1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/hpi.hpp"
  40 #include "runtime/os.hpp"
  41 #ifdef TARGET_ARCH_MODEL_x86_32
  42 # include "adfiles/ad_x86_32.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_MODEL_x86_64
  45 # include "adfiles/ad_x86_64.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_MODEL_sparc
  48 # include "adfiles/ad_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_zero
  51 # include "adfiles/ad_zero.hpp"
  52 #endif
  53 
  54 OptoReg::Name OptoReg::c_frame_pointer;
  55 
  56 
  57 
  58 const int Matcher::base2reg[Type::lastype] = {
  59   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  60   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  61   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  62   0, 0/*abio*/,
  63   Op_RegP /* Return address */, 0, /* the memories */
  64   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
  65   0  /*bottom*/
  66 };
  67 
  68 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  69 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  70 RegMask Matcher::STACK_ONLY_mask;
  71 RegMask Matcher::c_frame_ptr_mask;
  72 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  73 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  74 
  75 //---------------------------Matcher-------------------------------------------
  76 Matcher::Matcher( Node_List &proj_list ) :
  77   PhaseTransform( Phase::Ins_Select ),
  78 #ifdef ASSERT
  79   _old2new_map(C->comp_arena()),
  80   _new2old_map(C->comp_arena()),
  81 #endif
  82   _shared_nodes(C->comp_arena()),
  83   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  84   _swallowed(swallowed),
  85   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  86   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  87   _must_clone(must_clone), _proj_list(proj_list),
  88   _register_save_policy(register_save_policy),
  89   _c_reg_save_policy(c_reg_save_policy),
  90   _register_save_type(register_save_type),
  91   _ruleName(ruleName),
  92   _allocation_started(false),
  93   _states_arena(Chunk::medium_size),
  94   _visited(&_states_arena),
  95   _shared(&_states_arena),
  96   _dontcare(&_states_arena) {
  97   C->set_matcher(this);
  98 
  99   idealreg2spillmask  [Op_RegI] = NULL;
 100   idealreg2spillmask  [Op_RegN] = NULL;
 101   idealreg2spillmask  [Op_RegL] = NULL;
 102   idealreg2spillmask  [Op_RegF] = NULL;
 103   idealreg2spillmask  [Op_RegD] = NULL;
 104   idealreg2spillmask  [Op_RegP] = NULL;
 105 
 106   idealreg2debugmask  [Op_RegI] = NULL;
 107   idealreg2debugmask  [Op_RegN] = NULL;
 108   idealreg2debugmask  [Op_RegL] = NULL;
 109   idealreg2debugmask  [Op_RegF] = NULL;
 110   idealreg2debugmask  [Op_RegD] = NULL;
 111   idealreg2debugmask  [Op_RegP] = NULL;
 112 
 113   idealreg2mhdebugmask[Op_RegI] = NULL;
 114   idealreg2mhdebugmask[Op_RegN] = NULL;
 115   idealreg2mhdebugmask[Op_RegL] = NULL;
 116   idealreg2mhdebugmask[Op_RegF] = NULL;
 117   idealreg2mhdebugmask[Op_RegD] = NULL;
 118   idealreg2mhdebugmask[Op_RegP] = NULL;
 119 
 120   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 121 }
 122 
 123 //------------------------------warp_incoming_stk_arg------------------------
 124 // This warps a VMReg into an OptoReg::Name
 125 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 126   OptoReg::Name warped;
 127   if( reg->is_stack() ) {  // Stack slot argument?
 128     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 129     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 130     if( warped >= _in_arg_limit )
 131       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 132     if (!RegMask::can_represent(warped)) {
 133       // the compiler cannot represent this method's calling sequence
 134       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 135       return OptoReg::Bad;
 136     }
 137     return warped;
 138   }
 139   return OptoReg::as_OptoReg(reg);
 140 }
 141 
 142 //---------------------------compute_old_SP------------------------------------
 143 OptoReg::Name Compile::compute_old_SP() {
 144   int fixed    = fixed_slots();
 145   int preserve = in_preserve_stack_slots();
 146   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 147 }
 148 
 149 
 150 
 151 #ifdef ASSERT
 152 void Matcher::verify_new_nodes_only(Node* xroot) {
 153   // Make sure that the new graph only references new nodes
 154   ResourceMark rm;
 155   Unique_Node_List worklist;
 156   VectorSet visited(Thread::current()->resource_area());
 157   worklist.push(xroot);
 158   while (worklist.size() > 0) {
 159     Node* n = worklist.pop();
 160     visited <<= n->_idx;
 161     assert(C->node_arena()->contains(n), "dead node");
 162     for (uint j = 0; j < n->req(); j++) {
 163       Node* in = n->in(j);
 164       if (in != NULL) {
 165         assert(C->node_arena()->contains(in), "dead node");
 166         if (!visited.test(in->_idx)) {
 167           worklist.push(in);
 168         }
 169       }
 170     }
 171   }
 172 }
 173 #endif
 174 
 175 
 176 //---------------------------match---------------------------------------------
 177 void Matcher::match( ) {
 178   if( MaxLabelRootDepth < 100 ) { // Too small?
 179     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 180     MaxLabelRootDepth = 100;
 181   }
 182   // One-time initialization of some register masks.
 183   init_spill_mask( C->root()->in(1) );
 184   _return_addr_mask = return_addr();
 185 #ifdef _LP64
 186   // Pointers take 2 slots in 64-bit land
 187   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 188 #endif
 189 
 190   // Map a Java-signature return type into return register-value
 191   // machine registers for 0, 1 and 2 returned values.
 192   const TypeTuple *range = C->tf()->range();
 193   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 194     // Get ideal-register return type
 195     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 196     // Get machine return register
 197     uint sop = C->start()->Opcode();
 198     OptoRegPair regs = return_value(ireg, false);
 199 
 200     // And mask for same
 201     _return_value_mask = RegMask(regs.first());
 202     if( OptoReg::is_valid(regs.second()) )
 203       _return_value_mask.Insert(regs.second());
 204   }
 205 
 206   // ---------------
 207   // Frame Layout
 208 
 209   // Need the method signature to determine the incoming argument types,
 210   // because the types determine which registers the incoming arguments are
 211   // in, and this affects the matched code.
 212   const TypeTuple *domain = C->tf()->domain();
 213   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 214   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 215   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 216   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 217   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 218   uint i;
 219   for( i = 0; i<argcnt; i++ ) {
 220     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 221   }
 222 
 223   // Pass array of ideal registers and length to USER code (from the AD file)
 224   // that will convert this to an array of register numbers.
 225   const StartNode *start = C->start();
 226   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 227 #ifdef ASSERT
 228   // Sanity check users' calling convention.  Real handy while trying to
 229   // get the initial port correct.
 230   { for (uint i = 0; i<argcnt; i++) {
 231       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 232         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 233         _parm_regs[i].set_bad();
 234         continue;
 235       }
 236       VMReg parm_reg = vm_parm_regs[i].first();
 237       assert(parm_reg->is_valid(), "invalid arg?");
 238       if (parm_reg->is_reg()) {
 239         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 240         assert(can_be_java_arg(opto_parm_reg) ||
 241                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 242                opto_parm_reg == inline_cache_reg(),
 243                "parameters in register must be preserved by runtime stubs");
 244       }
 245       for (uint j = 0; j < i; j++) {
 246         assert(parm_reg != vm_parm_regs[j].first(),
 247                "calling conv. must produce distinct regs");
 248       }
 249     }
 250   }
 251 #endif
 252 
 253   // Do some initial frame layout.
 254 
 255   // Compute the old incoming SP (may be called FP) as
 256   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 257   _old_SP = C->compute_old_SP();
 258   assert( is_even(_old_SP), "must be even" );
 259 
 260   // Compute highest incoming stack argument as
 261   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 262   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 263   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 264   for( i = 0; i < argcnt; i++ ) {
 265     // Permit args to have no register
 266     _calling_convention_mask[i].Clear();
 267     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 268       continue;
 269     }
 270     // calling_convention returns stack arguments as a count of
 271     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 272     // the allocators point of view, taking into account all the
 273     // preserve area, locks & pad2.
 274 
 275     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 276     if( OptoReg::is_valid(reg1))
 277       _calling_convention_mask[i].Insert(reg1);
 278 
 279     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 280     if( OptoReg::is_valid(reg2))
 281       _calling_convention_mask[i].Insert(reg2);
 282 
 283     // Saved biased stack-slot register number
 284     _parm_regs[i].set_pair(reg2, reg1);
 285   }
 286 
 287   // Finally, make sure the incoming arguments take up an even number of
 288   // words, in case the arguments or locals need to contain doubleword stack
 289   // slots.  The rest of the system assumes that stack slot pairs (in
 290   // particular, in the spill area) which look aligned will in fact be
 291   // aligned relative to the stack pointer in the target machine.  Double
 292   // stack slots will always be allocated aligned.
 293   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 294 
 295   // Compute highest outgoing stack argument as
 296   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 297   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 298   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 299 
 300   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 301     // the compiler cannot represent this method's calling sequence
 302     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 303   }
 304 
 305   if (C->failing())  return;  // bailed out on incoming arg failure
 306 
 307   // ---------------
 308   // Collect roots of matcher trees.  Every node for which
 309   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 310   // can be a valid interior of some tree.
 311   find_shared( C->root() );
 312   find_shared( C->top() );
 313 
 314   C->print_method("Before Matching");
 315 
 316   // Create new ideal node ConP #NULL even if it does exist in old space
 317   // to avoid false sharing if the corresponding mach node is not used.
 318   // The corresponding mach node is only used in rare cases for derived
 319   // pointers.
 320   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 321 
 322   // Swap out to old-space; emptying new-space
 323   Arena *old = C->node_arena()->move_contents(C->old_arena());
 324 
 325   // Save debug and profile information for nodes in old space:
 326   _old_node_note_array = C->node_note_array();
 327   if (_old_node_note_array != NULL) {
 328     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 329                            (C->comp_arena(), _old_node_note_array->length(),
 330                             0, NULL));
 331   }
 332 
 333   // Pre-size the new_node table to avoid the need for range checks.
 334   grow_new_node_array(C->unique());
 335 
 336   // Reset node counter so MachNodes start with _idx at 0
 337   int nodes = C->unique(); // save value
 338   C->set_unique(0);
 339 
 340   // Recursively match trees from old space into new space.
