1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
 108   if (tinst == NULL || !tinst->is_known_instance_field())
 109     return mchain;  // don't try to optimize non-instance types
 110   uint instance_id = tinst->instance_id();
 111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 112   Node *prev = NULL;
 113   Node *result = mchain;
 114   while (prev != result) {
 115     prev = result;
 116     if (result == start_mem)
 117       break;  // hit one of our sentinels
 118     // skip over a call which does not affect this memory slice
 119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 120       Node *proj_in = result->in(0);
 121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 122         break;  // hit one of our sentinels
 123       } else if (proj_in->is_Call()) {
 124         CallNode *call = proj_in->as_Call();
 125         if (!call->may_modify(t_adr, phase)) {
 126           result = call->in(TypeFunc::Memory);
 127         }
 128       } else if (proj_in->is_Initialize()) {
 129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 130         // Stop if this is the initialization for the object instance which
 131         // which contains this memory slice, otherwise skip over it.
 132         if (alloc != NULL && alloc->_idx != instance_id) {
 133           result = proj_in->in(TypeFunc::Memory);
 134         }
 135       } else if (proj_in->is_MemBar()) {
 136         result = proj_in->in(TypeFunc::Memory);
 137       } else {
 138         assert(false, "unexpected projection");
 139       }
 140     } else if (result->is_ClearArray()) {
 141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
 142         // Can not bypass initialization of the instance
 143         // we are looking for.
 144         break;
 145       }
 146       // Otherwise skip it (the call updated 'result' value).
 147     } else if (result->is_MergeMem()) {
 148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 149     }
 150   }
 151   return result;
 152 }
 153 
 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 157   PhaseIterGVN *igvn = phase->is_IterGVN();
 158   Node *result = mchain;
 159   result = optimize_simple_memory_chain(result, t_adr, phase);
 160   if (is_instance && igvn != NULL  && result->is_Phi()) {
 161     PhiNode *mphi = result->as_Phi();
 162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 163     const TypePtr *t = mphi->adr_type();
 164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 166         t->is_oopptr()->cast_to_exactness(true)
 167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 169       // clone the Phi with our address type
 170       result = mphi->split_out_instance(t_adr, igvn);
 171     } else {
 172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 173     }
 174   }
 175   return result;
 176 }
 177 
 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 179   uint alias_idx = phase->C->get_alias_index(tp);
 180   Node *mem = mmem;
 181 #ifdef ASSERT
 182   {
 183     // Check that current type is consistent with the alias index used during graph construction
 184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 185     bool consistent =  adr_check == NULL || adr_check->empty() ||
 186                        phase->C->must_alias(adr_check, alias_idx );
 187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 194       // don't assert if it is dead code.
 195       consistent = true;
 196     }
 197     if( !consistent ) {
 198       st->print("alias_idx==%d, adr_check==", alias_idx);
 199       if( adr_check == NULL ) {
 200         st->print("NULL");
 201       } else {
 202         adr_check->dump();
 203       }
 204       st->cr();
 205       print_alias_types();
 206       assert(consistent, "adr_check must match alias idx");
 207     }
 208   }
 209 #endif
 210   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
 211   // means an array I have not precisely typed yet.  Do not do any
 212   // alias stuff with it any time soon.
 213   const TypeOopPtr *tinst = tp->isa_oopptr();
 214   if( tp->base() != Type::AnyPtr &&
 215       !(tinst &&
 216         tinst->klass()->is_java_lang_Object() &&
 217         tinst->offset() == Type::OffsetBot) ) {
 218     // compress paths and change unreachable cycles to TOP
 219     // If not, we can update the input infinitely along a MergeMem cycle
 220     // Equivalent code in PhiNode::Ideal
 221     Node* m  = phase->transform(mmem);
 222     // If transformed to a MergeMem, get the desired slice
 223     // Otherwise the returned node represents memory for every slice
 224     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 225     // Update input if it is progress over what we have now
 226   }
 227   return mem;
 228 }
 229 
 230 //--------------------------Ideal_common---------------------------------------
 231 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 232 // Unhook non-raw memories from complete (macro-expanded) initializations.
 233 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 234   // If our control input is a dead region, kill all below the region
 235   Node *ctl = in(MemNode::Control);
 236   if (ctl && remove_dead_region(phase, can_reshape))
 237     return this;
 238   ctl = in(MemNode::Control);
 239   // Don't bother trying to transform a dead node
 240   if( ctl && ctl->is_top() )  return NodeSentinel;
 241 
 242   PhaseIterGVN *igvn = phase->is_IterGVN();
 243   // Wait if control on the worklist.
 244   if (ctl && can_reshape && igvn != NULL) {
 245     Node* bol = NULL;
 246     Node* cmp = NULL;
 247     if (ctl->in(0)->is_If()) {
 248       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 249       bol = ctl->in(0)->in(1);
 250       if (bol->is_Bool())
 251         cmp = ctl->in(0)->in(1)->in(1);
 252     }
 253     if (igvn->_worklist.member(ctl) ||
 254         (bol != NULL && igvn->_worklist.member(bol)) ||
 255         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 256       // This control path may be dead.
 257       // Delay this memory node transformation until the control is processed.
 258       phase->is_IterGVN()->_worklist.push(this);
 259       return NodeSentinel; // caller will return NULL
 260     }
 261   }
 262   // Ignore if memory is dead, or self-loop
 263   Node *mem = in(MemNode::Memory);
 264   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 265   assert( mem != this, "dead loop in MemNode::Ideal" );
 266 
 267   Node *address = in(MemNode::Address);
 268   const Type *t_adr = phase->type( address );
 269   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 270 
 271   if( can_reshape && igvn != NULL &&
 272       (igvn->_worklist.member(address) || phase->type(address) != adr_type()) ) {
 273     // The address's base and type may change when the address is processed.
 274     // Delay this mem node transformation until the address is processed.
 275     phase->is_IterGVN()->_worklist.push(this);
 276     return NodeSentinel; // caller will return NULL
 277   }
 278 
 279   // Do NOT remove or optimize the next lines: ensure a new alias index
 280   // is allocated for an oop pointer type before Escape Analysis.
 281   // Note: C++ will not remove it since the call has side effect.
 282   if ( t_adr->isa_oopptr() ) {
 283     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 284   }
 285 
 286 #ifdef ASSERT
 287   Node* base = NULL;
 288   if (address->is_AddP())
 289     base = address->in(AddPNode::Base);
 290   assert(base == NULL || t_adr->isa_rawptr() ||
 291         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 292 #endif
 293 
 294   // Avoid independent memory operations
 295   Node* old_mem = mem;
 296 
 297   // The code which unhooks non-raw memories from complete (macro-expanded)
 298   // initializations was removed. After macro-expansion all stores catched
 299   // by Initialize node became raw stores and there is no information
 300   // which memory slices they modify. So it is unsafe to move any memory
 301   // operation above these stores. Also in most cases hooked non-raw memories
 302   // were already unhooked by using information from detect_ptr_independence()
 303   // and find_previous_store().
 304 
 305   if (mem->is_MergeMem()) {
 306     MergeMemNode* mmem = mem->as_MergeMem();
 307     const TypePtr *tp = t_adr->is_ptr();
 308 
 309     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 310   }
 311 
 312   if (mem != old_mem) {
 313     set_req(MemNode::Memory, mem);
 314     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 315     return this;
 316   }
 317 
 318   // let the subclass continue analyzing...
 319   return NULL;
 320 }
 321 
 322 // Helper function for proving some simple control dominations.
 323 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 324 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 325 // is not a constant (dominated by the method's StartNode).
 326 // Used by MemNode::find_previous_store to prove that the
 327 // control input of a memory operation predates (dominates)
 328 // an allocation it wants to look past.
 329 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 330   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 331     return false; // Conservative answer for dead code
 332 
 333   // Check 'dom'. Skip Proj and CatchProj nodes.
 334   dom = dom->find_exact_control(dom);
 335   if (dom == NULL || dom->is_top())
 336     return false; // Conservative answer for dead code
 337 
 338   if (dom == sub) {
 339     // For the case when, for example, 'sub' is Initialize and the original
 340     // 'dom' is Proj node of the 'sub'.
 341     return false;
 342   }
 343 
 344   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 345     return true;
 346 
 347   // 'dom' dominates 'sub' if its control edge and control edges
 348   // of all its inputs dominate or equal to sub's control edge.
 349 
 350   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 351   // Or Region for the check in LoadNode::Ideal();
 352   // 'sub' should have sub->in(0) != NULL.
 353   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 354          sub->is_Region(), "expecting only these nodes");
 355 
 356   // Get control edge of 'sub'.
 357   Node* orig_sub = sub;
 358   sub = sub->find_exact_control(sub->in(0));
 359   if (sub == NULL || sub->is_top())
 360     return false; // Conservative answer for dead code
 361 
 362   assert(sub->is_CFG(), "expecting control");
 363 
 364   if (sub == dom)
 365     return true;
 366 
 367   if (sub->is_Start() || sub->is_Root())
 368     return false;
 369 
 370   {
 371     // Check all control edges of 'dom'.
 372 
 373     ResourceMark rm;
 374     Arena* arena = Thread::current()->resource_area();
 375     Node_List nlist(arena);
 376     Unique_Node_List dom_list(arena);
 377 
 378     dom_list.push(dom);
 379     bool only_dominating_controls = false;
 380 
 381     for (uint next = 0; next < dom_list.size(); next++) {
 382       Node* n = dom_list.at(next);
 383       if (n == orig_sub)
 384         return false; // One of dom's inputs dominated by sub.
 385       if (!n->is_CFG() && n->pinned()) {
 386         // Check only own control edge for pinned non-control nodes.
 387         n = n->find_exact_control(n->in(0));
 388         if (n == NULL || n->is_top())
 389           return false; // Conservative answer for dead code
 390         assert(n->is_CFG(), "expecting control");
 391         dom_list.push(n);
 392       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 393         only_dominating_controls = true;
 394       } else if (n->is_CFG()) {
 395         if (n->dominates(sub, nlist))
 396           only_dominating_controls = true;
 397         else
 398           return false;
 399       } else {
 400         // First, own control edge.
 401         Node* m = n->find_exact_control(n->in(0));
 402         if (m != NULL) {
 403           if (m->is_top())
 404             return false; // Conservative answer for dead code
 405           dom_list.push(m);
 406         }
 407         // Now, the rest of edges.
 408         uint cnt = n->req();
 409         for (uint i = 1; i < cnt; i++) {
 410           m = n->find_exact_control(n->in(i));
 411           if (m == NULL || m->is_top())
 412             continue;
 413           dom_list.push(m);
 414         }
 415       }
 416     }
 417     return only_dominating_controls;
 418   }
 419 }
 420 
 421 //---------------------detect_ptr_independence---------------------------------
 422 // Used by MemNode::find_previous_store to prove that two base
 423 // pointers are never equal.
 424 // The pointers are accompanied by their associated allocations,
 425 // if any, which have been previously discovered by the caller.
 426 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 427                                       Node* p2, AllocateNode* a2,
 428                                       PhaseTransform* phase) {
 429   // Attempt to prove that these two pointers cannot be aliased.
 430   // They may both manifestly be allocations, and they should differ.
 431   // Or, if they are not both allocations, they can be distinct constants.
 432   // Otherwise, one is an allocation and the other a pre-existing value.
 433   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 434     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 435   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 436     return (a1 != a2);
 437   } else if (a1 != NULL) {                  // one allocation a1
 438     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 439     return all_controls_dominate(p2, a1);
 440   } else { //(a2 != NULL)                   // one allocation a2
 441     return all_controls_dominate(p1, a2);
 442   }
 443   return false;
 444 }
 445 
 446 
 447 // The logic for reordering loads and stores uses four steps:
 448 // (a) Walk carefully past stores and initializations which we
 449 //     can prove are independent of this load.
 450 // (b) Observe that the next memory state makes an exact match
 451 //     with self (load or store), and locate the relevant store.
 452 // (c) Ensure that, if we were to wire self directly to the store,
 453 //     the optimizer would fold it up somehow.
 454 // (d) Do the rewiring, and return, depending on some other part of
 455 //     the optimizer to fold up the load.
 456 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 457 // specific to loads and stores, so they are handled by the callers.
 458 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 459 //
 460 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 461   Node*         ctrl   = in(MemNode::Control);
 462   Node*         adr    = in(MemNode::Address);
 463   intptr_t      offset = 0;
 464   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 465   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 466 
 467   if (offset == Type::OffsetBot)
 468     return NULL;            // cannot unalias unless there are precise offsets
 469 
 470   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 471 
 472   intptr_t size_in_bytes = memory_size();
 473 
 474   Node* mem = in(MemNode::Memory);   // start searching here...
 475 
 476   int cnt = 50;             // Cycle limiter
 477   for (;;) {                // While we can dance past unrelated stores...
 478     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 479 
 480     if (mem->is_Store()) {
 481       Node* st_adr = mem->in(MemNode::Address);
 482       intptr_t st_offset = 0;
 483       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 484       if (st_base == NULL)
 485         break;              // inscrutable pointer
 486       if (st_offset != offset && st_offset != Type::OffsetBot) {
 487         const int MAX_STORE = BytesPerLong;
 488         if (st_offset >= offset + size_in_bytes ||
 489             st_offset <= offset - MAX_STORE ||
 490             st_offset <= offset - mem->as_Store()->memory_size()) {
 491           // Success:  The offsets are provably independent.
 492           // (You may ask, why not just test st_offset != offset and be done?
 493           // The answer is that stores of different sizes can co-exist
 494           // in the same sequence of RawMem effects.  We sometimes initialize
 495           // a whole 'tile' of array elements with a single jint or jlong.)
 496           mem = mem->in(MemNode::Memory);
 497           continue;           // (a) advance through independent store memory
 498         }
 499       }
 500       if (st_base != base &&
 501           detect_ptr_independence(base, alloc,
 502                                   st_base,
 503                                   AllocateNode::Ideal_allocation(st_base, phase),
 504                                   phase)) {
 505         // Success:  The bases are provably independent.
 506         mem = mem->in(MemNode::Memory);
 507         continue;           // (a) advance through independent store memory
 508       }
 509 
 510       // (b) At this point, if the bases or offsets do not agree, we lose,
 511       // since we have not managed to prove 'this' and 'mem' independent.
 512       if (st_base == base && st_offset == offset) {
 513         return mem;         // let caller handle steps (c), (d)
 514       }
 515 
 516     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 517       InitializeNode* st_init = mem->in(0)->as_Initialize();
 518       AllocateNode*  st_alloc = st_init->allocation();
 519       if (st_alloc == NULL)
 520         break;              // something degenerated
 521       bool known_identical = false;
 522       bool known_independent = false;
 523       if (alloc == st_alloc)
 524         known_identical = true;
 525       else if (alloc != NULL)
 526         known_independent = true;
 527       else if (all_controls_dominate(this, st_alloc))
 528         known_independent = true;
 529 
 530       if (known_independent) {
 531         // The bases are provably independent: Either they are
 532         // manifestly distinct allocations, or else the control
 533         // of this load dominates the store's allocation.
 534         int alias_idx = phase->C->get_alias_index(adr_type());
 535         if (alias_idx == Compile::AliasIdxRaw) {
 536           mem = st_alloc->in(TypeFunc::Memory);
 537         } else {
 538           mem = st_init->memory(alias_idx);
 539         }
 540         continue;           // (a) advance through independent store memory
 541       }
 542 
 543       // (b) at this point, if we are not looking at a store initializing
 544       // the same allocation we are loading from, we lose.
 545       if (known_identical) {
 546         // From caller, can_see_stored_value will consult find_captured_store.
 547         return mem;         // let caller handle steps (c), (d)
 548       }
 549 
 550     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 551       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 552       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 553         CallNode *call = mem->in(0)->as_Call();
 554         if (!call->may_modify(addr_t, phase)) {
 555           mem = call->in(TypeFunc::Memory);
 556           continue;         // (a) advance through independent call memory
 557         }
 558       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 559         mem = mem->in(0)->in(TypeFunc::Memory);
 560         continue;           // (a) advance through independent MemBar memory
 561       } else if (mem->is_ClearArray()) {
 562         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 563           // (the call updated 'mem' value)
 564           continue;         // (a) advance through independent allocation memory
 565         } else {
 566           // Can not bypass initialization of the instance
 567           // we are looking for.
 568           return mem;
 569         }
 570       } else if (mem->is_MergeMem()) {
 571         int alias_idx = phase->C->get_alias_index(adr_type());
 572         mem = mem->as_MergeMem()->memory_at(alias_idx);
 573         continue;           // (a) advance through independent MergeMem memory
 574       }
 575     }
 576 
 577     // Unless there is an explicit 'continue', we must bail out here,
 578     // because 'mem' is an inscrutable memory state (e.g., a call).
 579     break;
 580   }
 581 
 582   return NULL;              // bail out
 583 }
 584 
 585 //----------------------calculate_adr_type-------------------------------------
 586 // Helper function.  Notices when the given type of address hits top or bottom.
 587 // Also, asserts a cross-check of the type against the expected address type.
 588 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 589   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 590   #ifdef PRODUCT
 591   cross_check = NULL;
 592   #else
 593   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 594   #endif
 595   const TypePtr* tp = t->isa_ptr();
 596   if (tp == NULL) {
 597     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 598     return TypePtr::BOTTOM;           // touches lots of memory
 599   } else {
 600     #ifdef ASSERT
 601     // %%%% [phh] We don't check the alias index if cross_check is
 602     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 603     if (cross_check != NULL &&
 604         cross_check != TypePtr::BOTTOM &&
 605         cross_check != TypeRawPtr::BOTTOM) {
 606       // Recheck the alias index, to see if it has changed (due to a bug).
 607       Compile* C = Compile::current();
 608       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 609              "must stay in the original alias category");
 610       // The type of the address must be contained in the adr_type,
 611       // disregarding "null"-ness.
