1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_parse1.cpp.incl"
  27 
  28 // Static array so we can figure out which bytecodes stop us from compiling
  29 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  30 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  31 
  32 int nodes_created              = 0;
  33 int methods_parsed             = 0;
  34 int methods_seen               = 0;
  35 int blocks_parsed              = 0;
  36 int blocks_seen                = 0;
  37 
  38 int explicit_null_checks_inserted = 0;
  39 int explicit_null_checks_elided   = 0;
  40 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  41 int implicit_null_throws          = 0;
  42 
  43 int reclaim_idx  = 0;
  44 int reclaim_in   = 0;
  45 int reclaim_node = 0;
  46 
  47 #ifndef PRODUCT
  48 bool Parse::BytecodeParseHistogram::_initialized = false;
  49 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  50 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  51 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  52 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  53 #endif
  54 
  55 //------------------------------print_statistics-------------------------------
  56 #ifndef PRODUCT
  57 void Parse::print_statistics() {
  58   tty->print_cr("--- Compiler Statistics ---");
  59   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  60   tty->print("  Nodes created: %d", nodes_created);
  61   tty->cr();
  62   if (methods_seen != methods_parsed)
  63     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  64   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  65 
  66   if( explicit_null_checks_inserted )
  67     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  68   if( all_null_checks_found )
  69     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  70                   (100*implicit_null_checks)/all_null_checks_found);
  71   if( implicit_null_throws )
  72     tty->print_cr("%d implicit null exceptions at runtime",
  73                   implicit_null_throws);
  74 
  75   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  76     BytecodeParseHistogram::print();
  77   }
  78 }
  79 #endif
  80 
  81 //------------------------------ON STACK REPLACEMENT---------------------------
  82 
  83 // Construct a node which can be used to get incoming state for
  84 // on stack replacement.
  85 Node *Parse::fetch_interpreter_state(int index,
  86                                      BasicType bt,
  87                                      Node *local_addrs,
  88                                      Node *local_addrs_base) {
  89   Node *mem = memory(Compile::AliasIdxRaw);
  90   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
  91   Node *ctl = control();
  92 
  93   // Very similar to LoadNode::make, except we handle un-aligned longs and
  94   // doubles on Sparc.  Intel can handle them just fine directly.
  95   Node *l;
  96   switch( bt ) {                // Signature is flattened
  97   case T_INT:     l = new (C, 3) LoadINode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
  98   case T_FLOAT:   l = new (C, 3) LoadFNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
  99   case T_ADDRESS: l = new (C, 3) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
 100   case T_OBJECT:  l = new (C, 3) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 101   case T_LONG:
 102   case T_DOUBLE: {
 103     // Since arguments are in reverse order, the argument address 'adr'
 104     // refers to the back half of the long/double.  Recompute adr.
 105     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 106     if( Matcher::misaligned_doubles_ok ) {
 107       l = (bt == T_DOUBLE)
 108         ? (Node*)new (C, 3) LoadDNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 109         : (Node*)new (C, 3) LoadLNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 110     } else {
 111       l = (bt == T_DOUBLE)
 112         ? (Node*)new (C, 3) LoadD_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 113         : (Node*)new (C, 3) LoadL_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 114     }
 115     break;
 116   }
 117   default: ShouldNotReachHere();
 118   }
 119   return _gvn.transform(l);
 120 }
 121 
 122 // Helper routine to prevent the interpreter from handing
 123 // unexpected typestate to an OSR method.
 124 // The Node l is a value newly dug out of the interpreter frame.
 125 // The type is the type predicted by ciTypeFlow.  Note that it is
 126 // not a general type, but can only come from Type::get_typeflow_type.
 127 // The safepoint is a map which will feed an uncommon trap.
 128 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 129                                     SafePointNode* &bad_type_exit) {
 130 
 131   const TypeOopPtr* tp = type->isa_oopptr();
 132 
 133   // TypeFlow may assert null-ness if a type appears unloaded.
 134   if (type == TypePtr::NULL_PTR ||
 135       (tp != NULL && !tp->klass()->is_loaded())) {
 136     // Value must be null, not a real oop.
 137     Node* chk = _gvn.transform( new (C, 3) CmpPNode(l, null()) );
 138     Node* tst = _gvn.transform( new (C, 2) BoolNode(chk, BoolTest::eq) );
 139     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 140     set_control(_gvn.transform( new (C, 1) IfTrueNode(iff) ));
 141     Node* bad_type = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 142     bad_type_exit->control()->add_req(bad_type);
 143     l = null();
 144   }
 145 
 146   // Typeflow can also cut off paths from the CFG, based on
 147   // types which appear unloaded, or call sites which appear unlinked.
 148   // When paths are cut off, values at later merge points can rise
 149   // toward more specific classes.  Make sure these specific classes
 150   // are still in effect.
 151   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 152     // TypeFlow asserted a specific object type.  Value must have that type.