 341   // Correct leaves of new-space Nodes; they point to old-space.
 342   _visited.Clear();             // Clear visit bits for xform call
 343   C->set_cached_top_node(xform( C->top(), nodes ));
 344   if (!C->failing()) {
 345     Node* xroot =        xform( C->root(), 1 );
 346     if (xroot == NULL) {
 347       Matcher::soft_match_failure();  // recursive matching process failed
 348       C->record_method_not_compilable("instruction match failed");
 349     } else {
 350       // During matching shared constants were attached to C->root()
 351       // because xroot wasn't available yet, so transfer the uses to
 352       // the xroot.
 353       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 354         Node* n = C->root()->fast_out(j);
 355         if (C->node_arena()->contains(n)) {
 356           assert(n->in(0) == C->root(), "should be control user");
 357           n->set_req(0, xroot);
 358           --j;
 359           --jmax;
 360         }
 361       }
 362 
 363       // Generate new mach node for ConP #NULL
 364       assert(new_ideal_null != NULL, "sanity");
 365       _mach_null = match_tree(new_ideal_null);
 366       // Don't set control, it will confuse GCM since there are no uses.
 367       // The control will be set when this node is used first time
 368       // in find_base_for_derived().
 369       assert(_mach_null != NULL, "");
 370 
 371       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 372 
 373 #ifdef ASSERT
 374       verify_new_nodes_only(xroot);
 375 #endif
 376     }
 377   }
 378   if (C->top() == NULL || C->root() == NULL) {
 379     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 380   }
 381   if (C->failing()) {
 382     // delete old;
 383     old->destruct_contents();
 384     return;
 385   }
 386   assert( C->top(), "" );
 387   assert( C->root(), "" );
 388   validate_null_checks();
 389 
 390   // Now smoke old-space
 391   NOT_DEBUG( old->destruct_contents() );
 392 
 393   // ------------------------
 394   // Set up save-on-entry registers
 395   Fixup_Save_On_Entry( );
 396 }
 397 
 398 
 399 //------------------------------Fixup_Save_On_Entry----------------------------
 400 // The stated purpose of this routine is to take care of save-on-entry
 401 // registers.  However, the overall goal of the Match phase is to convert into
 402 // machine-specific instructions which have RegMasks to guide allocation.
 403 // So what this procedure really does is put a valid RegMask on each input
 404 // to the machine-specific variations of all Return, TailCall and Halt
 405 // instructions.  It also adds edgs to define the save-on-entry values (and of
 406 // course gives them a mask).
 407 
 408 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 409   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 410   // Do all the pre-defined register masks
 411   rms[TypeFunc::Control  ] = RegMask::Empty;
 412   rms[TypeFunc::I_O      ] = RegMask::Empty;
 413   rms[TypeFunc::Memory   ] = RegMask::Empty;
 414   rms[TypeFunc::ReturnAdr] = ret_adr;
 415   rms[TypeFunc::FramePtr ] = fp;
 416   return rms;
 417 }
 418 
 419 //---------------------------init_first_stack_mask-----------------------------
 420 // Create the initial stack mask used by values spilling to the stack.
 421 // Disallow any debug info in outgoing argument areas by setting the
 422 // initial mask accordingly.
 423 void Matcher::init_first_stack_mask() {
 424 
 425   // Allocate storage for spill masks as masks for the appropriate load type.
 426   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * 3*6);
 427 
 428   idealreg2spillmask  [Op_RegN] = &rms[0];
 429   idealreg2spillmask  [Op_RegI] = &rms[1];
 430   idealreg2spillmask  [Op_RegL] = &rms[2];
 431   idealreg2spillmask  [Op_RegF] = &rms[3];
 432   idealreg2spillmask  [Op_RegD] = &rms[4];
 433   idealreg2spillmask  [Op_RegP] = &rms[5];
 434 
 435   idealreg2debugmask  [Op_RegN] = &rms[6];
 436   idealreg2debugmask  [Op_RegI] = &rms[7];
 437   idealreg2debugmask  [Op_RegL] = &rms[8];
 438   idealreg2debugmask  [Op_RegF] = &rms[9];
 439   idealreg2debugmask  [Op_RegD] = &rms[10];
 440   idealreg2debugmask  [Op_RegP] = &rms[11];
 441 
 442   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 443   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 444   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 445   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 446   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 447   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 448 
 449   OptoReg::Name i;
 450 
 451   // At first, start with the empty mask
 452   C->FIRST_STACK_mask().Clear();
 453 
 454   // Add in the incoming argument area
 455   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 456   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 457     C->FIRST_STACK_mask().Insert(i);
 458 
 459   // Add in all bits past the outgoing argument area
 460   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 461             "must be able to represent all call arguments in reg mask");
 462   init = _out_arg_limit;
 463   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 464     C->FIRST_STACK_mask().Insert(i);
 465 
 466   // Finally, set the "infinite stack" bit.
 467   C->FIRST_STACK_mask().set_AllStack();
 468 
 469   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 470 #ifdef _LP64
 471   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 472    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 473 #endif
 474   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 475    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 476   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 477    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 478   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 479    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 480   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 481    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 482   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 483    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 484 
 485    if (UseFPUForSpilling) {
 486      // This mask logic assumes that the spill operations are
 487      // symmetric and that the registers involved are the same size.
 488      // On sparc for instance we may have to use 64 bit moves will
 489      // kill 2 registers when used with F0-F31.
 490      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 491      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 492 #ifdef _LP64
 493      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 494      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 495      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 496      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 497 #else
 498      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 499 #endif
 500    }
 501 
 502   // Make up debug masks.  Any spill slot plus callee-save registers.
 503   // Caller-save registers are assumed to be trashable by the various
 504   // inline-cache fixup routines.
 505   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 506   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 507   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 508   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 509   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 510   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 511 
 512   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 513   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 514   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 515   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 516   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 517   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 518 
 519   // Prevent stub compilations from attempting to reference
 520   // callee-saved registers from debug info
 521   bool exclude_soe = !Compile::current()->is_method_compilation();
 522 
 523   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 524     // registers the caller has to save do not work
 525     if( _register_save_policy[i] == 'C' ||
 526         _register_save_policy[i] == 'A' ||
 527         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 528       idealreg2debugmask  [Op_RegN]->Remove(i);
 529       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 530       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 531       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 532       idealreg2debugmask  [Op_RegD]->Remove(i);
 533       idealreg2debugmask  [Op_RegP]->Remove(i);
 534 
 535       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 536       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 537       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 538       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 539       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 540       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 541     }
 542   }
 543 
 544   // Subtract the register we use to save the SP for MethodHandle
 545   // invokes to from the debug mask.
 546   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 547   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 548   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 549   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 550   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 551   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 552   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 553 }
 554 
 555 //---------------------------is_save_on_entry----------------------------------
 556 bool Matcher::is_save_on_entry( int reg ) {
 557   return
 558     _register_save_policy[reg] == 'E' ||
 559     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 560     // Also save argument registers in the trampolining stubs
 561     (C->save_argument_registers() && is_spillable_arg(reg));
 562 }
 563 
 564 //---------------------------Fixup_Save_On_Entry-------------------------------
 565 void Matcher::Fixup_Save_On_Entry( ) {
 566   init_first_stack_mask();
 567 
 568   Node *root = C->root();       // Short name for root
 569   // Count number of save-on-entry registers.
 570   uint soe_cnt = number_of_saved_registers();
 571   uint i;
 572 
 573   // Find the procedure Start Node
 574   StartNode *start = C->start();
 575   assert( start, "Expect a start node" );
 576 
 577   // Save argument registers in the trampolining stubs
 578   if( C->save_argument_registers() )
 579     for( i = 0; i < _last_Mach_Reg; i++ )
 580       if( is_spillable_arg(i) )
 581         soe_cnt++;
 582 
 583   // Input RegMask array shared by all Returns.
 584   // The type for doubles and longs has a count of 2, but
 585   // there is only 1 returned value
 586   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 587   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 588   // Returns have 0 or 1 returned values depending on call signature.
 589   // Return register is specified by return_value in the AD file.
 590   if (ret_edge_cnt > TypeFunc::Parms)
 591     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 592 
 593   // Input RegMask array shared by all Rethrows.
 594   uint reth_edge_cnt = TypeFunc::Parms+1;
 595   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 596   // Rethrow takes exception oop only, but in the argument 0 slot.
 597   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 598 #ifdef _LP64
 599   // Need two slots for ptrs in 64-bit land
 600   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 601 #endif
 602 
 603   // Input RegMask array shared by all TailCalls
 604   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 605   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 606 
 607   // Input RegMask array shared by all TailJumps
 608   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 609   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 610 
 611   // TailCalls have 2 returned values (target & moop), whose masks come
 612   // from the usual MachNode/MachOper mechanism.  Find a sample
 613   // TailCall to extract these masks and put the correct masks into
 614   // the tail_call_rms array.
 615   for( i=1; i < root->req(); i++ ) {
 616     MachReturnNode *m = root->in(i)->as_MachReturn();
 617     if( m->ideal_Opcode() == Op_TailCall ) {
 618       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 619       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 620       break;
 621     }
 622   }
 623 
 624   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 625   // from the usual MachNode/MachOper mechanism.  Find a sample
 626   // TailJump to extract these masks and put the correct masks into
 627   // the tail_jump_rms array.
 628   for( i=1; i < root->req(); i++ ) {
 629     MachReturnNode *m = root->in(i)->as_MachReturn();
 630     if( m->ideal_Opcode() == Op_TailJump ) {
 631       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 632       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 633       break;
 634     }
 635   }
 636 
 637   // Input RegMask array shared by all Halts
 638   uint halt_edge_cnt = TypeFunc::Parms;
 639   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 640 
 641   // Capture the return input masks into each exit flavor
 642   for( i=1; i < root->req(); i++ ) {
 643     MachReturnNode *exit = root->in(i)->as_MachReturn();
 644     switch( exit->ideal_Opcode() ) {
 645       case Op_Return   : exit->_in_rms = ret_rms;  break;
 646       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 647       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 648       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 649       case Op_Halt     : exit->_in_rms = halt_rms; break;
 650       default          : ShouldNotReachHere();
 651     }
 652   }
 653 
 654   // Next unused projection number from Start.