 612       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 613       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 614       assert(cross_check->meet(tp_notnull) == cross_check,
 615              "real address must not escape from expected memory type");
 616     }
 617     #endif
 618     return tp;
 619   }
 620 }
 621 
 622 //------------------------adr_phi_is_loop_invariant----------------------------
 623 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 624 // loop is loop invariant. Make a quick traversal of Phi and associated
 625 // CastPP nodes, looking to see if they are a closed group within the loop.
 626 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 627   // The idea is that the phi-nest must boil down to only CastPP nodes
 628   // with the same data. This implies that any path into the loop already
 629   // includes such a CastPP, and so the original cast, whatever its input,
 630   // must be covered by an equivalent cast, with an earlier control input.
 631   ResourceMark rm;
 632 
 633   // The loop entry input of the phi should be the unique dominating
 634   // node for every Phi/CastPP in the loop.
 635   Unique_Node_List closure;
 636   closure.push(adr_phi->in(LoopNode::EntryControl));
 637 
 638   // Add the phi node and the cast to the worklist.
 639   Unique_Node_List worklist;
 640   worklist.push(adr_phi);
 641   if( cast != NULL ){
 642     if( !cast->is_ConstraintCast() ) return false;
 643     worklist.push(cast);
 644   }
 645 
 646   // Begin recursive walk of phi nodes.
 647   while( worklist.size() ){
 648     // Take a node off the worklist
 649     Node *n = worklist.pop();
 650     if( !closure.member(n) ){
 651       // Add it to the closure.
 652       closure.push(n);
 653       // Make a sanity check to ensure we don't waste too much time here.
 654       if( closure.size() > 20) return false;
 655       // This node is OK if:
 656       //  - it is a cast of an identical value
 657       //  - or it is a phi node (then we add its inputs to the worklist)
 658       // Otherwise, the node is not OK, and we presume the cast is not invariant
 659       if( n->is_ConstraintCast() ){
 660         worklist.push(n->in(1));
 661       } else if( n->is_Phi() ) {
 662         for( uint i = 1; i < n->req(); i++ ) {
 663           worklist.push(n->in(i));
 664         }
 665       } else {
 666         return false;
 667       }
 668     }
 669   }
 670 
 671   // Quit when the worklist is empty, and we've found no offending nodes.
 672   return true;
 673 }
 674 
 675 //------------------------------Ideal_DU_postCCP-------------------------------
 676 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 677 // going away in this pass and we need to make this memory op depend on the
 678 // gating null check.
 679 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 680   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 681 }
 682 
 683 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 684 // some sense; we get to keep around the knowledge that an oop is not-null
 685 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 686 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 687 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 688 // some of the more trivial cases in the optimizer.  Removing more useless
 689 // Phi's started allowing Loads to illegally float above null checks.  I gave
 690 // up on this approach.  CNC 10/20/2000
 691 // This static method may be called not from MemNode (EncodePNode calls it).
 692 // Only the control edge of the node 'n' might be updated.
 693 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 694   Node *skipped_cast = NULL;
 695   // Need a null check?  Regular static accesses do not because they are
 696   // from constant addresses.  Array ops are gated by the range check (which
 697   // always includes a NULL check).  Just check field ops.
 698   if( n->in(MemNode::Control) == NULL ) {
 699     // Scan upwards for the highest location we can place this memory op.
 700     while( true ) {
 701       switch( adr->Opcode() ) {
 702 
 703       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 704         adr = adr->in(AddPNode::Base);
 705         continue;
 706 
 707       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 708         adr = adr->in(1);
 709         continue;
 710 
 711       case Op_CastPP:
 712         // If the CastPP is useless, just peek on through it.
 713         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 714           // Remember the cast that we've peeked though. If we peek
 715           // through more than one, then we end up remembering the highest
 716           // one, that is, if in a loop, the one closest to the top.
 717           skipped_cast = adr;
 718           adr = adr->in(1);
 719           continue;
 720         }
 721         // CastPP is going away in this pass!  We need this memory op to be
 722         // control-dependent on the test that is guarding the CastPP.
 723         ccp->hash_delete(n);
 724         n->set_req(MemNode::Control, adr->in(0));
 725         ccp->hash_insert(n);
 726         return n;
 727 
 728       case Op_Phi:
 729         // Attempt to float above a Phi to some dominating point.
 730         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 731           // If we've already peeked through a Cast (which could have set the
 732           // control), we can't float above a Phi, because the skipped Cast
 733           // may not be loop invariant.
 734           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 735             adr = adr->in(1);
 736             continue;
 737           }
 738         }
 739 
 740         // Intentional fallthrough!
 741 
 742         // No obvious dominating point.  The mem op is pinned below the Phi
 743         // by the Phi itself.  If the Phi goes away (no true value is merged)
 744         // then the mem op can float, but not indefinitely.  It must be pinned
 745         // behind the controls leading to the Phi.
 746       case Op_CheckCastPP:
 747         // These usually stick around to change address type, however a
 748         // useless one can be elided and we still need to pick up a control edge
 749         if (adr->in(0) == NULL) {
 750           // This CheckCastPP node has NO control and is likely useless. But we
 751           // need check further up the ancestor chain for a control input to keep
 752           // the node in place. 4959717.
 753           skipped_cast = adr;
 754           adr = adr->in(1);
 755           continue;
 756         }
 757         ccp->hash_delete(n);
 758         n->set_req(MemNode::Control, adr->in(0));
 759         ccp->hash_insert(n);
 760         return n;
 761 
 762         // List of "safe" opcodes; those that implicitly block the memory
 763         // op below any null check.
 764       case Op_CastX2P:          // no null checks on native pointers
 765       case Op_Parm:             // 'this' pointer is not null
 766       case Op_LoadP:            // Loading from within a klass
 767       case Op_LoadN:            // Loading from within a klass
 768       case Op_LoadKlass:        // Loading from within a klass
 769       case Op_LoadNKlass:       // Loading from within a klass
 770       case Op_ConP:             // Loading from a klass
 771       case Op_ConN:             // Loading from a klass
 772       case Op_CreateEx:         // Sucking up the guts of an exception oop
 773       case Op_Con:              // Reading from TLS
 774       case Op_CMoveP:           // CMoveP is pinned
 775       case Op_CMoveN:           // CMoveN is pinned
 776         break;                  // No progress
 777 
 778       case Op_Proj:             // Direct call to an allocation routine
 779       case Op_SCMemProj:        // Memory state from store conditional ops
 780 #ifdef ASSERT
 781         {
 782           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 783           const Node* call = adr->in(0);
 784           if (call->is_CallJava()) {
 785             const CallJavaNode* call_java = call->as_CallJava();
 786             const TypeTuple *r = call_java->tf()->range();
 787             assert(r->cnt() > TypeFunc::Parms, "must return value");
 788             const Type* ret_type = r->field_at(TypeFunc::Parms);
 789             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 790             // We further presume that this is one of
 791             // new_instance_Java, new_array_Java, or
 792             // the like, but do not assert for this.
 793           } else if (call->is_Allocate()) {
 794             // similar case to new_instance_Java, etc.
 795           } else if (!call->is_CallLeaf()) {
 796             // Projections from fetch_oop (OSR) are allowed as well.
 797             ShouldNotReachHere();
 798           }
 799         }
 800 #endif
 801         break;
 802       default:
 803         ShouldNotReachHere();
 804       }
 805       break;
 806     }
 807   }
 808 
 809   return  NULL;               // No progress
 810 }
 811 
 812 
 813 //=============================================================================
 814 uint LoadNode::size_of() const { return sizeof(*this); }
 815 uint LoadNode::cmp( const Node &n ) const
 816 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 817 const Type *LoadNode::bottom_type() const { return _type; }
 818 uint LoadNode::ideal_reg() const {
 819   return Matcher::base2reg[_type->base()];
 820 }
 821 
 822 #ifndef PRODUCT
 823 void LoadNode::dump_spec(outputStream *st) const {
 824   MemNode::dump_spec(st);
 825   if( !Verbose && !WizardMode ) {
 826     // standard dump does this in Verbose and WizardMode
 827     st->print(" #"); _type->dump_on(st);
 828   }
 829 }
 830 #endif
 831 
 832 #ifdef ASSERT
 833 //----------------------------is_immutable_value-------------------------------
 834 // Helper function to allow a raw load without control edge for some cases
 835 bool LoadNode::is_immutable_value(Node* adr) {
 836   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 837           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 838           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 839            in_bytes(JavaThread::osthread_offset())));
 840 }
 841 #endif
 842 
 843 //----------------------------LoadNode::make-----------------------------------
 844 // Polymorphic factory method:
 845 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 846   Compile* C = gvn.C;
 847 
 848   // sanity check the alias category against the created node type
 849   assert(!(adr_type->isa_oopptr() &&
 850            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 851          "use LoadKlassNode instead");
 852   assert(!(adr_type->isa_aryptr() &&
 853            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 854          "use LoadRangeNode instead");
 855   // Check control edge of raw loads
 856   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 857           // oop will be recorded in oop map if load crosses safepoint
 858           rt->isa_oopptr() || is_immutable_value(adr),
 859           "raw memory operations should have control edge");
 860   switch (bt) {
 861   case T_BOOLEAN: return new (C, 3) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 862   case T_BYTE:    return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 863   case T_INT:     return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 864   case T_CHAR:    return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 865   case T_SHORT:   return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 866   case T_LONG:    return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 867   case T_FLOAT:   return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt              );
 868   case T_DOUBLE:  return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt              );
 869   case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 870   case T_OBJECT:
 871 #ifdef _LP64
 872     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 873       Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 874       return new (C, 2) DecodeNNode(load, load->bottom_type()->make_ptr());
 875     } else
 876 #endif
 877     {
 878       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 879       return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 880     }
 881   }
 882   ShouldNotReachHere();
 883   return (LoadNode*)NULL;
 884 }
 885 
 886 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 887   bool require_atomic = true;
 888   return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 889 }
 890 
 891 
 892 
 893 
 894 //------------------------------hash-------------------------------------------
 895 uint LoadNode::hash() const {
 896   // unroll addition of interesting fields
 897   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 898 }
 899 
 900 //---------------------------can_see_stored_value------------------------------
 901 // This routine exists to make sure this set of tests is done the same
 902 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 903 // will change the graph shape in a way which makes memory alive twice at the
 904 // same time (uses the Oracle model of aliasing), then some
 905 // LoadXNode::Identity will fold things back to the equivalence-class model
 906 // of aliasing.
 907 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 908   Node* ld_adr = in(MemNode::Address);
 909 
 910   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 911   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 912   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 913       atp->field() != NULL && !atp->field()->is_volatile()) {
 914     uint alias_idx = atp->index();
 915     bool final = atp->field()->is_final();
 916     Node* result = NULL;
 917     Node* current = st;
 918     // Skip through chains of MemBarNodes checking the MergeMems for
 919     // new states for the slice of this load.  Stop once any other
 920     // kind of node is encountered.  Loads from final memory can skip
 921     // through any kind of MemBar but normal loads shouldn't skip
 922     // through MemBarAcquire since the could allow them to move out of
 923     // a synchronized region.
 924     while (current->is_Proj()) {
 925       int opc = current->in(0)->Opcode();
 926       if ((final && opc == Op_MemBarAcquire) ||
 927           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
 928         Node* mem = current->in(0)->in(TypeFunc::Memory);
 929         if (mem->is_MergeMem()) {
 930           MergeMemNode* merge = mem->as_MergeMem();
 931           Node* new_st = merge->memory_at(alias_idx);
 932           if (new_st == merge->base_memory()) {
 933             // Keep searching
 934             current = merge->base_memory();
 935             continue;
 936           }
 937           // Save the new memory state for the slice and fall through
 938           // to exit.
 939           result = new_st;
 940         }
 941       }
 942       break;
 943     }
 944     if (result != NULL) {
 945       st = result;
 946     }
 947   }
 948 
 949 
 950   // Loop around twice in the case Load -> Initialize -> Store.
 951   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 952   for (int trip = 0; trip <= 1; trip++) {
 953 
 954     if (st->is_Store()) {
 955       Node* st_adr = st->in(MemNode::Address);
 956       if (!phase->eqv(st_adr, ld_adr)) {
 957         // Try harder before giving up...  Match raw and non-raw pointers.
 958         intptr_t st_off = 0;
 959         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 960         if (alloc == NULL)       return NULL;
 961         intptr_t ld_off = 0;
 962         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 963         if (alloc != allo2)      return NULL;
 964         if (ld_off != st_off)    return NULL;
 965         // At this point we have proven something like this setup:
 966         //  A = Allocate(...)
 967         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 968         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 969         // (Actually, we haven't yet proven the Q's are the same.)
 970         // In other words, we are loading from a casted version of
 971         // the same pointer-and-offset that we stored to.
 972         // Thus, we are able to replace L by V.
 973       }
 974       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
 975       if (store_Opcode() != st->Opcode())
 976         return NULL;
 977       return st->in(MemNode::ValueIn);
 978     }
 979 
 980     intptr_t offset = 0;  // scratch
 981 
 982     // A load from a freshly-created object always returns zero.
 983     // (This can happen after LoadNode::Ideal resets the load's memory input
 984     // to find_captured_store, which returned InitializeNode::zero_memory.)
 985     if (st->is_Proj() && st->in(0)->is_Allocate() &&
 986         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
 987         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
 988       // return a zero value for the load's basic type
 989       // (This is one of the few places where a generic PhaseTransform
 990       // can create new nodes.  Think of it as lazily manifesting
 991       // virtually pre-existing constants.)
 992       return phase->zerocon(memory_type());
 993     }
 994 
 995     // A load from an initialization barrier can match a captured store.
 996     if (st->is_Proj() && st->in(0)->is_Initialize()) {
 997       InitializeNode* init = st->in(0)->as_Initialize();
 998       AllocateNode* alloc = init->allocation();
 999       if (alloc != NULL &&
1000           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
1001         // examine a captured store value
1002         st = init->find_captured_store(offset, memory_size(), phase);
1003         if (st != NULL)
1004           continue;             // take one more trip around
1005       }
1006     }
1007 
1008     break;
1009   }
1010 
1011   return NULL;
1012 }
1013 
1014 //----------------------is_instance_field_load_with_local_phi------------------
1015 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1016   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
1017       in(MemNode::Address)->is_AddP() ) {
1018     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
1019     // Only instances.
1020     if( t_oop != NULL && t_oop->is_known_instance_field() &&
1021         t_oop->offset() != Type::OffsetBot &&
1022         t_oop->offset() != Type::OffsetTop) {
1023       return true;
1024     }
1025   }
1026   return false;
1027 }
1028 
1029 //------------------------------Identity---------------------------------------
1030 // Loads are identity if previous store is to same address
1031 Node *LoadNode::Identity( PhaseTransform *phase ) {
1032   // If the previous store-maker is the right kind of Store, and the store is
1033   // to the same address, then we are equal to the value stored.
1034   Node* mem = in(MemNode::Memory);
1035   Node* value = can_see_stored_value(mem, phase);
1036   if( value ) {
1037     // byte, short & char stores truncate naturally.
1038     // A load has to load the truncated value which requires
1039     // some sort of masking operation and that requires an
1040     // Ideal call instead of an Identity call.
1041     if (memory_size() < BytesPerInt) {
1042       // If the input to the store does not fit with the load's result type,
1043       // it must be truncated via an Ideal call.
1044       if (!phase->type(value)->higher_equal(phase->type(this)))
1045         return this;
1046     }
1047     // (This works even when value is a Con, but LoadNode::Value
1048     // usually runs first, producing the singleton type of the Con.)
1049     return value;
1050   }
1051 
1052   // Search for an existing data phi which was generated before for the same
1053   // instance's field to avoid infinite generation of phis in a loop.
1054   Node *region = mem->in(0);
1055   if (is_instance_field_load_with_local_phi(region)) {
1056     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1057     int this_index  = phase->C->get_alias_index(addr_t);
1058     int this_offset = addr_t->offset();
1059     int this_id    = addr_t->is_oopptr()->instance_id();
1060     const Type* this_type = bottom_type();
1061     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1062       Node* phi = region->fast_out(i);
1063       if (phi->is_Phi() && phi != mem &&
1064           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1065         return phi;
1066       }
1067     }
1068   }
1069 
1070   return this;
1071 }
1072 
1073 
1074 // Returns true if the AliasType refers to the field that holds the
1075 // cached box array.  Currently only handles the IntegerCache case.
1076 static bool is_autobox_cache(Compile::AliasType* atp) {
1077   if (atp != NULL && atp->field() != NULL) {
1078     ciField* field = atp->field();
1079     ciSymbol* klass = field->holder()->name();
1080     if (field->name() == ciSymbol::cache_field_name() &&
1081         field->holder()->uses_default_loader() &&
1082         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1083       return true;
1084     }
1085   }
1086   return false;
1087 }
1088 
1089 // Fetch the base value in the autobox array
1090 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1091   if (atp != NULL && atp->field() != NULL) {
1092     ciField* field = atp->field();
1093     ciSymbol* klass = field->holder()->name();
1094     if (field->name() == ciSymbol::cache_field_name() &&
1095         field->holder()->uses_default_loader() &&
1096         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1097       assert(field->is_constant(), "what?");
1098       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1099       // Fetch the box object at the base of the array and get its value
1100       ciInstance* box = array->obj_at(0)->as_instance();
1101       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1102       if (ik->nof_nonstatic_fields() == 1) {
1103         // This should be true nonstatic_field_at requires calling
1104         // nof_nonstatic_fields so check it anyway
1105         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1106         cache_offset = c.as_int();
1107       }
1108       return true;
1109     }
1110   }
1111   return false;
1112 }
1113 
1114 // Returns true if the AliasType refers to the value field of an
1115 // autobox object.  Currently only handles Integer.
1116 static bool is_autobox_object(Compile::AliasType* atp) {
1117   if (atp != NULL && atp->field() != NULL) {
1118     ciField* field = atp->field();
1119     ciSymbol* klass = field->holder()->name();
1120     if (field->name() == ciSymbol::value_name() &&
1121         field->holder()->uses_default_loader() &&
1122         klass == ciSymbol::java_lang_Integer()) {
1123       return true;
1124     }
1125   }
1126   return false;
1127 }
1128 
1129 
1130 // We're loading from an object which has autobox behaviour.