 153     Node* bad_type_ctrl = NULL;
 154     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 155     bad_type_exit->control()->add_req(bad_type_ctrl);
 156   }
 157 
 158   BasicType bt_l = _gvn.type(l)->basic_type();
 159   BasicType bt_t = type->basic_type();
 160   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 161   return l;
 162 }
 163 
 164 // Helper routine which sets up elements of the initial parser map when
 165 // performing a parse for on stack replacement.  Add values into map.
 166 // The only parameter contains the address of a interpreter arguments.
 167 void Parse::load_interpreter_state(Node* osr_buf) {
 168   int index;
 169   int max_locals = jvms()->loc_size();
 170   int max_stack  = jvms()->stk_size();
 171 
 172 
 173   // Mismatch between method and jvms can occur since map briefly held
 174   // an OSR entry state (which takes up one RawPtr word).
 175   assert(max_locals == method()->max_locals(), "sanity");
 176   assert(max_stack  >= method()->max_stack(),  "sanity");
 177   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 178   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 179 
 180   // Find the start block.
 181   Block* osr_block = start_block();
 182   assert(osr_block->start() == osr_bci(), "sanity");
 183 
 184   // Set initial BCI.
 185   set_parse_bci(osr_block->start());
 186 
 187   // Set initial stack depth.
 188   set_sp(osr_block->start_sp());
 189 
 190   // Check bailouts.  We currently do not perform on stack replacement
 191   // of loops in catch blocks or loops which branch with a non-empty stack.
 192   if (sp() != 0) {
 193     C->record_method_not_compilable("OSR starts with non-empty stack");
 194     return;
 195   }
 196   // Do not OSR inside finally clauses:
 197   if (osr_block->has_trap_at(osr_block->start())) {
 198     C->record_method_not_compilable("OSR starts with an immediate trap");
 199     return;
 200   }
 201 
 202   // Commute monitors from interpreter frame to compiler frame.
 203   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 204   int mcnt = osr_block->flow()->monitor_count();
 205   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 206   for (index = 0; index < mcnt; index++) {
 207     // Make a BoxLockNode for the monitor.
 208     Node *box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
 209 
 210 
 211     // Displaced headers and locked objects are interleaved in the
 212     // temp OSR buffer.  We only copy the locked objects out here.
 213     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 214     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 215     // Try and copy the displaced header to the BoxNode
 216     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 217 
 218 
 219     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 220 
 221     // Build a bogus FastLockNode (no code will be generated) and push the
 222     // monitor into our debug info.
 223     const FastLockNode *flock = _gvn.transform(new (C, 3) FastLockNode( 0, lock_object, box ))->as_FastLock();
 224     map()->push_monitor(flock);
 225 
 226     // If the lock is our method synchronization lock, tuck it away in
 227     // _sync_lock for return and rethrow exit paths.
 228     if (index == 0 && method()->is_synchronized()) {
 229       _synch_lock = flock;
 230     }
 231   }
 232 
 233   // Use the raw liveness computation to make sure that unexpected
 234   // values don't propagate into the OSR frame.
 235   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 236   if (!live_locals.is_valid()) {
 237     // Degenerate or breakpointed method.
 238     C->record_method_not_compilable("OSR in empty or breakpointed method");
 239     return;
 240   }
 241 
 242   // Extract the needed locals from the interpreter frame.
 243   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 244 
 245   // find all the locals that the interpreter thinks contain live oops
 246   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 247   for (index = 0; index < max_locals; index++) {
 248 
 249     if (!live_locals.at(index)) {
 250       continue;
 251     }
 252 
 253     const Type *type = osr_block->local_type_at(index);
 254 
 255     if (type->isa_oopptr() != NULL) {
 256 
 257       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 258       // else we might load a stale oop if the MethodLiveness disagrees with the
 259       // result of the interpreter. If the interpreter says it is dead we agree
 260       // by making the value go to top.
 261       //
 262 
 263       if (!live_oops.at(index)) {
 264         if (C->log() != NULL) {
 265           C->log()->elem("OSR_mismatch local_index='%d'",index);
 266         }
 267         set_local(index, null());
 268         // and ignore it for the loads
 269         continue;
 270       }
 271     }
 272 
 273     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 274     if (type == Type::TOP || type == Type::HALF) {
 275       continue;
 276     }
 277     // If the type falls to bottom, then this must be a local that
 278     // is mixing ints and oops or some such.  Forcing it to top
 279     // makes it go dead.
 280     if (type == Type::BOTTOM) {
 281       continue;
 282     }
 283     // Construct code to access the appropriate local.
 284     BasicType bt = type->basic_type();
 285     if (type == TypePtr::NULL_PTR) {
 286       // Ptr types are mixed together with T_ADDRESS but NULL is
 287       // really for T_OBJECT types so correct it.
 288       bt = T_OBJECT;
 289     }
 290     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 291     set_local(index, value);
 292   }
 293 
 294   // Extract the needed stack entries from the interpreter frame.