 655   int proj_cnt = C->tf()->domain()->cnt();
 656 
 657   // Do all the save-on-entry registers.  Make projections from Start for
 658   // them, and give them a use at the exit points.  To the allocator, they
 659   // look like incoming register arguments.
 660   for( i = 0; i < _last_Mach_Reg; i++ ) {
 661     if( is_save_on_entry(i) ) {
 662 
 663       // Add the save-on-entry to the mask array
 664       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 665       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 666       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 667       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 668       // Halts need the SOE registers, but only in the stack as debug info.
 669       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 670       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 671 
 672       Node *mproj;
 673 
 674       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 675       // into a single RegD.
 676       if( (i&1) == 0 &&
 677           _register_save_type[i  ] == Op_RegF &&
 678           _register_save_type[i+1] == Op_RegF &&
 679           is_save_on_entry(i+1) ) {
 680         // Add other bit for double
 681         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 682         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 683         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 684         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 685         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 686         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 687         proj_cnt += 2;          // Skip 2 for doubles
 688       }
 689       else if( (i&1) == 1 &&    // Else check for high half of double
 690                _register_save_type[i-1] == Op_RegF &&
 691                _register_save_type[i  ] == Op_RegF &&
 692                is_save_on_entry(i-1) ) {
 693         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 694         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 695         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 696         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 697         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 698         mproj = C->top();
 699       }
 700       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 701       // into a single RegL.
 702       else if( (i&1) == 0 &&
 703           _register_save_type[i  ] == Op_RegI &&
 704           _register_save_type[i+1] == Op_RegI &&
 705         is_save_on_entry(i+1) ) {
 706         // Add other bit for long
 707         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 708         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 709         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 710         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 711         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 712         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 713         proj_cnt += 2;          // Skip 2 for longs
 714       }
 715       else if( (i&1) == 1 &&    // Else check for high half of long
 716                _register_save_type[i-1] == Op_RegI &&
 717                _register_save_type[i  ] == Op_RegI &&
 718                is_save_on_entry(i-1) ) {
 719         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 720         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 721         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 722         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 723         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 724         mproj = C->top();
 725       } else {
 726         // Make a projection for it off the Start
 727         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 728       }
 729 
 730       ret_edge_cnt ++;
 731       reth_edge_cnt ++;
 732       tail_call_edge_cnt ++;
 733       tail_jump_edge_cnt ++;
 734       halt_edge_cnt ++;
 735 
 736       // Add a use of the SOE register to all exit paths
 737       for( uint j=1; j < root->req(); j++ )
 738         root->in(j)->add_req(mproj);
 739     } // End of if a save-on-entry register
 740   } // End of for all machine registers
 741 }
 742 
 743 //------------------------------init_spill_mask--------------------------------
 744 void Matcher::init_spill_mask( Node *ret ) {
 745   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 746 
 747   OptoReg::c_frame_pointer = c_frame_pointer();
 748   c_frame_ptr_mask = c_frame_pointer();
 749 #ifdef _LP64
 750   // pointers are twice as big
 751   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 752 #endif
 753 
 754   // Start at OptoReg::stack0()
 755   STACK_ONLY_mask.Clear();
 756   OptoReg::Name init = OptoReg::stack2reg(0);
 757   // STACK_ONLY_mask is all stack bits
 758   OptoReg::Name i;
 759   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 760     STACK_ONLY_mask.Insert(i);
 761   // Also set the "infinite stack" bit.
 762   STACK_ONLY_mask.set_AllStack();
 763 
 764   // Copy the register names over into the shared world
 765   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 766     // SharedInfo::regName[i] = regName[i];
 767     // Handy RegMasks per machine register
 768     mreg2regmask[i].Insert(i);
 769   }
 770 
 771   // Grab the Frame Pointer
 772   Node *fp  = ret->in(TypeFunc::FramePtr);
 773   Node *mem = ret->in(TypeFunc::Memory);
 774   const TypePtr* atp = TypePtr::BOTTOM;
 775   // Share frame pointer while making spill ops
 776   set_shared(fp);
 777 
 778   // Compute generic short-offset Loads
 779 #ifdef _LP64
 780   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 781 #endif
 782   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 783   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 784   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 785   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 786   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 787   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 788          spillD != NULL && spillP != NULL, "");
 789 
 790   // Get the ADLC notion of the right regmask, for each basic type.
 791 #ifdef _LP64
 792   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 793 #endif
 794   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 795   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 796   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 797   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 798   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 799 }
 800 
 801 #ifdef ASSERT
 802 static void match_alias_type(Compile* C, Node* n, Node* m) {
 803   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 804   const TypePtr* nat = n->adr_type();
 805   const TypePtr* mat = m->adr_type();
 806   int nidx = C->get_alias_index(nat);
 807   int midx = C->get_alias_index(mat);
 808   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 809   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 810     for (uint i = 1; i < n->req(); i++) {
 811       Node* n1 = n->in(i);
 812       const TypePtr* n1at = n1->adr_type();
 813       if (n1at != NULL) {
 814         nat = n1at;
 815         nidx = C->get_alias_index(n1at);
 816       }
 817     }
 818   }
 819   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 820   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 821     switch (n->Opcode()) {
 822     case Op_PrefetchRead:
 823     case Op_PrefetchWrite:
 824       nidx = Compile::AliasIdxRaw;
 825       nat = TypeRawPtr::BOTTOM;
 826       break;
 827     }
 828   }
 829   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 830     switch (n->Opcode()) {
 831     case Op_ClearArray:
 832       midx = Compile::AliasIdxRaw;
 833       mat = TypeRawPtr::BOTTOM;
 834       break;
 835     }
 836   }
 837   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 838     switch (n->Opcode()) {
 839     case Op_Return:
 840     case Op_Rethrow:
 841     case Op_Halt:
 842     case Op_TailCall:
 843     case Op_TailJump:
 844       nidx = Compile::AliasIdxBot;
 845       nat = TypePtr::BOTTOM;
 846       break;
 847     }
 848   }
 849   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 850     switch (n->Opcode()) {
 851     case Op_StrComp:
 852     case Op_StrEquals:
 853     case Op_StrIndexOf:
 854     case Op_AryEq:
 855     case Op_MemBarVolatile:
 856     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 857       nidx = Compile::AliasIdxTop;
 858       nat = NULL;
 859       break;
 860     }
 861   }
 862   if (nidx != midx) {
 863     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 864       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 865       n->dump();
 866       m->dump();
 867     }
 868     assert(C->subsume_loads() && C->must_alias(nat, midx),
 869            "must not lose alias info when matching");
 870   }
 871 }
 872 #endif
 873 
 874 
 875 //------------------------------MStack-----------------------------------------
 876 // State and MStack class used in xform() and find_shared() iterative methods.
 877 enum Node_State { Pre_Visit,  // node has to be pre-visited
 878                       Visit,  // visit node
 879                  Post_Visit,  // post-visit node
 880              Alt_Post_Visit   // alternative post-visit path
 881                 };
 882 
 883 class MStack: public Node_Stack {
 884   public:
 885     MStack(int size) : Node_Stack(size) { }
 886 
 887     void push(Node *n, Node_State ns) {
 888       Node_Stack::push(n, (uint)ns);
 889     }
 890     void push(Node *n, Node_State ns, Node *parent, int indx) {
 891       ++_inode_top;
 892       if ((_inode_top + 1) >= _inode_max) grow();
 893       _inode_top->node = parent;
 894       _inode_top->indx = (uint)indx;
 895       ++_inode_top;
 896       _inode_top->node = n;
 897       _inode_top->indx = (uint)ns;
 898     }
 899     Node *parent() {
 900       pop();
 901       return node();
 902     }
 903     Node_State state() const {
 904       return (Node_State)index();
 905     }
 906     void set_state(Node_State ns) {
 907       set_index((uint)ns);
 908     }
 909 };
 910 
 911 
 912 //------------------------------xform------------------------------------------
 913 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 914 // Node in new-space.  Given a new-space Node, recursively walk his children.
 915 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 916 Node *Matcher::xform( Node *n, int max_stack ) {
 917   // Use one stack to keep both: child's node/state and parent's node/index
 918   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 919   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 920 
 921   while (mstack.is_nonempty()) {
 922     n = mstack.node();          // Leave node on stack
 923     Node_State nstate = mstack.state();
 924     if (nstate == Visit) {
 925       mstack.set_state(Post_Visit);
 926       Node *oldn = n;
 927       // Old-space or new-space check
 928       if (!C->node_arena()->contains(n)) {
 929         // Old space!
 930         Node* m;
 931         if (has_new_node(n)) {  // Not yet Label/Reduced
 932           m = new_node(n);
 933         } else {
 934           if (!is_dontcare(n)) { // Matcher can match this guy
 935             // Calls match special.  They match alone with no children.
 936             // Their children, the incoming arguments, match normally.
 937             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 938             if (C->failing())  return NULL;
 939             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 940           } else {                  // Nothing the matcher cares about
 941             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 942               // Convert to machine-dependent projection
 943               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 944 #ifdef ASSERT
 945               _new2old_map.map(m->_idx, n);
 946 #endif
 947               if (m->in(0) != NULL) // m might be top
 948                 collect_null_checks(m, n);
 949             } else {                // Else just a regular 'ol guy
 950               m = n->clone();       // So just clone into new-space
 951 #ifdef ASSERT
 952               _new2old_map.map(m->_idx, n);
 953 #endif
 954               // Def-Use edges will be added incrementally as Uses
 955               // of this node are matched.
 956               assert(m->outcnt() == 0, "no Uses of this clone yet");
 957             }
 958           }
 959 
 960           set_new_node(n, m);       // Map old to new
 961           if (_old_node_note_array != NULL) {
 962             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 963                                                   n->_idx);
 964             C->set_node_notes_at(m->_idx, nn);
 965           }
 966           debug_only(match_alias_type(C, n, m));
 967         }
 968         n = m;    // n is now a new-space node
 969         mstack.set_node(n);
 970       }
 971 
 972       // New space!
 973       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 974 
 975       int i;
 976       // Put precedence edges on stack first (match them last).