1131 // If this object is result of a valueOf call we'll have a phi
1132 // merging a newly allocated object and a load from the cache.
1133 // We want to replace this load with the original incoming
1134 // argument to the valueOf call.
1135 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1136   Node* base = in(Address)->in(AddPNode::Base);
1137   if (base->is_Phi() && base->req() == 3) {
1138     AllocateNode* allocation = NULL;
1139     int allocation_index = -1;
1140     int load_index = -1;
1141     for (uint i = 1; i < base->req(); i++) {
1142       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1143       if (allocation != NULL) {
1144         allocation_index = i;
1145         load_index = 3 - allocation_index;
1146         break;
1147       }
1148     }
1149     bool has_load = ( allocation != NULL &&
1150                       (base->in(load_index)->is_Load() ||
1151                        base->in(load_index)->is_DecodeN() &&
1152                        base->in(load_index)->in(1)->is_Load()) );
1153     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1154       // Push the loads from the phi that comes from valueOf up
1155       // through it to allow elimination of the loads and the recovery
1156       // of the original value.
1157       Node* mem_phi = in(Memory);
1158       Node* offset = in(Address)->in(AddPNode::Offset);
1159       Node* region = base->in(0);
1160 
1161       Node* in1 = clone();
1162       Node* in1_addr = in1->in(Address)->clone();
1163       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1164       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1165       in1_addr->set_req(AddPNode::Offset, offset);
1166       in1->set_req(0, region->in(allocation_index));
1167       in1->set_req(Address, in1_addr);
1168       in1->set_req(Memory, mem_phi->in(allocation_index));
1169 
1170       Node* in2 = clone();
1171       Node* in2_addr = in2->in(Address)->clone();
1172       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1173       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1174       in2_addr->set_req(AddPNode::Offset, offset);
1175       in2->set_req(0, region->in(load_index));
1176       in2->set_req(Address, in2_addr);
1177       in2->set_req(Memory, mem_phi->in(load_index));
1178 
1179       in1_addr = phase->transform(in1_addr);
1180       in1 =      phase->transform(in1);
1181       in2_addr = phase->transform(in2_addr);
1182       in2 =      phase->transform(in2);
1183 
1184       PhiNode* result = PhiNode::make_blank(region, this);
1185       result->set_req(allocation_index, in1);
1186       result->set_req(load_index, in2);
1187       return result;
1188     }
1189   } else if (base->is_Load() ||
1190              base->is_DecodeN() && base->in(1)->is_Load()) {
1191     if (base->is_DecodeN()) {
1192       // Get LoadN node which loads cached Integer object
1193       base = base->in(1);
1194     }
1195     // Eliminate the load of Integer.value for integers from the cache
1196     // array by deriving the value from the index into the array.
1197     // Capture the offset of the load and then reverse the computation.
1198     Node* load_base = base->in(Address)->in(AddPNode::Base);
1199     if (load_base->is_DecodeN()) {
1200       // Get LoadN node which loads IntegerCache.cache field
1201       load_base = load_base->in(1);
1202     }
1203     if (load_base != NULL) {
1204       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1205       intptr_t cache_offset;
1206       int shift = -1;
1207       Node* cache = NULL;
1208       if (is_autobox_cache(atp)) {
1209         shift  = exact_log2(type2aelembytes(T_OBJECT));
1210         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1211       }
1212       if (cache != NULL && base->in(Address)->is_AddP()) {
1213         Node* elements[4];
1214         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1215         int cache_low;
1216         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1217           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1218           // Add up all the offsets making of the address of the load
1219           Node* result = elements[0];
1220           for (int i = 1; i < count; i++) {
1221             result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1222           }
1223           // Remove the constant offset from the address and then
1224           // remove the scaling of the offset to recover the original index.
1225           result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1226           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1227             // Peel the shift off directly but wrap it in a dummy node
1228             // since Ideal can't return existing nodes
1229             result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1230           } else {
1231             result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1232           }
1233 #ifdef _LP64
1234           result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1235 #endif
1236           return result;
1237         }
1238       }
1239     }
1240   }
1241   return NULL;
1242 }
1243 
1244 //------------------------------split_through_phi------------------------------
1245 // Split instance field load through Phi.
1246 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1247   Node* mem     = in(MemNode::Memory);
1248   Node* address = in(MemNode::Address);
1249   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1250   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1251 
1252   assert(mem->is_Phi() && (t_oop != NULL) &&
1253          t_oop->is_known_instance_field(), "invalide conditions");
1254 
1255   Node *region = mem->in(0);
1256   if (region == NULL) {
1257     return NULL; // Wait stable graph
1258   }
1259   uint cnt = mem->req();
1260   for( uint i = 1; i < cnt; i++ ) {
1261     Node *in = mem->in(i);
1262     if( in == NULL ) {
1263       return NULL; // Wait stable graph
1264     }
1265   }
1266   // Check for loop invariant.
1267   if (cnt == 3) {
1268     for( uint i = 1; i < cnt; i++ ) {
1269       Node *in = mem->in(i);
1270       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1271       if (m == mem) {
1272         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1273         return this;
1274       }
1275     }
1276   }
1277   // Split through Phi (see original code in loopopts.cpp).
1278   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1279 
1280   // Do nothing here if Identity will find a value
1281   // (to avoid infinite chain of value phis generation).
1282   if ( !phase->eqv(this, this->Identity(phase)) )
1283     return NULL;
1284 
1285   // Skip the split if the region dominates some control edge of the address.
1286   if (cnt == 3 && !MemNode::all_controls_dominate(address, region))
1287     return NULL;
1288 
1289   const Type* this_type = this->bottom_type();
1290   int this_index  = phase->C->get_alias_index(addr_t);
1291   int this_offset = addr_t->offset();
1292   int this_iid    = addr_t->is_oopptr()->instance_id();
1293   int wins = 0;
1294   PhaseIterGVN *igvn = phase->is_IterGVN();
1295   Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1296   for( uint i = 1; i < region->req(); i++ ) {
1297     Node *x;
1298     Node* the_clone = NULL;
1299     if( region->in(i) == phase->C->top() ) {
1300       x = phase->C->top();      // Dead path?  Use a dead data op
1301     } else {
1302       x = this->clone();        // Else clone up the data op
1303       the_clone = x;            // Remember for possible deletion.
1304       // Alter data node to use pre-phi inputs
1305       if( this->in(0) == region ) {
1306         x->set_req( 0, region->in(i) );
1307       } else {
1308         x->set_req( 0, NULL );
1309       }
1310       for( uint j = 1; j < this->req(); j++ ) {
1311         Node *in = this->in(j);
1312         if( in->is_Phi() && in->in(0) == region )
1313           x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1314       }
1315     }
1316     // Check for a 'win' on some paths
1317     const Type *t = x->Value(igvn);
1318 
1319     bool singleton = t->singleton();
1320 
1321     // See comments in PhaseIdealLoop::split_thru_phi().
1322     if( singleton && t == Type::TOP ) {
1323       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1324     }
1325 
1326     if( singleton ) {
1327       wins++;
1328       x = igvn->makecon(t);
1329     } else {
1330       // We now call Identity to try to simplify the cloned node.
1331       // Note that some Identity methods call phase->type(this).
1332       // Make sure that the type array is big enough for
1333       // our new node, even though we may throw the node away.
1334       // (This tweaking with igvn only works because x is a new node.)
1335       igvn->set_type(x, t);
1336       // If x is a TypeNode, capture any more-precise type permanently into Node
1337       // otherwise it will be not updated during igvn->transform since
1338       // igvn->type(x) is set to x->Value() already.
1339       x->raise_bottom_type(t);
1340       Node *y = x->Identity(igvn);
1341       if( y != x ) {
1342         wins++;
1343         x = y;
1344       } else {
1345         y = igvn->hash_find(x);
1346         if( y ) {
1347           wins++;
1348           x = y;
1349         } else {
1350           // Else x is a new node we are keeping
1351           // We do not need register_new_node_with_optimizer
1352           // because set_type has already been called.
1353           igvn->_worklist.push(x);
1354         }
1355       }
1356     }
1357     if (x != the_clone && the_clone != NULL)
1358       igvn->remove_dead_node(the_clone);
1359     phi->set_req(i, x);
1360   }
1361   if( wins > 0 ) {
1362     // Record Phi
1363     igvn->register_new_node_with_optimizer(phi);
1364     return phi;
1365   }
1366   igvn->remove_dead_node(phi);
1367   return NULL;
1368 }
1369 
1370 //------------------------------Ideal------------------------------------------
1371 // If the load is from Field memory and the pointer is non-null, we can
1372 // zero out the control input.
1373 // If the offset is constant and the base is an object allocation,
1374 // try to hook me up to the exact initializing store.
1375 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1376   Node* p = MemNode::Ideal_common(phase, can_reshape);
1377   if (p)  return (p == NodeSentinel) ? NULL : p;
1378 
1379   Node* ctrl    = in(MemNode::Control);
1380   Node* address = in(MemNode::Address);
1381 
1382   // Skip up past a SafePoint control.  Cannot do this for Stores because
1383   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1384   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1385       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1386     ctrl = ctrl->in(0);
1387     set_req(MemNode::Control,ctrl);
1388   }
1389 
1390   intptr_t ignore = 0;
1391   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1392   if (base != NULL
1393       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1394     // Check for useless control edge in some common special cases
1395     if (in(MemNode::Control) != NULL
1396         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1397         && all_controls_dominate(base, phase->C->start())) {
1398       // A method-invariant, non-null address (constant or 'this' argument).
1399       set_req(MemNode::Control, NULL);
1400     }
1401 
1402     if (EliminateAutoBox && can_reshape) {
1403       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1404       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1405       if (is_autobox_object(atp)) {
1406         Node* result = eliminate_autobox(phase);
1407         if (result != NULL) return result;
1408       }
1409     }
1410   }
1411 
1412   Node* mem = in(MemNode::Memory);
1413   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1414 
1415   if (addr_t != NULL) {
1416     // try to optimize our memory input
1417     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1418     if (opt_mem != mem) {
1419       set_req(MemNode::Memory, opt_mem);
1420       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1421       return this;
1422     }
1423     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1424     if (can_reshape && opt_mem->is_Phi() &&
1425         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1426       // Split instance field load through Phi.
1427       Node* result = split_through_phi(phase);
1428       if (result != NULL) return result;
1429     }
1430   }
1431 
1432   // Check for prior store with a different base or offset; make Load
1433   // independent.  Skip through any number of them.  Bail out if the stores
1434   // are in an endless dead cycle and report no progress.  This is a key
1435   // transform for Reflection.  However, if after skipping through the Stores
1436   // we can't then fold up against a prior store do NOT do the transform as
1437   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1438   // array memory alive twice: once for the hoisted Load and again after the
1439   // bypassed Store.  This situation only works if EVERYBODY who does
1440   // anti-dependence work knows how to bypass.  I.e. we need all
1441   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1442   // the alias index stuff.  So instead, peek through Stores and IFF we can
1443   // fold up, do so.
1444   Node* prev_mem = find_previous_store(phase);
1445   // Steps (a), (b):  Walk past independent stores to find an exact match.
1446   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1447     // (c) See if we can fold up on the spot, but don't fold up here.
1448     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1449     // just return a prior value, which is done by Identity calls.
1450     if (can_see_stored_value(prev_mem, phase)) {
1451       // Make ready for step (d):
1452       set_req(MemNode::Memory, prev_mem);
1453       return this;
1454     }
1455   }
1456 
1457   return NULL;                  // No further progress
1458 }
1459 
1460 // Helper to recognize certain Klass fields which are invariant across
1461 // some group of array types (e.g., int[] or all T[] where T < Object).
1462 const Type*
1463 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1464                                  ciKlass* klass) const {
1465   if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1466     // The field is Klass::_modifier_flags.  Return its (constant) value.
1467     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1468     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1469     return TypeInt::make(klass->modifier_flags());
1470   }
1471   if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1472     // The field is Klass::_access_flags.  Return its (constant) value.
1473     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1474     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1475     return TypeInt::make(klass->access_flags());
1476   }
1477   if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1478     // The field is Klass::_layout_helper.  Return its constant value if known.
1479     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1480     return TypeInt::make(klass->layout_helper());
1481   }
1482 
1483   // No match.
1484   return NULL;
1485 }
1486 
1487 //------------------------------Value-----------------------------------------
1488 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1489   // Either input is TOP ==> the result is TOP
1490   Node* mem = in(MemNode::Memory);
1491   const Type *t1 = phase->type(mem);
1492   if (t1 == Type::TOP)  return Type::TOP;
1493   Node* adr = in(MemNode::Address);
1494   const TypePtr* tp = phase->type(adr)->isa_ptr();
1495   if (tp == NULL || tp->empty())  return Type::TOP;
1496   int off = tp->offset();
1497   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1498 
1499   // Try to guess loaded type from pointer type
1500   if (tp->base() == Type::AryPtr) {
1501     const Type *t = tp->is_aryptr()->elem();
1502     // Don't do this for integer types. There is only potential profit if
1503     // the element type t is lower than _type; that is, for int types, if _type is
1504     // more restrictive than t.  This only happens here if one is short and the other
1505     // char (both 16 bits), and in those cases we've made an intentional decision
1506     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1507     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1508     //
1509     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1510     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1511     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1512     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1513     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1514     // In fact, that could have been the original type of p1, and p1 could have
1515     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1516     // expression (LShiftL quux 3) independently optimized to the constant 8.
1517     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1518         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1519       // t might actually be lower than _type, if _type is a unique
1520       // concrete subclass of abstract class t.
1521       // Make sure the reference is not into the header, by comparing
1522       // the offset against the offset of the start of the array's data.
1523       // Different array types begin at slightly different offsets (12 vs. 16).
1524       // We choose T_BYTE as an example base type that is least restrictive
1525       // as to alignment, which will therefore produce the smallest
1526       // possible base offset.
1527       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1528       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1529         const Type* jt = t->join(_type);
1530         // In any case, do not allow the join, per se, to empty out the type.
1531         if (jt->empty() && !t->empty()) {
1532           // This can happen if a interface-typed array narrows to a class type.
1533           jt = _type;
1534         }
1535 
1536         if (EliminateAutoBox && adr->is_AddP()) {
1537           // The pointers in the autobox arrays are always non-null
1538           Node* base = adr->in(AddPNode::Base);
1539           if (base != NULL &&
1540               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1541             Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1542             if (is_autobox_cache(atp)) {
1543               return jt->join(TypePtr::NOTNULL)->is_ptr();
1544             }
1545           }
1546         }
1547         return jt;
1548       }
1549     }
1550   } else if (tp->base() == Type::InstPtr) {
1551     const TypeInstPtr* tinst = tp->is_instptr();
1552     ciKlass* klass = tinst->klass();
1553     assert( off != Type::OffsetBot ||
1554             // arrays can be cast to Objects
1555             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1556             // unsafe field access may not have a constant offset
1557             phase->C->has_unsafe_access(),
1558             "Field accesses must be precise" );
1559     // For oop loads, we expect the _type to be precise
1560     if (OptimizeStringConcat && klass == phase->C->env()->String_klass() &&
1561         adr->is_AddP() && off != Type::OffsetBot) {
1562       // For constant Strings treat the fields as compile time constants.
1563       Node* base = adr->in(AddPNode::Base);
1564       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1565       if (t != NULL && t->singleton()) {
1566         ciObject* string = t->const_oop();
1567         ciConstant constant = string->as_instance()->field_value_by_offset(off);
1568         if (constant.basic_type() == T_INT) {
1569           return TypeInt::make(constant.as_int());
1570         } else if (constant.basic_type() == T_ARRAY) {
1571           if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1572             return TypeNarrowOop::make_from_constant(constant.as_object());
1573           } else {
1574             return TypeOopPtr::make_from_constant(constant.as_object());
1575           }
1576         }
1577       }
1578     }
1579   } else if (tp->base() == Type::KlassPtr) {
1580     assert( off != Type::OffsetBot ||
1581             // arrays can be cast to Objects
1582             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1583             // also allow array-loading from the primary supertype
1584             // array during subtype checks
1585             Opcode() == Op_LoadKlass,
1586             "Field accesses must be precise" );
1587     // For klass/static loads, we expect the _type to be precise
1588   }
1589 
1590   const TypeKlassPtr *tkls = tp->isa_klassptr();
1591   if (tkls != NULL && !StressReflectiveCode) {
1592     ciKlass* klass = tkls->klass();
1593     if (klass->is_loaded() && tkls->klass_is_exact()) {
1594       // We are loading a field from a Klass metaobject whose identity
1595       // is known at compile time (the type is "exact" or "precise").
1596       // Check for fields we know are maintained as constants by the VM.
1597       if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1598         // The field is Klass::_super_check_offset.  Return its (constant) value.
1599         // (Folds up type checking code.)
1600         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1601         return TypeInt::make(klass->super_check_offset());
1602       }
1603       // Compute index into primary_supers array
1604       juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1605       // Check for overflowing; use unsigned compare to handle the negative case.
1606       if( depth < ciKlass::primary_super_limit() ) {
1607         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1608         // (Folds up type checking code.)
1609         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1610         ciKlass *ss = klass->super_of_depth(depth);
1611         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1612       }
1613       const Type* aift = load_array_final_field(tkls, klass);
1614       if (aift != NULL)  return aift;
1615       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1616           && klass->is_array_klass()) {
1617         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1618         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1619         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1620         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1621       }
1622       if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1623         // The field is Klass::_java_mirror.  Return its (constant) value.
1624         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1625         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1626         return TypeInstPtr::make(klass->java_mirror());
1627       }
1628     }
1629 
1630     // We can still check if we are loading from the primary_supers array at a
1631     // shallow enough depth.  Even though the klass is not exact, entries less
1632     // than or equal to its super depth are correct.
