // region inputs are now complete
2085   transform_later(region);
2086   _igvn.replace_node(_fallthroughproj, region);
2087 
2088   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
2089   mem_phi->init_req(1, memproj );
2090   mem_phi->init_req(2, mem);
2091   transform_later(mem_phi);
2092   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2093 }
2094 
2095 //------------------------------expand_macro_nodes----------------------
2096 //  Returns true if a failure occurred.
2097 bool PhaseMacroExpand::expand_macro_nodes() {
2098   if (C->macro_count() == 0)
2099     return false;
2100   // First, attempt to eliminate locks
2101   bool progress = true;
2102   while (progress) {
2103     progress = false;
2104     for (int i = C->macro_count(); i > 0; i--) {
2105       Node * n = C->macro_node(i-1);
2106       bool success = false;
2107       debug_only(int old_macro_count = C->macro_count(););
2108       if (n->is_AbstractLock()) {
2109         success = eliminate_locking_node(n->as_AbstractLock());
2110       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2111         _igvn.replace_node(n, n->in(1));
2112         success = true;
2113       }
2114       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2115       progress = progress || success;
2116     }
2117   }
2118   // Next, attempt to eliminate allocations
2119   progress = true;
2120   while (progress) {
2121     progress = false;
2122     for (int i = C->macro_count(); i > 0; i--) {
2123       Node * n = C->macro_node(i-1);
2124       bool success = false;
2125       debug_only(int old_macro_count = C->macro_count(););
2126       switch (n->class_id()) {
2127       case Node::Class_Allocate:
2128       case Node::Class_AllocateArray:
2129         success = eliminate_allocate_node(n->as_Allocate());
2130         break;
2131       case Node::Class_Lock:
2132       case Node::Class_Unlock:
2133         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2134         break;
2135       default:
2136         assert(false, "unknown node type in macro list");
2137       }
2138       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2139       progress = progress || success;
2140     }
2141   }
2142   // Make sure expansion will not cause node limit to be exceeded.
2143   // Worst case is a macro node gets expanded into about 50 nodes.
2144   // Allow 50% more for optimization.
2145   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
2146     return true;
2147 
2148   // expand "macro" nodes
2149   // nodes are removed from the macro list as they are processed
2150   while (C->macro_count() > 0) {
2151     int macro_count = C->macro_count();
2152     Node * n = C->macro_node(macro_count-1);
2153     assert(n->is_macro(), "only macro nodes expected here");
2154     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2155       // node is unreachable, so don't try to expand it
2156       C->remove_macro_node(n);
2157       continue;
2158     }
2159     switch (n->class_id()) {
2160     case Node::Class_Allocate:
2161       expand_allocate(n->as_Allocate());
2162       break;
2163     case Node::Class_AllocateArray:
2164       expand_allocate_array(n->as_AllocateArray());
2165       break;
2166     case Node::Class_Lock:
2167       expand_lock_node(n->as_Lock());
2168       break;
2169     case Node::Class_Unlock:
2170       expand_unlock_node(n->as_Unlock());
2171       break;
2172     default:
2173       assert(false, "unknown node type in macro list");
2174     }
2175     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2176     if (C->failing())  return true;
2177   }
2178 
2179   _igvn.set_delay_transform(false);
2180   _igvn.optimize();
2181   return false;
2182 }