 977       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 978         Node *m = oldn->in(i);
 979         if (m == NULL) break;
 980         // set -1 to call add_prec() instead of set_req() during Step1
 981         mstack.push(m, Visit, n, -1);
 982       }
 983 
 984       // For constant debug info, I'd rather have unmatched constants.
 985       int cnt = n->req();
 986       JVMState* jvms = n->jvms();
 987       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 988 
 989       // Now do only debug info.  Clone constants rather than matching.
 990       // Constants are represented directly in the debug info without
 991       // the need for executable machine instructions.
 992       // Monitor boxes are also represented directly.
 993       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 994         Node *m = n->in(i);          // Get input
 995         int op = m->Opcode();
 996         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 997         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 998             op == Op_ConF || op == Op_ConD || op == Op_ConL
 999             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1000             ) {
1001           m = m->clone();
1002 #ifdef ASSERT
1003           _new2old_map.map(m->_idx, n);
1004 #endif
1005           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1006           mstack.push(m->in(0), Visit, m, 0);
1007         } else {
1008           mstack.push(m, Visit, n, i);
1009         }
1010       }
1011 
1012       // And now walk his children, and convert his inputs to new-space.
1013       for( ; i >= 0; --i ) { // For all normal inputs do
1014         Node *m = n->in(i);  // Get input
1015         if(m != NULL)
1016           mstack.push(m, Visit, n, i);
1017       }
1018 
1019     }
1020     else if (nstate == Post_Visit) {
1021       // Set xformed input
1022       Node *p = mstack.parent();
1023       if (p != NULL) { // root doesn't have parent
1024         int i = (int)mstack.index();
1025         if (i >= 0)
1026           p->set_req(i, n); // required input
1027         else if (i == -1)
1028           p->add_prec(n);   // precedence input
1029         else
1030           ShouldNotReachHere();
1031       }
1032       mstack.pop(); // remove processed node from stack
1033     }
1034     else {
1035       ShouldNotReachHere();
1036     }
1037   } // while (mstack.is_nonempty())
1038   return n; // Return new-space Node
1039 }
1040 
1041 //------------------------------warp_outgoing_stk_arg------------------------
1042 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1043   // Convert outgoing argument location to a pre-biased stack offset
1044   if (reg->is_stack()) {
1045     OptoReg::Name warped = reg->reg2stack();
1046     // Adjust the stack slot offset to be the register number used
1047     // by the allocator.
1048     warped = OptoReg::add(begin_out_arg_area, warped);
1049     // Keep track of the largest numbered stack slot used for an arg.
1050     // Largest used slot per call-site indicates the amount of stack
1051     // that is killed by the call.
1052     if( warped >= out_arg_limit_per_call )
1053       out_arg_limit_per_call = OptoReg::add(warped,1);
1054     if (!RegMask::can_represent(warped)) {
1055       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1056       return OptoReg::Bad;
1057     }
1058     return warped;
1059   }
1060   return OptoReg::as_OptoReg(reg);
1061 }
1062 
1063 
1064 //------------------------------match_sfpt-------------------------------------
1065 // Helper function to match call instructions.  Calls match special.
1066 // They match alone with no children.  Their children, the incoming
1067 // arguments, match normally.
1068 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1069   MachSafePointNode *msfpt = NULL;
1070   MachCallNode      *mcall = NULL;
1071   uint               cnt;
1072   // Split out case for SafePoint vs Call
1073   CallNode *call;
1074   const TypeTuple *domain;
1075   ciMethod*        method = NULL;
1076   bool             is_method_handle_invoke = false;  // for special kill effects
1077   if( sfpt->is_Call() ) {
1078     call = sfpt->as_Call();
1079     domain = call->tf()->domain();
1080     cnt = domain->cnt();
1081 
1082     // Match just the call, nothing else
1083     MachNode *m = match_tree(call);
1084     if (C->failing())  return NULL;
1085     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1086 
1087     // Copy data from the Ideal SafePoint to the machine version
1088     mcall = m->as_MachCall();
1089 
1090     mcall->set_tf(         call->tf());
1091     mcall->set_entry_point(call->entry_point());
1092     mcall->set_cnt(        call->cnt());
1093 
1094     if( mcall->is_MachCallJava() ) {
1095       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1096       const CallJavaNode *call_java =  call->as_CallJava();
1097       method = call_java->method();
1098       mcall_java->_method = method;
1099       mcall_java->_bci = call_java->_bci;
1100       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1101       is_method_handle_invoke = call_java->is_method_handle_invoke();
1102       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1103       if( mcall_java->is_MachCallStaticJava() )
1104         mcall_java->as_MachCallStaticJava()->_name =
1105          call_java->as_CallStaticJava()->_name;
1106       if( mcall_java->is_MachCallDynamicJava() )
1107         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1108          call_java->as_CallDynamicJava()->_vtable_index;
1109     }
1110     else if( mcall->is_MachCallRuntime() ) {
1111       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1112     }
1113     msfpt = mcall;
1114   }
1115   // This is a non-call safepoint
1116   else {
1117     call = NULL;
1118     domain = NULL;
1119     MachNode *mn = match_tree(sfpt);
1120     if (C->failing())  return NULL;
1121     msfpt = mn->as_MachSafePoint();
1122     cnt = TypeFunc::Parms;
1123   }
1124 
1125   // Advertise the correct memory effects (for anti-dependence computation).
1126   msfpt->set_adr_type(sfpt->adr_type());
1127 
1128   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1129   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1130   // Empty them all.
1131   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1132 
1133   // Do all the pre-defined non-Empty register masks
1134   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1135   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1136 
1137   // Place first outgoing argument can possibly be put.
1138   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1139   assert( is_even(begin_out_arg_area), "" );
1140   // Compute max outgoing register number per call site.
1141   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1142   // Calls to C may hammer extra stack slots above and beyond any arguments.
1143   // These are usually backing store for register arguments for varargs.
1144   if( call != NULL && call->is_CallRuntime() )
1145     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1146 
1147 
1148   // Do the normal argument list (parameters) register masks
1149   int argcnt = cnt - TypeFunc::Parms;
1150   if( argcnt > 0 ) {          // Skip it all if we have no args
1151     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1152     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1153     int i;
1154     for( i = 0; i < argcnt; i++ ) {
1155       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1156     }
1157     // V-call to pick proper calling convention
1158     call->calling_convention( sig_bt, parm_regs, argcnt );
1159 
1160 #ifdef ASSERT
1161     // Sanity check users' calling convention.  Really handy during
1162     // the initial porting effort.  Fairly expensive otherwise.
1163     { for (int i = 0; i<argcnt; i++) {
1164       if( !parm_regs[i].first()->is_valid() &&
1165           !parm_regs[i].second()->is_valid() ) continue;
1166       VMReg reg1 = parm_regs[i].first();
1167       VMReg reg2 = parm_regs[i].second();
1168       for (int j = 0; j < i; j++) {
1169         if( !parm_regs[j].first()->is_valid() &&
1170             !parm_regs[j].second()->is_valid() ) continue;
1171         VMReg reg3 = parm_regs[j].first();
1172         VMReg reg4 = parm_regs[j].second();
1173         if( !reg1->is_valid() ) {
1174           assert( !reg2->is_valid(), "valid halvsies" );
1175         } else if( !reg3->is_valid() ) {
1176           assert( !reg4->is_valid(), "valid halvsies" );
1177         } else {
1178           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1179           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1180           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1181           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1182           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1183           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1184         }
1185       }
1186     }
1187     }
1188 #endif
1189 
1190     // Visit each argument.  Compute its outgoing register mask.
1191     // Return results now can have 2 bits returned.
1192     // Compute max over all outgoing arguments both per call-site
1193     // and over the entire method.
1194     for( i = 0; i < argcnt; i++ ) {
1195       // Address of incoming argument mask to fill in
1196       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1197       if( !parm_regs[i].first()->is_valid() &&
1198           !parm_regs[i].second()->is_valid() ) {
1199         continue;               // Avoid Halves
1200       }
1201       // Grab first register, adjust stack slots and insert in mask.
1202       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1203       if (OptoReg::is_valid(reg1))
1204         rm->Insert( reg1 );
1205       // Grab second register (if any), adjust stack slots and insert in mask.
1206       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1207       if (OptoReg::is_valid(reg2))
1208         rm->Insert( reg2 );
1209     } // End of for all arguments
1210 
1211     // Compute number of stack slots needed to restore stack in case of
1212     // Pascal-style argument popping.
1213     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1214   }
1215 
1216   if (is_method_handle_invoke) {
1217     // Kill some extra stack space in case method handles want to do
1218     // a little in-place argument insertion.
1219     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1220     out_arg_limit_per_call += MethodHandlePushLimit * regs_per_word;
1221     // Do not update mcall->_argsize because (a) the extra space is not
1222     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1223   }
1224 
1225   // Compute the max stack slot killed by any call.  These will not be
1226   // available for debug info, and will be used to adjust FIRST_STACK_mask
1227   // after all call sites have been visited.
1228   if( _out_arg_limit < out_arg_limit_per_call)
1229     _out_arg_limit = out_arg_limit_per_call;
1230 
1231   if (mcall) {
1232     // Kill the outgoing argument area, including any non-argument holes and
1233     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1234     // Since the max-per-method covers the max-per-call-site and debug info
1235     // is excluded on the max-per-method basis, debug info cannot land in
1236     // this killed area.
1237     uint r_cnt = mcall->tf()->range()->cnt();
1238     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1239     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1240       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1241     } else {
1242       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1243         proj->_rout.Insert(OptoReg::Name(i));
1244     }
1245     if( proj->_rout.is_NotEmpty() )
1246       _proj_list.push(proj);
1247   }
1248   // Transfer the safepoint information from the call to the mcall
1249   // Move the JVMState list
1250   msfpt->set_jvms(sfpt->jvms());
1251   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1252     jvms->set_map(sfpt);
1253   }
1254 
1255   // Debug inputs begin just after the last incoming parameter
1256   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1257           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1258 
1259   // Move the OopMap
1260   msfpt->_oop_map = sfpt->_oop_map;
1261 
1262   // Registers killed by the call are set in the local scheduling pass
1263   // of Global Code Motion.