1633     if (klass->is_loaded() ) {
1634       ciType *inner = klass->klass();
1635       while( inner->is_obj_array_klass() )
1636         inner = inner->as_obj_array_klass()->base_element_type();
1637       if( inner->is_instance_klass() &&
1638           !inner->as_instance_klass()->flags().is_interface() ) {
1639         // Compute index into primary_supers array
1640         juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1641         // Check for overflowing; use unsigned compare to handle the negative case.
1642         if( depth < ciKlass::primary_super_limit() &&
1643             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1644           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1645           // (Folds up type checking code.)
1646           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1647           ciKlass *ss = klass->super_of_depth(depth);
1648           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1649         }
1650       }
1651     }
1652 
1653     // If the type is enough to determine that the thing is not an array,
1654     // we can give the layout_helper a positive interval type.
1655     // This will help short-circuit some reflective code.
1656     if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1657         && !klass->is_array_klass() // not directly typed as an array
1658         && !klass->is_interface()  // specifically not Serializable & Cloneable
1659         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1660         ) {
1661       // Note:  When interfaces are reliable, we can narrow the interface
1662       // test to (klass != Serializable && klass != Cloneable).
1663       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1664       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1665       // The key property of this type is that it folds up tests
1666       // for array-ness, since it proves that the layout_helper is positive.
1667       // Thus, a generic value like the basic object layout helper works fine.
1668       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1669     }
1670   }
1671 
1672   // If we are loading from a freshly-allocated object, produce a zero,
1673   // if the load is provably beyond the header of the object.
1674   // (Also allow a variable load from a fresh array to produce zero.)
1675   if (ReduceFieldZeroing) {
1676     Node* value = can_see_stored_value(mem,phase);
1677     if (value != NULL && value->is_Con())
1678       return value->bottom_type();
1679   }
1680 
1681   const TypeOopPtr *tinst = tp->isa_oopptr();
1682   if (tinst != NULL && tinst->is_known_instance_field()) {
1683     // If we have an instance type and our memory input is the
1684     // programs's initial memory state, there is no matching store,
1685     // so just return a zero of the appropriate type
1686     Node *mem = in(MemNode::Memory);
1687     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1688       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1689       return Type::get_zero_type(_type->basic_type());
1690     }
1691   }
1692   return _type;
1693 }
1694 
1695 //------------------------------match_edge-------------------------------------
1696 // Do we Match on this edge index or not?  Match only the address.
1697 uint LoadNode::match_edge(uint idx) const {
1698   return idx == MemNode::Address;
1699 }
1700 
1701 //--------------------------LoadBNode::Ideal--------------------------------------
1702 //
1703 //  If the previous store is to the same address as this load,
1704 //  and the value stored was larger than a byte, replace this load
1705 //  with the value stored truncated to a byte.  If no truncation is
1706 //  needed, the replacement is done in LoadNode::Identity().
1707 //
1708 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1709   Node* mem = in(MemNode::Memory);
1710   Node* value = can_see_stored_value(mem,phase);
1711   if( value && !phase->type(value)->higher_equal( _type ) ) {
1712     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1713     return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1714   }
1715   // Identity call will handle the case where truncation is not needed.
1716   return LoadNode::Ideal(phase, can_reshape);
1717 }
1718 
1719 //--------------------------LoadUBNode::Ideal-------------------------------------
1720 //
1721 //  If the previous store is to the same address as this load,
1722 //  and the value stored was larger than a byte, replace this load
1723 //  with the value stored truncated to a byte.  If no truncation is
1724 //  needed, the replacement is done in LoadNode::Identity().
1725 //
1726 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1727   Node* mem = in(MemNode::Memory);
1728   Node* value = can_see_stored_value(mem, phase);
1729   if (value && !phase->type(value)->higher_equal(_type))
1730     return new (phase->C, 3) AndINode(value, phase->intcon(0xFF));
1731   // Identity call will handle the case where truncation is not needed.
1732   return LoadNode::Ideal(phase, can_reshape);
1733 }
1734 
1735 //--------------------------LoadUSNode::Ideal-------------------------------------
1736 //
1737 //  If the previous store is to the same address as this load,
1738 //  and the value stored was larger than a char, replace this load
1739 //  with the value stored truncated to a char.  If no truncation is
1740 //  needed, the replacement is done in LoadNode::Identity().
1741 //
1742 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1743   Node* mem = in(MemNode::Memory);
1744   Node* value = can_see_stored_value(mem,phase);
1745   if( value && !phase->type(value)->higher_equal( _type ) )
1746     return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1747   // Identity call will handle the case where truncation is not needed.
1748   return LoadNode::Ideal(phase, can_reshape);
1749 }
1750 
1751 //--------------------------LoadSNode::Ideal--------------------------------------
1752 //
1753 //  If the previous store is to the same address as this load,
1754 //  and the value stored was larger than a short, replace this load
1755 //  with the value stored truncated to a short.  If no truncation is
1756 //  needed, the replacement is done in LoadNode::Identity().
1757 //
1758 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1759   Node* mem = in(MemNode::Memory);
1760   Node* value = can_see_stored_value(mem,phase);
1761   if( value && !phase->type(value)->higher_equal( _type ) ) {
1762     Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1763     return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1764   }
1765   // Identity call will handle the case where truncation is not needed.
1766   return LoadNode::Ideal(phase, can_reshape);
1767 }
1768 
1769 //=============================================================================
1770 //----------------------------LoadKlassNode::make------------------------------
1771 // Polymorphic factory method:
1772 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1773   Compile* C = gvn.C;
1774   Node *ctl = NULL;
1775   // sanity check the alias category against the created node type
1776   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1777   assert(adr_type != NULL, "expecting TypeOopPtr");
1778 #ifdef _LP64
1779   if (adr_type->is_ptr_to_narrowoop()) {
1780     Node* load_klass = gvn.transform(new (C, 3) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1781     return new (C, 2) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1782   }
1783 #endif
1784   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1785   return new (C, 3) LoadKlassNode(ctl, mem, adr, at, tk);
1786 }
1787 
1788 //------------------------------Value------------------------------------------
1789 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1790   return klass_value_common(phase);
1791 }
1792 
1793 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1794   // Either input is TOP ==> the result is TOP
1795   const Type *t1 = phase->type( in(MemNode::Memory) );
1796   if (t1 == Type::TOP)  return Type::TOP;
1797   Node *adr = in(MemNode::Address);
1798   const Type *t2 = phase->type( adr );
1799   if (t2 == Type::TOP)  return Type::TOP;
1800   const TypePtr *tp = t2->is_ptr();
1801   if (TypePtr::above_centerline(tp->ptr()) ||
1802       tp->ptr() == TypePtr::Null)  return Type::TOP;
1803 
1804   // Return a more precise klass, if possible
1805   const TypeInstPtr *tinst = tp->isa_instptr();
1806   if (tinst != NULL) {
1807     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1808     int offset = tinst->offset();
1809     if (ik == phase->C->env()->Class_klass()
1810         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1811             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1812       // We are loading a special hidden field from a Class mirror object,
1813       // the field which points to the VM's Klass metaobject.
1814       ciType* t = tinst->java_mirror_type();
1815       // java_mirror_type returns non-null for compile-time Class constants.
1816       if (t != NULL) {
1817         // constant oop => constant klass
1818         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1819           return TypeKlassPtr::make(ciArrayKlass::make(t));
1820         }
1821         if (!t->is_klass()) {
1822           // a primitive Class (e.g., int.class) has NULL for a klass field
1823           return TypePtr::NULL_PTR;
1824         }
1825         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1826         return TypeKlassPtr::make(t->as_klass());
1827       }
1828       // non-constant mirror, so we can't tell what's going on
1829     }
1830     if( !ik->is_loaded() )
1831       return _type;             // Bail out if not loaded
1832     if (offset == oopDesc::klass_offset_in_bytes()) {
1833       if (tinst->klass_is_exact()) {
1834         return TypeKlassPtr::make(ik);
1835       }
1836       // See if we can become precise: no subklasses and no interface
1837       // (Note:  We need to support verified interfaces.)
1838       if (!ik->is_interface() && !ik->has_subklass()) {
1839         //assert(!UseExactTypes, "this code should be useless with exact types");
1840         // Add a dependence; if any subclass added we need to recompile
1841         if (!ik->is_final()) {
1842           // %%% should use stronger assert_unique_concrete_subtype instead
1843           phase->C->dependencies()->assert_leaf_type(ik);
1844         }
1845         // Return precise klass
1846         return TypeKlassPtr::make(ik);
1847       }
1848 
1849       // Return root of possible klass
1850       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1851     }
1852   }
1853 
1854   // Check for loading klass from an array
1855   const TypeAryPtr *tary = tp->isa_aryptr();
1856   if( tary != NULL ) {
1857     ciKlass *tary_klass = tary->klass();
1858     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1859         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1860       if (tary->klass_is_exact()) {
1861         return TypeKlassPtr::make(tary_klass);
1862       }
1863       ciArrayKlass *ak = tary->klass()->as_array_klass();
1864       // If the klass is an object array, we defer the question to the
1865       // array component klass.
1866       if( ak->is_obj_array_klass() ) {
1867         assert( ak->is_loaded(), "" );
1868         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1869         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1870           ciInstanceKlass* ik = base_k->as_instance_klass();
1871           // See if we can become precise: no subklasses and no interface
1872           if (!ik->is_interface() && !ik->has_subklass()) {
1873             //assert(!UseExactTypes, "this code should be useless with exact types");
1874             // Add a dependence; if any subclass added we need to recompile
1875             if (!ik->is_final()) {
1876               phase->C->dependencies()->assert_leaf_type(ik);
1877             }
1878             // Return precise array klass
1879             return TypeKlassPtr::make(ak);
1880           }
1881         }
1882         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1883       } else {                  // Found a type-array?
1884         //assert(!UseExactTypes, "this code should be useless with exact types");
1885         assert( ak->is_type_array_klass(), "" );
1886         return TypeKlassPtr::make(ak); // These are always precise
1887       }
1888     }
1889   }
1890 
1891   // Check for loading klass from an array klass
1892   const TypeKlassPtr *tkls = tp->isa_klassptr();
1893   if (tkls != NULL && !StressReflectiveCode) {
1894     ciKlass* klass = tkls->klass();
1895     if( !klass->is_loaded() )
1896       return _type;             // Bail out if not loaded
1897     if( klass->is_obj_array_klass() &&
1898         (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1899       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1900       // // Always returning precise element type is incorrect,
1901       // // e.g., element type could be object and array may contain strings
1902       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1903 
1904       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1905       // according to the element type's subclassing.
1906       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1907     }
1908     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1909         (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1910       ciKlass* sup = klass->as_instance_klass()->super();
1911       // The field is Klass::_super.  Return its (constant) value.
1912       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1913       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1914     }
1915   }
1916 
1917   // Bailout case
1918   return LoadNode::Value(phase);
1919 }
1920 
1921 //------------------------------Identity---------------------------------------
1922 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1923 // Also feed through the klass in Allocate(...klass...)._klass.
1924 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1925   return klass_identity_common(phase);
1926 }
1927 
1928 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
1929   Node* x = LoadNode::Identity(phase);
1930   if (x != this)  return x;
1931 
1932   // Take apart the address into an oop and and offset.
1933   // Return 'this' if we cannot.
1934   Node*    adr    = in(MemNode::Address);
1935   intptr_t offset = 0;
1936   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1937   if (base == NULL)     return this;
1938   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1939   if (toop == NULL)     return this;
1940 
1941   // We can fetch the klass directly through an AllocateNode.
1942   // This works even if the klass is not constant (clone or newArray).
1943   if (offset == oopDesc::klass_offset_in_bytes()) {
1944     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1945     if (allocated_klass != NULL) {
1946       return allocated_klass;
1947     }
1948   }
1949 
1950   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1951   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1952   // See inline_native_Class_query for occurrences of these patterns.
1953   // Java Example:  x.getClass().isAssignableFrom(y)
1954   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1955   //
1956   // This improves reflective code, often making the Class
1957   // mirror go completely dead.  (Current exception:  Class
1958   // mirrors may appear in debug info, but we could clean them out by
1959   // introducing a new debug info operator for klassOop.java_mirror).
1960   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1961       && (offset == java_lang_Class::klass_offset_in_bytes() ||
1962           offset == java_lang_Class::array_klass_offset_in_bytes())) {
1963     // We are loading a special hidden field from a Class mirror,
1964     // the field which points to its Klass or arrayKlass metaobject.
1965     if (base->is_Load()) {
1966       Node* adr2 = base->in(MemNode::Address);
1967       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1968       if (tkls != NULL && !tkls->empty()
1969           && (tkls->klass()->is_instance_klass() ||
1970               tkls->klass()->is_array_klass())
1971           && adr2->is_AddP()
1972           ) {
1973         int mirror_field = Klass::java_mirror_offset_in_bytes();
1974         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1975           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1976         }
1977         if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1978           return adr2->in(AddPNode::Base);
1979         }
1980       }
1981     }
1982   }
1983 
1984   return this;
1985 }
1986 
1987 
1988 //------------------------------Value------------------------------------------
1989 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
1990   const Type *t = klass_value_common(phase);
1991   if (t == Type::TOP)
1992     return t;
1993 
1994   return t->make_narrowoop();
1995 }
1996 
1997 //------------------------------Identity---------------------------------------
1998 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
1999 // Also feed through the klass in Allocate(...klass...)._klass.
2000 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2001   Node *x = klass_identity_common(phase);
2002 
2003   const Type *t = phase->type( x );
2004   if( t == Type::TOP ) return x;
2005   if( t->isa_narrowoop()) return x;
2006 
2007   return phase->transform(new (phase->C, 2) EncodePNode(x, t->make_narrowoop()));
2008 }
2009 
2010 //------------------------------Value-----------------------------------------
2011 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2012   // Either input is TOP ==> the result is TOP
2013   const Type *t1 = phase->type( in(MemNode::Memory) );
2014   if( t1 == Type::TOP ) return Type::TOP;
2015   Node *adr = in(MemNode::Address);
2016   const Type *t2 = phase->type( adr );
2017   if( t2 == Type::TOP ) return Type::TOP;
2018   const TypePtr *tp = t2->is_ptr();
2019   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2020   const TypeAryPtr *tap = tp->isa_aryptr();
2021   if( !tap ) return _type;
2022   return tap->size();
2023 }
2024 
2025 //-------------------------------Ideal---------------------------------------
2026 // Feed through the length in AllocateArray(...length...)._length.
2027 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2028   Node* p = MemNode::Ideal_common(phase, can_reshape);
2029   if (p)  return (p == NodeSentinel) ? NULL : p;
2030 
2031   // Take apart the address into an oop and and offset.
2032   // Return 'this' if we cannot.
2033   Node*    adr    = in(MemNode::Address);
2034   intptr_t offset = 0;
2035   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2036   if (base == NULL)     return NULL;
2037   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2038   if (tary == NULL)     return NULL;
2039 
2040   // We can fetch the length directly through an AllocateArrayNode.
2041   // This works even if the length is not constant (clone or newArray).
2042   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2043     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2044     if (alloc != NULL) {
2045       Node* allocated_length = alloc->Ideal_length();
2046       Node* len = alloc->make_ideal_length(tary, phase);
2047       if (allocated_length != len) {
2048         // New CastII improves on this.
2049         return len;
2050       }
2051     }
2052   }
2053 
2054   return NULL;
2055 }
2056 
2057 //------------------------------Identity---------------------------------------
2058 // Feed through the length in AllocateArray(...length...)._length.
2059 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2060   Node* x = LoadINode::Identity(phase);
2061   if (x != this)  return x;
2062 
2063   // Take apart the address into an oop and and offset.
2064   // Return 'this' if we cannot.
2065   Node*    adr    = in(MemNode::Address);
2066   intptr_t offset = 0;
2067   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2068   if (base == NULL)     return this;
2069   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2070   if (tary == NULL)     return this;
2071 
2072   // We can fetch the length directly through an AllocateArrayNode.
2073   // This works even if the length is not constant (clone or newArray).
2074   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2075     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2076     if (alloc != NULL) {
2077       Node* allocated_length = alloc->Ideal_length();
2078       // Do not allow make_ideal_length to allocate a CastII node.
2079       Node* len = alloc->make_ideal_length(tary, phase, false);
2080       if (allocated_length == len) {
2081         // Return allocated_length only if it would not be improved by a CastII.
2082         return allocated_length;
2083       }
2084     }
2085   }
2086 
2087   return this;
2088 
2089 }
2090 
2091 //=============================================================================
2092 //---------------------------StoreNode::make-----------------------------------
2093 // Polymorphic factory method:
2094 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2095   Compile* C = gvn.C;
2096   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2097           ctl != NULL, "raw memory operations should have control edge");
2098 
2099   switch (bt) {
2100   case T_BOOLEAN:
2101   case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
2102   case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
2103   case T_CHAR:
2104   case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
2105   case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
2106   case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
2107   case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
2108   case T_ADDRESS:
2109   case T_OBJECT:
2110 #ifdef _LP64
2111     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2112         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2113          adr->bottom_type()->isa_rawptr())) {
2114       val = gvn.transform(new (C, 2) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2115       return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, val);
2116     } else
2117 #endif
2118     {
2119       return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
2120     }
2121   }
2122   ShouldNotReachHere();
2123   return (StoreNode*)NULL;
2124 }
2125 
2126 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2127   bool require_atomic = true;
2128   return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2129 }
2130 
2131 
2132 //--------------------------bottom_type----------------------------------------
2133 const Type *StoreNode::bottom_type() const {
2134   return Type::MEMORY;
2135 }
2136 
2137 //------------------------------hash-------------------------------------------
2138 uint StoreNode::hash() const {
2139   // unroll addition of interesting fields
2140   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2141 
2142   // Since they are not commoned, do not hash them:
2143   return NO_HASH;
2144 }
2145 
2146 //------------------------------Ideal------------------------------------------
2147 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2148 // When a store immediately follows a relevant allocation/initialization,
2149 // try to capture it into the initialization, or hoist it above.