 295   for (index = 0; index < sp(); index++) {
 296     const Type *type = osr_block->stack_type_at(index);
 297     if (type != Type::TOP) {
 298       // Currently the compiler bails out when attempting to on stack replace
 299       // at a bci with a non-empty stack.  We should not reach here.
 300       ShouldNotReachHere();
 301     }
 302   }
 303 
 304   // End the OSR migration
 305   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 306                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 307                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 308                     osr_buf);
 309 
 310   // Now that the interpreter state is loaded, make sure it will match
 311   // at execution time what the compiler is expecting now:
 312   SafePointNode* bad_type_exit = clone_map();
 313   bad_type_exit->set_control(new (C, 1) RegionNode(1));
 314 
 315   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 316   for (index = 0; index < max_locals; index++) {
 317     if (stopped())  break;
 318     Node* l = local(index);
 319     if (l->is_top())  continue;  // nothing here
 320     const Type *type = osr_block->local_type_at(index);
 321     if (type->isa_oopptr() != NULL) {
 322       if (!live_oops.at(index)) {
 323         // skip type check for dead oops
 324         continue;
 325       }
 326     }
 327     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 328       // In our current system it's illegal for jsr addresses to be
 329       // live into an OSR entry point because the compiler performs
 330       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 331       // case and aborts the compile if addresses are live into an OSR
 332       // entry point.  Because of that we can assume that any address
 333       // locals at the OSR entry point are dead.  Method liveness
 334       // isn't precise enought to figure out that they are dead in all
 335       // cases so simply skip checking address locals all
 336       // together. Any type check is guaranteed to fail since the
 337       // interpreter type is the result of a load which might have any
 338       // value and the expected type is a constant.
 339       continue;
 340     }
 341     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 342   }
 343 
 344   for (index = 0; index < sp(); index++) {
 345     if (stopped())  break;
 346     Node* l = stack(index);
 347     if (l->is_top())  continue;  // nothing here
 348     const Type *type = osr_block->stack_type_at(index);
 349     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 350   }
 351 
 352   if (bad_type_exit->control()->req() > 1) {
 353     // Build an uncommon trap here, if any inputs can be unexpected.
 354     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 355     record_for_igvn(bad_type_exit->control());
 356     SafePointNode* types_are_good = map();
 357     set_map(bad_type_exit);
 358     // The unexpected type happens because a new edge is active
 359     // in the CFG, which typeflow had previously ignored.
 360     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 361     // This x will be typed as Integer if notReached is not yet linked.
 362     uncommon_trap(Deoptimization::Reason_unreached,
 363                   Deoptimization::Action_reinterpret);
 364     set_map(types_are_good);
 365   }
 366 }
 367 
 368 //------------------------------Parse------------------------------------------
 369 // Main parser constructor.
 370 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 371   : _exits(caller)
 372 {
 373   // Init some variables
 374   _caller = caller;
 375   _method = parse_method;
 376   _expected_uses = expected_uses;
 377   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 378   _wrote_final = false;
 379   _entry_bci = InvocationEntryBci;
 380   _tf = NULL;
 381   _block = NULL;
 382   debug_only(_block_count = -1);
 383   debug_only(_blocks = (Block*)-1);
 384 #ifndef PRODUCT
 385   if (PrintCompilation || PrintOpto) {
 386     // Make sure I have an inline tree, so I can print messages about it.
 387     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 388     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method, true);
 389   }
 390   _max_switch_depth = 0;
 391   _est_switch_depth = 0;
 392 #endif
 393 
 394   _tf = TypeFunc::make(method());
 395   _iter.reset_to_method(method());
 396   _flow = method()->get_flow_analysis();
 397   if (_flow->failing()) {
 398     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 399   }
 400 
 401 #ifndef PRODUCT
 402   if (_flow->has_irreducible_entry()) {
 403     C->set_parsed_irreducible_loop(true);
 404   }
 405 #endif
 406 
 407   if (_expected_uses <= 0) {
 408     _prof_factor = 1;
 409   } else {
 410     float prof_total = parse_method->interpreter_invocation_count();
 411     if (prof_total <= _expected_uses) {
 412       _prof_factor = 1;
 413     } else {
 414       _prof_factor = _expected_uses / prof_total;
 415     }
 416   }
 417 
 418   CompileLog* log = C->log();
 419   if (log != NULL) {
 420     log->begin_head("parse method='%d' uses='%g'",
 421                     log->identify(parse_method), expected_uses);
 422     if (depth() == 1 && C->is_osr_compilation()) {
 423       log->print(" osr_bci='%d'", C->entry_bci());
 424     }
 425     log->stamp();
 426     log->end_head();
 427   }
 428 
 429   // Accumulate deoptimization counts.
 430   // (The range_check and store_check counts are checked elsewhere.)