1264   return msfpt;
1265 }
1266 
1267 //---------------------------match_tree----------------------------------------
1268 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1269 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1270 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1271 // a Load's result RegMask for memoization in idealreg2regmask[]
1272 MachNode *Matcher::match_tree( const Node *n ) {
1273   assert( n->Opcode() != Op_Phi, "cannot match" );
1274   assert( !n->is_block_start(), "cannot match" );
1275   // Set the mark for all locally allocated State objects.
1276   // When this call returns, the _states_arena arena will be reset
1277   // freeing all State objects.
1278   ResourceMark rm( &_states_arena );
1279 
1280   LabelRootDepth = 0;
1281 
1282   // StoreNodes require their Memory input to match any LoadNodes
1283   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1284 #ifdef ASSERT
1285   Node* save_mem_node = _mem_node;
1286   _mem_node = n->is_Store() ? (Node*)n : NULL;
1287 #endif
1288   // State object for root node of match tree
1289   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1290   State *s = new (&_states_arena) State;
1291   s->_kids[0] = NULL;
1292   s->_kids[1] = NULL;
1293   s->_leaf = (Node*)n;
1294   // Label the input tree, allocating labels from top-level arena
1295   Label_Root( n, s, n->in(0), mem );
1296   if (C->failing())  return NULL;
1297 
1298   // The minimum cost match for the whole tree is found at the root State
1299   uint mincost = max_juint;
1300   uint cost = max_juint;
1301   uint i;
1302   for( i = 0; i < NUM_OPERANDS; i++ ) {
1303     if( s->valid(i) &&                // valid entry and
1304         s->_cost[i] < cost &&         // low cost and
1305         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1306       cost = s->_cost[mincost=i];
1307   }
1308   if (mincost == max_juint) {
1309 #ifndef PRODUCT
1310     tty->print("No matching rule for:");
1311     s->dump();
1312 #endif
1313     Matcher::soft_match_failure();
1314     return NULL;
1315   }
1316   // Reduce input tree based upon the state labels to machine Nodes
1317   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1318 #ifdef ASSERT
1319   _old2new_map.map(n->_idx, m);
1320   _new2old_map.map(m->_idx, (Node*)n);
1321 #endif
1322 
1323   // Add any Matcher-ignored edges
1324   uint cnt = n->req();
1325   uint start = 1;
1326   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1327   if( n->is_AddP() ) {
1328     assert( mem == (Node*)1, "" );
1329     start = AddPNode::Base+1;
1330   }
1331   for( i = start; i < cnt; i++ ) {
1332     if( !n->match_edge(i) ) {
1333       if( i < m->req() )
1334         m->ins_req( i, n->in(i) );
1335       else
1336         m->add_req( n->in(i) );
1337     }
1338   }
1339 
1340   debug_only( _mem_node = save_mem_node; )
1341   return m;
1342 }
1343 
1344 
1345 //------------------------------match_into_reg---------------------------------
1346 // Choose to either match this Node in a register or part of the current
1347 // match tree.  Return true for requiring a register and false for matching
1348 // as part of the current match tree.
1349 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1350 
1351   const Type *t = m->bottom_type();
1352 
1353   if( t->singleton() ) {
1354     // Never force constants into registers.  Allow them to match as
1355     // constants or registers.  Copies of the same value will share
1356     // the same register.  See find_shared_node.
1357     return false;
1358   } else {                      // Not a constant
1359     // Stop recursion if they have different Controls.
1360     // Slot 0 of constants is not really a Control.
1361     if( control && m->in(0) && control != m->in(0) ) {
1362 
1363       // Actually, we can live with the most conservative control we
1364       // find, if it post-dominates the others.  This allows us to
1365       // pick up load/op/store trees where the load can float a little
1366       // above the store.
1367       Node *x = control;
1368       const uint max_scan = 6;   // Arbitrary scan cutoff
1369       uint j;
1370       for( j=0; j<max_scan; j++ ) {
1371         if( x->is_Region() )    // Bail out at merge points
1372           return true;
1373         x = x->in(0);
1374         if( x == m->in(0) )     // Does 'control' post-dominate
1375           break;                // m->in(0)?  If so, we can use it
1376       }
1377       if( j == max_scan )       // No post-domination before scan end?
1378         return true;            // Then break the match tree up
1379     }
1380     if (m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) {
1381       // These are commonly used in address expressions and can
1382       // efficiently fold into them on X64 in some cases.
1383       return false;
1384     }
1385   }
1386 
1387   // Not forceable cloning.  If shared, put it into a register.
1388   return shared;
1389 }
1390 
1391 
1392 //------------------------------Instruction Selection--------------------------
1393 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1394 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1395 // things the Matcher does not match (e.g., Memory), and things with different
1396 // Controls (hence forced into different blocks).  We pass in the Control
1397 // selected for this entire State tree.
1398 
1399 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1400 // Store and the Load must have identical Memories (as well as identical
1401 // pointers).  Since the Matcher does not have anything for Memory (and
1402 // does not handle DAGs), I have to match the Memory input myself.  If the
1403 // Tree root is a Store, I require all Loads to have the identical memory.
1404 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1405   // Since Label_Root is a recursive function, its possible that we might run
1406   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1407   LabelRootDepth++;
1408   if (LabelRootDepth > MaxLabelRootDepth) {
1409     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1410     return NULL;
1411   }
1412   uint care = 0;                // Edges matcher cares about
1413   uint cnt = n->req();
1414   uint i = 0;
1415 
1416   // Examine children for memory state
1417   // Can only subsume a child into your match-tree if that child's memory state
1418   // is not modified along the path to another input.
1419   // It is unsafe even if the other inputs are separate roots.
1420   Node *input_mem = NULL;
1421   for( i = 1; i < cnt; i++ ) {
1422     if( !n->match_edge(i) ) continue;
1423     Node *m = n->in(i);         // Get ith input
1424     assert( m, "expect non-null children" );
1425     if( m->is_Load() ) {
1426       if( input_mem == NULL ) {
1427         input_mem = m->in(MemNode::Memory);
1428       } else if( input_mem != m->in(MemNode::Memory) ) {
1429         input_mem = NodeSentinel;
1430       }
1431     }
1432   }
1433 
1434   for( i = 1; i < cnt; i++ ){// For my children
1435     if( !n->match_edge(i) ) continue;
1436     Node *m = n->in(i);         // Get ith input
1437     // Allocate states out of a private arena
1438     State *s = new (&_states_arena) State;
1439     svec->_kids[care++] = s;
1440     assert( care <= 2, "binary only for now" );
1441 
1442     // Recursively label the State tree.
1443     s->_kids[0] = NULL;
1444     s->_kids[1] = NULL;
1445     s->_leaf = m;
1446 
1447     // Check for leaves of the State Tree; things that cannot be a part of
1448     // the current tree.  If it finds any, that value is matched as a
1449     // register operand.  If not, then the normal matching is used.
1450     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1451         //
1452         // Stop recursion if this is LoadNode and the root of this tree is a
1453         // StoreNode and the load & store have different memories.
1454         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1455         // Can NOT include the match of a subtree when its memory state
1456         // is used by any of the other subtrees
1457         (input_mem == NodeSentinel) ) {
1458 #ifndef PRODUCT
1459       // Print when we exclude matching due to different memory states at input-loads
1460       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1461         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1462         tty->print_cr("invalid input_mem");
1463       }
1464 #endif
1465       // Switch to a register-only opcode; this value must be in a register
1466       // and cannot be subsumed as part of a larger instruction.
1467       s->DFA( m->ideal_reg(), m );
1468 
1469     } else {
1470       // If match tree has no control and we do, adopt it for entire tree
1471       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1472         control = m->in(0);         // Pick up control
1473       // Else match as a normal part of the match tree.
1474       control = Label_Root(m,s,control,mem);
1475       if (C->failing()) return NULL;
1476     }
1477   }
1478 
1479 
1480   // Call DFA to match this node, and return
1481   svec->DFA( n->Opcode(), n );
1482 
1483 #ifdef ASSERT
1484   uint x;
1485   for( x = 0; x < _LAST_MACH_OPER; x++ )
1486     if( svec->valid(x) )
1487       break;
1488 
1489   if (x >= _LAST_MACH_OPER) {
1490     n->dump();
1491     svec->dump();
1492     assert( false, "bad AD file" );
1493   }
1494 #endif
1495   return control;
1496 }
1497 
1498 
1499 // Con nodes reduced using the same rule can share their MachNode
1500 // which reduces the number of copies of a constant in the final
1501 // program.  The register allocator is free to split uses later to
1502 // split live ranges.
1503 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1504   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1505 
1506   // See if this Con has already been reduced using this rule.
1507   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1508   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1509   if (last != NULL && rule == last->rule()) {
1510     // Don't expect control change for DecodeN
1511     if (leaf->is_DecodeN())
1512       return last;
1513     // Get the new space root.
1514     Node* xroot = new_node(C->root());
1515     if (xroot == NULL) {
1516       // This shouldn't happen give the order of matching.
1517       return NULL;
1518     }
1519 
1520     // Shared constants need to have their control be root so they
1521     // can be scheduled properly.
1522     Node* control = last->in(0);
1523     if (control != xroot) {
1524       if (control == NULL || control == C->root()) {
1525         last->set_req(0, xroot);
1526       } else {
1527         assert(false, "unexpected control");
1528         return NULL;
1529       }
1530     }
1531     return last;
1532   }
1533   return NULL;
1534 }
1535 
1536 
1537 //------------------------------ReduceInst-------------------------------------
1538 // Reduce a State tree (with given Control) into a tree of MachNodes.
1539 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1540 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1541 // Each MachNode has a number of complicated MachOper operands; each
1542 // MachOper also covers a further tree of Ideal Nodes.
1543 
1544 // The root of the Ideal match tree is always an instruction, so we enter
1545 // the recursion here.  After building the MachNode, we need to recurse
1546 // the tree checking for these cases:
1547 // (1) Child is an instruction -
1548 //     Build the instruction (recursively), add it as an edge.
1549 //     Build a simple operand (register) to hold the result of the instruction.
1550 // (2) Child is an interior part of an instruction -
1551 //     Skip over it (do nothing)
1552 // (3) Child is the start of a operand -
1553 //     Build the operand, place it inside the instruction
1554 //     Call ReduceOper.
