1 /*
   2  * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_memnode.cpp.incl"
  31 
  32 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  33 
  34 //=============================================================================
  35 uint MemNode::size_of() const { return sizeof(*this); }
  36 
  37 const TypePtr *MemNode::adr_type() const {
  38   Node* adr = in(Address);
  39   const TypePtr* cross_check = NULL;
  40   DEBUG_ONLY(cross_check = _adr_type);
  41   return calculate_adr_type(adr->bottom_type(), cross_check);
  42 }
  43 
  44 #ifndef PRODUCT
  45 void MemNode::dump_spec(outputStream *st) const {
  46   if (in(Address) == NULL)  return; // node is dead
  47 #ifndef ASSERT
  48   // fake the missing field
  49   const TypePtr* _adr_type = NULL;
  50   if (in(Address) != NULL)
  51     _adr_type = in(Address)->bottom_type()->isa_ptr();
  52 #endif
  53   dump_adr_type(this, _adr_type, st);
  54 
  55   Compile* C = Compile::current();
  56   if( C->alias_type(_adr_type)->is_volatile() )
  57     st->print(" Volatile!");
  58 }
  59 
  60 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  61   st->print(" @");
  62   if (adr_type == NULL) {
  63     st->print("NULL");
  64   } else {
  65     adr_type->dump_on(st);
  66     Compile* C = Compile::current();
  67     Compile::AliasType* atp = NULL;
  68     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  69     if (atp == NULL)
  70       st->print(", idx=?\?;");
  71     else if (atp->index() == Compile::AliasIdxBot)
  72       st->print(", idx=Bot;");
  73     else if (atp->index() == Compile::AliasIdxTop)
  74       st->print(", idx=Top;");
  75     else if (atp->index() == Compile::AliasIdxRaw)
  76       st->print(", idx=Raw;");
  77     else {
  78       ciField* field = atp->field();
  79       if (field) {
  80         st->print(", name=");
  81         field->print_name_on(st);
  82       }
  83       st->print(", idx=%d;", atp->index());
  84     }
  85   }
  86 }
  87 
  88 extern void print_alias_types();
  89 
  90 #endif
  91 
  92 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
  93   const TypeOopPtr *tinst = t_adr->isa_oopptr();
  94   if (tinst == NULL || !tinst->is_known_instance_field())
  95     return mchain;  // don't try to optimize non-instance types
  96   uint instance_id = tinst->instance_id();
  97   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
  98   Node *prev = NULL;
  99   Node *result = mchain;
 100   while (prev != result) {
 101     prev = result;
 102     if (result == start_mem)
 103       break;  // hit one of our sentinels
 104     // skip over a call which does not affect this memory slice
 105     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 106       Node *proj_in = result->in(0);
 107       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 108         break;  // hit one of our sentinels
 109       } else if (proj_in->is_Call()) {
 110         CallNode *call = proj_in->as_Call();
 111         if (!call->may_modify(t_adr, phase)) {
 112           result = call->in(TypeFunc::Memory);
 113         }
 114       } else if (proj_in->is_Initialize()) {
 115         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 116         // Stop if this is the initialization for the object instance which
 117         // which contains this memory slice, otherwise skip over it.
 118         if (alloc != NULL && alloc->_idx != instance_id) {
 119           result = proj_in->in(TypeFunc::Memory);
 120         }
 121       } else if (proj_in->is_MemBar()) {
 122         result = proj_in->in(TypeFunc::Memory);
 123       } else {
 124         assert(false, "unexpected projection");
 125       }
 126     } else if (result->is_ClearArray()) {
 127       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
 128         // Can not bypass initialization of the instance
 129         // we are looking for.
 130         break;
 131       }
 132       // Otherwise skip it (the call updated 'result' value).
 133     } else if (result->is_MergeMem()) {
 134       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 135     }
 136   }
 137   return result;
 138 }
 139 
 140 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 141   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 142   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 143   PhaseIterGVN *igvn = phase->is_IterGVN();
 144   Node *result = mchain;
 145   result = optimize_simple_memory_chain(result, t_adr, phase);
 146   if (is_instance && igvn != NULL  && result->is_Phi()) {
 147     PhiNode *mphi = result->as_Phi();
 148     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 149     const TypePtr *t = mphi->adr_type();
 150     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 151         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 152         t->is_oopptr()->cast_to_exactness(true)
 153          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 154          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 155       // clone the Phi with our address type
 156       result = mphi->split_out_instance(t_adr, igvn);
 157     } else {
 158       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 159     }
 160   }
 161   return result;
 162 }
 163 
 164 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 165   uint alias_idx = phase->C->get_alias_index(tp);
 166   Node *mem = mmem;
 167 #ifdef ASSERT
 168   {
 169     // Check that current type is consistent with the alias index used during graph construction
 170     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 171     bool consistent =  adr_check == NULL || adr_check->empty() ||
 172                        phase->C->must_alias(adr_check, alias_idx );
 173     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 174     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 175                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 176         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 177         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 178           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 179           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 180       // don't assert if it is dead code.
 181       consistent = true;
 182     }
 183     if( !consistent ) {
 184       st->print("alias_idx==%d, adr_check==", alias_idx);
 185       if( adr_check == NULL ) {
 186         st->print("NULL");
 187       } else {
 188         adr_check->dump();
 189       }
 190       st->cr();
 191       print_alias_types();
 192       assert(consistent, "adr_check must match alias idx");
 193     }
 194   }
 195 #endif
 196   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 197   // means an array I have not precisely typed yet.  Do not do any
 198   // alias stuff with it any time soon.
 199   const TypeOopPtr *tinst = tp->isa_oopptr();
 200   if( tp->base() != Type::AnyPtr &&
 201       !(tinst &&
 202         tinst->klass()->is_java_lang_Object() &&
 203         tinst->offset() == Type::OffsetBot) ) {
 204     // compress paths and change unreachable cycles to TOP
 205     // If not, we can update the input infinitely along a MergeMem cycle
 206     // Equivalent code in PhiNode::Ideal
 207     Node* m  = phase->transform(mmem);
 208     // If transformed to a MergeMem, get the desired slice
 209     // Otherwise the returned node represents memory for every slice
 210     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 211     // Update input if it is progress over what we have now
 212   }
 213   return mem;
 214 }
 215 
 216 //--------------------------Ideal_common---------------------------------------
 217 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 218 // Unhook non-raw memories from complete (macro-expanded) initializations.
 219 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 220   // If our control input is a dead region, kill all below the region
 221   Node *ctl = in(MemNode::Control);
 222   if (ctl && remove_dead_region(phase, can_reshape))
 223     return this;
 224   ctl = in(MemNode::Control);
 225   // Don't bother trying to transform a dead node
 226   if( ctl && ctl->is_top() )  return NodeSentinel;
 227 
 228   PhaseIterGVN *igvn = phase->is_IterGVN();
 229   // Wait if control on the worklist.
 230   if (ctl && can_reshape && igvn != NULL) {
 231     Node* bol = NULL;
 232     Node* cmp = NULL;
 233     if (ctl->in(0)->is_If()) {
 234       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 235       bol = ctl->in(0)->in(1);
 236       if (bol->is_Bool())
 237         cmp = ctl->in(0)->in(1)->in(1);
 238     }
 239     if (igvn->_worklist.member(ctl) ||
 240         (bol != NULL && igvn->_worklist.member(bol)) ||
 241         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 242       // This control path may be dead.
 243       // Delay this memory node transformation until the control is processed.
 244       phase->is_IterGVN()->_worklist.push(this);
 245       return NodeSentinel; // caller will return NULL
 246     }
 247   }
 248   // Ignore if memory is dead, or self-loop
 249   Node *mem = in(MemNode::Memory);
 250   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 251   assert( mem != this, "dead loop in MemNode::Ideal" );
 252 
 253   Node *address = in(MemNode::Address);
 254   const Type *t_adr = phase->type( address );
 255   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 256 
 257   if( can_reshape && igvn != NULL &&
 258       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
 259     // The address's base and type may change when the address is processed.
 260     // Delay this mem node transformation until the address is processed.
 261     phase->is_IterGVN()->_worklist.push(this);
 262     return NodeSentinel; // caller will return NULL
 263   }
 264 
 265   // Do NOT remove or optimize the next lines: ensure a new alias index
 266   // is allocated for an oop pointer type before Escape Analysis.
 267   // Note: C++ will not remove it since the call has side effect.
 268   if ( t_adr->isa_oopptr() ) {
 269     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 270   }
 271 
 272 #ifdef ASSERT
 273   Node* base = NULL;
 274   if (address->is_AddP())
 275     base = address->in(AddPNode::Base);
 276   assert(base == NULL || t_adr->isa_rawptr() ||
 277         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 278 #endif
 279 
 280   // Avoid independent memory operations
 281   Node* old_mem = mem;
 282 
 283   // The code which unhooks non-raw memories from complete (macro-expanded)
 284   // initializations was removed. After macro-expansion all stores catched
 285   // by Initialize node became raw stores and there is no information
 286   // which memory slices they modify. So it is unsafe to move any memory
 287   // operation above these stores. Also in most cases hooked non-raw memories
 288   // were already unhooked by using information from detect_ptr_independence()
 289   // and find_previous_store().
 290 
 291   if (mem->is_MergeMem()) {
 292     MergeMemNode* mmem = mem->as_MergeMem();
 293     const TypePtr *tp = t_adr->is_ptr();
 294 
 295     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 296   }
 297 
 298   if (mem != old_mem) {
 299     set_req(MemNode::Memory, mem);
 300     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 301     return this;
 302   }
 303 
 304   // let the subclass continue analyzing...
 305   return NULL;
 306 }
 307 
 308 // Helper function for proving some simple control dominations.
 309 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 310 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 311 // is not a constant (dominated by the method's StartNode).
 312 // Used by MemNode::find_previous_store to prove that the
 313 // control input of a memory operation predates (dominates)
 314 // an allocation it wants to look past.
 315 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 316   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 317     return false; // Conservative answer for dead code
 318 
 319   // Check 'dom'. Skip Proj and CatchProj nodes.
 320   dom = dom->find_exact_control(dom);
 321   if (dom == NULL || dom->is_top())
 322     return false; // Conservative answer for dead code
 323 
 324   if (dom == sub) {
 325     // For the case when, for example, 'sub' is Initialize and the original
 326     // 'dom' is Proj node of the 'sub'.
 327     return false;
 328   }
 329 
 330   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 331     return true;
 332 
 333   // 'dom' dominates 'sub' if its control edge and control edges
 334   // of all its inputs dominate or equal to sub's control edge.
 335 
 336   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 337   // Or Region for the check in LoadNode::Ideal();
 338   // 'sub' should have sub->in(0) != NULL.
 339   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 340          sub->is_Region(), "expecting only these nodes");
 341 
 342   // Get control edge of 'sub'.
 343   Node* orig_sub = sub;
 344   sub = sub->find_exact_control(sub->in(0));
 345   if (sub == NULL || sub->is_top())
 346     return false; // Conservative answer for dead code
 347 
 348   assert(sub->is_CFG(), "expecting control");
 349 
 350   if (sub == dom)
 351     return true;
 352 
 353   if (sub->is_Start() || sub->is_Root())
 354     return false;
 355 
 356   {
 357     // Check all control edges of 'dom'.
 358 
 359     ResourceMark rm;
 360     Arena* arena = Thread::current()->resource_area();
 361     Node_List nlist(arena);
 362     Unique_Node_List dom_list(arena);
 363 
 364     dom_list.push(dom);
 365     bool only_dominating_controls = false;
 366 
 367     for (uint next = 0; next < dom_list.size(); next++) {
 368       Node* n = dom_list.at(next);
 369       if (n == orig_sub)
 370         return false; // One of dom's inputs dominated by sub.
 371       if (!n->is_CFG() && n->pinned()) {
 372         // Check only own control edge for pinned non-control nodes.
 373         n = n->find_exact_control(n->in(0));
 374         if (n == NULL || n->is_top())
 375           return false; // Conservative answer for dead code
 376         assert(n->is_CFG(), "expecting control");
 377         dom_list.push(n);
 378       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 379         only_dominating_controls = true;
 380       } else if (n->is_CFG()) {
 381         if (n->dominates(sub, nlist))
 382           only_dominating_controls = true;
 383         else
 384           return false;
 385       } else {
 386         // First, own control edge.
 387         Node* m = n->find_exact_control(n->in(0));
 388         if (m != NULL) {
 389           if (m->is_top())
 390             return false; // Conservative answer for dead code
 391           dom_list.push(m);
 392         }
 393         // Now, the rest of edges.
 394         uint cnt = n->req();
 395         for (uint i = 1; i < cnt; i++) {
 396           m = n->find_exact_control(n->in(i));
 397           if (m == NULL || m->is_top())
 398             continue;
 399           dom_list.push(m);
 400         }
 401       }
 402     }
 403     return only_dominating_controls;
 404   }
 405 }
 406 
 407 //---------------------detect_ptr_independence---------------------------------
 408 // Used by MemNode::find_previous_store to prove that two base
 409 // pointers are never equal.
 410 // The pointers are accompanied by their associated allocations,
 411 // if any, which have been previously discovered by the caller.
 412 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 413                                       Node* p2, AllocateNode* a2,
 414                                       PhaseTransform* phase) {
 415   // Attempt to prove that these two pointers cannot be aliased.
 416   // They may both manifestly be allocations, and they should differ.
 417   // Or, if they are not both allocations, they can be distinct constants.
 418   // Otherwise, one is an allocation and the other a pre-existing value.
 419   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 420     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 421   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 422     return (a1 != a2);
 423   } else if (a1 != NULL) {                  // one allocation a1
 424     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 425     return all_controls_dominate(p2, a1);
 426   } else { //(a2 != NULL)                   // one allocation a2
 427     return all_controls_dominate(p1, a2);
 428   }
 429   return false;
 430 }
 431 
 432 
 433 // The logic for reordering loads and stores uses four steps:
 434 // (a) Walk carefully past stores and initializations which we
 435 //     can prove are independent of this load.
 436 // (b) Observe that the next memory state makes an exact match
 437 //     with self (load or store), and locate the relevant store.
 438 // (c) Ensure that, if we were to wire self directly to the store,
 439 //     the optimizer would fold it up somehow.
 440 // (d) Do the rewiring, and return, depending on some other part of
 441 //     the optimizer to fold up the load.
 442 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 443 // specific to loads and stores, so they are handled by the callers.
 444 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 445 //
 446 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 447   Node*         ctrl   = in(MemNode::Control);
 448   Node*         adr    = in(MemNode::Address);
 449   intptr_t      offset = 0;
 450   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 451   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 452 
 453   if (offset == Type::OffsetBot)
 454     return NULL;            // cannot unalias unless there are precise offsets
 455 
 456   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 457 
 458   intptr_t size_in_bytes = memory_size();
 459 
 460   Node* mem = in(MemNode::Memory);   // start searching here...
 461 
 462   int cnt = 50;             // Cycle limiter
 463   for (;;) {                // While we can dance past unrelated stores...
 464     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 465 
 466     if (mem->is_Store()) {
 467       Node* st_adr = mem->in(MemNode::Address);
 468       intptr_t st_offset = 0;
 469       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 470       if (st_base == NULL)
 471         break;              // inscrutable pointer
 472       if (st_offset != offset && st_offset != Type::OffsetBot) {
 473         const int MAX_STORE = BytesPerLong;
 474         if (st_offset >= offset + size_in_bytes ||
 475             st_offset <= offset - MAX_STORE ||
 476             st_offset <= offset - mem->as_Store()->memory_size()) {
 477           // Success:  The offsets are provably independent.
 478           // (You may ask, why not just test st_offset != offset and be done?
 479           // The answer is that stores of different sizes can co-exist
 480           // in the same sequence of RawMem effects.  We sometimes initialize
 481           // a whole 'tile' of array elements with a single jint or jlong.)
 482           mem = mem->in(MemNode::Memory);
 483           continue;           // (a) advance through independent store memory
 484         }
 485       }
 486       if (st_base != base &&
 487           detect_ptr_independence(base, alloc,
 488                                   st_base,
 489                                   AllocateNode::Ideal_allocation(st_base, phase),
 490                                   phase)) {
 491         // Success:  The bases are provably independent.
 492         mem = mem->in(MemNode::Memory);
 493         continue;           // (a) advance through independent store memory
 494       }
 495 
 496       // (b) At this point, if the bases or offsets do not agree, we lose,
 497       // since we have not managed to prove 'this' and 'mem' independent.
 498       if (st_base == base && st_offset == offset) {
 499         return mem;         // let caller handle steps (c), (d)
 500       }
 501 
 502     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 503       InitializeNode* st_init = mem->in(0)->as_Initialize();
 504       AllocateNode*  st_alloc = st_init->allocation();
 505       if (st_alloc == NULL)
 506         break;              // something degenerated
 507       bool known_identical = false;
 508       bool known_independent = false;
 509       if (alloc == st_alloc)
 510         known_identical = true;
 511       else if (alloc != NULL)
 512         known_independent = true;
 513       else if (all_controls_dominate(this, st_alloc))
 514         known_independent = true;
 515 
 516       if (known_independent) {
 517         // The bases are provably independent: Either they are
 518         // manifestly distinct allocations, or else the control
 519         // of this load dominates the store's allocation.
 520         int alias_idx = phase->C->get_alias_index(adr_type());
 521         if (alias_idx == Compile::AliasIdxRaw) {
 522           mem = st_alloc->in(TypeFunc::Memory);
 523         } else {
 524           mem = st_init->memory(alias_idx);
 525         }
 526         continue;           // (a) advance through independent store memory
 527       }
 528 
 529       // (b) at this point, if we are not looking at a store initializing
 530       // the same allocation we are loading from, we lose.
 531       if (known_identical) {
 532         // From caller, can_see_stored_value will consult find_captured_store.