 431   ciMethodData* md = method()->method_data();
 432   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 433     uint md_count = md->trap_count(reason);
 434     if (md_count != 0) {
 435       if (md_count == md->trap_count_limit())
 436         md_count += md->overflow_trap_count();
 437       uint total_count = C->trap_count(reason);
 438       uint old_count   = total_count;
 439       total_count += md_count;
 440       // Saturate the add if it overflows.
 441       if (total_count < old_count || total_count < md_count)
 442         total_count = (uint)-1;
 443       C->set_trap_count(reason, total_count);
 444       if (log != NULL)
 445         log->elem("observe trap='%s' count='%d' total='%d'",
 446                   Deoptimization::trap_reason_name(reason),
 447                   md_count, total_count);
 448     }
 449   }
 450   // Accumulate total sum of decompilations, also.
 451   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 452 
 453   _count_invocations = C->do_count_invocations();
 454   _method_data_update = C->do_method_data_update();
 455 
 456   if (log != NULL && method()->has_exception_handlers()) {
 457     log->elem("observe that='has_exception_handlers'");
 458   }
 459 
 460   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 461   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 462 
 463   // Always register dependence if JVMTI is enabled, because
 464   // either breakpoint setting or hotswapping of methods may
 465   // cause deoptimization.
 466   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 467     C->dependencies()->assert_evol_method(method());
 468   }
 469 
 470   methods_seen++;
 471 
 472   // Do some special top-level things.
 473   if (depth() == 1 && C->is_osr_compilation()) {
 474     _entry_bci = C->entry_bci();
 475     _flow = method()->get_osr_flow_analysis(osr_bci());
 476     if (_flow->failing()) {
 477       C->record_method_not_compilable(_flow->failure_reason());
 478 #ifndef PRODUCT
 479       if (PrintOpto && (Verbose || WizardMode)) {
 480         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 481         if (Verbose) {
 482           method()->print_oop();
 483           method()->print_codes();
 484           _flow->print();
 485         }
 486       }
 487 #endif
 488     }
 489     _tf = C->tf();     // the OSR entry type is different
 490   }
 491 
 492 #ifdef ASSERT
 493   if (depth() == 1) {
 494     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 495     if (C->tf() != tf()) {
 496       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 497       assert(C->env()->system_dictionary_modification_counter_changed(),
 498              "Must invalidate if TypeFuncs differ");
 499     }
 500   } else {
 501     assert(!this->is_osr_parse(), "no recursive OSR");
 502   }
 503 #endif
 504 
 505   methods_parsed++;
 506 #ifndef PRODUCT
 507   // add method size here to guarantee that inlined methods are added too
 508   if (TimeCompiler)
 509     _total_bytes_compiled += method()->code_size();
 510 
 511   show_parse_info();
 512 #endif
 513 
 514   if (failing()) {
 515     if (log)  log->done("parse");
 516     return;
 517   }
 518 
 519   gvn().set_type(root(), root()->bottom_type());
 520   gvn().transform(top());
 521 
 522   // Import the results of the ciTypeFlow.
 523   init_blocks();
 524 
 525   // Merge point for all normal exits
 526   build_exits();
 527 
 528   // Setup the initial JVM state map.
 529   SafePointNode* entry_map = create_entry_map();
 530 
 531   // Check for bailouts during map initialization
 532   if (failing() || entry_map == NULL) {
 533     if (log)  log->done("parse");
 534     return;
 535   }
 536 
 537   Node_Notes* caller_nn = C->default_node_notes();
 538   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 539   if (DebugInlinedCalls || depth() == 1) {
 540     C->set_default_node_notes(make_node_notes(caller_nn));
 541   }
 542 
 543   if (is_osr_parse()) {
 544     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 545     entry_map->set_req(TypeFunc::Parms+0, top());
 546     set_map(entry_map);
 547     load_interpreter_state(osr_buf);
 548   } else {
 549     set_map(entry_map);
 550     do_method_entry();
 551   }
 552 
 553   // Check for bailouts during method entry.
 554   if (failing()) {
 555     if (log)  log->done("parse");
 556     C->set_default_node_notes(caller_nn);
 557     return;
 558   }
 559 
 560   entry_map = map();  // capture any changes performed by method setup code
 561   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 562 
 563   // We begin parsing as if we have just encountered a jump to the
 564   // method entry.
 565   Block* entry_block = start_block();
 566   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 567   set_map_clone(entry_map);
 568   merge_common(entry_block, entry_block->next_path_num());
 569 
 570 #ifndef PRODUCT
 571   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 572   set_parse_histogram( parse_histogram_obj );
 573 #endif
 574 
 575   // Parse all the basic blocks.
 576   do_all_blocks();
 577 
 578   C->set_default_node_notes(caller_nn);
 579 
 580   // Check for bailouts during conversion to graph
 581   if (failing()) {
 582     if (log)  log->done("parse");
 583     return;
 584   }
 585 
 586   // Fix up all exiting control flow.