1555 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1556   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1557 
1558   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1559   if (shared_node != NULL) {
1560     return shared_node;
1561   }
1562 
1563   // Build the object to represent this state & prepare for recursive calls
1564   MachNode *mach = s->MachNodeGenerator( rule, C );
1565   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1566   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1567   Node *leaf = s->_leaf;
1568   // Check for instruction or instruction chain rule
1569   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1570     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1571            "duplicating node that's already been matched");
1572     // Instruction
1573     mach->add_req( leaf->in(0) ); // Set initial control
1574     // Reduce interior of complex instruction
1575     ReduceInst_Interior( s, rule, mem, mach, 1 );
1576   } else {
1577     // Instruction chain rules are data-dependent on their inputs
1578     mach->add_req(0);             // Set initial control to none
1579     ReduceInst_Chain_Rule( s, rule, mem, mach );
1580   }
1581 
1582   // If a Memory was used, insert a Memory edge
1583   if( mem != (Node*)1 ) {
1584     mach->ins_req(MemNode::Memory,mem);
1585 #ifdef ASSERT
1586     // Verify adr type after matching memory operation
1587     const MachOper* oper = mach->memory_operand();
1588     if (oper != NULL && oper != (MachOper*)-1) {
1589       // It has a unique memory operand.  Find corresponding ideal mem node.
1590       Node* m = NULL;
1591       if (leaf->is_Mem()) {
1592         m = leaf;
1593       } else {
1594         m = _mem_node;
1595         assert(m != NULL && m->is_Mem(), "expecting memory node");
1596       }
1597       const Type* mach_at = mach->adr_type();
1598       // DecodeN node consumed by an address may have different type
1599       // then its input. Don't compare types for such case.
1600       if (m->adr_type() != mach_at &&
1601           (m->in(MemNode::Address)->is_DecodeN() ||
1602            m->in(MemNode::Address)->is_AddP() &&
1603            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN() ||
1604            m->in(MemNode::Address)->is_AddP() &&
1605            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1606            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeN())) {
1607         mach_at = m->adr_type();
1608       }
1609       if (m->adr_type() != mach_at) {
1610         m->dump();
1611         tty->print_cr("mach:");
1612         mach->dump(1);
1613       }
1614       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1615     }
1616 #endif
1617   }
1618 
1619   // If the _leaf is an AddP, insert the base edge
1620   if( leaf->is_AddP() )
1621     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1622 
1623   uint num_proj = _proj_list.size();
1624 
1625   // Perform any 1-to-many expansions required
1626   MachNode *ex = mach->Expand(s,_proj_list, mem);
1627   if( ex != mach ) {
1628     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1629     if( ex->in(1)->is_Con() )
1630       ex->in(1)->set_req(0, C->root());
1631     // Remove old node from the graph
1632     for( uint i=0; i<mach->req(); i++ ) {
1633       mach->set_req(i,NULL);
1634     }
1635 #ifdef ASSERT
1636     _new2old_map.map(ex->_idx, s->_leaf);
1637 #endif
1638   }
1639 
1640   // PhaseChaitin::fixup_spills will sometimes generate spill code
1641   // via the matcher.  By the time, nodes have been wired into the CFG,
1642   // and any further nodes generated by expand rules will be left hanging
1643   // in space, and will not get emitted as output code.  Catch this.
1644   // Also, catch any new register allocation constraints ("projections")
1645   // generated belatedly during spill code generation.
1646   if (_allocation_started) {
1647     guarantee(ex == mach, "no expand rules during spill generation");
1648     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1649   }
1650 
1651   if (leaf->is_Con() || leaf->is_DecodeN()) {
1652     // Record the con for sharing
1653     _shared_nodes.map(leaf->_idx, ex);
1654   }
1655 
1656   return ex;
1657 }
1658 
1659 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1660   // 'op' is what I am expecting to receive
1661   int op = _leftOp[rule];
1662   // Operand type to catch childs result
1663   // This is what my child will give me.
1664   int opnd_class_instance = s->_rule[op];
1665   // Choose between operand class or not.
1666   // This is what I will receive.
1667   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1668   // New rule for child.  Chase operand classes to get the actual rule.
1669   int newrule = s->_rule[catch_op];
1670 
1671   if( newrule < NUM_OPERANDS ) {
1672     // Chain from operand or operand class, may be output of shared node
1673     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1674             "Bad AD file: Instruction chain rule must chain from operand");
1675     // Insert operand into array of operands for this instruction
1676     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1677 
1678     ReduceOper( s, newrule, mem, mach );
1679   } else {
1680     // Chain from the result of an instruction
1681     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1682     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1683     Node *mem1 = (Node*)1;
1684     debug_only(Node *save_mem_node = _mem_node;)
1685     mach->add_req( ReduceInst(s, newrule, mem1) );
1686     debug_only(_mem_node = save_mem_node;)
1687   }
1688   return;
1689 }
1690 
1691 
1692 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1693   if( s->_leaf->is_Load() ) {
1694     Node *mem2 = s->_leaf->in(MemNode::Memory);
1695     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1696     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1697     mem = mem2;
1698   }
1699   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1700     if( mach->in(0) == NULL )
1701       mach->set_req(0, s->_leaf->in(0));
1702   }
1703 
1704   // Now recursively walk the state tree & add operand list.
1705   for( uint i=0; i<2; i++ ) {   // binary tree
1706     State *newstate = s->_kids[i];
1707     if( newstate == NULL ) break;      // Might only have 1 child
1708     // 'op' is what I am expecting to receive
1709     int op;
1710     if( i == 0 ) {
1711       op = _leftOp[rule];
1712     } else {
1713       op = _rightOp[rule];
1714     }
1715     // Operand type to catch childs result
1716     // This is what my child will give me.
1717     int opnd_class_instance = newstate->_rule[op];
1718     // Choose between operand class or not.
1719     // This is what I will receive.
1720     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1721     // New rule for child.  Chase operand classes to get the actual rule.
1722     int newrule = newstate->_rule[catch_op];
1723 
1724     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1725       // Operand/operandClass
1726       // Insert operand into array of operands for this instruction
1727       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1728       ReduceOper( newstate, newrule, mem, mach );
1729 
1730     } else {                    // Child is internal operand or new instruction
1731       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1732         // internal operand --> call ReduceInst_Interior
1733         // Interior of complex instruction.  Do nothing but recurse.
1734         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1735       } else {
1736         // instruction --> call build operand(  ) to catch result
1737         //             --> ReduceInst( newrule )
1738         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1739         Node *mem1 = (Node*)1;
1740         debug_only(Node *save_mem_node = _mem_node;)
1741         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1742         debug_only(_mem_node = save_mem_node;)
1743       }
1744     }
1745     assert( mach->_opnds[num_opnds-1], "" );
1746   }
1747   return num_opnds;
1748 }
1749 
1750 // This routine walks the interior of possible complex operands.
1751 // At each point we check our children in the match tree:
1752 // (1) No children -
1753 //     We are a leaf; add _leaf field as an input to the MachNode
1754 // (2) Child is an internal operand -
1755 //     Skip over it ( do nothing )
1756 // (3) Child is an instruction -
1757 //     Call ReduceInst recursively and
1758 //     and instruction as an input to the MachNode
1759 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1760   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1761   State *kid = s->_kids[0];
1762   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1763 
1764   // Leaf?  And not subsumed?
1765   if( kid == NULL && !_swallowed[rule] ) {
1766     mach->add_req( s->_leaf );  // Add leaf pointer
1767     return;                     // Bail out
1768   }
1769 
1770   if( s->_leaf->is_Load() ) {
1771     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1772     mem = s->_leaf->in(MemNode::Memory);
1773     debug_only(_mem_node = s->_leaf;)
1774   }
1775   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1776     if( !mach->in(0) )
1777       mach->set_req(0,s->_leaf->in(0));
1778     else {
1779       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1780     }
1781   }
1782 
1783   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1784     int newrule;
1785     if( i == 0 )
1786       newrule = kid->_rule[_leftOp[rule]];
1787     else
1788       newrule = kid->_rule[_rightOp[rule]];
1789 
1790     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1791       // Internal operand; recurse but do nothing else
1792       ReduceOper( kid, newrule, mem, mach );
1793 
1794     } else {                    // Child is a new instruction
1795       // Reduce the instruction, and add a direct pointer from this
1796       // machine instruction to the newly reduced one.
1797       Node *mem1 = (Node*)1;
1798       debug_only(Node *save_mem_node = _mem_node;)
1799       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1800       debug_only(_mem_node = save_mem_node;)
1801     }
1802   }
1803 }
1804 
1805 
1806 // -------------------------------------------------------------------------
1807 // Java-Java calling convention
1808 // (what you use when Java calls Java)
1809 
1810 //------------------------------find_receiver----------------------------------
1811 // For a given signature, return the OptoReg for parameter 0.
1812 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1813   VMRegPair regs;
1814   BasicType sig_bt = T_OBJECT;
1815   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1816   // Return argument 0 register.  In the LP64 build pointers
1817   // take 2 registers, but the VM wants only the 'main' name.
1818   return OptoReg::as_OptoReg(regs.first());
1819 }
1820 
1821 // A method-klass-holder may be passed in the inline_cache_reg
1822 // and then expanded into the inline_cache_reg and a method_oop register
1823 //   defined in ad_<arch>.cpp
1824 
1825 
1826 //------------------------------find_shared------------------------------------
1827 // Set bits if Node is shared or otherwise a root
1828 void Matcher::find_shared( Node *n ) {
1829   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1830   MStack mstack(C->unique() * 2);
1831   // Mark nodes as address_visited if they are inputs to an address expression
1832   VectorSet address_visited(Thread::current()->resource_area());
1833   mstack.push(n, Visit);     // Don't need to pre-visit root node
1834   while (mstack.is_nonempty()) {
1835     n = mstack.node();       // Leave node on stack
1836     Node_State nstate = mstack.state();
1837     uint nop = n->Opcode();
1838     if (nstate == Pre_Visit) {
1839       if (address_visited.test(n->_idx)) { // Visited in address already?
1840         // Flag as visited and shared now.
1841         set_visited(n);
1842       }
1843       if (is_visited(n)) {   // Visited already?
1844         // Node is shared and has no reason to clone.  Flag it as shared.
1845         // This causes it to match into a register for the sharing.