 533         return mem;         // let caller handle steps (c), (d)
 534       }
 535 
 536     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 537       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 538       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 539         CallNode *call = mem->in(0)->as_Call();
 540         if (!call->may_modify(addr_t, phase)) {
 541           mem = call->in(TypeFunc::Memory);
 542           continue;         // (a) advance through independent call memory
 543         }
 544       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 545         mem = mem->in(0)->in(TypeFunc::Memory);
 546         continue;           // (a) advance through independent MemBar memory
 547       } else if (mem->is_ClearArray()) {
 548         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 549           // (the call updated 'mem' value)
 550           continue;         // (a) advance through independent allocation memory
 551         } else {
 552           // Can not bypass initialization of the instance
 553           // we are looking for.
 554           return mem;
 555         }
 556       } else if (mem->is_MergeMem()) {
 557         int alias_idx = phase->C->get_alias_index(adr_type());
 558         mem = mem->as_MergeMem()->memory_at(alias_idx);
 559         continue;           // (a) advance through independent MergeMem memory
 560       }
 561     }
 562 
 563     // Unless there is an explicit 'continue', we must bail out here,
 564     // because 'mem' is an inscrutable memory state (e.g., a call).
 565     break;
 566   }
 567 
 568   return NULL;              // bail out
 569 }
 570 
 571 //----------------------calculate_adr_type-------------------------------------
 572 // Helper function.  Notices when the given type of address hits top or bottom.
 573 // Also, asserts a cross-check of the type against the expected address type.
 574 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 575   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 576   #ifdef PRODUCT
 577   cross_check = NULL;
 578   #else
 579   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 580   #endif
 581   const TypePtr* tp = t->isa_ptr();
 582   if (tp == NULL) {
 583     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 584     return TypePtr::BOTTOM;           // touches lots of memory
 585   } else {
 586     #ifdef ASSERT
 587     // %%%% [phh] We don't check the alias index if cross_check is
 588     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 589     if (cross_check != NULL &&
 590         cross_check != TypePtr::BOTTOM &&
 591         cross_check != TypeRawPtr::BOTTOM) {
 592       // Recheck the alias index, to see if it has changed (due to a bug).
 593       Compile* C = Compile::current();
 594       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 595              "must stay in the original alias category");
 596       // The type of the address must be contained in the adr_type,
 597       // disregarding "null"-ness.
 598       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 599       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 600       assert(cross_check->meet(tp_notnull) == cross_check,
 601              "real address must not escape from expected memory type");
 602     }
 603     #endif
 604     return tp;
 605   }
 606 }
 607 
 608 //------------------------adr_phi_is_loop_invariant----------------------------
 609 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 610 // loop is loop invariant. Make a quick traversal of Phi and associated
 611 // CastPP nodes, looking to see if they are a closed group within the loop.
 612 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 613   // The idea is that the phi-nest must boil down to only CastPP nodes
 614   // with the same data. This implies that any path into the loop already
 615   // includes such a CastPP, and so the original cast, whatever its input,
 616   // must be covered by an equivalent cast, with an earlier control input.
 617   ResourceMark rm;
 618 
 619   // The loop entry input of the phi should be the unique dominating
 620   // node for every Phi/CastPP in the loop.
 621   Unique_Node_List closure;
 622   closure.push(adr_phi->in(LoopNode::EntryControl));
 623 
 624   // Add the phi node and the cast to the worklist.
 625   Unique_Node_List worklist;
 626   worklist.push(adr_phi);
 627   if( cast != NULL ){
 628     if( !cast->is_ConstraintCast() ) return false;
 629     worklist.push(cast);
 630   }
 631 
 632   // Begin recursive walk of phi nodes.
 633   while( worklist.size() ){
 634     // Take a node off the worklist
 635     Node *n = worklist.pop();
 636     if( !closure.member(n) ){
 637       // Add it to the closure.
 638       closure.push(n);
 639       // Make a sanity check to ensure we don't waste too much time here.
 640       if( closure.size() > 20) return false;
 641       // This node is OK if:
 642       //  - it is a cast of an identical value
 643       //  - or it is a phi node (then we add its inputs to the worklist)
 644       // Otherwise, the node is not OK, and we presume the cast is not invariant
 645       if( n->is_ConstraintCast() ){
 646         worklist.push(n->in(1));
 647       } else if( n->is_Phi() ) {
 648         for( uint i = 1; i < n->req(); i++ ) {
 649           worklist.push(n->in(i));
 650         }
 651       } else {
 652         return false;
 653       }
 654     }
 655   }
 656 
 657   // Quit when the worklist is empty, and we've found no offending nodes.
 658   return true;
 659 }
 660 
 661 //------------------------------Ideal_DU_postCCP-------------------------------
 662 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 663 // going away in this pass and we need to make this memory op depend on the
 664 // gating null check.
 665 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 666   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 667 }
 668 
 669 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 670 // some sense; we get to keep around the knowledge that an oop is not-null
 671 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 672 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 673 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 674 // some of the more trivial cases in the optimizer.  Removing more useless
 675 // Phi's started allowing Loads to illegally float above null checks.  I gave
 676 // up on this approach.  CNC 10/20/2000
 677 // This static method may be called not from MemNode (EncodePNode calls it).
 678 // Only the control edge of the node 'n' might be updated.
 679 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 680   Node *skipped_cast = NULL;
 681   // Need a null check?  Regular static accesses do not because they are
 682   // from constant addresses.  Array ops are gated by the range check (which
 683   // always includes a NULL check).  Just check field ops.
 684   if( n->in(MemNode::Control) == NULL ) {
 685     // Scan upwards for the highest location we can place this memory op.
 686     while( true ) {
 687       switch( adr->Opcode() ) {
 688 
 689       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 690         adr = adr->in(AddPNode::Base);
 691         continue;
 692 
 693       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 694         adr = adr->in(1);
 695         continue;
 696 
 697       case Op_CastPP:
 698         // If the CastPP is useless, just peek on through it.
 699         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 700           // Remember the cast that we've peeked though. If we peek
 701           // through more than one, then we end up remembering the highest
 702           // one, that is, if in a loop, the one closest to the top.
 703           skipped_cast = adr;
 704           adr = adr->in(1);
 705           continue;
 706         }
 707         // CastPP is going away in this pass!  We need this memory op to be
 708         // control-dependent on the test that is guarding the CastPP.
 709         ccp->hash_delete(n);
 710         n->set_req(MemNode::Control, adr->in(0));
 711         ccp->hash_insert(n);
 712         return n;
 713 
 714       case Op_Phi:
 715         // Attempt to float above a Phi to some dominating point.
 716         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 717           // If we've already peeked through a Cast (which could have set the
 718           // control), we can't float above a Phi, because the skipped Cast
 719           // may not be loop invariant.
 720           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 721             adr = adr->in(1);
 722             continue;
 723           }
 724         }
 725 
 726         // Intentional fallthrough!
 727 
 728         // No obvious dominating point.  The mem op is pinned below the Phi
 729         // by the Phi itself.  If the Phi goes away (no true value is merged)
 730         // then the mem op can float, but not indefinitely.  It must be pinned
 731         // behind the controls leading to the Phi.
 732       case Op_CheckCastPP:
 733         // These usually stick around to change address type, however a
 734         // useless one can be elided and we still need to pick up a control edge
 735         if (adr->in(0) == NULL) {
 736           // This CheckCastPP node has NO control and is likely useless. But we
 737           // need check further up the ancestor chain for a control input to keep
 738           // the node in place. 4959717.
 739           skipped_cast = adr;
 740           adr = adr->in(1);
 741           continue;
 742         }
 743         ccp->hash_delete(n);
 744         n->set_req(MemNode::Control, adr->in(0));
 745         ccp->hash_insert(n);
 746         return n;
 747 
 748         // List of "safe" opcodes; those that implicitly block the memory
 749         // op below any null check.
 750       case Op_CastX2P:          // no null checks on native pointers
 751       case Op_Parm:             // 'this' pointer is not null
 752       case Op_LoadP:            // Loading from within a klass
 753       case Op_LoadN:            // Loading from within a klass
 754       case Op_LoadKlass:        // Loading from within a klass
 755       case Op_LoadNKlass:       // Loading from within a klass
 756       case Op_ConP:             // Loading from a klass
 757       case Op_ConN:             // Loading from a klass
 758       case Op_CreateEx:         // Sucking up the guts of an exception oop
 759       case Op_Con:              // Reading from TLS
 760       case Op_CMoveP:           // CMoveP is pinned
 761       case Op_CMoveN:           // CMoveN is pinned
 762         break;                  // No progress
 763 
 764       case Op_Proj:             // Direct call to an allocation routine
 765       case Op_SCMemProj:        // Memory state from store conditional ops
 766 #ifdef ASSERT
 767         {
 768           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 769           const Node* call = adr->in(0);
 770           if (call->is_CallJava()) {
 771             const CallJavaNode* call_java = call->as_CallJava();
 772             const TypeTuple *r = call_java->tf()->range();
 773             assert(r->cnt() > TypeFunc::Parms, "must return value");
 774             const Type* ret_type = r->field_at(TypeFunc::Parms);
 775             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 776             // We further presume that this is one of
 777             // new_instance_Java, new_array_Java, or
 778             // the like, but do not assert for this.
 779           } else if (call->is_Allocate()) {
 780             // similar case to new_instance_Java, etc.
 781           } else if (!call->is_CallLeaf()) {
 782             // Projections from fetch_oop (OSR) are allowed as well.
 783             ShouldNotReachHere();
 784           }
 785         }
 786 #endif
 787         break;
 788       default:
 789         ShouldNotReachHere();
 790       }
 791       break;
 792     }
 793   }
 794 
 795   return  NULL;               // No progress
 796 }
 797 
 798 
 799 //=============================================================================
 800 uint LoadNode::size_of() const { return sizeof(*this); }
 801 uint LoadNode::cmp( const Node &n ) const
 802 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 803 const Type *LoadNode::bottom_type() const { return _type; }
 804 uint LoadNode::ideal_reg() const {
 805   return Matcher::base2reg[_type->base()];
 806 }
 807 
 808 #ifndef PRODUCT
 809 void LoadNode::dump_spec(outputStream *st) const {
 810   MemNode::dump_spec(st);
 811   if( !Verbose && !WizardMode ) {
 812     // standard dump does this in Verbose and WizardMode
 813     st->print(" #"); _type->dump_on(st);
 814   }
 815 }
 816 #endif
 817 
 818 #ifdef ASSERT
 819 //----------------------------is_immutable_value-------------------------------
 820 // Helper function to allow a raw load without control edge for some cases
 821 bool LoadNode::is_immutable_value(Node* adr) {
 822   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 823           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 824           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 825            in_bytes(JavaThread::osthread_offset())));
 826 }
 827 #endif
 828 
 829 //----------------------------LoadNode::make-----------------------------------
 830 // Polymorphic factory method:
 831 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 832   Compile* C = gvn.C;
 833 
 834   // sanity check the alias category against the created node type
 835   assert(!(adr_type->isa_oopptr() &&
 836            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 837          "use LoadKlassNode instead");
 838   assert(!(adr_type->isa_aryptr() &&
 839            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 840          "use LoadRangeNode instead");
 841   // Check control edge of raw loads
 842   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 843           // oop will be recorded in oop map if load crosses safepoint
 844           rt->isa_oopptr() || is_immutable_value(adr),
 845           "raw memory operations should have control edge");
 846   switch (bt) {
 847   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 848   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 849   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 850   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 851   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 852   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 853   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 854   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 855   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 856   case T_OBJECT:
 857 #ifdef _LP64
 858     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 859       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 860       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 861     } else
 862 #endif
 863     {
 864       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 865       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 866     }
 867   }
 868   ShouldNotReachHere();
 869   return (LoadNode*)NULL;
 870 }
 871 
 872 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 873   bool require_atomic = true;
 874   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 875 }
 876 
 877 
 878 
 879 
 880 //------------------------------hash-------------------------------------------
 881 uint LoadNode::hash() const {
 882   // unroll addition of interesting fields
 883   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 884 }
 885 
 886 //---------------------------can_see_stored_value------------------------------
 887 // This routine exists to make sure this set of tests is done the same
 888 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 889 // will change the graph shape in a way which makes memory alive twice at the
 890 // same time (uses the Oracle model of aliasing), then some
 891 // LoadXNode::Identity will fold things back to the equivalence-class model
 892 // of aliasing.
 893 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 894   Node* ld_adr = in(MemNode::Address);
 895 
 896   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 897   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 898   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 899       atp->field() != NULL && !atp->field()->is_volatile()) {
 900     uint alias_idx = atp->index();
 901     bool final = atp->field()->is_final();
 902     Node* result = NULL;
 903     Node* current = st;
 904     // Skip through chains of MemBarNodes checking the MergeMems for
 905     // new states for the slice of this load.  Stop once any other
 906     // kind of node is encountered.  Loads from final memory can skip
 907     // through any kind of MemBar but normal loads shouldn't skip
 908     // through MemBarAcquire since the could allow them to move out of
 909     // a synchronized region.
 910     while (current->is_Proj()) {
 911       int opc = current->in(0)->Opcode();
 912       if ((final && opc == Op_MemBarAcquire) ||
 913           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 914         Node* mem = current->in(0)->in(TypeFunc::Memory);
 915         if (mem->is_MergeMem()) {
 916           MergeMemNode* merge = mem->as_MergeMem();
 917           Node* new_st = merge->memory_at(alias_idx);
 918           if (new_st == merge->base_memory()) {
 919             // Keep searching
 920             current = merge->base_memory();
 921             continue;
 922           }
 923           // Save the new memory state for the slice and fall through
 924           // to exit.
 925           result = new_st;
 926         }
 927       }
 928       break;
 929     }
 930     if (result != NULL) {
 931       st = result;
 932     }
 933   }
 934 
 935 
 936   // Loop around twice in the case Load -> Initialize -> Store.
 937   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 938   for (int trip = 0; trip <= 1; trip++) {
 939 
 940     if (st->is_Store()) {
 941       Node* st_adr = st->in(MemNode::Address);
 942       if (!phase->eqv(st_adr, ld_adr)) {
 943         // Try harder before giving up...  Match raw and non-raw pointers.
 944         intptr_t st_off = 0;
 945         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 946         if (alloc == NULL)       return NULL;
 947         intptr_t ld_off = 0;
 948         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 949         if (alloc != allo2)      return NULL;
 950         if (ld_off != st_off)    return NULL;
 951         // At this point we have proven something like this setup:
 952         //  A = Allocate(...)
 953         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 954         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 955         // (Actually, we haven't yet proven the Q's are the same.)
 956         // In other words, we are loading from a casted version of
 957         // the same pointer-and-offset that we stored to.
 958         // Thus, we are able to replace L by V.
 959       }
 960       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 961       if (store_Opcode() != st->Opcode())
 962         return NULL;
 963       return st->in(MemNode::ValueIn);
 964     }
 965 
 966     intptr_t offset = 0;  // scratch
 967 
 968     // A load from a freshly-created object always returns zero.
 969     // (This can happen after LoadNode::Ideal resets the load's memory input
 970     // to find_captured_store, which returned InitializeNode::zero_memory.)
 971     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 972         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 973         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 974       // return a zero value for the load's basic type
 975       // (This is one of the few places where a generic PhaseTransform
 976       // can create new nodes.  Think of it as lazily manifesting
 977       // virtually pre-existing constants.)
 978       return phase->zerocon(memory_type());
 979     }
 980 
 981     // A load from an initialization barrier can match a captured store.
 982     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 983       InitializeNode* init = st->in(0)->as_Initialize();
 984       AllocateNode* alloc = init->allocation();
 985       if (alloc != NULL &&
 986           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
 987         // examine a captured store value
 988         st = init->find_captured_store(offset, memory_size(), phase);
 989         if (st != NULL)
 990           continue;             // take one more trip around
 991       }
 992     }
 993 
 994     break;
 995   }
 996 
 997   return NULL;
 998 }
 999 
1000 //----------------------is_instance_field_load_with_local_phi------------------
1001 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1002   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
1003       in(MemNode::Address)->is_AddP() ) {
1004     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
1005     // Only instances.
1006     if( t_oop != NULL && t_oop->is_known_instance_field() &&
1007         t_oop->offset() != Type::OffsetBot &&
1008         t_oop->offset() != Type::OffsetTop) {
1009       return true;
1010     }
1011   }
1012   return false;
1013 }
1014 
1015 //------------------------------Identity---------------------------------------
1016 // Loads are identity if previous store is to same address
1017 Node *LoadNode::Identity( PhaseTransform *phase ) {
1018   // If the previous store-maker is the right kind of Store, and the store is
1019   // to the same address, then we are equal to the value stored.
1020   Node* mem = in(MemNode::Memory);
1021   Node* value = can_see_stored_value(mem, phase);
1022   if( value ) {
1023     // byte, short & char stores truncate naturally.
1024     // A load has to load the truncated value which requires
1025     // some sort of masking operation and that requires an
1026     // Ideal call instead of an Identity call.
1027     if (memory_size() < BytesPerInt) {
1028       // If the input to the store does not fit with the load's result type,
1029       // it must be truncated via an Ideal call.
1030       if (!phase->type(value)->higher_equal(phase->type(this)))
1031         return this;
1032     }
1033     // (This works even when value is a Con, but LoadNode::Value
1034     // usually runs first, producing the singleton type of the Con.)
1035     return value;
1036   }
1037 
1038   // Search for an existing data phi which was generated before for the same
1039   // instance's field to avoid infinite generation of phis in a loop.
1040   Node *region = mem->in(0);
1041   if (is_instance_field_load_with_local_phi(region)) {
1042     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1043     int this_index  = phase->C->get_alias_index(addr_t);
1044     int this_offset = addr_t->offset();
1045     int this_id    = addr_t->is_oopptr()->instance_id();
1046     const Type* this_type = bottom_type();
1047     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1048       Node* phi = region->fast_out(i);
1049       if (phi->is_Phi() && phi != mem &&
1050           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1051         return phi;
1052       }
1053     }
1054   }
1055 
1056   return this;
1057 }
1058 
1059 
1060 // Returns true if the AliasType refers to the field that holds the
1061 // cached box array.  Currently only handles the IntegerCache case.