2150 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2151   Node* p = MemNode::Ideal_common(phase, can_reshape);
2152   if (p)  return (p == NodeSentinel) ? NULL : p;
2153 
2154   Node* mem     = in(MemNode::Memory);
2155   Node* address = in(MemNode::Address);
2156 
2157   // Back-to-back stores to same address?  Fold em up.
2158   // Generally unsafe if I have intervening uses...
2159   if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
2160     // Looking at a dead closed cycle of memory?
2161     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2162 
2163     assert(Opcode() == mem->Opcode() ||
2164            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2165            "no mismatched stores, except on raw memory");
2166 
2167     if (mem->outcnt() == 1 &&           // check for intervening uses
2168         mem->as_Store()->memory_size() <= this->memory_size()) {
2169       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2170       // For example, 'mem' might be the final state at a conditional return.
2171       // Or, 'mem' might be used by some node which is live at the same time
2172       // 'this' is live, which might be unschedulable.  So, require exactly
2173       // ONE user, the 'this' store, until such time as we clone 'mem' for
2174       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2175       if (can_reshape) {  // (%%% is this an anachronism?)
2176         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2177                   phase->is_IterGVN());
2178       } else {
2179         // It's OK to do this in the parser, since DU info is always accurate,
2180         // and the parser always refers to nodes via SafePointNode maps.
2181         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2182       }
2183       return this;
2184     }
2185   }
2186 
2187   // Capture an unaliased, unconditional, simple store into an initializer.
2188   // Or, if it is independent of the allocation, hoist it above the allocation.
2189   if (ReduceFieldZeroing && /*can_reshape &&*/
2190       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2191     InitializeNode* init = mem->in(0)->as_Initialize();
2192     intptr_t offset = init->can_capture_store(this, phase);
2193     if (offset > 0) {
2194       Node* moved = init->capture_store(this, offset, phase);
2195       // If the InitializeNode captured me, it made a raw copy of me,
2196       // and I need to disappear.
2197       if (moved != NULL) {
2198         // %%% hack to ensure that Ideal returns a new node:
2199         mem = MergeMemNode::make(phase->C, mem);
2200         return mem;             // fold me away
2201       }
2202     }
2203   }
2204 
2205   return NULL;                  // No further progress
2206 }
2207 
2208 //------------------------------Value-----------------------------------------
2209 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2210   // Either input is TOP ==> the result is TOP
2211   const Type *t1 = phase->type( in(MemNode::Memory) );
2212   if( t1 == Type::TOP ) return Type::TOP;
2213   const Type *t2 = phase->type( in(MemNode::Address) );
2214   if( t2 == Type::TOP ) return Type::TOP;
2215   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2216   if( t3 == Type::TOP ) return Type::TOP;
2217   return Type::MEMORY;
2218 }
2219 
2220 //------------------------------Identity---------------------------------------
2221 // Remove redundant stores:
2222 //   Store(m, p, Load(m, p)) changes to m.
2223 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2224 Node *StoreNode::Identity( PhaseTransform *phase ) {
2225   Node* mem = in(MemNode::Memory);
2226   Node* adr = in(MemNode::Address);
2227   Node* val = in(MemNode::ValueIn);
2228 
2229   // Load then Store?  Then the Store is useless
2230   if (val->is_Load() &&
2231       phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
2232       phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
2233       val->as_Load()->store_Opcode() == Opcode()) {
2234     return mem;
2235   }
2236 
2237   // Two stores in a row of the same value?
2238   if (mem->is_Store() &&
2239       phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
2240       phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
2241       mem->Opcode() == Opcode()) {
2242     return mem;
2243   }
2244 
2245   // Store of zero anywhere into a freshly-allocated object?
2246   // Then the store is useless.
2247   // (It must already have been captured by the InitializeNode.)
2248   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2249     // a newly allocated object is already all-zeroes everywhere
2250     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2251       return mem;
2252     }
2253 
2254     // the store may also apply to zero-bits in an earlier object
2255     Node* prev_mem = find_previous_store(phase);
2256     // Steps (a), (b):  Walk past independent stores to find an exact match.
2257     if (prev_mem != NULL) {
2258       Node* prev_val = can_see_stored_value(prev_mem, phase);
2259       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2260         // prev_val and val might differ by a cast; it would be good
2261         // to keep the more informative of the two.
2262         return mem;
2263       }
2264     }
2265   }
2266 
2267   return this;
2268 }
2269 
2270 //------------------------------match_edge-------------------------------------
2271 // Do we Match on this edge index or not?  Match only memory & value
2272 uint StoreNode::match_edge(uint idx) const {
2273   return idx == MemNode::Address || idx == MemNode::ValueIn;
2274 }
2275 
2276 //------------------------------cmp--------------------------------------------
2277 // Do not common stores up together.  They generally have to be split
2278 // back up anyways, so do not bother.
2279 uint StoreNode::cmp( const Node &n ) const {
2280   return (&n == this);          // Always fail except on self
2281 }
2282 
2283 //------------------------------Ideal_masked_input-----------------------------
2284 // Check for a useless mask before a partial-word store
2285 // (StoreB ... (AndI valIn conIa) )
2286 // If (conIa & mask == mask) this simplifies to
2287 // (StoreB ... (valIn) )
2288 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2289   Node *val = in(MemNode::ValueIn);
2290   if( val->Opcode() == Op_AndI ) {
2291     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2292     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2293       set_req(MemNode::ValueIn, val->in(1));
2294       return this;
2295     }
2296   }
2297   return NULL;
2298 }
2299 
2300 
2301 //------------------------------Ideal_sign_extended_input----------------------
2302 // Check for useless sign-extension before a partial-word store
2303 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2304 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2305 // (StoreB ... (valIn) )
2306 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2307   Node *val = in(MemNode::ValueIn);
2308   if( val->Opcode() == Op_RShiftI ) {
2309     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2310     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2311       Node *shl = val->in(1);
2312       if( shl->Opcode() == Op_LShiftI ) {
2313         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2314         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2315           set_req(MemNode::ValueIn, shl->in(1));
2316           return this;
2317         }
2318       }
2319     }
2320   }
2321   return NULL;
2322 }
2323 
2324 //------------------------------value_never_loaded-----------------------------------
2325 // Determine whether there are any possible loads of the value stored.
2326 // For simplicity, we actually check if there are any loads from the
2327 // address stored to, not just for loads of the value stored by this node.
2328 //
2329 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2330   Node *adr = in(Address);
2331   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2332   if (adr_oop == NULL)
2333     return false;
2334   if (!adr_oop->is_known_instance_field())
2335     return false; // if not a distinct instance, there may be aliases of the address
2336   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2337     Node *use = adr->fast_out(i);
2338     int opc = use->Opcode();
2339     if (use->is_Load() || use->is_LoadStore()) {
2340       return false;
2341     }
2342   }
2343   return true;
2344 }
2345 
2346 //=============================================================================
2347 //------------------------------Ideal------------------------------------------
2348 // If the store is from an AND mask that leaves the low bits untouched, then
2349 // we can skip the AND operation.  If the store is from a sign-extension
2350 // (a left shift, then right shift) we can skip both.
2351 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2352   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2353   if( progress != NULL ) return progress;
2354 
2355   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2356   if( progress != NULL ) return progress;
2357 
2358   // Finally check the default case
2359   return StoreNode::Ideal(phase, can_reshape);
2360 }
2361 
2362 //=============================================================================
2363 //------------------------------Ideal------------------------------------------
2364 // If the store is from an AND mask that leaves the low bits untouched, then
2365 // we can skip the AND operation
2366 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2367   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2368   if( progress != NULL ) return progress;
2369 
2370   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2371   if( progress != NULL ) return progress;
2372 
2373   // Finally check the default case
2374   return StoreNode::Ideal(phase, can_reshape);
2375 }
2376 
2377 //=============================================================================
2378 //------------------------------Identity---------------------------------------
2379 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2380   // No need to card mark when storing a null ptr
2381   Node* my_store = in(MemNode::OopStore);
2382   if (my_store->is_Store()) {
2383     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2384     if( t1 == TypePtr::NULL_PTR ) {
2385       return in(MemNode::Memory);
2386     }
2387   }
2388   return this;
2389 }
2390 
2391 //=============================================================================
2392 //------------------------------Ideal---------------------------------------
2393 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2394   Node* progress = StoreNode::Ideal(phase, can_reshape);
2395   if (progress != NULL) return progress;
2396 
2397   Node* my_store = in(MemNode::OopStore);
2398   if (my_store->is_MergeMem()) {
2399     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2400     set_req(MemNode::OopStore, mem);
2401     return this;
2402   }
2403 
2404   return NULL;
2405 }
2406 
2407 //------------------------------Value-----------------------------------------
2408 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2409   // Either input is TOP ==> the result is TOP
2410   const Type *t = phase->type( in(MemNode::Memory) );
2411   if( t == Type::TOP ) return Type::TOP;
2412   t = phase->type( in(MemNode::Address) );
2413   if( t == Type::TOP ) return Type::TOP;
2414   t = phase->type( in(MemNode::ValueIn) );
2415   if( t == Type::TOP ) return Type::TOP;
2416   // If extra input is TOP ==> the result is TOP
2417   t = phase->type( in(MemNode::OopStore) );
2418   if( t == Type::TOP ) return Type::TOP;
2419 
2420   return StoreNode::Value( phase );
2421 }
2422 
2423 
2424 //=============================================================================
2425 //----------------------------------SCMemProjNode------------------------------
2426 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2427 {
2428   return bottom_type();
2429 }
2430 
2431 //=============================================================================
2432 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2433   init_req(MemNode::Control, c  );
2434   init_req(MemNode::Memory , mem);
2435   init_req(MemNode::Address, adr);
2436   init_req(MemNode::ValueIn, val);
2437   init_req(         ExpectedIn, ex );
2438   init_class_id(Class_LoadStore);
2439 
2440 }
2441 
2442 //=============================================================================
2443 //-------------------------------adr_type--------------------------------------
2444 // Do we Match on this edge index or not?  Do not match memory
2445 const TypePtr* ClearArrayNode::adr_type() const {
2446   Node *adr = in(3);
2447   return MemNode::calculate_adr_type(adr->bottom_type());
2448 }
2449 
2450 //------------------------------match_edge-------------------------------------
2451 // Do we Match on this edge index or not?  Do not match memory
2452 uint ClearArrayNode::match_edge(uint idx) const {
2453   return idx > 1;
2454 }
2455 
2456 //------------------------------Identity---------------------------------------
2457 // Clearing a zero length array does nothing
2458 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2459   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2460 }
2461 
2462 //------------------------------Idealize---------------------------------------
2463 // Clearing a short array is faster with stores
2464 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2465   const int unit = BytesPerLong;
2466   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2467   if (!t)  return NULL;
2468   if (!t->is_con())  return NULL;
2469   intptr_t raw_count = t->get_con();
2470   intptr_t size = raw_count;
2471   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2472   // Clearing nothing uses the Identity call.
2473   // Negative clears are possible on dead ClearArrays
2474   // (see jck test stmt114.stmt11402.val).
2475   if (size <= 0 || size % unit != 0)  return NULL;
2476   intptr_t count = size / unit;
2477   // Length too long; use fast hardware clear
2478   if (size > Matcher::init_array_short_size)  return NULL;
2479   Node *mem = in(1);
2480   if( phase->type(mem)==Type::TOP ) return NULL;
2481   Node *adr = in(3);
2482   const Type* at = phase->type(adr);
2483   if( at==Type::TOP ) return NULL;
2484   const TypePtr* atp = at->isa_ptr();
2485   // adjust atp to be the correct array element address type
2486   if (atp == NULL)  atp = TypePtr::BOTTOM;
2487   else              atp = atp->add_offset(Type::OffsetBot);
2488   // Get base for derived pointer purposes
2489   if( adr->Opcode() != Op_AddP ) Unimplemented();
2490   Node *base = adr->in(1);
2491 
2492   Node *zero = phase->makecon(TypeLong::ZERO);
2493   Node *off  = phase->MakeConX(BytesPerLong);
2494   mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2495   count--;
2496   while( count-- ) {
2497     mem = phase->transform(mem);
2498     adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2499     mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2500   }
2501   return mem;
2502 }
2503 
2504 //----------------------------step_through----------------------------------
2505 // Return allocation input memory edge if it is different instance
2506 // or itself if it is the one we are looking for.
2507 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2508   Node* n = *np;
2509   assert(n->is_ClearArray(), "sanity");
2510   intptr_t offset;
2511   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2512   // This method is called only before Allocate nodes are expanded during
2513   // macro nodes expansion. Before that ClearArray nodes are only generated
2514   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2515   assert(alloc != NULL, "should have allocation");
2516   if (alloc->_idx == instance_id) {
2517     // Can not bypass initialization of the instance we are looking for.
2518     return false;
2519   }
2520   // Otherwise skip it.
2521   InitializeNode* init = alloc->initialization();
2522   if (init != NULL)
2523     *np = init->in(TypeFunc::Memory);
2524   else
2525     *np = alloc->in(TypeFunc::Memory);
2526   return true;
2527 }
2528 
2529 //----------------------------clear_memory-------------------------------------
2530 // Generate code to initialize object storage to zero.
2531 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2532                                    intptr_t start_offset,
2533                                    Node* end_offset,
2534                                    PhaseGVN* phase) {
2535   Compile* C = phase->C;
2536   intptr_t offset = start_offset;
2537 
2538   int unit = BytesPerLong;
2539   if ((offset % unit) != 0) {
2540     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2541     adr = phase->transform(adr);
2542     const TypePtr* atp = TypeRawPtr::BOTTOM;
2543     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2544     mem = phase->transform(mem);
2545     offset += BytesPerInt;
2546   }
2547   assert((offset % unit) == 0, "");
2548 
2549   // Initialize the remaining stuff, if any, with a ClearArray.
2550   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2551 }
2552 
2553 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2554                                    Node* start_offset,
2555                                    Node* end_offset,
2556                                    PhaseGVN* phase) {
2557   if (start_offset == end_offset) {
2558     // nothing to do
2559     return mem;
2560   }
2561 
2562   Compile* C = phase->C;
2563   int unit = BytesPerLong;
2564   Node* zbase = start_offset;
2565   Node* zend  = end_offset;
2566 
2567   // Scale to the unit required by the CPU:
2568   if (!Matcher::init_array_count_is_in_bytes) {
2569     Node* shift = phase->intcon(exact_log2(unit));
2570     zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2571     zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2572   }
2573 
2574   Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2575   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2576 
2577   // Bulk clear double-words
2578   Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2579   mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2580   return phase->transform(mem);
2581 }
2582 
2583 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2584                                    intptr_t start_offset,
2585                                    intptr_t end_offset,
2586                                    PhaseGVN* phase) {
2587   if (start_offset == end_offset) {
2588     // nothing to do
2589     return mem;
2590   }
2591 
2592   Compile* C = phase->C;
2593   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2594   intptr_t done_offset = end_offset;
2595   if ((done_offset % BytesPerLong) != 0) {
2596     done_offset -= BytesPerInt;
2597   }
2598   if (done_offset > start_offset) {
2599     mem = clear_memory(ctl, mem, dest,
2600                        start_offset, phase->MakeConX(done_offset), phase);
2601   }
2602   if (done_offset < end_offset) { // emit the final 32-bit store
2603     Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2604     adr = phase->transform(adr);
2605     const TypePtr* atp = TypeRawPtr::BOTTOM;
2606     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2607     mem = phase->transform(mem);
2608     done_offset += BytesPerInt;
2609   }
2610   assert(done_offset == end_offset, "");
2611   return mem;
2612 }
2613 
2614 //=============================================================================
2615 // Do we match on this edge? No memory edges
2616 uint StrCompNode::match_edge(uint idx) const {
2617   return idx == 2 || idx == 3; // StrComp (Binary str1 cnt1) (Binary str2 cnt2)
2618 }
2619 
2620 //------------------------------Ideal------------------------------------------
2621 // Return a node which is more "ideal" than the current node.  Strip out
2622 // control copies
2623 Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2624   return remove_dead_region(phase, can_reshape) ? this : NULL;
2625 }
2626 
2627 //=============================================================================
2628 // Do we match on this edge? No memory edges
2629 uint StrEqualsNode::match_edge(uint idx) const {
2630   return idx == 2 || idx == 3; // StrEquals (Binary str1 str2) cnt
2631 }
2632 
2633 //------------------------------Ideal------------------------------------------
2634 // Return a node which is more "ideal" than the current node.  Strip out
2635 // control copies
2636 Node *StrEqualsNode::Ideal(PhaseGVN *phase, bool can_reshape){
2637   return remove_dead_region(phase, can_reshape) ? this : NULL;
2638 }
2639 
2640 //=============================================================================
2641 // Do we match on this edge? No memory edges
2642 uint StrIndexOfNode::match_edge(uint idx) const {
2643   return idx == 2 || idx == 3; // StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)
2644 }
2645 
2646 //------------------------------Ideal------------------------------------------
2647 // Return a node which is more "ideal" than the current node.  Strip out
2648 // control copies
2649 Node *StrIndexOfNode::Ideal(PhaseGVN *phase, bool can_reshape){
2650   return remove_dead_region(phase, can_reshape) ? this : NULL;
2651 }
2652 
2653 //=============================================================================
2654 // Do we match on this edge? No memory edges
2655 uint AryEqNode::match_edge(uint idx) const {
2656   return idx == 2 || idx == 3; // StrEquals ary1 ary2
2657 }
2658 //------------------------------Ideal------------------------------------------
2659 // Return a node which is more "ideal" than the current node.  Strip out
2660 // control copies
2661 Node *AryEqNode::Ideal(PhaseGVN *phase, bool can_reshape){
2662   return remove_dead_region(phase, can_reshape) ? this : NULL;
2663 }
2664 
2665 //=============================================================================
2666 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2667   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2668     _adr_type(C->get_adr_type(alias_idx))
2669 {
2670   init_class_id(Class_MemBar);
2671   Node* top = C->top();
2672   init_req(TypeFunc::I_O,top);
2673   init_req(TypeFunc::FramePtr,top);
2674   init_req(TypeFunc::ReturnAdr,top);
2675   if (precedent != NULL)
2676     init_req(TypeFunc::Parms, precedent);
2677 }
2678 
2679 //------------------------------cmp--------------------------------------------
2680 uint MemBarNode::hash() const { return NO_HASH; }
2681 uint MemBarNode::cmp( const Node &n ) const {
2682   return (&n == this);          // Always fail except on self
2683 }
2684 
2685 //------------------------------make-------------------------------------------
2686 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2687   int len = Precedent + (pn == NULL? 0: 1);
2688   switch (opcode) {
2689   case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2690   case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2691   case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2692   case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2693   case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2694   default:                 ShouldNotReachHere(); return NULL;
2695   }
2696 }
2697 
2698 //------------------------------Ideal------------------------------------------
2699 // Return a node which is more "ideal" than the current node.  Strip out
2700 // control copies
2701 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2702   if (remove_dead_region(phase, can_reshape)) return this;
2703 
2704   // Eliminate volatile MemBars for scalar replaced objects.