 587   set_map(entry_map);
 588   do_exits();
 589 
 590   if (log)  log->done("parse nodes='%d' memory='%d'",
 591                       C->unique(), C->node_arena()->used());
 592 }
 593 
 594 //---------------------------do_all_blocks-------------------------------------
 595 void Parse::do_all_blocks() {
 596   bool has_irreducible = flow()->has_irreducible_entry();
 597 
 598   // Walk over all blocks in Reverse Post-Order.
 599   while (true) {
 600     bool progress = false;
 601     for (int rpo = 0; rpo < block_count(); rpo++) {
 602       Block* block = rpo_at(rpo);
 603 
 604       if (block->is_parsed()) continue;
 605 
 606       if (!block->is_merged()) {
 607         // Dead block, no state reaches this block
 608         continue;
 609       }
 610 
 611       // Prepare to parse this block.
 612       load_state_from(block);
 613 
 614       if (stopped()) {
 615         // Block is dead.
 616         continue;
 617       }
 618 
 619       blocks_parsed++;
 620 
 621       progress = true;
 622       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 623         // Not all preds have been parsed.  We must build phis everywhere.
 624         // (Note that dead locals do not get phis built, ever.)
 625         ensure_phis_everywhere();
 626 
 627         // Leave behind an undisturbed copy of the map, for future merges.
 628         set_map(clone_map());
 629       }
 630 
 631       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 632         // In the absence of irreducible loops, the Region and Phis
 633         // associated with a merge that doesn't involve a backedge can
 634         // be simplified now since the RPO parsing order guarantees
 635         // that any path which was supposed to reach here has already
 636         // been parsed or must be dead.
 637         Node* c = control();
 638         Node* result = _gvn.transform_no_reclaim(control());
 639         if (c != result && TraceOptoParse) {
 640           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 641         }
 642         if (result != top()) {
 643           record_for_igvn(result);
 644         }
 645       }
 646 
 647       // Parse the block.
 648       do_one_block();
 649 
 650       // Check for bailouts.
 651       if (failing())  return;
 652     }
 653 
 654     // with irreducible loops multiple passes might be necessary to parse everything
 655     if (!has_irreducible || !progress) {
 656       break;
 657     }
 658   }
 659 
 660   blocks_seen += block_count();
 661 
 662 #ifndef PRODUCT
 663   // Make sure there are no half-processed blocks remaining.
 664   // Every remaining unprocessed block is dead and may be ignored now.
 665   for (int rpo = 0; rpo < block_count(); rpo++) {
 666     Block* block = rpo_at(rpo);
 667     if (!block->is_parsed()) {
 668       if (TraceOptoParse) {
 669         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 670       }
 671       assert(!block->is_merged(), "no half-processed blocks");
 672     }
 673   }
 674 #endif
 675 }
 676 
 677 //-------------------------------build_exits----------------------------------
 678 // Build normal and exceptional exit merge points.
 679 void Parse::build_exits() {
 680   // make a clone of caller to prevent sharing of side-effects
 681   _exits.set_map(_exits.clone_map());
 682   _exits.clean_stack(_exits.sp());
 683   _exits.sync_jvms();
 684 
 685   RegionNode* region = new (C, 1) RegionNode(1);
 686   record_for_igvn(region);
 687   gvn().set_type_bottom(region);
 688   _exits.set_control(region);
 689 
 690   // Note:  iophi and memphi are not transformed until do_exits.
 691   Node* iophi  = new (C, region->req()) PhiNode(region, Type::ABIO);
 692   Node* memphi = new (C, region->req()) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 693   _exits.set_i_o(iophi);
 694   _exits.set_all_memory(memphi);
 695 
 696   // Add a return value to the exit state.  (Do not push it yet.)
 697   if (tf()->range()->cnt() > TypeFunc::Parms) {
 698     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 699     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 700     // becomes loaded during the subsequent parsing, the loaded and unloaded
 701     // types will not join when we transform and push in do_exits().
 702     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 703     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 704       ret_type = TypeOopPtr::BOTTOM;
 705     }
 706     int         ret_size = type2size[ret_type->basic_type()];
 707     Node*       ret_phi  = new (C, region->req()) PhiNode(region, ret_type);
 708     _exits.ensure_stack(ret_size);
 709     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 710     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 711     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 712     // Note:  ret_phi is not yet pushed, until do_exits.
 713   }
 714 }
 715 
 716 
 717 //----------------------------build_start_state-------------------------------
 718 // Construct a state which contains only the incoming arguments from an
 719 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 720 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 721   int        arg_size = tf->domain()->cnt();
 722   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 723   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 724   SafePointNode* map  = new (this, max_size) SafePointNode(max_size, NULL);
 725   record_for_igvn(map);
 726   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 727   Node_Notes* old_nn = default_node_notes();
 728   if (old_nn != NULL && has_method()) {
 729     Node_Notes* entry_nn = old_nn->clone(this);
 730     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 731     entry_jvms->set_offsets(0);
 732     entry_jvms->set_bci(entry_bci());
 733     entry_nn->set_jvms(entry_jvms);
 734     set_default_node_notes(entry_nn);
 735   }
 736   uint i;
 737   for (i = 0; i < (uint)arg_size; i++) {
 738     Node* parm = initial_gvn()->transform(new (this, 1) ParmNode(start, i));
 739     map->init_req(i, parm);
 740     // Record all these guys for later GVN.