1062 static bool is_autobox_cache(Compile::AliasType* atp) {
1063   if (atp != NULL && atp->field() != NULL) {
1064     ciField* field = atp->field();
1065     ciSymbol* klass = field->holder()->name();
1066     if (field->name() == ciSymbol::cache_field_name() &&
1067         field->holder()->uses_default_loader() &&
1068         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1069       return true;
1070     }
1071   }
1072   return false;
1073 }
1074 
1075 // Fetch the base value in the autobox array
1076 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1077   if (atp != NULL && atp->field() != NULL) {
1078     ciField* field = atp->field();
1079     ciSymbol* klass = field->holder()->name();
1080     if (field->name() == ciSymbol::cache_field_name() &&
1081         field->holder()->uses_default_loader() &&
1082         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1083       assert(field->is_constant(), "what?");
1084       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1085       // Fetch the box object at the base of the array and get its value
1086       ciInstance* box = array->obj_at(0)->as_instance();
1087       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1088       if (ik->nof_nonstatic_fields() == 1) {
1089         // This should be true nonstatic_field_at requires calling
1090         // nof_nonstatic_fields so check it anyway
1091         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1092         cache_offset = c.as_int();
1093       }
1094       return true;
1095     }
1096   }
1097   return false;
1098 }
1099 
1100 // Returns true if the AliasType refers to the value field of an
1101 // autobox object.  Currently only handles Integer.
1102 static bool is_autobox_object(Compile::AliasType* atp) {
1103   if (atp != NULL && atp->field() != NULL) {
1104     ciField* field = atp->field();
1105     ciSymbol* klass = field->holder()->name();
1106     if (field->name() == ciSymbol::value_name() &&
1107         field->holder()->uses_default_loader() &&
1108         klass == ciSymbol::java_lang_Integer()) {
1109       return true;
1110     }
1111   }
1112   return false;
1113 }
1114 
1115 
1116 // We're loading from an object which has autobox behaviour.
1117 // If this object is result of a valueOf call we'll have a phi
1118 // merging a newly allocated object and a load from the cache.
1119 // We want to replace this load with the original incoming
1120 // argument to the valueOf call.
1121 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1122   Node* base = in(Address)->in(AddPNode::Base);
1123   if (base->is_Phi() && base->req() == 3) {
1124     AllocateNode* allocation = NULL;
1125     int allocation_index = -1;
1126     int load_index = -1;
1127     for (uint i = 1; i < base->req(); i++) {
1128       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1129       if (allocation != NULL) {
1130         allocation_index = i;
1131         load_index = 3 - allocation_index;
1132         break;
1133       }
1134     }
1135     bool has_load = ( allocation != NULL &&
1136                       (base->in(load_index)->is_Load() ||
1137                        base->in(load_index)->is_DecodeN() &&
1138                        base->in(load_index)->in(1)->is_Load()) );
1139     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1140       // Push the loads from the phi that comes from valueOf up
1141       // through it to allow elimination of the loads and the recovery
1142       // of the original value.
1143       Node* mem_phi = in(Memory);
1144       Node* offset = in(Address)->in(AddPNode::Offset);
1145       Node* region = base->in(0);
1146 
1147       Node* in1 = clone();
1148       Node* in1_addr = in1->in(Address)->clone();
1149       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1150       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1151       in1_addr->set_req(AddPNode::Offset, offset);
1152       in1->set_req(0, region->in(allocation_index));
1153       in1->set_req(Address, in1_addr);
1154       in1->set_req(Memory, mem_phi->in(allocation_index));
1155 
1156       Node* in2 = clone();
1157       Node* in2_addr = in2->in(Address)->clone();
1158       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1159       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1160       in2_addr->set_req(AddPNode::Offset, offset);
1161       in2->set_req(0, region->in(load_index));
1162       in2->set_req(Address, in2_addr);
1163       in2->set_req(Memory, mem_phi->in(load_index));
1164 
1165       in1_addr = phase->transform(in1_addr);
1166       in1 =      phase->transform(in1);
1167       in2_addr = phase->transform(in2_addr);
1168       in2 =      phase->transform(in2);
1169 
1170       PhiNode* result = PhiNode::make_blank(region, this);
1171       result->set_req(allocation_index, in1);
1172       result->set_req(load_index, in2);
1173       return result;
1174     }
1175   } else if (base->is_Load() ||
1176              base->is_DecodeN() && base->in(1)->is_Load()) {
1177     if (base->is_DecodeN()) {
1178       // Get LoadN node which loads cached Integer object
1179       base = base->in(1);
1180     }
1181     // Eliminate the load of Integer.value for integers from the cache
1182     // array by deriving the value from the index into the array.
1183     // Capture the offset of the load and then reverse the computation.
1184     Node* load_base = base->in(Address)->in(AddPNode::Base);
1185     if (load_base->is_DecodeN()) {
1186       // Get LoadN node which loads IntegerCache.cache field
1187       load_base = load_base->in(1);
1188     }
1189     if (load_base != NULL) {
1190       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1191       intptr_t cache_offset;
1192       int shift = -1;
1193       Node* cache = NULL;
1194       if (is_autobox_cache(atp)) {
1195         shift  = exact_log2(type2aelembytes(T_OBJECT));
1196         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1197       }
1198       if (cache != NULL && base->in(Address)->is_AddP()) {
1199         Node* elements[4];
1200         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1201         int cache_low;
1202         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1203           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1204           // Add up all the offsets making of the address of the load
1205           Node* result = elements[0];
1206           for (int i = 1; i < count; i++) {
1207             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1208           }
1209           // Remove the constant offset from the address and then
1210           // remove the scaling of the offset to recover the original index.
1211           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1212           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1213             // Peel the shift off directly but wrap it in a dummy node
1214             // since Ideal can't return existing nodes
1215             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1216           } else {
1217             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1218           }
1219 #ifdef _LP64
1220           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1221 #endif
1222           return result;
1223         }
1224       }
1225     }
1226   }
1227   return NULL;
1228 }
1229 
1230 //------------------------------split_through_phi------------------------------
1231 // Split instance field load through Phi.
1232 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1233   Node* mem     = in(MemNode::Memory);
1234   Node* address = in(MemNode::Address);
1235   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1236   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1237 
1238   assert(mem->is_Phi() && (t_oop != NULL) &&
1239          t_oop->is_known_instance_field(), "invalide conditions");
1240 
1241   Node *region = mem->in(0);
1242   if (region == NULL) {
1243     return NULL; // Wait stable graph
1244   }
1245   uint cnt = mem->req();
1246   for( uint i = 1; i < cnt; i++ ) {
1247     Node *in = mem->in(i);
1248     if( in == NULL ) {
1249       return NULL; // Wait stable graph
1250     }
1251   }
1252   // Check for loop invariant.
1253   if (cnt == 3) {
1254     for( uint i = 1; i < cnt; i++ ) {
1255       Node *in = mem->in(i);
1256       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1257       if (m == mem) {
1258         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1259         return this;
1260       }
1261     }
1262   }
1263   // Split through Phi (see original code in loopopts.cpp).
1264   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1265 
1266   // Do nothing here if Identity will find a value
1267   // (to avoid infinite chain of value phis generation).
1268   if ( !phase->eqv(this, this->Identity(phase)) )
1269     return NULL;
1270 
1271   // Skip the split if the region dominates some control edge of the address.
1272   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1273     return NULL;
1274 
1275   const Type* this_type = this->bottom_type();
1276   int this_index  = phase->C->get_alias_index(addr_t);
1277   int this_offset = addr_t->offset();
1278   int this_iid    = addr_t->is_oopptr()->instance_id();
1279   int wins = 0;
1280   PhaseIterGVN *igvn = phase->is_IterGVN();
1281   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1282   for( uint i = 1; i < region->req(); i++ ) {
1283     Node *x;
1284     Node* the_clone = NULL;
1285     if( region->in(i) == phase->C->top() ) {
1286       x = phase->C->top();      // Dead path?  Use a dead data op
1287     } else {
1288       x = this->clone();        // Else clone up the data op
1289       the_clone = x;            // Remember for possible deletion.
1290       // Alter data node to use pre-phi inputs
1291       if( this->in(0) == region ) {
1292         x->set_req( 0, region->in(i) );
1293       } else {
1294         x->set_req( 0, NULL );
1295       }
1296       for( uint j = 1; j < this->req(); j++ ) {
1297         Node *in = this->in(j);
1298         if( in->is_Phi() && in->in(0) == region )
1299           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1300       }
1301     }
1302     // Check for a 'win' on some paths
1303     const Type *t = x->Value(igvn);
1304 
1305     bool singleton = t->singleton();
1306 
1307     // See comments in PhaseIdealLoop::split_thru_phi().
1308     if( singleton && t == Type::TOP ) {
1309       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1310     }
1311 
1312     if( singleton ) {
1313       wins++;
1314       x = igvn->makecon(t);
1315     } else {
1316       // We now call Identity to try to simplify the cloned node.
1317       // Note that some Identity methods call phase->type(this).
1318       // Make sure that the type array is big enough for
1319       // our new node, even though we may throw the node away.
1320       // (This tweaking with igvn only works because x is a new node.)
1321       igvn->set_type(x, t);
1322       // If x is a TypeNode, capture any more-precise type permanently into Node
1323       // otherwise it will be not updated during igvn->transform since
1324       // igvn->type(x) is set to x->Value() already.
1325       x->raise_bottom_type(t);
1326       Node *y = x->Identity(igvn);
1327       if( y != x ) {
1328         wins++;
1329         x = y;
1330       } else {
1331         y = igvn->hash_find(x);
1332         if( y ) {
1333           wins++;
1334           x = y;
1335         } else {
1336           // Else x is a new node we are keeping
1337           // We do not need register_new_node_with_optimizer
1338           // because set_type has already been called.
1339           igvn->_worklist.push(x);
1340         }
1341       }
1342     }
1343     if (x != the_clone && the_clone != NULL)
1344       igvn->remove_dead_node(the_clone);
1345     phi->set_req(i, x);
1346   }
1347   if( wins > 0 ) {
1348     // Record Phi
1349     igvn->register_new_node_with_optimizer(phi);
1350     return phi;
1351   }
1352   igvn->remove_dead_node(phi);
1353   return NULL;
1354 }
1355 
1356 //------------------------------Ideal------------------------------------------
1357 // If the load is from Field memory and the pointer is non-null, we can
1358 // zero out the control input.
1359 // If the offset is constant and the base is an object allocation,
1360 // try to hook me up to the exact initializing store.
1361 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1362   Node* p = MemNode::Ideal_common(phase, can_reshape);
1363   if (p)  return (p == NodeSentinel) ? NULL : p;
1364 
1365   Node* ctrl    = in(MemNode::Control);
1366   Node* address = in(MemNode::Address);
1367 
1368   // Skip up past a SafePoint control.  Cannot do this for Stores because
1369   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1370   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1371       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1372     ctrl = ctrl->in(0);
1373     set_req(MemNode::Control,ctrl);
1374   }
1375 
1376   intptr_t ignore = 0;
1377   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1378   if (base != NULL
1379       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1380     // Check for useless control edge in some common special cases
1381     if (in(MemNode::Control) != NULL
1382         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1383         && all_controls_dominate(base, phase->C->start())) {
1384       // A method-invariant, non-null address (constant or 'this' argument).
1385       set_req(MemNode::Control, NULL);
1386     }
1387 
1388     if (EliminateAutoBox && can_reshape) {
1389       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1390       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1391       if (is_autobox_object(atp)) {
1392         Node* result = eliminate_autobox(phase);
1393         if (result != NULL) return result;
1394       }
1395     }
1396   }
1397 
1398   Node* mem = in(MemNode::Memory);
1399   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1400 
1401   if (addr_t != NULL) {
1402     // try to optimize our memory input
1403     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1404     if (opt_mem != mem) {
1405       set_req(MemNode::Memory, opt_mem);
1406       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1407       return this;
1408     }
1409     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1410     if (can_reshape && opt_mem->is_Phi() &&
1411         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1412       // Split instance field load through Phi.
1413       Node* result = split_through_phi(phase);
1414       if (result != NULL) return result;
1415     }
1416   }
1417 
1418   // Check for prior store with a different base or offset; make Load
1419   // independent.  Skip through any number of them.  Bail out if the stores
1420   // are in an endless dead cycle and report no progress.  This is a key
1421   // transform for Reflection.  However, if after skipping through the Stores
1422   // we can't then fold up against a prior store do NOT do the transform as
1423   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1424   // array memory alive twice: once for the hoisted Load and again after the
1425   // bypassed Store.  This situation only works if EVERYBODY who does
1426   // anti-dependence work knows how to bypass.  I.e. we need all
1427   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1428   // the alias index stuff.  So instead, peek through Stores and IFF we can
1429   // fold up, do so.
1430   Node* prev_mem = find_previous_store(phase);
1431   // Steps (a), (b):  Walk past independent stores to find an exact match.
1432   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1433     // (c) See if we can fold up on the spot, but don't fold up here.
1434     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1435     // just return a prior value, which is done by Identity calls.
1436     if (can_see_stored_value(prev_mem, phase)) {
1437       // Make ready for step (d):
1438       set_req(MemNode::Memory, prev_mem);
1439       return this;
1440     }
1441   }
1442 
1443   return NULL;                  // No further progress
1444 }
1445 
1446 // Helper to recognize certain Klass fields which are invariant across
1447 // some group of array types (e.g., int[] or all T[] where T < Object).
1448 const Type*
1449 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1450                                  ciKlass* klass) const {
1451   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1452     // The field is Klass::_modifier_flags.  Return its (constant) value.
1453     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1454     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1455     return TypeInt::make(klass->modifier_flags());
1456   }
1457   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1458     // The field is Klass::_access_flags.  Return its (constant) value.
1459     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1460     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1461     return TypeInt::make(klass->access_flags());
1462   }
1463   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1464     // The field is Klass::_layout_helper.  Return its constant value if known.
1465     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1466     return TypeInt::make(klass->layout_helper());
1467   }
1468 
1469   // No match.
1470   return NULL;
1471 }
1472 
1473 //------------------------------Value-----------------------------------------
1474 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1475   // Either input is TOP ==> the result is TOP
1476   Node* mem = in(MemNode::Memory);
1477   const Type *t1 = phase->type(mem);
1478   if (t1 == Type::TOP)  return Type::TOP;
1479   Node* adr = in(MemNode::Address);
1480   const TypePtr* tp = phase->type(adr)->isa_ptr();
1481   if (tp == NULL || tp->empty())  return Type::TOP;
1482   int off = tp->offset();
1483   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1484 
1485   // Try to guess loaded type from pointer type
1486   if (tp->base() == Type::AryPtr) {
1487     const Type *t = tp->is_aryptr()->elem();
1488     // Don't do this for integer types. There is only potential profit if
1489     // the element type t is lower than _type; that is, for int types, if _type is
1490     // more restrictive than t.  This only happens here if one is short and the other
1491     // char (both 16 bits), and in those cases we've made an intentional decision
1492     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1493     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1494     //
1495     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1496     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1497     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1498     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1499     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1500     // In fact, that could have been the original type of p1, and p1 could have
1501     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1502     // expression (LShiftL quux 3) independently optimized to the constant 8.
1503     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1504         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1505       // t might actually be lower than _type, if _type is a unique
1506       // concrete subclass of abstract class t.
1507       // Make sure the reference is not into the header, by comparing
1508       // the offset against the offset of the start of the array's data.
1509       // Different array types begin at slightly different offsets (12 vs. 16).
1510       // We choose T_BYTE as an example base type that is least restrictive
1511       // as to alignment, which will therefore produce the smallest
1512       // possible base offset.
1513       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1514       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1515         const Type* jt = t->join(_type);
1516         // In any case, do not allow the join, per se, to empty out the type.
1517         if (jt->empty() && !t->empty()) {
1518           // This can happen if a interface-typed array narrows to a class type.
1519           jt = _type;
1520         }
1521 
1522         if (EliminateAutoBox && adr->is_AddP()) {
1523           // The pointers in the autobox arrays are always non-null
1524           Node* base = adr->in(AddPNode::Base);
1525           if (base != NULL &&
1526               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1527             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1528             if (is_autobox_cache(atp)) {
1529               return jt->join(TypePtr::NOTNULL)->is_ptr();
1530             }
1531           }
1532         }
1533         return jt;
1534       }
1535     }
1536   } else if (tp->base() == Type::InstPtr) {
1537     const TypeInstPtr* tinst = tp->is_instptr();
1538     ciKlass* klass = tinst->klass();
1539     assert( off != Type::OffsetBot ||
1540             // arrays can be cast to Objects
1541             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1542             // unsafe field access may not have a constant offset
1543             phase->C->has_unsafe_access(),
1544             "Field accesses must be precise" );
1545     // For oop loads, we expect the _type to be precise
1546     if (OptimizeStringConcat && klass == phase->C->env()->String_klass() &&
1547         adr->is_AddP() && off != Type::OffsetBot) {
1548       // For constant Strings treat the fields as compile time constants.
1549       Node* base = adr->in(AddPNode::Base);
1550       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1551       if (t != NULL && t->singleton()) {
1552         ciObject* string = t->const_oop();
1553         ciConstant constant = string->as_instance()->field_value_by_offset(off);
1554         if (constant.basic_type() == T_INT) {
1555           return TypeInt::make(constant.as_int());
1556         } else if (constant.basic_type() == T_ARRAY) {
1557           if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1558             return TypeNarrowOop::make_from_constant(constant.as_object());
1559           } else {
1560             return TypeOopPtr::make_from_constant(constant.as_object());
1561           }
1562         }
1563       }
1564     }
1565   } else if (tp->base() == Type::KlassPtr) {
1566     assert( off != Type::OffsetBot ||
1567             // arrays can be cast to Objects
1568             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1569             // also allow array-loading from the primary supertype
1570             // array during subtype checks
1571             Opcode() == Op_LoadKlass,
1572             "Field accesses must be precise" );
1573     // For klass/static loads, we expect the _type to be precise
1574   }
1575 
1576   const TypeKlassPtr *tkls = tp->isa_klassptr();
1577   if (tkls != NULL && !StressReflectiveCode) {
1578     ciKlass* klass = tkls->klass();
1579     if (klass->is_loaded() && tkls->klass_is_exact()) {
1580       // We are loading a field from a Klass metaobject whose identity
1581       // is known at compile time (the type is "exact" or "precise").