2705   if (can_reshape && req() == (Precedent+1) &&
2706       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
2707     // Volatile field loads and stores.
2708     Node* my_mem = in(MemBarNode::Precedent);
2709     if (my_mem != NULL && my_mem->is_Mem()) {
2710       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2711       // Check for scalar replaced object reference.
2712       if( t_oop != NULL && t_oop->is_known_instance_field() &&
2713           t_oop->offset() != Type::OffsetBot &&
2714           t_oop->offset() != Type::OffsetTop) {
2715         // Replace MemBar projections by its inputs.
2716         PhaseIterGVN* igvn = phase->is_IterGVN();
2717         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2718         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2719         // Must return either the original node (now dead) or a new node
2720         // (Do not return a top here, since that would break the uniqueness of top.)
2721         return new (phase->C, 1) ConINode(TypeInt::ZERO);
2722       }
2723     }
2724   }
2725   return NULL;
2726 }
2727 
2728 //------------------------------Value------------------------------------------
2729 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2730   if( !in(0) ) return Type::TOP;
2731   if( phase->type(in(0)) == Type::TOP )
2732     return Type::TOP;
2733   return TypeTuple::MEMBAR;
2734 }
2735 
2736 //------------------------------match------------------------------------------
2737 // Construct projections for memory.
2738 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2739   switch (proj->_con) {
2740   case TypeFunc::Control:
2741   case TypeFunc::Memory:
2742     return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2743   }
2744   ShouldNotReachHere();
2745   return NULL;
2746 }
2747 
2748 //===========================InitializeNode====================================
2749 // SUMMARY:
2750 // This node acts as a memory barrier on raw memory, after some raw stores.
2751 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2752 // The Initialize can 'capture' suitably constrained stores as raw inits.
2753 // It can coalesce related raw stores into larger units (called 'tiles').
2754 // It can avoid zeroing new storage for memory units which have raw inits.
2755 // At macro-expansion, it is marked 'complete', and does not optimize further.
2756 //
2757 // EXAMPLE:
2758 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2759 //   ctl = incoming control; mem* = incoming memory
2760 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2761 // First allocate uninitialized memory and fill in the header:
2762 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2763 //   ctl := alloc.Control; mem* := alloc.Memory*
2764 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2765 // Then initialize to zero the non-header parts of the raw memory block:
2766 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2767 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2768 // After the initialize node executes, the object is ready for service:
2769 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2770 // Suppose its body is immediately initialized as {1,2}:
2771 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2772 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2773 //   mem.SLICE(#short[*]) := store2
2774 //
2775 // DETAILS:
2776 // An InitializeNode collects and isolates object initialization after
2777 // an AllocateNode and before the next possible safepoint.  As a
2778 // memory barrier (MemBarNode), it keeps critical stores from drifting
2779 // down past any safepoint or any publication of the allocation.
2780 // Before this barrier, a newly-allocated object may have uninitialized bits.
2781 // After this barrier, it may be treated as a real oop, and GC is allowed.
2782 //
2783 // The semantics of the InitializeNode include an implicit zeroing of
2784 // the new object from object header to the end of the object.
2785 // (The object header and end are determined by the AllocateNode.)
2786 //
2787 // Certain stores may be added as direct inputs to the InitializeNode.
2788 // These stores must update raw memory, and they must be to addresses
2789 // derived from the raw address produced by AllocateNode, and with
2790 // a constant offset.  They must be ordered by increasing offset.
2791 // The first one is at in(RawStores), the last at in(req()-1).
2792 // Unlike most memory operations, they are not linked in a chain,
2793 // but are displayed in parallel as users of the rawmem output of
2794 // the allocation.
2795 //
2796 // (See comments in InitializeNode::capture_store, which continue
2797 // the example given above.)
2798 //
2799 // When the associated Allocate is macro-expanded, the InitializeNode
2800 // may be rewritten to optimize collected stores.  A ClearArrayNode
2801 // may also be created at that point to represent any required zeroing.
2802 // The InitializeNode is then marked 'complete', prohibiting further
2803 // capturing of nearby memory operations.
2804 //
2805 // During macro-expansion, all captured initializations which store
2806 // constant values of 32 bits or smaller are coalesced (if advantageous)
2807 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2808 // initialized in fewer memory operations.  Memory words which are
2809 // covered by neither tiles nor non-constant stores are pre-zeroed
2810 // by explicit stores of zero.  (The code shape happens to do all
2811 // zeroing first, then all other stores, with both sequences occurring
2812 // in order of ascending offsets.)
2813 //
2814 // Alternatively, code may be inserted between an AllocateNode and its
2815 // InitializeNode, to perform arbitrary initialization of the new object.
2816 // E.g., the object copying intrinsics insert complex data transfers here.
2817 // The initialization must then be marked as 'complete' disable the
2818 // built-in zeroing semantics and the collection of initializing stores.
2819 //
2820 // While an InitializeNode is incomplete, reads from the memory state
2821 // produced by it are optimizable if they match the control edge and
2822 // new oop address associated with the allocation/initialization.
2823 // They return a stored value (if the offset matches) or else zero.
2824 // A write to the memory state, if it matches control and address,
2825 // and if it is to a constant offset, may be 'captured' by the
2826 // InitializeNode.  It is cloned as a raw memory operation and rewired
2827 // inside the initialization, to the raw oop produced by the allocation.
2828 // Operations on addresses which are provably distinct (e.g., to
2829 // other AllocateNodes) are allowed to bypass the initialization.
2830 //
2831 // The effect of all this is to consolidate object initialization
2832 // (both arrays and non-arrays, both piecewise and bulk) into a
2833 // single location, where it can be optimized as a unit.
2834 //
2835 // Only stores with an offset less than TrackedInitializationLimit words
2836 // will be considered for capture by an InitializeNode.  This puts a
2837 // reasonable limit on the complexity of optimized initializations.
2838 
2839 //---------------------------InitializeNode------------------------------------
2840 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2841   : _is_complete(false),
2842     MemBarNode(C, adr_type, rawoop)
2843 {
2844   init_class_id(Class_Initialize);
2845 
2846   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2847   assert(in(RawAddress) == rawoop, "proper init");
2848   // Note:  allocation() can be NULL, for secondary initialization barriers
2849 }
2850 
2851 // Since this node is not matched, it will be processed by the
2852 // register allocator.  Declare that there are no constraints
2853 // on the allocation of the RawAddress edge.
2854 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2855   // This edge should be set to top, by the set_complete.  But be conservative.
2856   if (idx == InitializeNode::RawAddress)
2857     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2858   return RegMask::Empty;
2859 }
2860 
2861 Node* InitializeNode::memory(uint alias_idx) {
2862   Node* mem = in(Memory);
2863   if (mem->is_MergeMem()) {
2864     return mem->as_MergeMem()->memory_at(alias_idx);
2865   } else {
2866     // incoming raw memory is not split
2867     return mem;
2868   }
2869 }
2870 
2871 bool InitializeNode::is_non_zero() {
2872   if (is_complete())  return false;
2873   remove_extra_zeroes();
2874   return (req() > RawStores);
2875 }
2876 
2877 void InitializeNode::set_complete(PhaseGVN* phase) {
2878   assert(!is_complete(), "caller responsibility");
2879   _is_complete = true;
2880 
2881   // After this node is complete, it contains a bunch of
2882   // raw-memory initializations.  There is no need for
2883   // it to have anything to do with non-raw memory effects.
2884   // Therefore, tell all non-raw users to re-optimize themselves,
2885   // after skipping the memory effects of this initialization.
2886   PhaseIterGVN* igvn = phase->is_IterGVN();
2887   if (igvn)  igvn->add_users_to_worklist(this);
2888 }
2889 
2890 // convenience function
2891 // return false if the init contains any stores already
2892 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2893   InitializeNode* init = initialization();
2894   if (init == NULL || init->is_complete())  return false;
2895   init->remove_extra_zeroes();
2896   // for now, if this allocation has already collected any inits, bail:
2897   if (init->is_non_zero())  return false;
2898   init->set_complete(phase);
2899   return true;
2900 }
2901 
2902 void InitializeNode::remove_extra_zeroes() {
2903   if (req() == RawStores)  return;
2904   Node* zmem = zero_memory();
2905   uint fill = RawStores;
2906   for (uint i = fill; i < req(); i++) {
2907     Node* n = in(i);
2908     if (n->is_top() || n == zmem)  continue;  // skip
2909     if (fill < i)  set_req(fill, n);          // compact
2910     ++fill;
2911   }
2912   // delete any empty spaces created:
2913   while (fill < req()) {
2914     del_req(fill);
2915   }
2916 }
2917 
2918 // Helper for remembering which stores go with which offsets.
2919 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2920   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2921   intptr_t offset = -1;
2922   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2923                                                phase, offset);
2924   if (base == NULL)     return -1;  // something is dead,
2925   if (offset < 0)       return -1;  //        dead, dead
2926   return offset;
2927 }
2928 
2929 // Helper for proving that an initialization expression is
2930 // "simple enough" to be folded into an object initialization.
2931 // Attempts to prove that a store's initial value 'n' can be captured
2932 // within the initialization without creating a vicious cycle, such as:
2933 //     { Foo p = new Foo(); p.next = p; }
2934 // True for constants and parameters and small combinations thereof.
2935 bool InitializeNode::detect_init_independence(Node* n,
2936                                               bool st_is_pinned,
2937                                               int& count) {
2938   if (n == NULL)      return true;   // (can this really happen?)
2939   if (n->is_Proj())   n = n->in(0);
2940   if (n == this)      return false;  // found a cycle
2941   if (n->is_Con())    return true;
2942   if (n->is_Start())  return true;   // params, etc., are OK
2943   if (n->is_Root())   return true;   // even better
2944 
2945   Node* ctl = n->in(0);
2946   if (ctl != NULL && !ctl->is_top()) {
2947     if (ctl->is_Proj())  ctl = ctl->in(0);
2948     if (ctl == this)  return false;
2949 
2950     // If we already know that the enclosing memory op is pinned right after
2951     // the init, then any control flow that the store has picked up
2952     // must have preceded the init, or else be equal to the init.
2953     // Even after loop optimizations (which might change control edges)
2954     // a store is never pinned *before* the availability of its inputs.
2955     if (!MemNode::all_controls_dominate(n, this))
2956       return false;                  // failed to prove a good control
2957 
2958   }
2959 
2960   // Check data edges for possible dependencies on 'this'.
2961   if ((count += 1) > 20)  return false;  // complexity limit
2962   for (uint i = 1; i < n->req(); i++) {
2963     Node* m = n->in(i);
2964     if (m == NULL || m == n || m->is_top())  continue;
2965     uint first_i = n->find_edge(m);
2966     if (i != first_i)  continue;  // process duplicate edge just once
2967     if (!detect_init_independence(m, st_is_pinned, count)) {
2968       return false;
2969     }
2970   }
2971 
2972   return true;
2973 }
2974 
2975 // Here are all the checks a Store must pass before it can be moved into
2976 // an initialization.  Returns zero if a check fails.
2977 // On success, returns the (constant) offset to which the store applies,
2978 // within the initialized memory.
2979 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2980   const int FAIL = 0;
2981   if (st->req() != MemNode::ValueIn + 1)
2982     return FAIL;                // an inscrutable StoreNode (card mark?)
2983   Node* ctl = st->in(MemNode::Control);
2984   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2985     return FAIL;                // must be unconditional after the initialization
2986   Node* mem = st->in(MemNode::Memory);
2987   if (!(mem->is_Proj() && mem->in(0) == this))
2988     return FAIL;                // must not be preceded by other stores
2989   Node* adr = st->in(MemNode::Address);
2990   intptr_t offset;
2991   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2992   if (alloc == NULL)
2993     return FAIL;                // inscrutable address
2994   if (alloc != allocation())
2995     return FAIL;                // wrong allocation!  (store needs to float up)
2996   Node* val = st->in(MemNode::ValueIn);
2997   int complexity_count = 0;
2998   if (!detect_init_independence(val, true, complexity_count))
2999     return FAIL;                // stored value must be 'simple enough'
3000 
3001   return offset;                // success
3002 }
3003 
3004 // Find the captured store in(i) which corresponds to the range
3005 // [start..start+size) in the initialized object.
3006 // If there is one, return its index i.  If there isn't, return the
3007 // negative of the index where it should be inserted.
3008 // Return 0 if the queried range overlaps an initialization boundary
3009 // or if dead code is encountered.
3010 // If size_in_bytes is zero, do not bother with overlap checks.
3011 int InitializeNode::captured_store_insertion_point(intptr_t start,
3012                                                    int size_in_bytes,
3013                                                    PhaseTransform* phase) {
3014   const int FAIL = 0, MAX_STORE = BytesPerLong;
3015 
3016   if (is_complete())
3017     return FAIL;                // arraycopy got here first; punt
3018 
3019   assert(allocation() != NULL, "must be present");
3020 
3021   // no negatives, no header fields:
3022   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3023 
3024   // after a certain size, we bail out on tracking all the stores:
3025   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3026   if (start >= ti_limit)  return FAIL;
3027 
3028   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3029     if (i >= limit)  return -(int)i; // not found; here is where to put it
3030 
3031     Node*    st     = in(i);
3032     intptr_t st_off = get_store_offset(st, phase);
3033     if (st_off < 0) {
3034       if (st != zero_memory()) {
3035         return FAIL;            // bail out if there is dead garbage
3036       }
3037     } else if (st_off > start) {
3038       // ...we are done, since stores are ordered
3039       if (st_off < start + size_in_bytes) {
3040         return FAIL;            // the next store overlaps
3041       }
3042       return -(int)i;           // not found; here is where to put it
3043     } else if (st_off < start) {
3044       if (size_in_bytes != 0 &&
3045           start < st_off + MAX_STORE &&
3046           start < st_off + st->as_Store()->memory_size()) {
3047         return FAIL;            // the previous store overlaps
3048       }
3049     } else {
3050       if (size_in_bytes != 0 &&
3051           st->as_Store()->memory_size() != size_in_bytes) {
3052         return FAIL;            // mismatched store size
3053       }
3054       return i;
3055     }
3056 
3057     ++i;
3058   }
3059 }
3060 
3061 // Look for a captured store which initializes at the offset 'start'
3062 // with the given size.  If there is no such store, and no other
3063 // initialization interferes, then return zero_memory (the memory
3064 // projection of the AllocateNode).
3065 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3066                                           PhaseTransform* phase) {
3067   assert(stores_are_sane(phase), "");
3068   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3069   if (i == 0) {
3070     return NULL;                // something is dead
3071   } else if (i < 0) {
3072     return zero_memory();       // just primordial zero bits here
3073   } else {
3074     Node* st = in(i);           // here is the store at this position
3075     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3076     return st;
3077   }
3078 }
3079 
3080 // Create, as a raw pointer, an address within my new object at 'offset'.
3081 Node* InitializeNode::make_raw_address(intptr_t offset,
3082                                        PhaseTransform* phase) {
3083   Node* addr = in(RawAddress);
3084   if (offset != 0) {
3085     Compile* C = phase->C;
3086     addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
3087                                                  phase->MakeConX(offset)) );
3088   }
3089   return addr;
3090 }
3091 
3092 // Clone the given store, converting it into a raw store
3093 // initializing a field or element of my new object.
3094 // Caller is responsible for retiring the original store,
3095 // with subsume_node or the like.
3096 //
3097 // From the example above InitializeNode::InitializeNode,
3098 // here are the old stores to be captured:
3099 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3100 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3101 //
3102 // Here is the changed code; note the extra edges on init:
3103 //   alloc = (Allocate ...)
3104 //   rawoop = alloc.RawAddress
3105 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3106 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3107 //   init = (Initialize alloc.Control alloc.Memory rawoop
3108 //                      rawstore1 rawstore2)
3109 //
3110 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3111                                     PhaseTransform* phase) {
3112   assert(stores_are_sane(phase), "");
3113 
3114   if (start < 0)  return NULL;
3115   assert(can_capture_store(st, phase) == start, "sanity");
3116 
3117   Compile* C = phase->C;
3118   int size_in_bytes = st->memory_size();
3119   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3120   if (i == 0)  return NULL;     // bail out
3121   Node* prev_mem = NULL;        // raw memory for the captured store
3122   if (i > 0) {
3123     prev_mem = in(i);           // there is a pre-existing store under this one
3124     set_req(i, C->top());       // temporarily disconnect it
3125     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3126   } else {
3127     i = -i;                     // no pre-existing store
3128     prev_mem = zero_memory();   // a slice of the newly allocated object
3129     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3130       set_req(--i, C->top());   // reuse this edge; it has been folded away
3131     else
3132       ins_req(i, C->top());     // build a new edge
3133   }
3134   Node* new_st = st->clone();
3135   new_st->set_req(MemNode::Control, in(Control));
3136   new_st->set_req(MemNode::Memory,  prev_mem);
3137   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3138   new_st = phase->transform(new_st);
3139 
3140   // At this point, new_st might have swallowed a pre-existing store
3141   // at the same offset, or perhaps new_st might have disappeared,
3142   // if it redundantly stored the same value (or zero to fresh memory).