1846         set_shared(n);       // Flag as shared and
1847         mstack.pop();        // remove node from stack
1848         continue;
1849       }
1850       nstate = Visit; // Not already visited; so visit now
1851     }
1852     if (nstate == Visit) {
1853       mstack.set_state(Post_Visit);
1854       set_visited(n);   // Flag as visited now
1855       bool mem_op = false;
1856 
1857       switch( nop ) {  // Handle some opcodes special
1858       case Op_Phi:             // Treat Phis as shared roots
1859       case Op_Parm:
1860       case Op_Proj:            // All handled specially during matching
1861       case Op_SafePointScalarObject:
1862         set_shared(n);
1863         set_dontcare(n);
1864         break;
1865       case Op_If:
1866       case Op_CountedLoopEnd:
1867         mstack.set_state(Alt_Post_Visit); // Alternative way
1868         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1869         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1870         // Bool and CmpX side-by-side, because it can only get at constants
1871         // that are at the leaves of Match trees, and the Bool's condition acts
1872         // as a constant here.
1873         mstack.push(n->in(1), Visit);         // Clone the Bool
1874         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1875         continue; // while (mstack.is_nonempty())
1876       case Op_ConvI2D:         // These forms efficiently match with a prior
1877       case Op_ConvI2F:         //   Load but not a following Store
1878         if( n->in(1)->is_Load() &&        // Prior load
1879             n->outcnt() == 1 &&           // Not already shared
1880             n->unique_out()->is_Store() ) // Following store
1881           set_shared(n);       // Force it to be a root
1882         break;
1883       case Op_ReverseBytesI:
1884       case Op_ReverseBytesL:
1885         if( n->in(1)->is_Load() &&        // Prior load
1886             n->outcnt() == 1 )            // Not already shared
1887           set_shared(n);                  // Force it to be a root
1888         break;
1889       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1890       case Op_IfFalse:
1891       case Op_IfTrue:
1892       case Op_MachProj:
1893       case Op_MergeMem:
1894       case Op_Catch:
1895       case Op_CatchProj:
1896       case Op_CProj:
1897       case Op_JumpProj:
1898       case Op_JProj:
1899       case Op_NeverBranch:
1900         set_dontcare(n);
1901         break;
1902       case Op_Jump:
1903         mstack.push(n->in(1), Visit);         // Switch Value
1904         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1905         continue;                             // while (mstack.is_nonempty())
1906       case Op_StrComp:
1907       case Op_StrEquals:
1908       case Op_StrIndexOf:
1909       case Op_AryEq:
1910         set_shared(n); // Force result into register (it will be anyways)
1911         break;
1912       case Op_ConP: {  // Convert pointers above the centerline to NUL
1913         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1914         const TypePtr* tp = tn->type()->is_ptr();
1915         if (tp->_ptr == TypePtr::AnyNull) {
1916           tn->set_type(TypePtr::NULL_PTR);
1917         }
1918         break;
1919       }
1920       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1921         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1922         const TypePtr* tp = tn->type()->make_ptr();
1923         if (tp && tp->_ptr == TypePtr::AnyNull) {
1924           tn->set_type(TypeNarrowOop::NULL_PTR);
1925         }
1926         break;
1927       }
1928       case Op_Binary:         // These are introduced in the Post_Visit state.
1929         ShouldNotReachHere();
1930         break;
1931       case Op_ClearArray:
1932       case Op_SafePoint:
1933         mem_op = true;
1934         break;
1935       default:
1936         if( n->is_Store() ) {
1937           // Do match stores, despite no ideal reg
1938           mem_op = true;
1939           break;
1940         }
1941         if( n->is_Mem() ) { // Loads and LoadStores
1942           mem_op = true;
1943           // Loads must be root of match tree due to prior load conflict
1944           if( C->subsume_loads() == false )
1945             set_shared(n);
1946         }
1947         // Fall into default case
1948         if( !n->ideal_reg() )
1949           set_dontcare(n);  // Unmatchable Nodes
1950       } // end_switch
1951 
1952       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1953         Node *m = n->in(i); // Get ith input
1954         if (m == NULL) continue;  // Ignore NULLs
1955         uint mop = m->Opcode();
1956 
1957         // Must clone all producers of flags, or we will not match correctly.
1958         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1959         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1960         // are also there, so we may match a float-branch to int-flags and
1961         // expect the allocator to haul the flags from the int-side to the
1962         // fp-side.  No can do.
1963         if( _must_clone[mop] ) {
1964           mstack.push(m, Visit);
1965           continue; // for(int i = ...)
1966         }
1967 
1968         if( mop == Op_AddP && m->in(AddPNode::Base)->Opcode() == Op_DecodeN ) {
1969           // Bases used in addresses must be shared but since
1970           // they are shared through a DecodeN they may appear
1971           // to have a single use so force sharing here.
1972           set_shared(m->in(AddPNode::Base)->in(1));
1973         }
1974 
1975         // Clone addressing expressions as they are "free" in memory access instructions
1976         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1977           // Some inputs for address expression are not put on stack
1978           // to avoid marking them as shared and forcing them into register
1979           // if they are used only in address expressions.
1980           // But they should be marked as shared if there are other uses
1981           // besides address expressions.
1982 
1983           Node *off = m->in(AddPNode::Offset);
1984           if( off->is_Con() &&
1985               // When there are other uses besides address expressions
1986               // put it on stack and mark as shared.
1987               !is_visited(m) ) {
1988             address_visited.test_set(m->_idx); // Flag as address_visited
1989             Node *adr = m->in(AddPNode::Address);
1990 
1991             // Intel, ARM and friends can handle 2 adds in addressing mode
1992             if( clone_shift_expressions && adr->is_AddP() &&
1993                 // AtomicAdd is not an addressing expression.
1994                 // Cheap to find it by looking for screwy base.
1995                 !adr->in(AddPNode::Base)->is_top() &&
1996                 // Are there other uses besides address expressions?
1997                 !is_visited(adr) ) {
1998               address_visited.set(adr->_idx); // Flag as address_visited
1999               Node *shift = adr->in(AddPNode::Offset);
2000               // Check for shift by small constant as well
2001               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2002                   shift->in(2)->get_int() <= 3 &&
2003                   // Are there other uses besides address expressions?
2004                   !is_visited(shift) ) {
2005                 address_visited.set(shift->_idx); // Flag as address_visited
2006                 mstack.push(shift->in(2), Visit);
2007                 Node *conv = shift->in(1);
2008 #ifdef _LP64
2009                 // Allow Matcher to match the rule which bypass
2010                 // ConvI2L operation for an array index on LP64
2011                 // if the index value is positive.
2012                 if( conv->Opcode() == Op_ConvI2L &&
2013                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2014                     // Are there other uses besides address expressions?
2015                     !is_visited(conv) ) {
2016                   address_visited.set(conv->_idx); // Flag as address_visited
2017                   mstack.push(conv->in(1), Pre_Visit);
2018                 } else
2019 #endif
2020                 mstack.push(conv, Pre_Visit);
2021               } else {
2022                 mstack.push(shift, Pre_Visit);
2023               }
2024               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2025               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2026             } else {  // Sparc, Alpha, PPC and friends
2027               mstack.push(adr, Pre_Visit);
2028             }
2029 
2030             // Clone X+offset as it also folds into most addressing expressions
2031             mstack.push(off, Visit);
2032             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2033             continue; // for(int i = ...)
2034           } // if( off->is_Con() )
2035         }   // if( mem_op &&
2036         mstack.push(m, Pre_Visit);
2037       }     // for(int i = ...)
2038     }
2039     else if (nstate == Alt_Post_Visit) {
2040       mstack.pop(); // Remove node from stack
2041       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2042       // shared and all users of the Bool need to move the Cmp in parallel.
2043       // This leaves both the Bool and the If pointing at the Cmp.  To
2044       // prevent the Matcher from trying to Match the Cmp along both paths
2045       // BoolNode::match_edge always returns a zero.
2046 
2047       // We reorder the Op_If in a pre-order manner, so we can visit without
2048       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2049       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2050     }
2051     else if (nstate == Post_Visit) {
2052       mstack.pop(); // Remove node from stack
2053 
2054       // Now hack a few special opcodes
2055       switch( n->Opcode() ) {       // Handle some opcodes special
2056       case Op_StorePConditional:
2057       case Op_StoreIConditional:
2058       case Op_StoreLConditional:
2059       case Op_CompareAndSwapI:
2060       case Op_CompareAndSwapL:
2061       case Op_CompareAndSwapP:
2062       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2063         Node *newval = n->in(MemNode::ValueIn );
2064         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
2065         Node *pair = new (C, 3) BinaryNode( oldval, newval );
2066         n->set_req(MemNode::ValueIn,pair);
2067         n->del_req(LoadStoreNode::ExpectedIn);
2068         break;
2069       }
2070       case Op_CMoveD:              // Convert trinary to binary-tree
2071       case Op_CMoveF:
2072       case Op_CMoveI:
2073       case Op_CMoveL:
2074       case Op_CMoveN:
2075       case Op_CMoveP: {
2076         // Restructure into a binary tree for Matching.  It's possible that
2077         // we could move this code up next to the graph reshaping for IfNodes
2078         // or vice-versa, but I do not want to debug this for Ladybird.
2079         // 10/2/2000 CNC.
2080         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
2081         n->set_req(1,pair1);
2082         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2083         n->set_req(2,pair2);
2084         n->del_req(3);
2085         break;
2086       }
2087       case Op_StrEquals: {
2088         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2089         n->set_req(2,pair1);
2090         n->set_req(3,n->in(4));
2091         n->del_req(4);
2092         break;
2093       }
2094       case Op_StrComp:
2095       case Op_StrIndexOf: {
2096         Node *pair1 = new (C, 3) BinaryNode(n->in(2),n->in(3));
2097         n->set_req(2,pair1);
2098         Node *pair2 = new (C, 3) BinaryNode(n->in(4),n->in(5));
2099         n->set_req(3,pair2);
2100         n->del_req(5);
2101         n->del_req(4);
2102         break;
2103       }
2104       default:
2105         break;
2106       }
2107     }
2108     else {
2109       ShouldNotReachHere();
2110     }
2111   } // end of while (mstack.is_nonempty())
2112 }
2113 
2114 #ifdef ASSERT
2115 // machine-independent root to machine-dependent root
2116 void Matcher::dump_old2new_map() {
2117   _old2new_map.dump();
2118 }
2119 #endif
2120 
2121 //---------------------------collect_null_checks-------------------------------
2122 // Find null checks in the ideal graph; write a machine-specific node for
2123 // it.  Used by later implicit-null-check handling.  Actually collects
2124 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2125 // value being tested.