 741     record_for_igvn(parm);
 742   }
 743   for (; i < map->req(); i++) {
 744     map->init_req(i, top());
 745   }
 746   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 747   set_default_node_notes(old_nn);
 748   map->set_jvms(jvms);
 749   jvms->set_map(map);
 750   return jvms;
 751 }
 752 
 753 //-----------------------------make_node_notes---------------------------------
 754 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 755   if (caller_nn == NULL)  return NULL;
 756   Node_Notes* nn = caller_nn->clone(C);
 757   JVMState* caller_jvms = nn->jvms();
 758   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 759   jvms->set_offsets(0);
 760   jvms->set_bci(_entry_bci);
 761   nn->set_jvms(jvms);
 762   return nn;
 763 }
 764 
 765 
 766 //--------------------------return_values--------------------------------------
 767 void Compile::return_values(JVMState* jvms) {
 768   GraphKit kit(jvms);
 769   Node* ret = new (this, TypeFunc::Parms) ReturnNode(TypeFunc::Parms,
 770                              kit.control(),
 771                              kit.i_o(),
 772                              kit.reset_memory(),
 773                              kit.frameptr(),
 774                              kit.returnadr());
 775   // Add zero or 1 return values
 776   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 777   if (ret_size > 0) {
 778     kit.inc_sp(-ret_size);  // pop the return value(s)
 779     kit.sync_jvms();
 780     ret->add_req(kit.argument(0));
 781     // Note:  The second dummy edge is not needed by a ReturnNode.
 782   }
 783   // bind it to root
 784   root()->add_req(ret);
 785   record_for_igvn(ret);
 786   initial_gvn()->transform_no_reclaim(ret);
 787 }
 788 
 789 //------------------------rethrow_exceptions-----------------------------------
 790 // Bind all exception states in the list into a single RethrowNode.
 791 void Compile::rethrow_exceptions(JVMState* jvms) {
 792   GraphKit kit(jvms);
 793   if (!kit.has_exceptions())  return;  // nothing to generate
 794   // Load my combined exception state into the kit, with all phis transformed:
 795   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 796   Node* ex_oop = kit.use_exception_state(ex_map);
 797   RethrowNode* exit = new (this, TypeFunc::Parms + 1) RethrowNode(kit.control(),
 798                                       kit.i_o(), kit.reset_memory(),
 799                                       kit.frameptr(), kit.returnadr(),
 800                                       // like a return but with exception input
 801                                       ex_oop);
 802   // bind to root
 803   root()->add_req(exit);
 804   record_for_igvn(exit);
 805   initial_gvn()->transform_no_reclaim(exit);
 806 }
 807 
 808 //---------------------------do_exceptions-------------------------------------
 809 // Process exceptions arising from the current bytecode.
 810 // Send caught exceptions to the proper handler within this method.
 811 // Unhandled exceptions feed into _exit.
 812 void Parse::do_exceptions() {
 813   if (!has_exceptions())  return;
 814 
 815   if (failing()) {
 816     // Pop them all off and throw them away.
 817     while (pop_exception_state() != NULL) ;
 818     return;
 819   }
 820 
 821   PreserveJVMState pjvms(this, false);
 822 
 823   SafePointNode* ex_map;
 824   while ((ex_map = pop_exception_state()) != NULL) {
 825     if (!method()->has_exception_handlers()) {
 826       // Common case:  Transfer control outward.
 827       // Doing it this early allows the exceptions to common up
 828       // even between adjacent method calls.
 829       throw_to_exit(ex_map);
 830     } else {
 831       // Have to look at the exception first.
 832       assert(stopped(), "catch_inline_exceptions trashes the map");
 833       catch_inline_exceptions(ex_map);
 834       stop_and_kill_map();      // we used up this exception state; kill it
 835     }
 836   }
 837 
 838   // We now return to our regularly scheduled program:
 839 }
 840 
 841 //---------------------------throw_to_exit-------------------------------------
 842 // Merge the given map into an exception exit from this method.
 843 // The exception exit will handle any unlocking of receiver.
 844 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 845 void Parse::throw_to_exit(SafePointNode* ex_map) {
 846   // Pop the JVMS to (a copy of) the caller.