3143 
3144   // In any case, wire it in:
3145   set_req(i, new_st);
3146 
3147   // The caller may now kill the old guy.
3148   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3149   assert(check_st == new_st || check_st == NULL, "must be findable");
3150   assert(!is_complete(), "");
3151   return new_st;
3152 }
3153 
3154 static bool store_constant(jlong* tiles, int num_tiles,
3155                            intptr_t st_off, int st_size,
3156                            jlong con) {
3157   if ((st_off & (st_size-1)) != 0)
3158     return false;               // strange store offset (assume size==2**N)
3159   address addr = (address)tiles + st_off;
3160   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3161   switch (st_size) {
3162   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3163   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3164   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3165   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3166   default: return false;        // strange store size (detect size!=2**N here)
3167   }
3168   return true;                  // return success to caller
3169 }
3170 
3171 // Coalesce subword constants into int constants and possibly
3172 // into long constants.  The goal, if the CPU permits,
3173 // is to initialize the object with a small number of 64-bit tiles.
3174 // Also, convert floating-point constants to bit patterns.
3175 // Non-constants are not relevant to this pass.
3176 //
3177 // In terms of the running example on InitializeNode::InitializeNode
3178 // and InitializeNode::capture_store, here is the transformation
3179 // of rawstore1 and rawstore2 into rawstore12:
3180 //   alloc = (Allocate ...)
3181 //   rawoop = alloc.RawAddress
3182 //   tile12 = 0x00010002
3183 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3184 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3185 //
3186 void
3187 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3188                                         Node* size_in_bytes,
3189                                         PhaseGVN* phase) {
3190   Compile* C = phase->C;
3191 
3192   assert(stores_are_sane(phase), "");
3193   // Note:  After this pass, they are not completely sane,
3194   // since there may be some overlaps.
3195 
3196   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3197 
3198   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3199   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3200   size_limit = MIN2(size_limit, ti_limit);
3201   size_limit = align_size_up(size_limit, BytesPerLong);
3202   int num_tiles = size_limit / BytesPerLong;
3203 
3204   // allocate space for the tile map:
3205   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3206   jlong  tiles_buf[small_len];
3207   Node*  nodes_buf[small_len];
3208   jlong  inits_buf[small_len];
3209   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3210                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3211   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3212                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3213   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3214                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3215   // tiles: exact bitwise model of all primitive constants
3216   // nodes: last constant-storing node subsumed into the tiles model
3217   // inits: which bytes (in each tile) are touched by any initializations
3218 
3219   //// Pass A: Fill in the tile model with any relevant stores.
3220 
3221   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3222   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3223   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3224   Node* zmem = zero_memory(); // initially zero memory state
3225   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3226     Node* st = in(i);
3227     intptr_t st_off = get_store_offset(st, phase);
3228 
3229     // Figure out the store's offset and constant value:
3230     if (st_off < header_size)             continue; //skip (ignore header)
3231     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3232     int st_size = st->as_Store()->memory_size();
3233     if (st_off + st_size > size_limit)    break;
3234 
3235     // Record which bytes are touched, whether by constant or not.
3236     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3237       continue;                 // skip (strange store size)
3238 
3239     const Type* val = phase->type(st->in(MemNode::ValueIn));
3240     if (!val->singleton())                continue; //skip (non-con store)
3241     BasicType type = val->basic_type();
3242 
3243     jlong con = 0;
3244     switch (type) {
3245     case T_INT:    con = val->is_int()->get_con();  break;
3246     case T_LONG:   con = val->is_long()->get_con(); break;
3247     case T_FLOAT:  con = jint_cast(val->getf());    break;
3248     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3249     default:                              continue; //skip (odd store type)
3250     }
3251 
3252     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3253         st->Opcode() == Op_StoreL) {
3254       continue;                 // This StoreL is already optimal.
3255     }
3256 
3257     // Store down the constant.
3258     store_constant(tiles, num_tiles, st_off, st_size, con);
3259 
3260     intptr_t j = st_off >> LogBytesPerLong;
3261 
3262     if (type == T_INT && st_size == BytesPerInt
3263         && (st_off & BytesPerInt) == BytesPerInt) {
3264       jlong lcon = tiles[j];
3265       if (!Matcher::isSimpleConstant64(lcon) &&
3266           st->Opcode() == Op_StoreI) {
3267         // This StoreI is already optimal by itself.
3268         jint* intcon = (jint*) &tiles[j];
3269         intcon[1] = 0;  // undo the store_constant()
3270 
3271         // If the previous store is also optimal by itself, back up and
3272         // undo the action of the previous loop iteration... if we can.
3273         // But if we can't, just let the previous half take care of itself.
3274         st = nodes[j];
3275         st_off -= BytesPerInt;
3276         con = intcon[0];
3277         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3278           assert(st_off >= header_size, "still ignoring header");
3279           assert(get_store_offset(st, phase) == st_off, "must be");
3280           assert(in(i-1) == zmem, "must be");
3281           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3282           assert(con == tcon->is_int()->get_con(), "must be");
3283           // Undo the effects of the previous loop trip, which swallowed st:
3284           intcon[0] = 0;        // undo store_constant()
3285           set_req(i-1, st);     // undo set_req(i, zmem)
3286           nodes[j] = NULL;      // undo nodes[j] = st
3287           --old_subword;        // undo ++old_subword
3288         }
3289         continue;               // This StoreI is already optimal.
3290       }
3291     }
3292 
3293     // This store is not needed.
3294     set_req(i, zmem);
3295     nodes[j] = st;              // record for the moment
3296     if (st_size < BytesPerLong) // something has changed
3297           ++old_subword;        // includes int/float, but who's counting...
3298     else  ++old_long;
3299   }
3300 
3301   if ((old_subword + old_long) == 0)
3302     return;                     // nothing more to do
3303 
3304   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3305   // Be sure to insert them before overlapping non-constant stores.
3306   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3307   for (int j = 0; j < num_tiles; j++) {
3308     jlong con  = tiles[j];
3309     jlong init = inits[j];
3310     if (con == 0)  continue;
3311     jint con0,  con1;           // split the constant, address-wise
3312     jint init0, init1;          // split the init map, address-wise
3313     { union { jlong con; jint intcon[2]; } u;
3314       u.con = con;
3315       con0  = u.intcon[0];
3316       con1  = u.intcon[1];
3317       u.con = init;
3318       init0 = u.intcon[0];
3319       init1 = u.intcon[1];
3320     }
3321 
3322     Node* old = nodes[j];
3323     assert(old != NULL, "need the prior store");
3324     intptr_t offset = (j * BytesPerLong);
3325 
3326     bool split = !Matcher::isSimpleConstant64(con);
3327 
3328     if (offset < header_size) {
3329       assert(offset + BytesPerInt >= header_size, "second int counts");
3330       assert(*(jint*)&tiles[j] == 0, "junk in header");
3331       split = true;             // only the second word counts
3332       // Example:  int a[] = { 42 ... }
3333     } else if (con0 == 0 && init0 == -1) {
3334       split = true;             // first word is covered by full inits
3335       // Example:  int a[] = { ... foo(), 42 ... }
3336     } else if (con1 == 0 && init1 == -1) {
3337       split = true;             // second word is covered by full inits
3338       // Example:  int a[] = { ... 42, foo() ... }
3339     }
3340 
3341     // Here's a case where init0 is neither 0 nor -1:
3342     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3343     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3344     // In this case the tile is not split; it is (jlong)42.
3345     // The big tile is stored down, and then the foo() value is inserted.
3346     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3347 
3348     Node* ctl = old->in(MemNode::Control);
3349     Node* adr = make_raw_address(offset, phase);
3350     const TypePtr* atp = TypeRawPtr::BOTTOM;
3351 
3352     // One or two coalesced stores to plop down.
3353     Node*    st[2];
3354     intptr_t off[2];
3355     int  nst = 0;
3356     if (!split) {
3357       ++new_long;
3358       off[nst] = offset;
3359       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3360                                   phase->longcon(con), T_LONG);
3361     } else {
3362       // Omit either if it is a zero.
3363       if (con0 != 0) {
3364         ++new_int;
3365         off[nst]  = offset;
3366         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3367                                     phase->intcon(con0), T_INT);
3368       }
3369       if (con1 != 0) {
3370         ++new_int;
3371         offset += BytesPerInt;
3372         adr = make_raw_address(offset, phase);
3373         off[nst]  = offset;
3374         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3375                                     phase->intcon(con1), T_INT);
3376       }
3377     }
3378 
3379     // Insert second store first, then the first before the second.
3380     // Insert each one just before any overlapping non-constant stores.
3381     while (nst > 0) {
3382       Node* st1 = st[--nst];
3383       C->copy_node_notes_to(st1, old);
3384       st1 = phase->transform(st1);
3385       offset = off[nst];
3386       assert(offset >= header_size, "do not smash header");
3387       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3388       guarantee(ins_idx != 0, "must re-insert constant store");
3389       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3390       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3391         set_req(--ins_idx, st1);
3392       else
3393         ins_req(ins_idx, st1);
3394     }
3395   }
3396 
3397   if (PrintCompilation && WizardMode)
3398     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3399                   old_subword, old_long, new_int, new_long);
3400   if (C->log() != NULL)
3401     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3402                    old_subword, old_long, new_int, new_long);
3403 
3404   // Clean up any remaining occurrences of zmem:
3405   remove_extra_zeroes();
3406 }
3407 
3408 // Explore forward from in(start) to find the first fully initialized
3409 // word, and return its offset.  Skip groups of subword stores which
3410 // together initialize full words.  If in(start) is itself part of a
3411 // fully initialized word, return the offset of in(start).  If there
3412 // are no following full-word stores, or if something is fishy, return
3413 // a negative value.
3414 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3415   int       int_map = 0;
3416   intptr_t  int_map_off = 0;
3417   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3418 
3419   for (uint i = start, limit = req(); i < limit; i++) {
3420     Node* st = in(i);
3421 
3422     intptr_t st_off = get_store_offset(st, phase);
3423     if (st_off < 0)  break;  // return conservative answer
3424 
3425     int st_size = st->as_Store()->memory_size();
3426     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3427       return st_off;            // we found a complete word init
3428     }
3429 
3430     // update the map:
3431 
3432     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3433     if (this_int_off != int_map_off) {
3434       // reset the map:
3435       int_map = 0;
3436       int_map_off = this_int_off;
3437     }
3438 
3439     int subword_off = st_off - this_int_off;
3440     int_map |= right_n_bits(st_size) << subword_off;
3441     if ((int_map & FULL_MAP) == FULL_MAP) {
3442       return this_int_off;      // we found a complete word init
3443     }
3444 
3445     // Did this store hit or cross the word boundary?
3446     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3447     if (next_int_off == this_int_off + BytesPerInt) {
3448       // We passed the current int, without fully initializing it.
3449       int_map_off = next_int_off;
3450       int_map >>= BytesPerInt;
3451     } else if (next_int_off > this_int_off + BytesPerInt) {
3452       // We passed the current and next int.
3453       return this_int_off + BytesPerInt;
3454     }
3455   }
3456 
3457   return -1;
3458 }
3459 
3460 
3461 // Called when the associated AllocateNode is expanded into CFG.
3462 // At this point, we may perform additional optimizations.
3463 // Linearize the stores by ascending offset, to make memory
3464 // activity as coherent as possible.
3465 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3466                                       intptr_t header_size,
3467                                       Node* size_in_bytes,
3468                                       PhaseGVN* phase) {
3469   assert(!is_complete(), "not already complete");
3470   assert(stores_are_sane(phase), "");
3471   assert(allocation() != NULL, "must be present");
3472 
3473   remove_extra_zeroes();
3474 
3475   if (ReduceFieldZeroing || ReduceBulkZeroing)
3476     // reduce instruction count for common initialization patterns
3477     coalesce_subword_stores(header_size, size_in_bytes, phase);
3478 
3479   Node* zmem = zero_memory();   // initially zero memory state
3480   Node* inits = zmem;           // accumulating a linearized chain of inits
3481   #ifdef ASSERT
3482   intptr_t first_offset = allocation()->minimum_header_size();
3483   intptr_t last_init_off = first_offset;  // previous init offset
3484   intptr_t last_init_end = first_offset;  // previous init offset+size
3485   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3486   #endif
3487   intptr_t zeroes_done = header_size;
3488 
3489   bool do_zeroing = true;       // we might give up if inits are very sparse
3490   int  big_init_gaps = 0;       // how many large gaps have we seen?
3491 
3492   if (ZeroTLAB)  do_zeroing = false;
3493   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3494 
3495   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3496     Node* st = in(i);
3497     intptr_t st_off = get_store_offset(st, phase);
3498     if (st_off < 0)
3499       break;                    // unknown junk in the inits
3500     if (st->in(MemNode::Memory) != zmem)
3501       break;                    // complicated store chains somehow in list
3502 
3503     int st_size = st->as_Store()->memory_size();
3504     intptr_t next_init_off = st_off + st_size;
3505 
3506     if (do_zeroing && zeroes_done < next_init_off) {
3507       // See if this store needs a zero before it or under it.
3508       intptr_t zeroes_needed = st_off;
3509 
3510       if (st_size < BytesPerInt) {
3511         // Look for subword stores which only partially initialize words.
3512         // If we find some, we must lay down some word-level zeroes first,
3513         // underneath the subword stores.
3514         //
3515         // Examples:
3516         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3517         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3518         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3519         //
3520         // Note:  coalesce_subword_stores may have already done this,
3521         // if it was prompted by constant non-zero subword initializers.
3522         // But this case can still arise with non-constant stores.
3523 
3524         intptr_t next_full_store = find_next_fullword_store(i, phase);
3525 
3526         // In the examples above:
3527         //   in(i)          p   q   r   s     x   y     z
3528         //   st_off        12  13  14  15    12  13    14
3529         //   st_size        1   1   1   1     1   1     1
3530         //   next_full_s.  12  16  16  16    16  16    16
3531         //   z's_done      12  16  16  16    12  16    12
3532         //   z's_needed    12  16  16  16    16  16    16
3533         //   zsize          0   0   0   0     4   0     4
3534         if (next_full_store < 0) {
3535           // Conservative tack:  Zero to end of current word.
3536           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3537         } else {
3538           // Zero to beginning of next fully initialized word.
3539           // Or, don't zero at all, if we are already in that word.
3540           assert(next_full_store >= zeroes_needed, "must go forward");
3541           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3542           zeroes_needed = next_full_store;
3543         }
3544       }
3545 
3546       if (zeroes_needed > zeroes_done) {
3547         intptr_t zsize = zeroes_needed - zeroes_done;
3548         // Do some incremental zeroing on rawmem, in parallel with inits.
3549         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3550         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3551                                               zeroes_done, zeroes_needed,
3552                                               phase);
3553         zeroes_done = zeroes_needed;
3554         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3555           do_zeroing = false;   // leave the hole, next time
3556       }
3557     }
3558 
3559     // Collect the store and move on:
3560     st->set_req(MemNode::Memory, inits);
3561     inits = st;                 // put it on the linearized chain
3562     set_req(i, zmem);           // unhook from previous position
3563 
3564     if (zeroes_done == st_off)
3565       zeroes_done = next_init_off;
3566 
3567     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3568 
3569     #ifdef ASSERT
3570     // Various order invariants.  Weaker than stores_are_sane because
3571     // a large constant tile can be filled in by smaller non-constant stores.
3572     assert(st_off >= last_init_off, "inits do not reverse");
3573     last_init_off = st_off;
3574     const Type* val = NULL;
3575     if (st_size >= BytesPerInt &&
3576         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3577         (int)val->basic_type() < (int)T_OBJECT) {
3578       assert(st_off >= last_tile_end, "tiles do not overlap");
3579       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3580       last_tile_end = MAX2(last_tile_end, next_init_off);
3581     } else {
3582       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3583       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3584       assert(st_off      >= last_init_end, "inits do not overlap");
3585       last_init_end = next_init_off;  // it's a non-tile
3586     }
3587     #endif //ASSERT
3588   }
3589 
3590   remove_extra_zeroes();        // clear out all the zmems left over
3591   add_req(inits);
3592 
3593   if (!ZeroTLAB) {
3594     // If anything remains to be zeroed, zero it all now.
3595     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3596     // if it is the last unused 4 bytes of an instance, forget about it
3597     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3598     if (zeroes_done + BytesPerLong >= size_limit) {
3599       assert(allocation() != NULL, "");
3600       Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3601       ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3602       if (zeroes_done == k->layout_helper())
3603         zeroes_done = size_limit;
3604     }
3605     if (zeroes_done < size_limit) {
3606       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3607                                             zeroes_done, size_in_bytes, phase);
3608     }
3609   }
3610 
3611   set_complete(phase);
3612   return rawmem;
3613 }
3614 
3615 
3616 #ifdef ASSERT
3617 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3618   if (is_complete())
3619     return true;                // stores could be anything at this point
3620   assert(allocation() != NULL, "must be present");
3621   intptr_t last_off = allocation()->minimum_header_size();
3622   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3623     Node* st = in(i);
3624     intptr_t st_off = get_store_offset(st, phase);
3625     if (st_off < 0)  continue;  // ignore dead garbage
3626     if (last_off > st_off) {
3627       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3628       this->dump(2);
3629       assert(false, "ascending store offsets");
3630       return false;
3631     }
3632     last_off = st_off + st->as_Store()->memory_size();
3633   }
3634   return true;
3635 }
3636 #endif //ASSERT
3637 
3638 
3639 
3640 
3641 //============================MergeMemNode=====================================
3642 //
3643 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3644 // contributing store or call operations.  Each contributor provides the memory
3645 // state for a particular "alias type" (see Compile::alias_type).  For example,
3646 // if a MergeMem has an input X for alias category #6, then any memory reference
3647 // to alias category #6 may use X as its memory state input, as an exact equivalent
3648 // to using the MergeMem as a whole.