1582       // Check for fields we know are maintained as constants by the VM.
1583       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1584         // The field is Klass::_super_check_offset.  Return its (constant) value.
1585         // (Folds up type checking code.)
1586         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1587         return TypeInt::make(klass->super_check_offset());
1588       }
1589       // Compute index into primary_supers array
1590       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1591       // Check for overflowing; use unsigned compare to handle the negative case.
1592       if( depth < ciKlass::primary_super_limit() ) {
1593         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1594         // (Folds up type checking code.)
1595         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1596         ciKlass *ss = klass->super_of_depth(depth);
1597         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1598       }
1599       const Type* aift = load_array_final_field(tkls, klass);
1600       if (aift != NULL)  return aift;
1601       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1602           && klass->is_array_klass()) {
1603         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1604         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1605         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1606         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1607       }
1608       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1609         // The field is Klass::_java_mirror.  Return its (constant) value.
1610         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1611         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1612         return TypeInstPtr::make(klass->java_mirror());
1613       }
1614     }
1615 
1616     // We can still check if we are loading from the primary_supers array at a
1617     // shallow enough depth.  Even though the klass is not exact, entries less
1618     // than or equal to its super depth are correct.
1619     if (klass->is_loaded() ) {
1620       ciType *inner = klass->klass();
1621       while( inner->is_obj_array_klass() )
1622         inner = inner->as_obj_array_klass()->base_element_type();
1623       if( inner->is_instance_klass() &&
1624           !inner->as_instance_klass()->flags().is_interface() ) {
1625         // Compute index into primary_supers array
1626         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1627         // Check for overflowing; use unsigned compare to handle the negative case.
1628         if( depth < ciKlass::primary_super_limit() &&
1629             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1630           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1631           // (Folds up type checking code.)
1632           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1633           ciKlass *ss = klass->super_of_depth(depth);
1634           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1635         }
1636       }
1637     }
1638 
1639     // If the type is enough to determine that the thing is not an array,
1640     // we can give the layout_helper a positive interval type.
1641     // This will help short-circuit some reflective code.
1642     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1643         && !klass->is_array_klass() // not directly typed as an array
1644         && !klass->is_interface()  // specifically not Serializable & Cloneable
1645         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1646         ) {
1647       // Note:  When interfaces are reliable, we can narrow the interface
1648       // test to (klass != Serializable && klass != Cloneable).
1649       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1650       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1651       // The key property of this type is that it folds up tests
1652       // for array-ness, since it proves that the layout_helper is positive.
1653       // Thus, a generic value like the basic object layout helper works fine.
1654       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1655     }
1656   }
1657 
1658   // If we are loading from a freshly-allocated object, produce a zero,
1659   // if the load is provably beyond the header of the object.
1660   // (Also allow a variable load from a fresh array to produce zero.)
1661   if (ReduceFieldZeroing) {
1662     Node* value = can_see_stored_value(mem,phase);
1663     if (value != NULL && value->is_Con())
1664       return value->bottom_type();
1665   }
1666 
1667   const TypeOopPtr *tinst = tp->isa_oopptr();
1668   if (tinst != NULL && tinst->is_known_instance_field()) {
1669     // If we have an instance type and our memory input is the
1670     // programs's initial memory state, there is no matching store,
1671     // so just return a zero of the appropriate type
1672     Node *mem = in(MemNode::Memory);
1673     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1674       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1675       return Type::get_zero_type(_type->basic_type());
1676     }
1677   }
1678   return _type;
1679 }
1680 
1681 //------------------------------match_edge-------------------------------------
1682 // Do we Match on this edge index or not?  Match only the address.
1683 uint LoadNode::match_edge(uint idx) const {
1684   return idx == MemNode::Address;
1685 }
1686 
1687 //--------------------------LoadBNode::Ideal--------------------------------------
1688 //
1689 //  If the previous store is to the same address as this load,
1690 //  and the value stored was larger than a byte, replace this load
1691 //  with the value stored truncated to a byte.  If no truncation is
1692 //  needed, the replacement is done in LoadNode::Identity().
1693 //
1694 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1695   Node* mem = in(MemNode::Memory);
1696   Node* value = can_see_stored_value(mem,phase);
1697   if( value && !phase->type(value)->higher_equal( _type ) ) {
1698     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1699     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1700   }
1701   // Identity call will handle the case where truncation is not needed.
1702   return LoadNode::Ideal(phase, can_reshape);
1703 }
1704 
1705 //--------------------------LoadUBNode::Ideal-------------------------------------
1706 //
1707 //  If the previous store is to the same address as this load,
1708 //  and the value stored was larger than a byte, replace this load
1709 //  with the value stored truncated to a byte.  If no truncation is
1710 //  needed, the replacement is done in LoadNode::Identity().
1711 //
1712 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1713   Node* mem = in(MemNode::Memory);
1714   Node* value = can_see_stored_value(mem, phase);
1715   if (value && !phase->type(value)->higher_equal(_type))
1716     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1717   // Identity call will handle the case where truncation is not needed.
1718   return LoadNode::Ideal(phase, can_reshape);
1719 }
1720 
1721 //--------------------------LoadUSNode::Ideal-------------------------------------
1722 //
1723 //  If the previous store is to the same address as this load,
1724 //  and the value stored was larger than a char, replace this load
1725 //  with the value stored truncated to a char.  If no truncation is
1726 //  needed, the replacement is done in LoadNode::Identity().
1727 //
1728 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1729   Node* mem = in(MemNode::Memory);
1730   Node* value = can_see_stored_value(mem,phase);
1731   if( value && !phase->type(value)->higher_equal( _type ) )
1732     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1733   // Identity call will handle the case where truncation is not needed.
1734   return LoadNode::Ideal(phase, can_reshape);
1735 }
1736 
1737 //--------------------------LoadSNode::Ideal--------------------------------------
1738 //
1739 //  If the previous store is to the same address as this load,
1740 //  and the value stored was larger than a short, replace this load
1741 //  with the value stored truncated to a short.  If no truncation is
1742 //  needed, the replacement is done in LoadNode::Identity().
1743 //
1744 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1745   Node* mem = in(MemNode::Memory);
1746   Node* value = can_see_stored_value(mem,phase);
1747   if( value && !phase->type(value)->higher_equal( _type ) ) {
1748     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1749     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1750   }
1751   // Identity call will handle the case where truncation is not needed.
1752   return LoadNode::Ideal(phase, can_reshape);
1753 }
1754 
1755 //=============================================================================
1756 //----------------------------LoadKlassNode::make------------------------------
1757 // Polymorphic factory method:
1758 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1759   Compile* C = gvn.C;
1760   Node *ctl = NULL;
1761   // sanity check the alias category against the created node type
1762   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1763   assert(adr_type != NULL, "expecting TypeOopPtr");
1764 #ifdef _LP64
1765   if (adr_type->is_ptr_to_narrowoop()) {
1766     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1767     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1768   }
1769 #endif
1770   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1771   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1772 }
1773 
1774 //------------------------------Value------------------------------------------
1775 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1776   return klass_value_common(phase);
1777 }
1778 
1779 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1780   // Either input is TOP ==> the result is TOP
1781   const Type *t1 = phase->type( in(MemNode::Memory) );
1782   if (t1 == Type::TOP)  return Type::TOP;
1783   Node *adr = in(MemNode::Address);
1784   const Type *t2 = phase->type( adr );
1785   if (t2 == Type::TOP)  return Type::TOP;
1786   const TypePtr *tp = t2->is_ptr();
1787   if (TypePtr::above_centerline(tp->ptr()) ||
1788       tp->ptr() == TypePtr::Null)  return Type::TOP;
1789 
1790   // Return a more precise klass, if possible
1791   const TypeInstPtr *tinst = tp->isa_instptr();
1792   if (tinst != NULL) {
1793     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1794     int offset = tinst->offset();
1795     if (ik == phase->C->env()->Class_klass()
1796         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1797             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1798       // We are loading a special hidden field from a Class mirror object,
1799       // the field which points to the VM's Klass metaobject.
1800       ciType* t = tinst->java_mirror_type();
1801       // java_mirror_type returns non-null for compile-time Class constants.
1802       if (t != NULL) {
1803         // constant oop => constant klass
1804         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1805           return TypeKlassPtr::make(ciArrayKlass::make(t));
1806         }
1807         if (!t->is_klass()) {
1808           // a primitive Class (e.g., int.class) has NULL for a klass field
1809           return TypePtr::NULL_PTR;
1810         }
1811         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1812         return TypeKlassPtr::make(t->as_klass());
1813       }
1814       // non-constant mirror, so we can't tell what's going on
1815     }
1816     if( !ik->is_loaded() )
1817       return _type;             // Bail out if not loaded
1818     if (offset == oopDesc::klass_offset_in_bytes()) {
1819       if (tinst->klass_is_exact()) {
1820         return TypeKlassPtr::make(ik);
1821       }
1822       // See if we can become precise: no subklasses and no interface
1823       // (Note:  We need to support verified interfaces.)
1824       if (!ik->is_interface() && !ik->has_subklass()) {
1825         //assert(!UseExactTypes, "this code should be useless with exact types");
1826         // Add a dependence; if any subclass added we need to recompile
1827         if (!ik->is_final()) {
1828           // %%% should use stronger assert_unique_concrete_subtype instead
1829           phase->C->dependencies()->assert_leaf_type(ik);
1830         }
1831         // Return precise klass
1832         return TypeKlassPtr::make(ik);
1833       }
1834 
1835       // Return root of possible klass
1836       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1837     }
1838   }
1839 
1840   // Check for loading klass from an array
1841   const TypeAryPtr *tary = tp->isa_aryptr();
1842   if( tary != NULL ) {
1843     ciKlass *tary_klass = tary->klass();
1844     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1845         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1846       if (tary->klass_is_exact()) {
1847         return TypeKlassPtr::make(tary_klass);
1848       }
1849       ciArrayKlass *ak = tary->klass()->as_array_klass();
1850       // If the klass is an object array, we defer the question to the
1851       // array component klass.
1852       if( ak->is_obj_array_klass() ) {
1853         assert( ak->is_loaded(), "" );
1854         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1855         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1856           ciInstanceKlass* ik = base_k->as_instance_klass();
1857           // See if we can become precise: no subklasses and no interface
1858           if (!ik->is_interface() && !ik->has_subklass()) {
1859             //assert(!UseExactTypes, "this code should be useless with exact types");
1860             // Add a dependence; if any subclass added we need to recompile
1861             if (!ik->is_final()) {
1862               phase->C->dependencies()->assert_leaf_type(ik);
1863             }
1864             // Return precise array klass
1865             return TypeKlassPtr::make(ak);
1866           }
1867         }
1868         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1869       } else {                  // Found a type-array?
1870         //assert(!UseExactTypes, "this code should be useless with exact types");
1871         assert( ak->is_type_array_klass(), "" );
1872         return TypeKlassPtr::make(ak); // These are always precise
1873       }
1874     }
1875   }
1876 
1877   // Check for loading klass from an array klass
1878   const TypeKlassPtr *tkls = tp->isa_klassptr();
1879   if (tkls != NULL && !StressReflectiveCode) {
1880     ciKlass* klass = tkls->klass();
1881     if( !klass->is_loaded() )
1882       return _type;             // Bail out if not loaded
1883     if( klass->is_obj_array_klass() &&
1884         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1885       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1886       // // Always returning precise element type is incorrect,
1887       // // e.g., element type could be object and array may contain strings
1888       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1889 
1890       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1891       // according to the element type's subclassing.
1892       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1893     }
1894     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1895         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1896       ciKlass* sup = klass->as_instance_klass()->super();
1897       // The field is Klass::_super.  Return its (constant) value.
1898       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1899       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1900     }
1901   }
1902 
1903   // Bailout case
1904   return LoadNode::Value(phase);
1905 }
1906 
1907 //------------------------------Identity---------------------------------------
1908 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1909 // Also feed through the klass in Allocate(...klass...)._klass.
1910 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1911   return klass_identity_common(phase);
1912 }
1913 
1914 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1915   Node* x = LoadNode::Identity(phase);
1916   if (x != this)  return x;
1917 
1918   // Take apart the address into an oop and and offset.
1919   // Return 'this' if we cannot.
1920   Node*    adr    = in(MemNode::Address);
1921   intptr_t offset = 0;
1922   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1923   if (base == NULL)     return this;
1924   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1925   if (toop == NULL)     return this;
1926 
1927   // We can fetch the klass directly through an AllocateNode.
1928   // This works even if the klass is not constant (clone or newArray).
1929   if (offset == oopDesc::klass_offset_in_bytes()) {
1930     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1931     if (allocated_klass != NULL) {
1932       return allocated_klass;
1933     }
1934   }
1935 
1936   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1937   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1938   // See inline_native_Class_query for occurrences of these patterns.
1939   // Java Example:  x.getClass().isAssignableFrom(y)
1940   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1941   //
1942   // This improves reflective code, often making the Class
1943   // mirror go completely dead.  (Current exception:  Class
1944   // mirrors may appear in debug info, but we could clean them out by
1945   // introducing a new debug info operator for klassOop.java_mirror).
1946   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1947       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1948           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1949     // We are loading a special hidden field from a Class mirror,
1950     // the field which points to its Klass or arrayKlass metaobject.
1951     if (base->is_Load()) {
1952       Node* adr2 = base->in(MemNode::Address);
1953       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1954       if (tkls != NULL && !tkls->empty()
1955           && (tkls->klass()->is_instance_klass() ||
1956               tkls->klass()->is_array_klass())
1957           && adr2->is_AddP()
1958           ) {
1959         int mirror_field = Klass::java_mirror_offset_in_bytes();
1960         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1961           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1962         }
1963         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1964           return adr2->in(AddPNode::Base);
1965         }
1966       }
1967     }
1968   }
1969 
1970   return this;
1971 }
1972 
1973 
1974 //------------------------------Value------------------------------------------
1975 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1976   const Type *t = klass_value_common(phase);
1977   if (t == Type::TOP)
1978     return t;
1979 
1980   return t->make_narrowoop();
1981 }
1982 
1983 //------------------------------Identity---------------------------------------
1984 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1985 // Also feed through the klass in Allocate(...klass...)._klass.
1986 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
1987   Node *x = klass_identity_common(phase);
1988 
1989   const Type *t = phase->type( x );
1990   if( t == Type::TOP ) return x;
1991   if( t->isa_narrowoop()) return x;
1992 
1993   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
1994 }
1995 
1996 //------------------------------Value-----------------------------------------
1997 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1998   // Either input is TOP ==> the result is TOP
1999   const Type *t1 = phase->type( in(MemNode::Memory) );
2000   if( t1 == Type::TOP ) return Type::TOP;
2001   Node *adr = in(MemNode::Address);
2002   const Type *t2 = phase->type( adr );
2003   if( t2 == Type::TOP ) return Type::TOP;
2004   const TypePtr *tp = t2->is_ptr();
2005   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2006   const TypeAryPtr *tap = tp->isa_aryptr();
2007   if( !tap ) return _type;
2008   return tap->size();
2009 }
2010 
2011 //-------------------------------Ideal---------------------------------------
2012 // Feed through the length in AllocateArray(...length...)._length.
2013 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2014   Node* p = MemNode::Ideal_common(phase, can_reshape);
2015   if (p)  return (p == NodeSentinel) ? NULL : p;
2016 
2017   // Take apart the address into an oop and and offset.
2018   // Return 'this' if we cannot.
2019   Node*    adr    = in(MemNode::Address);
2020   intptr_t offset = 0;
2021   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2022   if (base == NULL)     return NULL;
2023   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2024   if (tary == NULL)     return NULL;
2025 
2026   // We can fetch the length directly through an AllocateArrayNode.
2027   // This works even if the length is not constant (clone or newArray).
2028   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2029     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2030     if (alloc != NULL) {
2031       Node* allocated_length = alloc->Ideal_length();
2032       Node* len = alloc->make_ideal_length(tary, phase);
2033       if (allocated_length != len) {
2034         // New CastII improves on this.
2035         return len;
2036       }
2037     }
2038   }
2039 
2040   return NULL;
2041 }
2042 
2043 //------------------------------Identity---------------------------------------
2044 // Feed through the length in AllocateArray(...length...)._length.
2045 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2046   Node* x = LoadINode::Identity(phase);
2047   if (x != this)  return x;
2048 
2049   // Take apart the address into an oop and and offset.
2050   // Return 'this' if we cannot.
2051   Node*    adr    = in(MemNode::Address);
2052   intptr_t offset = 0;
2053   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2054   if (base == NULL)     return this;
2055   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2056   if (tary == NULL)     return this;
2057 
2058   // We can fetch the length directly through an AllocateArrayNode.
2059   // This works even if the length is not constant (clone or newArray).
2060   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2061     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2062     if (alloc != NULL) {
2063       Node* allocated_length = alloc->Ideal_length();
2064       // Do not allow make_ideal_length to allocate a CastII node.
2065       Node* len = alloc->make_ideal_length(tary, phase, false);
2066       if (allocated_length == len) {
2067         // Return allocated_length only if it would not be improved by a CastII.