2126 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2127   Node *iff = proj->in(0);
2128   if( iff->Opcode() == Op_If ) {
2129     // During matching If's have Bool & Cmp side-by-side
2130     BoolNode *b = iff->in(1)->as_Bool();
2131     Node *cmp = iff->in(2);
2132     int opc = cmp->Opcode();
2133     if (opc != Op_CmpP && opc != Op_CmpN) return;
2134 
2135     const Type* ct = cmp->in(2)->bottom_type();
2136     if (ct == TypePtr::NULL_PTR ||
2137         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2138 
2139       bool push_it = false;
2140       if( proj->Opcode() == Op_IfTrue ) {
2141         extern int all_null_checks_found;
2142         all_null_checks_found++;
2143         if( b->_test._test == BoolTest::ne ) {
2144           push_it = true;
2145         }
2146       } else {
2147         assert( proj->Opcode() == Op_IfFalse, "" );
2148         if( b->_test._test == BoolTest::eq ) {
2149           push_it = true;
2150         }
2151       }
2152       if( push_it ) {
2153         _null_check_tests.push(proj);
2154         Node* val = cmp->in(1);
2155 #ifdef _LP64
2156         if (val->bottom_type()->isa_narrowoop() &&
2157             !Matcher::narrow_oop_use_complex_address()) {
2158           //
2159           // Look for DecodeN node which should be pinned to orig_proj.
2160           // On platforms (Sparc) which can not handle 2 adds
2161           // in addressing mode we have to keep a DecodeN node and
2162           // use it to do implicit NULL check in address.
2163           //
2164           // DecodeN node was pinned to non-null path (orig_proj) during
2165           // CastPP transformation in final_graph_reshaping_impl().
2166           //
2167           uint cnt = orig_proj->outcnt();
2168           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2169             Node* d = orig_proj->raw_out(i);
2170             if (d->is_DecodeN() && d->in(1) == val) {
2171               val = d;
2172               val->set_req(0, NULL); // Unpin now.
2173               // Mark this as special case to distinguish from
2174               // a regular case: CmpP(DecodeN, NULL).
2175               val = (Node*)(((intptr_t)val) | 1);
2176               break;
2177             }
2178           }
2179         }
2180 #endif
2181         _null_check_tests.push(val);
2182       }
2183     }
2184   }
2185 }
2186 
2187 //---------------------------validate_null_checks------------------------------
2188 // Its possible that the value being NULL checked is not the root of a match
2189 // tree.  If so, I cannot use the value in an implicit null check.
2190 void Matcher::validate_null_checks( ) {
2191   uint cnt = _null_check_tests.size();
2192   for( uint i=0; i < cnt; i+=2 ) {
2193     Node *test = _null_check_tests[i];
2194     Node *val = _null_check_tests[i+1];
2195     bool is_decoden = ((intptr_t)val) & 1;
2196     val = (Node*)(((intptr_t)val) & ~1);
2197     if (has_new_node(val)) {
2198       Node* new_val = new_node(val);
2199       if (is_decoden) {
2200         assert(val->is_DecodeN() && val->in(0) == NULL, "sanity");
2201         // Note: new_val may have a control edge if
2202         // the original ideal node DecodeN was matched before
2203         // it was unpinned in Matcher::collect_null_checks().
2204         // Unpin the mach node and mark it.
2205         new_val->set_req(0, NULL);
2206         new_val = (Node*)(((intptr_t)new_val) | 1);
2207       }
2208       // Is a match-tree root, so replace with the matched value
2209       _null_check_tests.map(i+1, new_val);
2210     } else {
2211       // Yank from candidate list
2212       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2213       _null_check_tests.map(i,_null_check_tests[--cnt]);
2214       _null_check_tests.pop();
2215       _null_check_tests.pop();
2216       i-=2;
2217     }
2218   }
2219 }
2220 
2221 
2222 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2223 // acting as an Acquire and thus we don't need an Acquire here.  We
2224 // retain the Node to act as a compiler ordering barrier.
2225 bool Matcher::prior_fast_lock( const Node *acq ) {
2226   Node *r = acq->in(0);
2227   if( !r->is_Region() || r->req() <= 1 ) return false;
2228   Node *proj = r->in(1);
2229   if( !proj->is_Proj() ) return false;
2230   Node *call = proj->in(0);
2231   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2232     return false;
2233 
2234   return true;
2235 }
2236 
2237 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2238 // acting as a Release and thus we don't need a Release here.  We
2239 // retain the Node to act as a compiler ordering barrier.
2240 bool Matcher::post_fast_unlock( const Node *rel ) {
2241   Compile *C = Compile::current();
2242   assert( rel->Opcode() == Op_MemBarRelease, "" );
2243   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2244   DUIterator_Fast imax, i = mem->fast_outs(imax);
2245   Node *ctrl = NULL;
2246   while( true ) {
2247     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2248     assert( ctrl->is_Proj(), "only projections here" );
2249     ProjNode *proj = (ProjNode*)ctrl;
2250     if( proj->_con == TypeFunc::Control &&
2251         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2252       break;
2253     i++;
2254   }
2255   Node *iff = NULL;
2256   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2257     Node *x = ctrl->fast_out(j);
2258     if( x->is_If() && x->req() > 1 &&
2259         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2260       iff = x;
2261       break;
2262     }
2263   }
2264   if( !iff ) return false;
2265   Node *bol = iff->in(1);
2266   // The iff might be some random subclass of If or bol might be Con-Top
2267   if (!bol->is_Bool())  return false;
2268   assert( bol->req() > 1, "" );
2269   return (bol->in(1)->Opcode() == Op_FastUnlock);
2270 }
2271 
2272 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2273 // atomic instruction acting as a store_load barrier without any
2274 // intervening volatile load, and thus we don't need a barrier here.
2275 // We retain the Node to act as a compiler ordering barrier.
2276 bool Matcher::post_store_load_barrier(const Node *vmb) {
2277   Compile *C = Compile::current();
2278   assert( vmb->is_MemBar(), "" );
2279   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2280   const MemBarNode *mem = (const MemBarNode*)vmb;
2281 
2282   // Get the Proj node, ctrl, that can be used to iterate forward
2283   Node *ctrl = NULL;
2284   DUIterator_Fast imax, i = mem->fast_outs(imax);
2285   while( true ) {
2286     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2287     assert( ctrl->is_Proj(), "only projections here" );
2288     ProjNode *proj = (ProjNode*)ctrl;
2289     if( proj->_con == TypeFunc::Control &&
2290         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2291       break;
2292     i++;
2293   }
2294 
2295   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2296     Node *x = ctrl->fast_out(j);
2297     int xop = x->Opcode();
2298 
2299     // We don't need current barrier if we see another or a lock
2300     // before seeing volatile load.
2301     //
2302     // Op_Fastunlock previously appeared in the Op_* list below.
2303     // With the advent of 1-0 lock operations we're no longer guaranteed
2304     // that a monitor exit operation contains a serializing instruction.
2305 
2306     if (xop == Op_MemBarVolatile ||
2307         xop == Op_FastLock ||
2308         xop == Op_CompareAndSwapL ||
2309         xop == Op_CompareAndSwapP ||
2310         xop == Op_CompareAndSwapN ||
2311         xop == Op_CompareAndSwapI)
2312       return true;
2313 
2314     if (x->is_MemBar()) {
2315       // We must retain this membar if there is an upcoming volatile
2316       // load, which will be preceded by acquire membar.
2317       if (xop == Op_MemBarAcquire)
2318         return false;
2319       // For other kinds of barriers, check by pretending we
2320       // are them, and seeing if we can be removed.
2321       else
2322         return post_store_load_barrier((const MemBarNode*)x);
2323     }
2324 
2325     // Delicate code to detect case of an upcoming fastlock block
2326     if( x->is_If() && x->req() > 1 &&
2327         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2328       Node *iff = x;
2329       Node *bol = iff->in(1);
2330       // The iff might be some random subclass of If or bol might be Con-Top
2331       if (!bol->is_Bool())  return false;
2332       assert( bol->req() > 1, "" );
2333       return (bol->in(1)->Opcode() == Op_FastUnlock);
2334     }
2335     // probably not necessary to check for these
2336     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2337       return false;
2338   }
2339   return false;
2340 }
2341 
2342 //=============================================================================
2343 //---------------------------State---------------------------------------------
2344 State::State(void) {
2345 #ifdef ASSERT
2346   _id = 0;
2347   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2348   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2349   //memset(_cost, -1, sizeof(_cost));
2350   //memset(_rule, -1, sizeof(_rule));
2351 #endif
2352   memset(_valid, 0, sizeof(_valid));
2353 }
2354 
2355 #ifdef ASSERT
2356 State::~State() {
2357   _id = 99;
2358   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2359   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2360   memset(_cost, -3, sizeof(_cost));
2361   memset(_rule, -3, sizeof(_rule));
2362 }
2363 #endif
2364 
2365 #ifndef PRODUCT
2366 //---------------------------dump----------------------------------------------
2367 void State::dump() {
2368   tty->print("\n");
2369   dump(0);
2370 }
2371 
2372 void State::dump(int depth) {
2373   for( int j = 0; j < depth; j++ )
2374     tty->print("   ");
2375   tty->print("--N: ");
2376   _leaf->dump();
2377   uint i;
2378   for( i = 0; i < _LAST_MACH_OPER; i++ )
2379     // Check for valid entry
2380     if( valid(i) ) {
2381       for( int j = 0; j < depth; j++ )
2382         tty->print("   ");
2383         assert(_cost[i] != max_juint, "cost must be a valid value");
2384         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2385         tty->print_cr("%s  %d  %s",
2386                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2387       }
2388   tty->print_cr("");
2389 
2390   for( i=0; i<2; i++ )
2391     if( _kids[i] )
2392       _kids[i]->dump(depth+1);
2393 }
2394 #endif