3649 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3650 //
3651 // (Here, the <N> notation gives the index of the relevant adr_type.)
3652 //
3653 // In one special case (and more cases in the future), alias categories overlap.
3654 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3655 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3656 // it is exactly equivalent to that state W:
3657 //   MergeMem(<Bot>: W) <==> W
3658 //
3659 // Usually, the merge has more than one input.  In that case, where inputs
3660 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3661 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3662 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3663 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3664 //
3665 // A merge can take a "wide" memory state as one of its narrow inputs.
3666 // This simply means that the merge observes out only the relevant parts of
3667 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3668 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3669 //
3670 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3671 // and that memory slices "leak through":
3672 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3673 //
3674 // But, in such a cascade, repeated memory slices can "block the leak":
3675 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3676 //
3677 // In the last example, Y is not part of the combined memory state of the
3678 // outermost MergeMem.  The system must, of course, prevent unschedulable
3679 // memory states from arising, so you can be sure that the state Y is somehow
3680 // a precursor to state Y'.
3681 //
3682 //
3683 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3684 // of each MergeMemNode array are exactly the numerical alias indexes, including
3685 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3686 // Compile::alias_type (and kin) produce and manage these indexes.
3687 //
3688 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3689 // (Note that this provides quick access to the top node inside MergeMem methods,
3690 // without the need to reach out via TLS to Compile::current.)
3691 //
3692 // As a consequence of what was just described, a MergeMem that represents a full
3693 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3694 // containing all alias categories.
3695 //
3696 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3697 //
3698 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3699 // a memory state for the alias type <N>, or else the top node, meaning that
3700 // there is no particular input for that alias type.  Note that the length of
3701 // a MergeMem is variable, and may be extended at any time to accommodate new
3702 // memory states at larger alias indexes.  When merges grow, they are of course
3703 // filled with "top" in the unused in() positions.
3704 //
3705 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3706 // (Top was chosen because it works smoothly with passes like GCM.)
3707 //
3708 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3709 // the type of random VM bits like TLS references.)  Since it is always the
3710 // first non-Bot memory slice, some low-level loops use it to initialize an
3711 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3712 //
3713 //
3714 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3715 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3716 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3717 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3718 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3719 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3720 //
3721 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3722 // really that different from the other memory inputs.  An abbreviation called
3723 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3724 //
3725 //
3726 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3727 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3728 // that "emerges though" the base memory will be marked as excluding the alias types
3729 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3730 //
3731 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3732 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3733 //
3734 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3735 // (It is currently unimplemented.)  As you can see, the resulting merge is
3736 // actually a disjoint union of memory states, rather than an overlay.
3737 //
3738 
3739 //------------------------------MergeMemNode-----------------------------------
3740 Node* MergeMemNode::make_empty_memory() {
3741   Node* empty_memory = (Node*) Compile::current()->top();
3742   assert(empty_memory->is_top(), "correct sentinel identity");
3743   return empty_memory;
3744 }
3745 
3746 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3747   init_class_id(Class_MergeMem);
3748   // all inputs are nullified in Node::Node(int)
3749   // set_input(0, NULL);  // no control input
3750 
3751   // Initialize the edges uniformly to top, for starters.
3752   Node* empty_mem = make_empty_memory();
3753   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3754     init_req(i,empty_mem);
3755   }
3756   assert(empty_memory() == empty_mem, "");
3757 
3758   if( new_base != NULL && new_base->is_MergeMem() ) {
3759     MergeMemNode* mdef = new_base->as_MergeMem();
3760     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3761     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3762       mms.set_memory(mms.memory2());
3763     }
3764     assert(base_memory() == mdef->base_memory(), "");
3765   } else {
3766     set_base_memory(new_base);
3767   }
3768 }
3769 
3770 // Make a new, untransformed MergeMem with the same base as 'mem'.
3771 // If mem is itself a MergeMem, populate the result with the same edges.
3772 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3773   return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3774 }
3775 
3776 //------------------------------cmp--------------------------------------------
3777 uint MergeMemNode::hash() const { return NO_HASH; }
3778 uint MergeMemNode::cmp( const Node &n ) const {
3779   return (&n == this);          // Always fail except on self
3780 }
3781 
3782 //------------------------------Identity---------------------------------------
3783 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3784   // Identity if this merge point does not record any interesting memory
3785   // disambiguations.
3786   Node* base_mem = base_memory();
3787   Node* empty_mem = empty_memory();
3788   if (base_mem != empty_mem) {  // Memory path is not dead?
3789     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3790       Node* mem = in(i);
3791       if (mem != empty_mem && mem != base_mem) {
3792         return this;            // Many memory splits; no change
3793       }
3794     }
3795   }
3796   return base_mem;              // No memory splits; ID on the one true input
3797 }
3798 
3799 //------------------------------Ideal------------------------------------------
3800 // This method is invoked recursively on chains of MergeMem nodes
3801 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3802   // Remove chain'd MergeMems
3803   //
3804   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3805   // relative to the "in(Bot)".  Since we are patching both at the same time,
3806   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3807   // but rewrite each "in(i)" relative to the new "in(Bot)".
3808   Node *progress = NULL;
3809 
3810 
3811   Node* old_base = base_memory();
3812   Node* empty_mem = empty_memory();
3813   if (old_base == empty_mem)
3814     return NULL; // Dead memory path.
3815 
3816   MergeMemNode* old_mbase;
3817   if (old_base != NULL && old_base->is_MergeMem())
3818     old_mbase = old_base->as_MergeMem();
3819   else
3820     old_mbase = NULL;
3821   Node* new_base = old_base;
3822 
3823   // simplify stacked MergeMems in base memory
3824   if (old_mbase)  new_base = old_mbase->base_memory();
3825 
3826   // the base memory might contribute new slices beyond my req()
3827   if (old_mbase)  grow_to_match(old_mbase);
3828 
3829   // Look carefully at the base node if it is a phi.
3830   PhiNode* phi_base;
3831   if (new_base != NULL && new_base->is_Phi())
3832     phi_base = new_base->as_Phi();
3833   else
3834     phi_base = NULL;
3835 
3836   Node*    phi_reg = NULL;
3837   uint     phi_len = (uint)-1;
3838   if (phi_base != NULL && !phi_base->is_copy()) {
3839     // do not examine phi if degraded to a copy
3840     phi_reg = phi_base->region();
3841     phi_len = phi_base->req();
3842     // see if the phi is unfinished
3843     for (uint i = 1; i < phi_len; i++) {
3844       if (phi_base->in(i) == NULL) {
3845         // incomplete phi; do not look at it yet!
3846         phi_reg = NULL;
3847         phi_len = (uint)-1;
3848         break;
3849       }
3850     }
3851   }
3852 
3853   // Note:  We do not call verify_sparse on entry, because inputs
3854   // can normalize to the base_memory via subsume_node or similar
3855   // mechanisms.  This method repairs that damage.
3856 
3857   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3858 
3859   // Look at each slice.
3860   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3861     Node* old_in = in(i);
3862     // calculate the old memory value
3863     Node* old_mem = old_in;
3864     if (old_mem == empty_mem)  old_mem = old_base;
3865     assert(old_mem == memory_at(i), "");
3866 
3867     // maybe update (reslice) the old memory value
3868 
3869     // simplify stacked MergeMems
3870     Node* new_mem = old_mem;
3871     MergeMemNode* old_mmem;
3872     if (old_mem != NULL && old_mem->is_MergeMem())
3873       old_mmem = old_mem->as_MergeMem();
3874     else
3875       old_mmem = NULL;
3876     if (old_mmem == this) {
3877       // This can happen if loops break up and safepoints disappear.
3878       // A merge of BotPtr (default) with a RawPtr memory derived from a
3879       // safepoint can be rewritten to a merge of the same BotPtr with
3880       // the BotPtr phi coming into the loop.  If that phi disappears
3881       // also, we can end up with a self-loop of the mergemem.
3882       // In general, if loops degenerate and memory effects disappear,
3883       // a mergemem can be left looking at itself.  This simply means
3884       // that the mergemem's default should be used, since there is
3885       // no longer any apparent effect on this slice.
3886       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3887       //       from start.  Update the input to TOP.
3888       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3889     }
3890     else if (old_mmem != NULL) {
3891       new_mem = old_mmem->memory_at(i);
3892     }
3893     // else preceding memory was not a MergeMem
3894 
3895     // replace equivalent phis (unfortunately, they do not GVN together)
3896     if (new_mem != NULL && new_mem != new_base &&
3897         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3898       if (new_mem->is_Phi()) {
3899         PhiNode* phi_mem = new_mem->as_Phi();
3900         for (uint i = 1; i < phi_len; i++) {
3901           if (phi_base->in(i) != phi_mem->in(i)) {
3902             phi_mem = NULL;
3903             break;
3904           }
3905         }
3906         if (phi_mem != NULL) {
3907           // equivalent phi nodes; revert to the def
3908           new_mem = new_base;
3909         }
3910       }
3911     }
3912 
3913     // maybe store down a new value
3914     Node* new_in = new_mem;
3915     if (new_in == new_base)  new_in = empty_mem;
3916 
3917     if (new_in != old_in) {
3918       // Warning:  Do not combine this "if" with the previous "if"
3919       // A memory slice might have be be rewritten even if it is semantically
3920       // unchanged, if the base_memory value has changed.
3921       set_req(i, new_in);
3922       progress = this;          // Report progress
3923     }
3924   }
3925 
3926   if (new_base != old_base) {
3927     set_req(Compile::AliasIdxBot, new_base);
3928     // Don't use set_base_memory(new_base), because we need to update du.
3929     assert(base_memory() == new_base, "");
3930     progress = this;
3931   }
3932 
3933   if( base_memory() == this ) {
3934     // a self cycle indicates this memory path is dead
3935     set_req(Compile::AliasIdxBot, empty_mem);
3936   }
3937 
3938   // Resolve external cycles by calling Ideal on a MergeMem base_memory
3939   // Recursion must occur after the self cycle check above
3940   if( base_memory()->is_MergeMem() ) {
3941     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3942     Node *m = phase->transform(new_mbase);  // Rollup any cycles
3943     if( m != NULL && (m->is_top() ||
3944         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3945       // propagate rollup of dead cycle to self
3946       set_req(Compile::AliasIdxBot, empty_mem);
3947     }
3948   }
3949 
3950   if( base_memory() == empty_mem ) {
3951     progress = this;
3952     // Cut inputs during Parse phase only.
3953     // During Optimize phase a dead MergeMem node will be subsumed by Top.
3954     if( !can_reshape ) {
3955       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3956         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3957       }
3958     }
3959   }
3960 
3961   if( !progress && base_memory()->is_Phi() && can_reshape ) {
3962     // Check if PhiNode::Ideal's "Split phis through memory merges"
3963     // transform should be attempted. Look for this->phi->this cycle.
3964     uint merge_width = req();
3965     if (merge_width > Compile::AliasIdxRaw) {
3966       PhiNode* phi = base_memory()->as_Phi();
3967       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3968         if (phi->in(i) == this) {
3969           phase->is_IterGVN()->_worklist.push(phi);
3970           break;
3971         }
3972       }
3973     }
3974   }
3975 
3976   assert(progress || verify_sparse(), "please, no dups of base");
3977   return progress;
3978 }
3979 
3980 //-------------------------set_base_memory-------------------------------------
3981 void MergeMemNode::set_base_memory(Node *new_base) {
3982   Node* empty_mem = empty_memory();
3983   set_req(Compile::AliasIdxBot, new_base);
3984   assert(memory_at(req()) == new_base, "must set default memory");
3985   // Clear out other occurrences of new_base:
3986   if (new_base != empty_mem) {
3987     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3988       if (in(i) == new_base)  set_req(i, empty_mem);
3989     }
3990   }
3991 }
3992 
3993 //------------------------------out_RegMask------------------------------------
3994 const RegMask &MergeMemNode::out_RegMask() const {
3995   return RegMask::Empty;
3996 }
3997 
3998 //------------------------------dump_spec--------------------------------------
3999 #ifndef PRODUCT
4000 void MergeMemNode::dump_spec(outputStream *st) const {
4001   st->print(" {");
4002   Node* base_mem = base_memory();
4003   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4004     Node* mem = memory_at(i);
4005     if (mem == base_mem) { st->print(" -"); continue; }
4006     st->print( " N%d:", mem->_idx );
4007     Compile::current()->get_adr_type(i)->dump_on(st);
4008   }
4009   st->print(" }");
4010 }
4011 #endif // !PRODUCT
4012 
4013 
4014 #ifdef ASSERT
4015 static bool might_be_same(Node* a, Node* b) {
4016   if (a == b)  return true;
4017   if (!(a->is_Phi() || b->is_Phi()))  return false;
4018   // phis shift around during optimization
4019   return true;  // pretty stupid...
4020 }
4021 
4022 // verify a narrow slice (either incoming or outgoing)
4023 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4024   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4025   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4026   if (Node::in_dump())      return;  // muzzle asserts when printing
4027   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4028   assert(n != NULL, "");
4029   // Elide intervening MergeMem's
4030   while (n->is_MergeMem()) {
4031     n = n->as_MergeMem()->memory_at(alias_idx);
4032   }
4033   Compile* C = Compile::current();
4034   const TypePtr* n_adr_type = n->adr_type();
4035   if (n == m->empty_memory()) {
4036     // Implicit copy of base_memory()
4037   } else if (n_adr_type != TypePtr::BOTTOM) {
4038     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4039     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4040   } else {
4041     // A few places like make_runtime_call "know" that VM calls are narrow,
4042     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4043     bool expected_wide_mem = false;
4044     if (n == m->base_memory()) {
4045       expected_wide_mem = true;
4046     } else if (alias_idx == Compile::AliasIdxRaw ||
4047                n == m->memory_at(Compile::AliasIdxRaw)) {
4048       expected_wide_mem = true;
4049     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4050       // memory can "leak through" calls on channels that
4051       // are write-once.  Allow this also.
4052       expected_wide_mem = true;
4053     }
4054     assert(expected_wide_mem, "expected narrow slice replacement");
4055   }
4056 }
4057 #else // !ASSERT
4058 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
4059 #endif
4060 
4061 
4062 //-----------------------------memory_at---------------------------------------
4063 Node* MergeMemNode::memory_at(uint alias_idx) const {
4064   assert(alias_idx >= Compile::AliasIdxRaw ||
4065          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4066          "must avoid base_memory and AliasIdxTop");
4067 
4068   // Otherwise, it is a narrow slice.
4069   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4070   Compile *C = Compile::current();
4071   if (is_empty_memory(n)) {
4072     // the array is sparse; empty slots are the "top" node
4073     n = base_memory();
4074     assert(Node::in_dump()
4075            || n == NULL || n->bottom_type() == Type::TOP
4076            || n->adr_type() == TypePtr::BOTTOM
4077            || n->adr_type() == TypeRawPtr::BOTTOM
4078            || Compile::current()->AliasLevel() == 0,
4079            "must be a wide memory");
4080     // AliasLevel == 0 if we are organizing the memory states manually.
4081     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4082   } else {
4083     // make sure the stored slice is sane
4084     #ifdef ASSERT
4085     if (is_error_reported() || Node::in_dump()) {
4086     } else if (might_be_same(n, base_memory())) {
4087       // Give it a pass:  It is a mostly harmless repetition of the base.
4088       // This can arise normally from node subsumption during optimization.
4089     } else {
4090       verify_memory_slice(this, alias_idx, n);
4091     }
4092     #endif
4093   }
4094   return n;
4095 }
4096 
4097 //---------------------------set_memory_at-------------------------------------
4098 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4099   verify_memory_slice(this, alias_idx, n);
4100   Node* empty_mem = empty_memory();
4101   if (n == base_memory())  n = empty_mem;  // collapse default
4102   uint need_req = alias_idx+1;
4103   if (req() < need_req) {
4104     if (n == empty_mem)  return;  // already the default, so do not grow me
4105     // grow the sparse array
4106     do {
4107       add_req(empty_mem);
4108     } while (req() < need_req);
4109   }
4110   set_req( alias_idx, n );
4111 }
4112 
4113 
4114 
4115 //--------------------------iteration_setup------------------------------------
4116 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4117   if (other != NULL) {
4118     grow_to_match(other);
4119     // invariant:  the finite support of mm2 is within mm->req()
4120     #ifdef ASSERT
4121     for (uint i = req(); i < other->req(); i++) {
4122       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4123     }
4124     #endif
4125   }
4126   // Replace spurious copies of base_memory by top.
4127   Node* base_mem = base_memory();
4128   if (base_mem != NULL && !base_mem->is_top()) {
4129     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4130       if (in(i) == base_mem)
4131         set_req(i, empty_memory());
4132     }
4133   }
4134 }
4135 
4136 //---------------------------grow_to_match-------------------------------------
4137 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4138   Node* empty_mem = empty_memory();
4139   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4140   // look for the finite support of the other memory
4141   for (uint i = other->req(); --i >= req(); ) {
4142     if (other->in(i) != empty_mem) {
4143       uint new_len = i+1;
4144       while (req() < new_len)  add_req(empty_mem);
4145       break;
4146     }
4147   }
4148 }
4149 
4150 //---------------------------verify_sparse-------------------------------------
4151 #ifndef PRODUCT
4152 bool MergeMemNode::verify_sparse() const {
4153   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4154   Node* base_mem = base_memory();
4155   // The following can happen in degenerate cases, since empty==top.
4156   if (is_empty_memory(base_mem))  return true;
4157   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4158     assert(in(i) != NULL, "sane slice");
4159     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4160   }
4161   return true;
4162 }
4163 
4164 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4165   Node* n;
4166   n = mm->in(idx);
4167   if (mem == n)  return true;  // might be empty_memory()
4168   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4169   if (mem == n)  return true;
4170   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4171     if (mem == n)  return true;
4172     if (n == NULL)  break;
4173   }
4174   return false;
4175 }
4176 #endif // !PRODUCT