2068         return allocated_length;
2069       }
2070     }
2071   }
2072 
2073   return this;
2074 
2075 }
2076 
2077 //=============================================================================
2078 //---------------------------StoreNode::make-----------------------------------
2079 // Polymorphic factory method:
2080 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2081   Compile* C = gvn.C;
2082   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2083           ctl != NULL, "raw memory operations should have control edge");
2084 
2085   switch (bt) {
2086   case T_BOOLEAN:
2087   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2088   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2089   case T_CHAR:
2090   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2091   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2092   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2093   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2094   case T_ADDRESS:
2095   case T_OBJECT:
2096 #ifdef _LP64
2097     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2098         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2099          adr->bottom_type()->isa_rawptr())) {
2100       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2101       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2102     } else
2103 #endif
2104     {
2105       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2106     }
2107   }
2108   ShouldNotReachHere();
2109   return (StoreNode*)NULL;
2110 }
2111 
2112 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2113   bool require_atomic = true;
2114   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2115 }
2116 
2117 
2118 //--------------------------bottom_type----------------------------------------
2119 const Type *StoreNode::bottom_type() const {
2120   return Type::MEMORY;
2121 }
2122 
2123 //------------------------------hash-------------------------------------------
2124 uint StoreNode::hash() const {
2125   // unroll addition of interesting fields
2126   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2127 
2128   // Since they are not commoned, do not hash them:
2129   return NO_HASH;
2130 }
2131 
2132 //------------------------------Ideal------------------------------------------
2133 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2134 // When a store immediately follows a relevant allocation/initialization,
2135 // try to capture it into the initialization, or hoist it above.
2136 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2137   Node* p = MemNode::Ideal_common(phase, can_reshape);
2138   if (p)  return (p == NodeSentinel) ? NULL : p;
2139 
2140   Node* mem     = in(MemNode::Memory);
2141   Node* address = in(MemNode::Address);
2142 
2143   // Back-to-back stores to same address?  Fold em up.
2144   // Generally unsafe if I have intervening uses...
2145   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2146     // Looking at a dead closed cycle of memory?
2147     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2148 
2149     assert(Opcode() == mem->Opcode() ||
2150            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2151            "no mismatched stores, except on raw memory");
2152 
2153     if (mem->outcnt() == 1 &&           // check for intervening uses
2154         mem->as_Store()->memory_size() <= this->memory_size()) {
2155       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2156       // For example, 'mem' might be the final state at a conditional return.
2157       // Or, 'mem' might be used by some node which is live at the same time
2158       // 'this' is live, which might be unschedulable.  So, require exactly
2159       // ONE user, the 'this' store, until such time as we clone 'mem' for
2160       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2161       if (can_reshape) {  // (%%% is this an anachronism?)
2162         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2163                   phase->is_IterGVN());
2164       } else {
2165         // It's OK to do this in the parser, since DU info is always accurate,
2166         // and the parser always refers to nodes via SafePointNode maps.
2167         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2168       }
2169       return this;
2170     }
2171   }
2172 
2173   // Capture an unaliased, unconditional, simple store into an initializer.
2174   // Or, if it is independent of the allocation, hoist it above the allocation.
2175   if (ReduceFieldZeroing && /*can_reshape &&*/
2176       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2177     InitializeNode* init = mem->in(0)->as_Initialize();
2178     intptr_t offset = init->can_capture_store(this, phase);
2179     if (offset > 0) {
2180       Node* moved = init->capture_store(this, offset, phase);
2181       // If the InitializeNode captured me, it made a raw copy of me,
2182       // and I need to disappear.
2183       if (moved != NULL) {
2184         // %%% hack to ensure that Ideal returns a new node:
2185         mem = MergeMemNode::make(phase->C, mem);
2186         return mem;             // fold me away
2187       }
2188     }
2189   }
2190 
2191   return NULL;                  // No further progress
2192 }
2193 
2194 //------------------------------Value-----------------------------------------
2195 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2196   // Either input is TOP ==> the result is TOP
2197   const Type *t1 = phase->type( in(MemNode::Memory) );
2198   if( t1 == Type::TOP ) return Type::TOP;
2199   const Type *t2 = phase->type( in(MemNode::Address) );
2200   if( t2 == Type::TOP ) return Type::TOP;
2201   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2202   if( t3 == Type::TOP ) return Type::TOP;
2203   return Type::MEMORY;
2204 }
2205 
2206 //------------------------------Identity---------------------------------------
2207 // Remove redundant stores:
2208 //   Store(m, p, Load(m, p)) changes to m.
2209 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2210 Node *StoreNode::Identity( PhaseTransform *phase ) {
2211   Node* mem = in(MemNode::Memory);
2212   Node* adr = in(MemNode::Address);
2213   Node* val = in(MemNode::ValueIn);
2214 
2215   // Load then Store?  Then the Store is useless
2216   if (val->is_Load() &&
2217       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2218       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2219       val->as_Load()->store_Opcode() == Opcode()) {
2220     return mem;
2221   }
2222 
2223   // Two stores in a row of the same value?
2224   if (mem->is_Store() &&
2225       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2226       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2227       mem->Opcode() == Opcode()) {
2228     return mem;
2229   }
2230 
2231   // Store of zero anywhere into a freshly-allocated object?
2232   // Then the store is useless.
2233   // (It must already have been captured by the InitializeNode.)
2234   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2235     // a newly allocated object is already all-zeroes everywhere
2236     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2237       return mem;
2238     }
2239 
2240     // the store may also apply to zero-bits in an earlier object
2241     Node* prev_mem = find_previous_store(phase);
2242     // Steps (a), (b):  Walk past independent stores to find an exact match.
2243     if (prev_mem != NULL) {
2244       Node* prev_val = can_see_stored_value(prev_mem, phase);
2245       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2246         // prev_val and val might differ by a cast; it would be good
2247         // to keep the more informative of the two.
2248         return mem;
2249       }
2250     }
2251   }
2252 
2253   return this;
2254 }
2255 
2256 //------------------------------match_edge-------------------------------------
2257 // Do we Match on this edge index or not?  Match only memory & value
2258 uint StoreNode::match_edge(uint idx) const {
2259   return idx == MemNode::Address || idx == MemNode::ValueIn;
2260 }
2261 
2262 //------------------------------cmp--------------------------------------------
2263 // Do not common stores up together.  They generally have to be split
2264 // back up anyways, so do not bother.
2265 uint StoreNode::cmp( const Node &n ) const {
2266   return (&n == this);          // Always fail except on self
2267 }
2268 
2269 //------------------------------Ideal_masked_input-----------------------------
2270 // Check for a useless mask before a partial-word store
2271 // (StoreB ... (AndI valIn conIa) )
2272 // If (conIa & mask == mask) this simplifies to
2273 // (StoreB ... (valIn) )
2274 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2275   Node *val = in(MemNode::ValueIn);
2276   if( val->Opcode() == Op_AndI ) {
2277     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2278     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2279       set_req(MemNode::ValueIn, val->in(1));
2280       return this;
2281     }
2282   }
2283   return NULL;
2284 }
2285 
2286 
2287 //------------------------------Ideal_sign_extended_input----------------------
2288 // Check for useless sign-extension before a partial-word store
2289 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2290 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2291 // (StoreB ... (valIn) )
2292 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2293   Node *val = in(MemNode::ValueIn);
2294   if( val->Opcode() == Op_RShiftI ) {
2295     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2296     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2297       Node *shl = val->in(1);
2298       if( shl->Opcode() == Op_LShiftI ) {
2299         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2300         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2301           set_req(MemNode::ValueIn, shl->in(1));
2302           return this;
2303         }
2304       }
2305     }
2306   }
2307   return NULL;
2308 }
2309 
2310 //------------------------------value_never_loaded-----------------------------------
2311 // Determine whether there are any possible loads of the value stored.
2312 // For simplicity, we actually check if there are any loads from the
2313 // address stored to, not just for loads of the value stored by this node.
2314 //
2315 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2316   Node *adr = in(Address);
2317   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2318   if (adr_oop == NULL)
2319     return false;
2320   if (!adr_oop->is_known_instance_field())
2321     return false; // if not a distinct instance, there may be aliases of the address
2322   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2323     Node *use = adr->fast_out(i);
2324     int opc = use->Opcode();
2325     if (use->is_Load() || use->is_LoadStore()) {
2326       return false;
2327     }
2328   }
2329   return true;
2330 }
2331 
2332 //=============================================================================
2333 //------------------------------Ideal------------------------------------------
2334 // If the store is from an AND mask that leaves the low bits untouched, then
2335 // we can skip the AND operation.  If the store is from a sign-extension
2336 // (a left shift, then right shift) we can skip both.
2337 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2338   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2339   if( progress != NULL ) return progress;
2340 
2341   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2342   if( progress != NULL ) return progress;
2343 
2344   // Finally check the default case
2345   return StoreNode::Ideal(phase, can_reshape);
2346 }
2347 
2348 //=============================================================================
2349 //------------------------------Ideal------------------------------------------
2350 // If the store is from an AND mask that leaves the low bits untouched, then
2351 // we can skip the AND operation
2352 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2353   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2354   if( progress != NULL ) return progress;
2355 
2356   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2357   if( progress != NULL ) return progress;
2358 
2359   // Finally check the default case
2360   return StoreNode::Ideal(phase, can_reshape);
2361 }
2362 
2363 //=============================================================================
2364 //------------------------------Identity---------------------------------------
2365 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2366   // No need to card mark when storing a null ptr
2367   Node* my_store = in(MemNode::OopStore);
2368   if (my_store->is_Store()) {
2369     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2370     if( t1 == TypePtr::NULL_PTR ) {
2371       return in(MemNode::Memory);
2372     }
2373   }
2374   return this;
2375 }
2376 
2377 //=============================================================================
2378 //------------------------------Ideal---------------------------------------
2379 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2380   Node* progress = StoreNode::Ideal(phase, can_reshape);
2381   if (progress != NULL) return progress;
2382 
2383   Node* my_store = in(MemNode::OopStore);
2384   if (my_store->is_MergeMem()) {
2385     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2386     set_req(MemNode::OopStore, mem);
2387     return this;
2388   }
2389 
2390   return NULL;
2391 }
2392 
2393 //------------------------------Value-----------------------------------------
2394 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2395   // Either input is TOP ==> the result is TOP
2396   const Type *t = phase->type( in(MemNode::Memory) );
2397   if( t == Type::TOP ) return Type::TOP;
2398   t = phase->type( in(MemNode::Address) );
2399   if( t == Type::TOP ) return Type::TOP;
2400   t = phase->type( in(MemNode::ValueIn) );
2401   if( t == Type::TOP ) return Type::TOP;
2402   // If extra input is TOP ==> the result is TOP
2403   t = phase->type( in(MemNode::OopStore) );
2404   if( t == Type::TOP ) return Type::TOP;
2405 
2406   return StoreNode::Value( phase );
2407 }
2408 
2409 
2410 //=============================================================================
2411 //----------------------------------SCMemProjNode------------------------------
2412 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2413 {
2414   return bottom_type();
2415 }
2416 
2417 //=============================================================================
2418 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2419   init_req(MemNode::Control, c  );
2420   init_req(MemNode::Memory , mem);
2421   init_req(MemNode::Address, adr);
2422   init_req(MemNode::ValueIn, val);
2423   init_req(         ExpectedIn, ex );
2424   init_class_id(Class_LoadStore);
2425 
2426 }
2427 
2428 //=============================================================================
2429 //-------------------------------adr_type--------------------------------------
2430 // Do we Match on this edge index or not?  Do not match memory
2431 const TypePtr* ClearArrayNode::adr_type() const {
2432   Node *adr = in(3);
2433   return MemNode::calculate_adr_type(adr->bottom_type());
2434 }
2435 
2436 //------------------------------match_edge-------------------------------------
2437 // Do we Match on this edge index or not?  Do not match memory
2438 uint ClearArrayNode::match_edge(uint idx) const {
2439   return idx > 1;
2440 }
2441 
2442 //------------------------------Identity---------------------------------------
2443 // Clearing a zero length array does nothing
2444 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2445   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2446 }
2447 
2448 //------------------------------Idealize---------------------------------------
2449 // Clearing a short array is faster with stores
2450 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2451   const int unit = BytesPerLong;
2452   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2453   if (!t)  return NULL;
2454   if (!t->is_con())  return NULL;
2455   intptr_t raw_count = t->get_con();
2456   intptr_t size = raw_count;
2457   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2458   // Clearing nothing uses the Identity call.
2459   // Negative clears are possible on dead ClearArrays
2460   // (see jck test stmt114.stmt11402.val).
2461   if (size <= 0 || size % unit != 0)  return NULL;
2462   intptr_t count = size / unit;
2463   // Length too long; use fast hardware clear
2464   if (size > Matcher::init_array_short_size)  return NULL;
2465   Node *mem = in(1);
2466   if( phase->type(mem)==Type::TOP ) return NULL;
2467   Node *adr = in(3);
2468   const Type* at = phase->type(adr);
2469   if( at==Type::TOP ) return NULL;
2470   const TypePtr* atp = at->isa_ptr();
2471   // adjust atp to be the correct array element address type
2472   if (atp == NULL)  atp = TypePtr::BOTTOM;
2473   else              atp = atp->add_offset(Type::OffsetBot);
2474   // Get base for derived pointer purposes
2475   if( adr->Opcode() != Op_AddP ) Unimplemented();
2476   Node *base = adr->in(1);
2477 
2478   Node *zero = phase->makecon(TypeLong::ZERO);
2479   Node *off  = phase->MakeConX(BytesPerLong);
2480   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2481   count--;
2482   while( count-- ) {
2483     mem = phase->transform(mem);
2484     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2485     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2486   }
2487   return mem;
2488 }
2489 
2490 //----------------------------step_through----------------------------------
2491 // Return allocation input memory edge if it is different instance
2492 // or itself if it is the one we are looking for.
2493 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2494   Node* n = *np;
2495   assert(n->is_ClearArray(), "sanity");
2496   intptr_t offset;
2497   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2498   // This method is called only before Allocate nodes are expanded during
2499   // macro nodes expansion. Before that ClearArray nodes are only generated
2500   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2501   assert(alloc != NULL, "should have allocation");
2502   if (alloc->_idx == instance_id) {
2503     // Can not bypass initialization of the instance we are looking for.
2504     return false;
2505   }
2506   // Otherwise skip it.
2507   InitializeNode* init = alloc->initialization();
2508   if (init != NULL)
2509     *np = init->in(TypeFunc::Memory);
2510   else
2511     *np = alloc->in(TypeFunc::Memory);
2512   return true;
2513 }
2514 
2515 //----------------------------clear_memory-------------------------------------
2516 // Generate code to initialize object storage to zero.
2517 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2518                                    intptr_t start_offset,
2519                                    Node* end_offset,
2520                                    PhaseGVN* phase) {
2521   Compile* C = phase->C;
2522   intptr_t offset = start_offset;
2523 
2524   int unit = BytesPerLong;
2525   if ((offset % unit) != 0) {
2526     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2527     adr = phase->transform(adr);
2528     const TypePtr* atp = TypeRawPtr::BOTTOM;
2529     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2530     mem = phase->transform(mem);
2531     offset += BytesPerInt;
2532   }
2533   assert((offset % unit) == 0, "");
2534 
2535   // Initialize the remaining stuff, if any, with a ClearArray.
2536   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2537 }
2538 
2539 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2540                                    Node* start_offset,
2541                                    Node* end_offset,
2542                                    PhaseGVN* phase) {
2543   if (start_offset == end_offset) {
2544     // nothing to do
2545     return mem;
2546   }
2547 
2548   Compile* C = phase->C;
2549   int unit = BytesPerLong;
2550   Node* zbase = start_offset;
2551   Node* zend  = end_offset;
2552 
2553   // Scale to the unit required by the CPU:
2554   if (!Matcher::init_array_count_is_in_bytes) {
2555     Node* shift = phase->intcon(exact_log2(unit));
2556     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2557     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2558   }
2559 
2560   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2561   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2562 
2563   // Bulk clear double-words
2564   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2565   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2566   return phase->transform(mem);
2567 }
2568 
2569 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2570                                    intptr_t start_offset,
2571                                    intptr_t end_offset,
2572                                    PhaseGVN* phase) {
2573   if (start_offset == end_offset) {
2574     // nothing to do
2575     return mem;
2576   }
2577 
2578   Compile* C = phase->C;
2579   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2580   intptr_t done_offset = end_offset;
2581   if ((done_offset % BytesPerLong) != 0) {
2582     done_offset -= BytesPerInt;
2583   }
2584   if (done_offset > start_offset) {
2585     mem = clear_memory(ctl, mem, dest,
2586                        start_offset, phase->MakeConX(done_offset), phase);
2587   }
2588   if (done_offset < end_offset) { // emit the final 32-bit store
2589     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2590     adr = phase->transform(adr);
2591     const TypePtr* atp = TypeRawPtr::BOTTOM;
2592     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2593     mem = phase->transform(mem);
2594     done_offset += BytesPerInt;
2595   }
2596   assert(done_offset == end_offset, "");
2597   return mem;
2598 }
2599 
2600 //=============================================================================
2601 // Do we match on this edge? No memory edges
2602 uint StrCompNode::match_edge(uint idx) const {
2603   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
2604 }
2605 
2606 //------------------------------Ideal------------------------------------------
2607 // Return a node which is more "ideal" than the current node.  Strip out
2608 // control copies
2609 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2610   return remove_dead_region(phase, can_reshape) ? this : NULL;
2611 }
2612 
2613 //=============================================================================
2614 // Do we match on this edge? No memory edges
2615 uint StrEqualsNode::match_edge(uint idx) const {
2616   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
2617 }
2618 
2619 //------------------------------Ideal------------------------------------------
2620 // Return a node which is more "ideal" than the current node.  Strip out
2621 // control copies
2622 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2623   return remove_dead_region(phase, can_reshape) ? this : NULL;
2624 }
2625 
2626 //=============================================================================
2627 // Do we match on this edge? No memory edges
2628 uint StrIndexOfNode::match_edge(uint idx) const {
2629   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
2630 }
2631 
2632 //------------------------------Ideal------------------------------------------
2633 // Return a node which is more "ideal" than the current node.  Strip out
2634 // control copies
2635 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2636   return remove_dead_region(phase, can_reshape) ? this : NULL;
2637 }
2638 
2639 //=============================================================================
2640 // Do we match on this edge? No memory edges
2641 uint AryEqNode::match_edge(uint idx) const {
2642   return idx == 2 || idx == 3; // StrEquals ary1 ary2
2643 }
2644 //------------------------------Ideal------------------------------------------
2645 // Return a node which is more "ideal" than the current node.  Strip out
2646 // control copies
2647 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2648   return remove_dead_region(phase, can_reshape) ? this : NULL;
2649 }
2650 
2651 //=============================================================================
2652 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2653   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2654     _adr_type(C->get_adr_type(alias_idx))
2655 {
2656   init_class_id(Class_MemBar);
2657   Node* top = C->top();
2658   init_req(TypeFunc::I_O,top);
2659   init_req(TypeFunc::FramePtr,top);
2660   init_req(TypeFunc::ReturnAdr,top);
2661   if (precedent != NULL)
2662     init_req(TypeFunc::Parms, precedent);
2663 }
2664 
2665 //------------------------------cmp--------------------------------------------
2666 uint MemBarNode::hash() const { return NO_HASH; }
2667 uint MemBarNode::cmp( const Node &n ) const {
2668   return (&n == this);          // Always fail except on self
2669 }
2670 
2671 //------------------------------make-------------------------------------------
2672 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2673   int len = Precedent + (pn == NULL? 0: 1);
2674   switch (opcode) {
2675   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2676   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2677   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2678   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2679   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2680   default:                 ShouldNotReachHere(); return NULL;
2681   }
2682 }
2683 
2684 //------------------------------Ideal------------------------------------------
2685 // Return a node which is more "ideal" than the current node.  Strip out
2686 // control copies
2687 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2688   if (remove_dead_region(phase, can_reshape)) return this;
2689 
2690   // Eliminate volatile MemBars for scalar replaced objects.