 847   GraphKit caller;
 848   caller.set_map_clone(_caller->map());
 849   caller.set_bci(_caller->bci());
 850   caller.set_sp(_caller->sp());
 851   // Copy out the standard machine state:
 852   for (uint i = 0; i < TypeFunc::Parms; i++) {
 853     caller.map()->set_req(i, ex_map->in(i));
 854   }
 855   // ...and the exception:
 856   Node*          ex_oop        = saved_ex_oop(ex_map);
 857   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 858   // Finally, collect the new exception state in my exits:
 859   _exits.add_exception_state(caller_ex_map);
 860 }
 861 
 862 //------------------------------do_exits---------------------------------------
 863 void Parse::do_exits() {
 864   set_parse_bci(InvocationEntryBci);
 865 
 866   // Now peephole on the return bits
 867   Node* region = _exits.control();
 868   _exits.set_control(gvn().transform(region));
 869 
 870   Node* iophi = _exits.i_o();
 871   _exits.set_i_o(gvn().transform(iophi));
 872 
 873   if (wrote_final()) {
 874     // This method (which must be a constructor by the rules of Java)
 875     // wrote a final.  The effects of all initializations must be
 876     // committed to memory before any code after the constructor
 877     // publishes the reference to the newly constructor object.
 878     // Rather than wait for the publication, we simply block the
 879     // writes here.  Rather than put a barrier on only those writes
 880     // which are required to complete, we force all writes to complete.
 881     //
 882     // "All bets are off" unless the first publication occurs after a
 883     // normal return from the constructor.  We do not attempt to detect
 884     // such unusual early publications.  But no barrier is needed on
 885     // exceptional returns, since they cannot publish normally.
 886     //
 887     _exits.insert_mem_bar(Op_MemBarRelease);
 888 #ifndef PRODUCT
 889     if (PrintOpto && (Verbose || WizardMode)) {
 890       method()->print_name();
 891       tty->print_cr(" writes finals and needs a memory barrier");
 892     }
 893 #endif
 894   }
 895 
 896   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 897     // transform each slice of the original memphi:
 898     mms.set_memory(_gvn.transform(mms.memory()));
 899   }
 900 
 901   if (tf()->range()->cnt() > TypeFunc::Parms) {
 902     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 903     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 904     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 905     _exits.push_node(ret_type->basic_type(), ret_phi);
 906   }
 907 
 908   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 909 
 910   // Unlock along the exceptional paths.
 911   // This is done late so that we can common up equivalent exceptions
 912   // (e.g., null checks) arising from multiple points within this method.
 913   // See GraphKit::add_exception_state, which performs the commoning.
 914   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 915 
 916   // record exit from a method if compiled while Dtrace is turned on.
 917   if (do_synch || C->env()->dtrace_method_probes()) {
 918     // First move the exception list out of _exits:
 919     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 920     SafePointNode* normal_map = kit.map();  // keep this guy safe
 921     // Now re-collect the exceptions into _exits:
 922     SafePointNode* ex_map;
 923     while ((ex_map = kit.pop_exception_state()) != NULL) {
 924       Node* ex_oop = kit.use_exception_state(ex_map);
 925       // Force the exiting JVM state to have this method at InvocationEntryBci.
 926       // The exiting JVM state is otherwise a copy of the calling JVMS.
 927       JVMState* caller = kit.jvms();
 928       JVMState* ex_jvms = caller->clone_shallow(C);
 929       ex_jvms->set_map(kit.clone_map());
 930       ex_jvms->map()->set_jvms(ex_jvms);
 931       ex_jvms->set_bci(   InvocationEntryBci);
 932       kit.set_jvms(ex_jvms);
 933       if (do_synch) {
 934         // Add on the synchronized-method box/object combo
 935         kit.map()->push_monitor(_synch_lock);
 936         // Unlock!
 937         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 938       }
 939       if (C->env()->dtrace_method_probes()) {
 940         kit.make_dtrace_method_exit(method());
 941       }
 942       // Done with exception-path processing.
 943       ex_map = kit.make_exception_state(ex_oop);
 944       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
 945       // Pop the last vestige of this method:
 946       ex_map->set_jvms(caller->clone_shallow(C));
 947       ex_map->jvms()->set_map(ex_map);
 948       _exits.push_exception_state(ex_map);
 949     }
 950     assert(_exits.map() == normal_map, "keep the same return state");
 951   }
 952 
 953   {
 954     // Capture very early exceptions (receiver null checks) from caller JVMS
 955     GraphKit caller(_caller);
 956     SafePointNode* ex_map;
 957     while ((ex_map = caller.pop_exception_state()) != NULL) {
 958       _exits.add_exception_state(ex_map);
 959     }
 960   }
 961 }
 962 
 963 //-----------------------------create_entry_map-------------------------------
 964 // Initialize our parser map to contain the types at method entry.
 965 // For OSR, the map contains a single RawPtr parameter.
 966 // Initial monitor locking for sync. methods is performed by do_method_entry.
 967 SafePointNode* Parse::create_entry_map() {
 968   // Check for really stupid bail-out cases.
 969   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
 970   if (len >= 32760) {
 971     C->record_method_not_compilable_all_tiers("too many local variables");
 972     return NULL;
 973   }
 974 
 975   // If this is an inlined method, we may have to do a receiver null check.