2691   if (can_reshape && req() == (Precedent+1) &&
2692       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
2693     // Volatile field loads and stores.
2694     Node* my_mem = in(MemBarNode::Precedent);
2695     if (my_mem != NULL && my_mem->is_Mem()) {
2696       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2697       // Check for scalar replaced object reference.
2698       if( t_oop != NULL && t_oop->is_known_instance_field() &&
2699           t_oop->offset() != Type::OffsetBot &&
2700           t_oop->offset() != Type::OffsetTop) {
2701         // Replace MemBar projections by its inputs.
2702         PhaseIterGVN* igvn = phase->is_IterGVN();
2703         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2704         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2705         // Must return either the original node (now dead) or a new node
2706         // (Do not return a top here, since that would break the uniqueness of top.)
2707         return new (phase->C, 1) ConINode(TypeInt::ZERO);
2708       }
2709     }
2710   }
2711   return NULL;
2712 }
2713 
2714 //------------------------------Value------------------------------------------
2715 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2716   if( !in(0) ) return Type::TOP;
2717   if( phase->type(in(0)) == Type::TOP )
2718     return Type::TOP;
2719   return TypeTuple::MEMBAR;
2720 }
2721 
2722 //------------------------------match------------------------------------------
2723 // Construct projections for memory.
2724 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2725   switch (proj->_con) {
2726   case TypeFunc::Control:
2727   case TypeFunc::Memory:
2728     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2729   }
2730   ShouldNotReachHere();
2731   return NULL;
2732 }
2733 
2734 //===========================InitializeNode====================================
2735 // SUMMARY:
2736 // This node acts as a memory barrier on raw memory, after some raw stores.
2737 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2738 // The Initialize can 'capture' suitably constrained stores as raw inits.
2739 // It can coalesce related raw stores into larger units (called 'tiles').
2740 // It can avoid zeroing new storage for memory units which have raw inits.
2741 // At macro-expansion, it is marked 'complete', and does not optimize further.
2742 //
2743 // EXAMPLE:
2744 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2745 //   ctl = incoming control; mem* = incoming memory
2746 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2747 // First allocate uninitialized memory and fill in the header:
2748 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2749 //   ctl := alloc.Control; mem* := alloc.Memory*
2750 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2751 // Then initialize to zero the non-header parts of the raw memory block:
2752 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2753 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2754 // After the initialize node executes, the object is ready for service:
2755 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2756 // Suppose its body is immediately initialized as {1,2}:
2757 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2758 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2759 //   mem.SLICE(#short[*]) := store2
2760 //
2761 // DETAILS:
2762 // An InitializeNode collects and isolates object initialization after
2763 // an AllocateNode and before the next possible safepoint.  As a
2764 // memory barrier (MemBarNode), it keeps critical stores from drifting
2765 // down past any safepoint or any publication of the allocation.
2766 // Before this barrier, a newly-allocated object may have uninitialized bits.
2767 // After this barrier, it may be treated as a real oop, and GC is allowed.
2768 //
2769 // The semantics of the InitializeNode include an implicit zeroing of
2770 // the new object from object header to the end of the object.
2771 // (The object header and end are determined by the AllocateNode.)
2772 //
2773 // Certain stores may be added as direct inputs to the InitializeNode.
2774 // These stores must update raw memory, and they must be to addresses
2775 // derived from the raw address produced by AllocateNode, and with
2776 // a constant offset.  They must be ordered by increasing offset.
2777 // The first one is at in(RawStores), the last at in(req()-1).
2778 // Unlike most memory operations, they are not linked in a chain,
2779 // but are displayed in parallel as users of the rawmem output of
2780 // the allocation.
2781 //
2782 // (See comments in InitializeNode::capture_store, which continue
2783 // the example given above.)
2784 //
2785 // When the associated Allocate is macro-expanded, the InitializeNode
2786 // may be rewritten to optimize collected stores.  A ClearArrayNode
2787 // may also be created at that point to represent any required zeroing.
2788 // The InitializeNode is then marked 'complete', prohibiting further
2789 // capturing of nearby memory operations.
2790 //
2791 // During macro-expansion, all captured initializations which store
2792 // constant values of 32 bits or smaller are coalesced (if advantageous)
2793 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2794 // initialized in fewer memory operations.  Memory words which are
2795 // covered by neither tiles nor non-constant stores are pre-zeroed
2796 // by explicit stores of zero.  (The code shape happens to do all
2797 // zeroing first, then all other stores, with both sequences occurring
2798 // in order of ascending offsets.)
2799 //
2800 // Alternatively, code may be inserted between an AllocateNode and its
2801 // InitializeNode, to perform arbitrary initialization of the new object.
2802 // E.g., the object copying intrinsics insert complex data transfers here.
2803 // The initialization must then be marked as 'complete' disable the
2804 // built-in zeroing semantics and the collection of initializing stores.
2805 //
2806 // While an InitializeNode is incomplete, reads from the memory state
2807 // produced by it are optimizable if they match the control edge and
2808 // new oop address associated with the allocation/initialization.
2809 // They return a stored value (if the offset matches) or else zero.
2810 // A write to the memory state, if it matches control and address,
2811 // and if it is to a constant offset, may be 'captured' by the
2812 // InitializeNode.  It is cloned as a raw memory operation and rewired
2813 // inside the initialization, to the raw oop produced by the allocation.
2814 // Operations on addresses which are provably distinct (e.g., to
2815 // other AllocateNodes) are allowed to bypass the initialization.
2816 //
2817 // The effect of all this is to consolidate object initialization
2818 // (both arrays and non-arrays, both piecewise and bulk) into a
2819 // single location, where it can be optimized as a unit.
2820 //
2821 // Only stores with an offset less than TrackedInitializationLimit words
2822 // will be considered for capture by an InitializeNode.  This puts a
2823 // reasonable limit on the complexity of optimized initializations.
2824 
2825 //---------------------------InitializeNode------------------------------------
2826 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2827   : _is_complete(false),
2828     MemBarNode(C, adr_type, rawoop)
2829 {
2830   init_class_id(Class_Initialize);
2831 
2832   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2833   assert(in(RawAddress) == rawoop, "proper init");
2834   // Note:  allocation() can be NULL, for secondary initialization barriers
2835 }
2836 
2837 // Since this node is not matched, it will be processed by the
2838 // register allocator.  Declare that there are no constraints
2839 // on the allocation of the RawAddress edge.
2840 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2841   // This edge should be set to top, by the set_complete.  But be conservative.
2842   if (idx == InitializeNode::RawAddress)
2843     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2844   return RegMask::Empty;
2845 }
2846 
2847 Node* InitializeNode::memory(uint alias_idx) {
2848   Node* mem = in(Memory);
2849   if (mem->is_MergeMem()) {
2850     return mem->as_MergeMem()->memory_at(alias_idx);
2851   } else {
2852     // incoming raw memory is not split
2853     return mem;
2854   }
2855 }
2856 
2857 bool InitializeNode::is_non_zero() {
2858   if (is_complete())  return false;
2859   remove_extra_zeroes();
2860   return (req() > RawStores);
2861 }
2862 
2863 void InitializeNode::set_complete(PhaseGVN* phase) {
2864   assert(!is_complete(), "caller responsibility");
2865   _is_complete = true;
2866 
2867   // After this node is complete, it contains a bunch of
2868   // raw-memory initializations.  There is no need for
2869   // it to have anything to do with non-raw memory effects.
2870   // Therefore, tell all non-raw users to re-optimize themselves,
2871   // after skipping the memory effects of this initialization.
2872   PhaseIterGVN* igvn = phase->is_IterGVN();
2873   if (igvn)  igvn->add_users_to_worklist(this);
2874 }
2875 
2876 // convenience function
2877 // return false if the init contains any stores already
2878 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2879   InitializeNode* init = initialization();
2880   if (init == NULL || init->is_complete())  return false;
2881   init->remove_extra_zeroes();
2882   // for now, if this allocation has already collected any inits, bail:
2883   if (init->is_non_zero())  return false;
2884   init->set_complete(phase);
2885   return true;
2886 }
2887 
2888 void InitializeNode::remove_extra_zeroes() {
2889   if (req() == RawStores)  return;
2890   Node* zmem = zero_memory();
2891   uint fill = RawStores;
2892   for (uint i = fill; i < req(); i++) {
2893     Node* n = in(i);
2894     if (n->is_top() || n == zmem)  continue;  // skip
2895     if (fill < i)  set_req(fill, n);          // compact
2896     ++fill;
2897   }
2898   // delete any empty spaces created:
2899   while (fill < req()) {
2900     del_req(fill);
2901   }
2902 }
2903 
2904 // Helper for remembering which stores go with which offsets.
2905 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2906   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2907   intptr_t offset = -1;
2908   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2909                                                phase, offset);
2910   if (base == NULL)     return -1;  // something is dead,
2911   if (offset < 0)       return -1;  //        dead, dead
2912   return offset;
2913 }
2914 
2915 // Helper for proving that an initialization expression is
2916 // "simple enough" to be folded into an object initialization.
2917 // Attempts to prove that a store's initial value 'n' can be captured
2918 // within the initialization without creating a vicious cycle, such as:
2919 //     { Foo p = new Foo(); p.next = p; }
2920 // True for constants and parameters and small combinations thereof.
2921 bool InitializeNode::detect_init_independence(Node* n,
2922                                               bool st_is_pinned,
2923                                               int& count) {
2924   if (n == NULL)      return true;   // (can this really happen?)
2925   if (n->is_Proj())   n = n->in(0);
2926   if (n == this)      return false;  // found a cycle
2927   if (n->is_Con())    return true;
2928   if (n->is_Start())  return true;   // params, etc., are OK
2929   if (n->is_Root())   return true;   // even better
2930 
2931   Node* ctl = n->in(0);
2932   if (ctl != NULL && !ctl->is_top()) {
2933     if (ctl->is_Proj())  ctl = ctl->in(0);
2934     if (ctl == this)  return false;
2935 
2936     // If we already know that the enclosing memory op is pinned right after
2937     // the init, then any control flow that the store has picked up
2938     // must have preceded the init, or else be equal to the init.
2939     // Even after loop optimizations (which might change control edges)
2940     // a store is never pinned *before* the availability of its inputs.
2941     if (!MemNode::all_controls_dominate(n, this))
2942       return false;                  // failed to prove a good control
2943 
2944   }
2945 
2946   // Check data edges for possible dependencies on 'this'.
2947   if ((count += 1) > 20)  return false;  // complexity limit
2948   for (uint i = 1; i < n->req(); i++) {
2949     Node* m = n->in(i);
2950     if (m == NULL || m == n || m->is_top())  continue;
2951     uint first_i = n->find_edge(m);
2952     if (i != first_i)  continue;  // process duplicate edge just once
2953     if (!detect_init_independence(m, st_is_pinned, count)) {
2954       return false;
2955     }
2956   }
2957 
2958   return true;
2959 }
2960 
2961 // Here are all the checks a Store must pass before it can be moved into
2962 // an initialization.  Returns zero if a check fails.
2963 // On success, returns the (constant) offset to which the store applies,
2964 // within the initialized memory.
2965 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2966   const int FAIL = 0;
2967   if (st->req() != MemNode::ValueIn + 1)
2968     return FAIL;                // an inscrutable StoreNode (card mark?)
2969   Node* ctl = st->in(MemNode::Control);
2970   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2971     return FAIL;                // must be unconditional after the initialization
2972   Node* mem = st->in(MemNode::Memory);
2973   if (!(mem->is_Proj() && mem->in(0) == this))
2974     return FAIL;                // must not be preceded by other stores
2975   Node* adr = st->in(MemNode::Address);
2976   intptr_t offset;
2977   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2978   if (alloc == NULL)
2979     return FAIL;                // inscrutable address
2980   if (alloc != allocation())
2981     return FAIL;                // wrong allocation!  (store needs to float up)
2982   Node* val = st->in(MemNode::ValueIn);
2983   int complexity_count = 0;
2984   if (!detect_init_independence(val, true, complexity_count))
2985     return FAIL;                // stored value must be 'simple enough'
2986 
2987   return offset;                // success
2988 }
2989 
2990 // Find the captured store in(i) which corresponds to the range
2991 // [start..start+size) in the initialized object.
2992 // If there is one, return its index i.  If there isn't, return the
2993 // negative of the index where it should be inserted.
2994 // Return 0 if the queried range overlaps an initialization boundary
2995 // or if dead code is encountered.
2996 // If size_in_bytes is zero, do not bother with overlap checks.
2997 int InitializeNode::captured_store_insertion_point(intptr_t start,
2998                                                    int size_in_bytes,
2999                                                    PhaseTransform* phase) {
3000   const int FAIL = 0, MAX_STORE = BytesPerLong;
3001 
3002   if (is_complete())
3003     return FAIL;                // arraycopy got here first; punt
3004 
3005   assert(allocation() != NULL, "must be present");
3006 
3007   // no negatives, no header fields:
3008   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3009 
3010   // after a certain size, we bail out on tracking all the stores:
3011   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3012   if (start >= ti_limit)  return FAIL;
3013 
3014   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3015     if (i >= limit)  return -(int)i; // not found; here is where to put it
3016 
3017     Node*    st     = in(i);
3018     intptr_t st_off = get_store_offset(st, phase);
3019     if (st_off < 0) {
3020       if (st != zero_memory()) {
3021         return FAIL;            // bail out if there is dead garbage
3022       }
3023     } else if (st_off > start) {
3024       // ...we are done, since stores are ordered
3025       if (st_off < start + size_in_bytes) {
3026         return FAIL;            // the next store overlaps
3027       }
3028       return -(int)i;           // not found; here is where to put it
3029     } else if (st_off < start) {
3030       if (size_in_bytes != 0 &&
3031           start < st_off + MAX_STORE &&
3032           start < st_off + st->as_Store()->memory_size()) {
3033         return FAIL;            // the previous store overlaps
3034       }
3035     } else {
3036       if (size_in_bytes != 0 &&
3037           st->as_Store()->memory_size() != size_in_bytes) {
3038         return FAIL;            // mismatched store size
3039       }
3040       return i;
3041     }
3042 
3043     ++i;
3044   }
3045 }
3046 
3047 // Look for a captured store which initializes at the offset 'start'
3048 // with the given size.  If there is no such store, and no other
3049 // initialization interferes, then return zero_memory (the memory
3050 // projection of the AllocateNode).
3051 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3052                                           PhaseTransform* phase) {
3053   assert(stores_are_sane(phase), "");
3054   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3055   if (i == 0) {
3056     return NULL;                // something is dead
3057   } else if (i < 0) {
3058     return zero_memory();       // just primordial zero bits here
3059   } else {
3060     Node* st = in(i);           // here is the store at this position
3061     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3062     return st;
3063   }
3064 }
3065 
3066 // Create, as a raw pointer, an address within my new object at 'offset'.
3067 Node* InitializeNode::make_raw_address(intptr_t offset,
3068                                        PhaseTransform* phase) {
3069   Node* addr = in(RawAddress);
3070   if (offset != 0) {
3071     Compile* C = phase->C;
3072     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
3073                                                  phase->MakeConX(offset)) );
3074   }
3075   return addr;
3076 }
3077 
3078 // Clone the given store, converting it into a raw store
3079 // initializing a field or element of my new object.
3080 // Caller is responsible for retiring the original store,
3081 // with subsume_node or the like.
3082 //
3083 // From the example above InitializeNode::InitializeNode,
3084 // here are the old stores to be captured:
3085 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3086 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3087 //
3088 // Here is the changed code; note the extra edges on init:
3089 //   alloc = (Allocate ...)
3090 //   rawoop = alloc.RawAddress
3091 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3092 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3093 //   init = (Initialize alloc.Control alloc.Memory rawoop
3094 //                      rawstore1 rawstore2)
3095 //
3096 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3097                                     PhaseTransform* phase) {
3098   assert(stores_are_sane(phase), "");
3099 
3100   if (start < 0)  return NULL;
3101   assert(can_capture_store(st, phase) == start, "sanity");
3102 
3103   Compile* C = phase->C;
3104   int size_in_bytes = st->memory_size();
3105   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3106   if (i == 0)  return NULL;     // bail out
3107   Node* prev_mem = NULL;        // raw memory for the captured store
3108   if (i > 0) {
3109     prev_mem = in(i);           // there is a pre-existing store under this one
3110     set_req(i, C->top());       // temporarily disconnect it
3111     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3112   } else {
3113     i = -i;                     // no pre-existing store
3114     prev_mem = zero_memory();   // a slice of the newly allocated object
3115     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3116       set_req(--i, C->top());   // reuse this edge; it has been folded away
3117     else
3118       ins_req(i, C->top());     // build a new edge
3119   }
3120   Node* new_st = st->clone();
3121   new_st->set_req(MemNode::Control, in(Control));
3122   new_st->set_req(MemNode::Memory,  prev_mem);
3123   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3124   new_st = phase->transform(new_st);
3125 
3126   // At this point, new_st might have swallowed a pre-existing store
3127   // at the same offset, or perhaps new_st might have disappeared,
3128   // if it redundantly stored the same value (or zero to fresh memory).
3129 
3130   // In any case, wire it in:
3131   set_req(i, new_st);
3132 
3133   // The caller may now kill the old guy.
3134   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3135   assert(check_st == new_st || check_st == NULL, "must be findable");
3136   assert(!is_complete(), "");
3137   return new_st;
3138 }
3139 
3140 static bool store_constant(jlong* tiles, int num_tiles,
3141                            intptr_t st_off, int st_size,
3142                            jlong con) {
3143   if ((st_off & (st_size-1)) != 0)
3144     return false;               // strange store offset (assume size==2**N)
3145   address addr = (address)tiles + st_off;
3146   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3147   switch (st_size) {
3148   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3149   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3150   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3151   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3152   default: return false;        // strange store size (detect size!=2**N here)
3153   }
3154   return true;                  // return success to caller
3155 }
3156 
3157 // Coalesce subword constants into int constants and possibly
3158 // into long constants.  The goal, if the CPU permits,
3159 // is to initialize the object with a small number of 64-bit tiles.
3160 // Also, convert floating-point constants to bit patterns.
3161 // Non-constants are not relevant to this pass.
3162 //
3163 // In terms of the running example on InitializeNode::InitializeNode
3164 // and InitializeNode::capture_store, here is the transformation
3165 // of rawstore1 and rawstore2 into rawstore12:
3166 //   alloc = (Allocate ...)
3167 //   rawoop = alloc.RawAddress
3168 //   tile12 = 0x00010002
3169 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3170 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3171 //
3172 void
3173 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3174                                         Node* size_in_bytes,
3175                                         PhaseGVN* phase) {
3176   Compile* C = phase->C;
3177 
3178   assert(stores_are_sane(phase), "");
3179   // Note:  After this pass, they are not completely sane,
3180   // since there may be some overlaps.
3181 
3182   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3183 
3184   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3185   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3186   size_limit = MIN2(size_limit, ti_limit);
3187   size_limit = align_size_up(size_limit, BytesPerLong);
3188   int num_tiles = size_limit / BytesPerLong;
3189 
3190   // allocate space for the tile map:
3191   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3192   jlong  tiles_buf[small_len];
3193   Node*  nodes_buf[small_len];
3194   jlong  inits_buf[small_len];
3195   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3196                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3197   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3198                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3199   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3200                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3201   // tiles: exact bitwise model of all primitive constants
3202   // nodes: last constant-storing node subsumed into the tiles model
3203   // inits: which bytes (in each tile) are touched by any initializations
3204 
3205   //// Pass A: Fill in the tile model with any relevant stores.
3206 
3207   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3208   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3209   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3210   Node* zmem = zero_memory(); // initially zero memory state
3211   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3212     Node* st = in(i);
3213     intptr_t st_off = get_store_offset(st, phase);
3214 
3215     // Figure out the store's offset and constant value:
3216     if (st_off < header_size)             continue; //skip (ignore header)
3217     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3218     int st_size = st->as_Store()->memory_size();
3219     if (st_off + st_size > size_limit)    break;
3220 
3221     // Record which bytes are touched, whether by constant or not.
3222     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3223       continue;                 // skip (strange store size)
3224 
3225     const Type* val = phase->type(st->in(MemNode::ValueIn));
3226     if (!val->singleton())                continue; //skip (non-con store)
3227     BasicType type = val->basic_type();
3228 
3229     jlong con = 0;
3230     switch (type) {
3231     case T_INT:    con = val->is_int()->get_con();  break;
3232     case T_LONG:   con = val->is_long()->get_con(); break;
3233     case T_FLOAT:  con = jint_cast(val->getf());    break;
3234     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3235     default:                              continue; //skip (odd store type)
3236     }
3237 
3238     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3239         st->Opcode() == Op_StoreL) {
3240       continue;                 // This StoreL is already optimal.
3241     }
3242 
3243     // Store down the constant.
3244     store_constant(tiles, num_tiles, st_off, st_size, con);
3245 
3246     intptr_t j = st_off >> LogBytesPerLong;
3247 
3248     if (type == T_INT && st_size == BytesPerInt
3249         && (st_off & BytesPerInt) == BytesPerInt) {
3250       jlong lcon = tiles[j];
3251       if (!Matcher::isSimpleConstant64(lcon) &&
3252           st->Opcode() == Op_StoreI) {
3253         // This StoreI is already optimal by itself.
3254         jint* intcon = (jint*) &tiles[j];
3255         intcon[1] = 0;  // undo the store_constant()
3256 
3257         // If the previous store is also optimal by itself, back up and
3258         // undo the action of the previous loop iteration... if we can.
3259         // But if we can't, just let the previous half take care of itself.
3260         st = nodes[j];
3261         st_off -= BytesPerInt;
3262         con = intcon[0];
3263         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3264           assert(st_off >= header_size, "still ignoring header");
3265           assert(get_store_offset(st, phase) == st_off, "must be");
3266           assert(in(i-1) == zmem, "must be");
3267           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3268           assert(con == tcon->is_int()->get_con(), "must be");
3269           // Undo the effects of the previous loop trip, which swallowed st:
3270           intcon[0] = 0;        // undo store_constant()
3271           set_req(i-1, st);     // undo set_req(i, zmem)
3272           nodes[j] = NULL;      // undo nodes[j] = st
3273           --old_subword;        // undo ++old_subword
3274         }
3275         continue;               // This StoreI is already optimal.
3276       }
3277     }
3278 
3279     // This store is not needed.
3280     set_req(i, zmem);
3281     nodes[j] = st;              // record for the moment
3282     if (st_size < BytesPerLong) // something has changed
3283           ++old_subword;        // includes int/float, but who's counting...
3284     else  ++old_long;
3285   }
3286 
3287   if ((old_subword + old_long) == 0)
3288     return;                     // nothing more to do
3289 
3290   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3291   // Be sure to insert them before overlapping non-constant stores.
3292   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3293   for (int j = 0; j < num_tiles; j++) {
3294     jlong con  = tiles[j];
3295     jlong init = inits[j];
3296     if (con == 0)  continue;
3297     jint con0,  con1;           // split the constant, address-wise
3298     jint init0, init1;          // split the init map, address-wise
3299     { union { jlong con; jint intcon[2]; } u;
3300       u.con = con;
3301       con0  = u.intcon[0];
3302       con1  = u.intcon[1];
3303       u.con = init;
3304       init0 = u.intcon[0];
3305       init1 = u.intcon[1];
3306     }
3307 
3308     Node* old = nodes[j];
3309     assert(old != NULL, "need the prior store");
3310     intptr_t offset = (j * BytesPerLong);
3311 
3312     bool split = !Matcher::isSimpleConstant64(con);
3313 
3314     if (offset < header_size) {
3315       assert(offset + BytesPerInt >= header_size, "second int counts");
3316       assert(*(jint*)&tiles[j] == 0, "junk in header");
3317       split = true;             // only the second word counts
3318       // Example:  int a[] = { 42 ... }
3319     } else if (con0 == 0 && init0 == -1) {
3320       split = true;             // first word is covered by full inits
3321       // Example:  int a[] = { ... foo(), 42 ... }
3322     } else if (con1 == 0 && init1 == -1) {
3323       split = true;             // second word is covered by full inits
3324       // Example:  int a[] = { ... 42, foo() ... }
3325     }
3326 
3327     // Here's a case where init0 is neither 0 nor -1:
3328     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3329     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3330     // In this case the tile is not split; it is (jlong)42.
3331     // The big tile is stored down, and then the foo() value is inserted.
3332     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3333 
3334     Node* ctl = old->in(MemNode::Control);
3335     Node* adr = make_raw_address(offset, phase);
3336     const TypePtr* atp = TypeRawPtr::BOTTOM;
3337 
3338     // One or two coalesced stores to plop down.
3339     Node*    st[2];
3340     intptr_t off[2];
3341     int  nst = 0;
3342     if (!split) {
3343       ++new_long;
3344       off[nst] = offset;
3345       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3346                                   phase->longcon(con), T_LONG);
3347     } else {
3348       // Omit either if it is a zero.
3349       if (con0 != 0) {
3350         ++new_int;
3351         off[nst]  = offset;
3352         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3353                                     phase->intcon(con0), T_INT);
3354       }
3355       if (con1 != 0) {
3356         ++new_int;
3357         offset += BytesPerInt;
3358         adr = make_raw_address(offset, phase);
3359         off[nst]  = offset;
3360         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3361                                     phase->intcon(con1), T_INT);
3362       }
3363     }
3364 
3365     // Insert second store first, then the first before the second.
3366     // Insert each one just before any overlapping non-constant stores.
3367     while (nst > 0) {
3368       Node* st1 = st[--nst];
3369       C->copy_node_notes_to(st1, old);
3370       st1 = phase->transform(st1);
3371       offset = off[nst];
3372       assert(offset >= header_size, "do not smash header");
3373       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3374       guarantee(ins_idx != 0, "must re-insert constant store");
3375       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3376       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3377         set_req(--ins_idx, st1);
3378       else
3379         ins_req(ins_idx, st1);
3380     }
3381   }
3382 
3383   if (PrintCompilation && WizardMode)
3384     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3385                   old_subword, old_long, new_int, new_long);
3386   if (C->log() != NULL)
3387     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3388                    old_subword, old_long, new_int, new_long);
3389 
3390   // Clean up any remaining occurrences of zmem:
3391   remove_extra_zeroes();
3392 }
3393 
3394 // Explore forward from in(start) to find the first fully initialized
3395 // word, and return its offset.  Skip groups of subword stores which
3396 // together initialize full words.  If in(start) is itself part of a
3397 // fully initialized word, return the offset of in(start).  If there
3398 // are no following full-word stores, or if something is fishy, return
3399 // a negative value.
3400 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3401   int       int_map = 0;
3402   intptr_t  int_map_off = 0;
3403   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3404 
3405   for (uint i = start, limit = req(); i < limit; i++) {
3406     Node* st = in(i);
3407 
3408     intptr_t st_off = get_store_offset(st, phase);
3409     if (st_off < 0)  break;  // return conservative answer
3410 
3411     int st_size = st->as_Store()->memory_size();
3412     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3413       return st_off;            // we found a complete word init
3414     }
3415 
3416     // update the map:
3417 
3418     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3419     if (this_int_off != int_map_off) {
3420       // reset the map:
3421       int_map = 0;
3422       int_map_off = this_int_off;
3423     }
3424 
3425     int subword_off = st_off - this_int_off;
3426     int_map |= right_n_bits(st_size) << subword_off;
3427     if ((int_map & FULL_MAP) == FULL_MAP) {
3428       return this_int_off;      // we found a complete word init
3429     }
3430 
3431     // Did this store hit or cross the word boundary?
3432     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3433     if (next_int_off == this_int_off + BytesPerInt) {
3434       // We passed the current int, without fully initializing it.
3435       int_map_off = next_int_off;
3436       int_map >>= BytesPerInt;
3437     } else if (next_int_off > this_int_off + BytesPerInt) {
3438       // We passed the current and next int.
3439       return this_int_off + BytesPerInt;
3440     }
3441   }
3442 
3443   return -1;
3444 }
3445 
3446 
3447 // Called when the associated AllocateNode is expanded into CFG.
3448 // At this point, we may perform additional optimizations.
3449 // Linearize the stores by ascending offset, to make memory
3450 // activity as coherent as possible.
3451 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3452                                       intptr_t header_size,
3453                                       Node* size_in_bytes,
3454                                       PhaseGVN* phase) {
3455   assert(!is_complete(), "not already complete");
3456   assert(stores_are_sane(phase), "");
3457   assert(allocation() != NULL, "must be present");
3458 
3459   remove_extra_zeroes();
3460 
3461   if (ReduceFieldZeroing || ReduceBulkZeroing)
3462     // reduce instruction count for common initialization patterns
3463     coalesce_subword_stores(header_size, size_in_bytes, phase);
3464 
3465   Node* zmem = zero_memory();   // initially zero memory state
3466   Node* inits = zmem;           // accumulating a linearized chain of inits
3467   #ifdef ASSERT
3468   intptr_t first_offset = allocation()->minimum_header_size();
3469   intptr_t last_init_off = first_offset;  // previous init offset
3470   intptr_t last_init_end = first_offset;  // previous init offset+size
3471   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3472   #endif
3473   intptr_t zeroes_done = header_size;
3474 
3475   bool do_zeroing = true;       // we might give up if inits are very sparse
3476   int  big_init_gaps = 0;       // how many large gaps have we seen?
3477 
3478   if (ZeroTLAB)  do_zeroing = false;
3479   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3480 
3481   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3482     Node* st = in(i);
3483     intptr_t st_off = get_store_offset(st, phase);
3484     if (st_off < 0)
3485       break;                    // unknown junk in the inits
3486     if (st->in(MemNode::Memory) != zmem)
3487       break;                    // complicated store chains somehow in list
3488 
3489     int st_size = st->as_Store()->memory_size();
3490     intptr_t next_init_off = st_off + st_size;
3491 
3492     if (do_zeroing && zeroes_done < next_init_off) {
3493       // See if this store needs a zero before it or under it.
3494       intptr_t zeroes_needed = st_off;
3495 
3496       if (st_size < BytesPerInt) {
3497         // Look for subword stores which only partially initialize words.
3498         // If we find some, we must lay down some word-level zeroes first,
3499         // underneath the subword stores.
3500         //
3501         // Examples:
3502         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3503         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3504         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3505         //
3506         // Note:  coalesce_subword_stores may have already done this,
3507         // if it was prompted by constant non-zero subword initializers.
3508         // But this case can still arise with non-constant stores.
3509 
3510         intptr_t next_full_store = find_next_fullword_store(i, phase);
3511 
3512         // In the examples above:
3513         //   in(i)          p   q   r   s     x   y     z
3514         //   st_off        12  13  14  15    12  13    14
3515         //   st_size        1   1   1   1     1   1     1
3516         //   next_full_s.  12  16  16  16    16  16    16
3517         //   z's_done      12  16  16  16    12  16    12
3518         //   z's_needed    12  16  16  16    16  16    16
3519         //   zsize          0   0   0   0     4   0     4
3520         if (next_full_store < 0) {
3521           // Conservative tack:  Zero to end of current word.
3522           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3523         } else {
3524           // Zero to beginning of next fully initialized word.
3525           // Or, don't zero at all, if we are already in that word.
3526           assert(next_full_store >= zeroes_needed, "must go forward");
3527           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3528           zeroes_needed = next_full_store;
3529         }
3530       }
3531 
3532       if (zeroes_needed > zeroes_done) {
3533         intptr_t zsize = zeroes_needed - zeroes_done;
3534         // Do some incremental zeroing on rawmem, in parallel with inits.
3535         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3536         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3537                                               zeroes_done, zeroes_needed,
3538                                               phase);
3539         zeroes_done = zeroes_needed;
3540         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3541           do_zeroing = false;   // leave the hole, next time
3542       }
3543     }
3544 
3545     // Collect the store and move on:
3546     st->set_req(MemNode::Memory, inits);
3547     inits = st;                 // put it on the linearized chain
3548     set_req(i, zmem);           // unhook from previous position
3549 
3550     if (zeroes_done == st_off)
3551       zeroes_done = next_init_off;
3552 
3553     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3554 
3555     #ifdef ASSERT
3556     // Various order invariants.  Weaker than stores_are_sane because
3557     // a large constant tile can be filled in by smaller non-constant stores.
3558     assert(st_off >= last_init_off, "inits do not reverse");
3559     last_init_off = st_off;
3560     const Type* val = NULL;
3561     if (st_size >= BytesPerInt &&
3562         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3563         (int)val->basic_type() < (int)T_OBJECT) {
3564       assert(st_off >= last_tile_end, "tiles do not overlap");
3565       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3566       last_tile_end = MAX2(last_tile_end, next_init_off);
3567     } else {
3568       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3569       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3570       assert(st_off      >= last_init_end, "inits do not overlap");
3571       last_init_end = next_init_off;  // it's a non-tile
3572     }
3573     #endif //ASSERT
3574   }
3575 
3576   remove_extra_zeroes();        // clear out all the zmems left over
3577   add_req(inits);
3578 
3579   if (!ZeroTLAB) {
3580     // If anything remains to be zeroed, zero it all now.
3581     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3582     // if it is the last unused 4 bytes of an instance, forget about it
3583     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3584     if (zeroes_done + BytesPerLong >= size_limit) {
3585       assert(allocation() != NULL, "");
3586       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3587       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3588       if (zeroes_done == k->layout_helper())
3589         zeroes_done = size_limit;
3590     }
3591     if (zeroes_done < size_limit) {
3592       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3593                                             zeroes_done, size_in_bytes, phase);
3594     }
3595   }
3596 
3597   set_complete(phase);
3598   return rawmem;
3599 }
3600 
3601 
3602 #ifdef ASSERT
3603 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3604   if (is_complete())
3605     return true;                // stores could be anything at this point
3606   assert(allocation() != NULL, "must be present");
3607   intptr_t last_off = allocation()->minimum_header_size();
3608   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3609     Node* st = in(i);
3610     intptr_t st_off = get_store_offset(st, phase);
3611     if (st_off < 0)  continue;  // ignore dead garbage
3612     if (last_off > st_off) {
3613       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3614       this->dump(2);
3615       assert(false, "ascending store offsets");
3616       return false;
3617     }
3618     last_off = st_off + st->as_Store()->memory_size();
3619   }
3620   return true;
3621 }
3622 #endif //ASSERT
3623 
3624 
3625 
3626 
3627 //============================MergeMemNode=====================================
3628 //
3629 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3630 // contributing store or call operations.  Each contributor provides the memory
3631 // state for a particular "alias type" (see Compile::alias_type).  For example,
3632 // if a MergeMem has an input X for alias category #6, then any memory reference
3633 // to alias category #6 may use X as its memory state input, as an exact equivalent
3634 // to using the MergeMem as a whole.
3635 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3636 //
3637 // (Here, the <N> notation gives the index of the relevant adr_type.)
3638 //
3639 // In one special case (and more cases in the future), alias categories overlap.
3640 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3641 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3642 // it is exactly equivalent to that state W:
3643 //   MergeMem(<Bot>: W) <==> W
3644 //
3645 // Usually, the merge has more than one input.  In that case, where inputs
3646 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3647 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3648 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3649 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3650 //
3651 // A merge can take a "wide" memory state as one of its narrow inputs.
3652 // This simply means that the merge observes out only the relevant parts of
3653 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3654 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3655 //
3656 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3657 // and that memory slices "leak through":
3658 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3659 //
3660 // But, in such a cascade, repeated memory slices can "block the leak":
3661 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3662 //
3663 // In the last example, Y is not part of the combined memory state of the
3664 // outermost MergeMem.  The system must, of course, prevent unschedulable
3665 // memory states from arising, so you can be sure that the state Y is somehow
3666 // a precursor to state Y'.
3667 //
3668 //
3669 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3670 // of each MergeMemNode array are exactly the numerical alias indexes, including
3671 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3672 // Compile::alias_type (and kin) produce and manage these indexes.
3673 //
3674 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3675 // (Note that this provides quick access to the top node inside MergeMem methods,
3676 // without the need to reach out via TLS to Compile::current.)
3677 //
3678 // As a consequence of what was just described, a MergeMem that represents a full
3679 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3680 // containing all alias categories.
3681 //
3682 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3683 //
3684 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3685 // a memory state for the alias type <N>, or else the top node, meaning that
3686 // there is no particular input for that alias type.  Note that the length of
3687 // a MergeMem is variable, and may be extended at any time to accommodate new
3688 // memory states at larger alias indexes.  When merges grow, they are of course
3689 // filled with "top" in the unused in() positions.
3690 //
3691 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3692 // (Top was chosen because it works smoothly with passes like GCM.)
3693 //
3694 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3695 // the type of random VM bits like TLS references.)  Since it is always the
3696 // first non-Bot memory slice, some low-level loops use it to initialize an
3697 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3698 //
3699 //
3700 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3701 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3702 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3703 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3704 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3705 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3706 //
3707 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3708 // really that different from the other memory inputs.  An abbreviation called
3709 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3710 //
3711 //
3712 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3713 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3714 // that "emerges though" the base memory will be marked as excluding the alias types
3715 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3716 //
3717 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3718 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3719 //
3720 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3721 // (It is currently unimplemented.)  As you can see, the resulting merge is
3722 // actually a disjoint union of memory states, rather than an overlay.
3723 //
3724 
3725 //------------------------------MergeMemNode-----------------------------------
3726 Node* MergeMemNode::make_empty_memory() {
3727   Node* empty_memory = (Node*) Compile::current()->top();
3728   assert(empty_memory->is_top(), "correct sentinel identity");
3729   return empty_memory;
3730 }
3731 
3732 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3733   init_class_id(Class_MergeMem);
3734   // all inputs are nullified in Node::Node(int)
3735   // set_input(0, NULL);  // no control input
3736 
3737   // Initialize the edges uniformly to top, for starters.
3738   Node* empty_mem = make_empty_memory();
3739   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3740     init_req(i,empty_mem);
3741   }
3742   assert(empty_memory() == empty_mem, "");
3743 
3744   if( new_base != NULL && new_base->is_MergeMem() ) {
3745     MergeMemNode* mdef = new_base->as_MergeMem();
3746     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3747     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3748       mms.set_memory(mms.memory2());
3749     }
3750     assert(base_memory() == mdef->base_memory(), "");
3751   } else {
3752     set_base_memory(new_base);
3753   }
3754 }
3755 
3756 // Make a new, untransformed MergeMem with the same base as 'mem'.
3757 // If mem is itself a MergeMem, populate the result with the same edges.
3758 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3759   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3760 }
3761 
3762 //------------------------------cmp--------------------------------------------
3763 uint MergeMemNode::hash() const { return NO_HASH; }
3764 uint MergeMemNode::cmp( const Node &n ) const {
3765   return (&n == this);          // Always fail except on self
3766 }
3767 
3768 //------------------------------Identity---------------------------------------
3769 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3770   // Identity if this merge point does not record any interesting memory
3771   // disambiguations.
3772   Node* base_mem = base_memory();
3773   Node* empty_mem = empty_memory();
3774   if (base_mem != empty_mem) {  // Memory path is not dead?
3775     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3776       Node* mem = in(i);
3777       if (mem != empty_mem && mem != base_mem) {
3778         return this;            // Many memory splits; no change
3779       }
3780     }
3781   }
3782   return base_mem;              // No memory splits; ID on the one true input
3783 }
3784 
3785 //------------------------------Ideal------------------------------------------
3786 // This method is invoked recursively on chains of MergeMem nodes
3787 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3788   // Remove chain'd MergeMems
3789   //
3790   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3791   // relative to the "in(Bot)".  Since we are patching both at the same time,
3792   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3793   // but rewrite each "in(i)" relative to the new "in(Bot)".
3794   Node *progress = NULL;
3795 
3796 
3797   Node* old_base = base_memory();
3798   Node* empty_mem = empty_memory();
3799   if (old_base == empty_mem)
3800     return NULL; // Dead memory path.
3801 
3802   MergeMemNode* old_mbase;
3803   if (old_base != NULL && old_base->is_MergeMem())
3804     old_mbase = old_base->as_MergeMem();
3805   else
3806     old_mbase = NULL;
3807   Node* new_base = old_base;
3808 
3809   // simplify stacked MergeMems in base memory
3810   if (old_mbase)  new_base = old_mbase->base_memory();
3811 
3812   // the base memory might contribute new slices beyond my req()
3813   if (old_mbase)  grow_to_match(old_mbase);
3814 
3815   // Look carefully at the base node if it is a phi.
3816   PhiNode* phi_base;
3817   if (new_base != NULL && new_base->is_Phi())
3818     phi_base = new_base->as_Phi();
3819   else
3820     phi_base = NULL;
3821 
3822   Node*    phi_reg = NULL;
3823   uint     phi_len = (uint)-1;
3824   if (phi_base != NULL && !phi_base->is_copy()) {
3825     // do not examine phi if degraded to a copy
3826     phi_reg = phi_base->region();
3827     phi_len = phi_base->req();
3828     // see if the phi is unfinished
3829     for (uint i = 1; i < phi_len; i++) {
3830       if (phi_base->in(i) == NULL) {
3831         // incomplete phi; do not look at it yet!
3832         phi_reg = NULL;
3833         phi_len = (uint)-1;
3834         break;
3835       }
3836     }
3837   }
3838 
3839   // Note:  We do not call verify_sparse on entry, because inputs
3840   // can normalize to the base_memory via subsume_node or similar
3841   // mechanisms.  This method repairs that damage.
3842 
3843   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3844 
3845   // Look at each slice.
3846   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3847     Node* old_in = in(i);
3848     // calculate the old memory value
3849     Node* old_mem = old_in;
3850     if (old_mem == empty_mem)  old_mem = old_base;
3851     assert(old_mem == memory_at(i), "");
3852 
3853     // maybe update (reslice) the old memory value
3854 
3855     // simplify stacked MergeMems
3856     Node* new_mem = old_mem;
3857     MergeMemNode* old_mmem;
3858     if (old_mem != NULL && old_mem->is_MergeMem())
3859       old_mmem = old_mem->as_MergeMem();
3860     else
3861       old_mmem = NULL;
3862     if (old_mmem == this) {
3863       // This can happen if loops break up and safepoints disappear.
3864       // A merge of BotPtr (default) with a RawPtr memory derived from a
3865       // safepoint can be rewritten to a merge of the same BotPtr with
3866       // the BotPtr phi coming into the loop.  If that phi disappears
3867       // also, we can end up with a self-loop of the mergemem.
3868       // In general, if loops degenerate and memory effects disappear,
3869       // a mergemem can be left looking at itself.  This simply means
3870       // that the mergemem's default should be used, since there is
3871       // no longer any apparent effect on this slice.
3872       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3873       //       from start.  Update the input to TOP.
3874       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3875     }
3876     else if (old_mmem != NULL) {
3877       new_mem = old_mmem->memory_at(i);
3878     }
3879     // else preceding memory was not a MergeMem
3880 
3881     // replace equivalent phis (unfortunately, they do not GVN together)
3882     if (new_mem != NULL && new_mem != new_base &&
3883         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3884       if (new_mem->is_Phi()) {
3885         PhiNode* phi_mem = new_mem->as_Phi();
3886         for (uint i = 1; i < phi_len; i++) {
3887           if (phi_base->in(i) != phi_mem->in(i)) {
3888             phi_mem = NULL;
3889             break;
3890           }
3891         }
3892         if (phi_mem != NULL) {
3893           // equivalent phi nodes; revert to the def
3894           new_mem = new_base;
3895         }
3896       }
3897     }
3898 
3899     // maybe store down a new value
3900     Node* new_in = new_mem;
3901     if (new_in == new_base)  new_in = empty_mem;
3902 
3903     if (new_in != old_in) {
3904       // Warning:  Do not combine this "if" with the previous "if"
3905       // A memory slice might have be be rewritten even if it is semantically
3906       // unchanged, if the base_memory value has changed.
3907       set_req(i, new_in);
3908       progress = this;          // Report progress
3909     }
3910   }
3911 
3912   if (new_base != old_base) {
3913     set_req(Compile::AliasIdxBot, new_base);
3914     // Don't use set_base_memory(new_base), because we need to update du.
3915     assert(base_memory() == new_base, "");
3916     progress = this;
3917   }
3918 
3919   if( base_memory() == this ) {
3920     // a self cycle indicates this memory path is dead
3921     set_req(Compile::AliasIdxBot, empty_mem);
3922   }
3923 
3924   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3925   // Recursion must occur after the self cycle check above
3926   if( base_memory()->is_MergeMem() ) {
3927     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3928     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3929     if( m != NULL && (m->is_top() ||
3930         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3931       // propagate rollup of dead cycle to self
3932       set_req(Compile::AliasIdxBot, empty_mem);
3933     }
3934   }
3935 
3936   if( base_memory() == empty_mem ) {
3937     progress = this;
3938     // Cut inputs during Parse phase only.
3939     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3940     if( !can_reshape ) {
3941       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3942         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3943       }
3944     }
3945   }
3946 
3947   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3948     // Check if PhiNode::Ideal's "Split phis through memory merges"
3949     // transform should be attempted. Look for this->phi->this cycle.
3950     uint merge_width = req();
3951     if (merge_width > Compile::AliasIdxRaw) {
3952       PhiNode* phi = base_memory()->as_Phi();
3953       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3954         if (phi->in(i) == this) {
3955           phase->is_IterGVN()->_worklist.push(phi);
3956           break;
3957         }
3958       }
3959     }
3960   }
3961 
3962   assert(progress || verify_sparse(), "please, no dups of base");
3963   return progress;
3964 }
3965 
3966 //-------------------------set_base_memory-------------------------------------
3967 void MergeMemNode::set_base_memory(Node *new_base) {
3968   Node* empty_mem = empty_memory();
3969   set_req(Compile::AliasIdxBot, new_base);
3970   assert(memory_at(req()) == new_base, "must set default memory");
3971   // Clear out other occurrences of new_base:
3972   if (new_base != empty_mem) {
3973     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3974       if (in(i) == new_base)  set_req(i, empty_mem);
3975     }
3976   }
3977 }
3978 
3979 //------------------------------out_RegMask------------------------------------
3980 const RegMask &MergeMemNode::out_RegMask() const {
3981   return RegMask::Empty;
3982 }
3983 
3984 //------------------------------dump_spec--------------------------------------
3985 #ifndef PRODUCT
3986 void MergeMemNode::dump_spec(outputStream *st) const {
3987   st->print(" {");
3988   Node* base_mem = base_memory();
3989   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3990     Node* mem = memory_at(i);
3991     if (mem == base_mem) { st->print(" -"); continue; }
3992     st->print( " N%d:", mem->_idx );
3993     Compile::current()->get_adr_type(i)->dump_on(st);
3994   }
3995   st->print(" }");
3996 }
3997 #endif // !PRODUCT
3998 
3999 
4000 #ifdef ASSERT
4001 static bool might_be_same(Node* a, Node* b) {
4002   if (a == b)  return true;
4003   if (!(a->is_Phi() || b->is_Phi()))  return false;
4004   // phis shift around during optimization
4005   return true;  // pretty stupid...
4006 }
4007 
4008 // verify a narrow slice (either incoming or outgoing)
4009 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4010   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4011   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4012   if (Node::in_dump())      return;  // muzzle asserts when printing
4013   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4014   assert(n != NULL, "");
4015   // Elide intervening MergeMem's
4016   while (n->is_MergeMem()) {
4017     n = n->as_MergeMem()->memory_at(alias_idx);
4018   }
4019   Compile* C = Compile::current();
4020   const TypePtr* n_adr_type = n->adr_type();
4021   if (n == m->empty_memory()) {
4022     // Implicit copy of base_memory()
4023   } else if (n_adr_type != TypePtr::BOTTOM) {
4024     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4025     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4026   } else {
4027     // A few places like make_runtime_call "know" that VM calls are narrow,
4028     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4029     bool expected_wide_mem = false;
4030     if (n == m->base_memory()) {
4031       expected_wide_mem = true;
4032     } else if (alias_idx == Compile::AliasIdxRaw ||
4033                n == m->memory_at(Compile::AliasIdxRaw)) {
4034       expected_wide_mem = true;
4035     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4036       // memory can "leak through" calls on channels that
4037       // are write-once.  Allow this also.
4038       expected_wide_mem = true;
4039     }
4040     assert(expected_wide_mem, "expected narrow slice replacement");
4041   }
4042 }
4043 #else // !ASSERT
4044 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
4045 #endif
4046 
4047 
4048 //-----------------------------memory_at---------------------------------------
4049 Node* MergeMemNode::memory_at(uint alias_idx) const {
4050   assert(alias_idx >= Compile::AliasIdxRaw ||
4051          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4052          "must avoid base_memory and AliasIdxTop");
4053 
4054   // Otherwise, it is a narrow slice.
4055   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4056   Compile *C = Compile::current();
4057   if (is_empty_memory(n)) {
4058     // the array is sparse; empty slots are the "top" node
4059     n = base_memory();
4060     assert(Node::in_dump()
4061            || n == NULL || n->bottom_type() == Type::TOP
4062            || n->adr_type() == TypePtr::BOTTOM
4063            || n->adr_type() == TypeRawPtr::BOTTOM
4064            || Compile::current()->AliasLevel() == 0,
4065            "must be a wide memory");
4066     // AliasLevel == 0 if we are organizing the memory states manually.
4067     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4068   } else {
4069     // make sure the stored slice is sane
4070     #ifdef ASSERT
4071     if (is_error_reported() || Node::in_dump()) {
4072     } else if (might_be_same(n, base_memory())) {
4073       // Give it a pass:  It is a mostly harmless repetition of the base.
4074       // This can arise normally from node subsumption during optimization.
4075     } else {
4076       verify_memory_slice(this, alias_idx, n);
4077     }
4078     #endif
4079   }
4080   return n;
4081 }
4082 
4083 //---------------------------set_memory_at-------------------------------------
4084 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4085   verify_memory_slice(this, alias_idx, n);
4086   Node* empty_mem = empty_memory();
4087   if (n == base_memory())  n = empty_mem;  // collapse default
4088   uint need_req = alias_idx+1;
4089   if (req() < need_req) {
4090     if (n == empty_mem)  return;  // already the default, so do not grow me
4091     // grow the sparse array
4092     do {
4093       add_req(empty_mem);
4094     } while (req() < need_req);
4095   }
4096   set_req( alias_idx, n );
4097 }
4098 
4099 
4100 
4101 //--------------------------iteration_setup------------------------------------
4102 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4103   if (other != NULL) {
4104     grow_to_match(other);
4105     // invariant:  the finite support of mm2 is within mm->req()
4106     #ifdef ASSERT
4107     for (uint i = req(); i < other->req(); i++) {
4108       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4109     }
4110     #endif
4111   }
4112   // Replace spurious copies of base_memory by top.
4113   Node* base_mem = base_memory();
4114   if (base_mem != NULL && !base_mem->is_top()) {
4115     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4116       if (in(i) == base_mem)
4117         set_req(i, empty_memory());
4118     }
4119   }
4120 }
4121 
4122 //---------------------------grow_to_match-------------------------------------
4123 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4124   Node* empty_mem = empty_memory();
4125   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4126   // look for the finite support of the other memory
4127   for (uint i = other->req(); --i >= req(); ) {
4128     if (other->in(i) != empty_mem) {
4129       uint new_len = i+1;
4130       while (req() < new_len)  add_req(empty_mem);
4131       break;
4132     }
4133   }
4134 }
4135 
4136 //---------------------------verify_sparse-------------------------------------
4137 #ifndef PRODUCT
4138 bool MergeMemNode::verify_sparse() const {
4139   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4140   Node* base_mem = base_memory();
4141   // The following can happen in degenerate cases, since empty==top.
4142   if (is_empty_memory(base_mem))  return true;
4143   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4144     assert(in(i) != NULL, "sane slice");
4145     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4146   }
4147   return true;
4148 }
4149 
4150 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4151   Node* n;
4152   n = mm->in(idx);
4153   if (mem == n)  return true;  // might be empty_memory()
4154   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4155   if (mem == n)  return true;
4156   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4157     if (mem == n)  return true;
4158     if (n == NULL)  break;
4159   }
4160   return false;
4161 }
4162 #endif // !PRODUCT