 976   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
 977     GraphKit kit(_caller);
 978     kit.null_check_receiver(method());
 979     _caller = kit.transfer_exceptions_into_jvms();
 980     if (kit.stopped()) {
 981       _exits.add_exception_states_from(_caller);
 982       _exits.set_jvms(_caller);
 983       return NULL;
 984     }
 985   }
 986 
 987   assert(method() != NULL, "parser must have a method");
 988 
 989   // Create an initial safepoint to hold JVM state during parsing
 990   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
 991   set_map(new (C, len) SafePointNode(len, jvms));
 992   jvms->set_map(map());
 993   record_for_igvn(map());
 994   assert(jvms->endoff() == len, "correct jvms sizing");
 995 
 996   SafePointNode* inmap = _caller->map();
 997   assert(inmap != NULL, "must have inmap");
 998 
 999   uint i;
1000 
1001   // Pass thru the predefined input parameters.
1002   for (i = 0; i < TypeFunc::Parms; i++) {
1003     map()->init_req(i, inmap->in(i));
1004   }
1005 
1006   if (depth() == 1) {
1007     assert(map()->memory()->Opcode() == Op_Parm, "");
1008     // Insert the memory aliasing node
1009     set_all_memory(reset_memory());
1010   }
1011   assert(merged_memory(), "");
1012 
1013   // Now add the locals which are initially bound to arguments:
1014   uint arg_size = tf()->domain()->cnt();
1015   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1016   for (i = TypeFunc::Parms; i < arg_size; i++) {
1017     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1018   }
1019 
1020   // Clear out the rest of the map (locals and stack)
1021   for (i = arg_size; i < len; i++) {
1022     map()->init_req(i, top());
1023   }
1024 
1025   SafePointNode* entry_map = stop();
1026   return entry_map;
1027 }
1028 
1029 //-----------------------------do_method_entry--------------------------------
1030 // Emit any code needed in the pseudo-block before BCI zero.
1031 // The main thing to do is lock the receiver of a synchronized method.
1032 void Parse::do_method_entry() {
1033   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1034   set_sp(0);                      // Java Stack Pointer
1035 
1036   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1037 
1038   if (C->env()->dtrace_method_probes()) {
1039     make_dtrace_method_entry(method());
1040   }
1041 
1042   // If the method is synchronized, we need to construct a lock node, attach
1043   // it to the Start node, and pin it there.
1044   if (method()->is_synchronized()) {
1045     // Insert a FastLockNode right after the Start which takes as arguments
1046     // the current thread pointer, the "this" pointer & the address of the
1047     // stack slot pair used for the lock.  The "this" pointer is a projection
1048     // off the start node, but the locking spot has to be constructed by
1049     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1050     // becomes the second argument to the FastLockNode call.  The
1051     // FastLockNode becomes the new control parent to pin it to the start.
1052 
1053     // Setup Object Pointer
1054     Node *lock_obj = NULL;
1055     if(method()->is_static()) {
1056       ciInstance* mirror = _method->holder()->java_mirror();
1057       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1058       lock_obj = makecon(t_lock);
1059     } else {                  // Else pass the "this" pointer,
1060       lock_obj = local(0);    // which is Parm0 from StartNode
1061     }
1062     // Clear out dead values from the debug info.
1063     kill_dead_locals();
1064     // Build the FastLockNode
1065     _synch_lock = shared_lock(lock_obj);
1066   }
1067 
1068   if (depth() == 1) {
1069     increment_and_test_invocation_counter(Tier2CompileThreshold);
1070   }
1071 }
1072 
1073 //------------------------------init_blocks------------------------------------
1074 // Initialize our parser map to contain the types/monitors at method entry.
1075 void Parse::init_blocks() {
1076   // Create the blocks.
1077   _block_count = flow()->block_count();
1078   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1079   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1080 
1081   int rpo;
1082 
1083   // Initialize the structs.
1084   for (rpo = 0; rpo < block_count(); rpo++) {
1085     Block* block = rpo_at(rpo);
1086     block->init_node(this, rpo);
1087   }
1088 
1089   // Collect predecessor and successor information.
1090   for (rpo = 0; rpo < block_count(); rpo++) {
1091     Block* block = rpo_at(rpo);
1092     block->init_graph(this);
1093   }
1094 }
1095 
1096 //-------------------------------init_node-------------------------------------
1097 void Parse::Block::init_node(Parse* outer, int rpo) {
1098   _flow = outer->flow()->rpo_at(rpo);
1099   _pred_count = 0;
1100   _preds_parsed = 0;
1101   _count = 0;
1102   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1103   assert(!(is_merged() || is_parsed() || is_handler()), "sanity");
1104   assert(_live_locals.size() == 0, "sanity");
1105 
1106   // entry point has additional predecessor
1107   if (flow()->is_start())  _pred_count++;
1108   assert(flow()->is_start() == (this == outer->start_block()), "");
1109 }
1110 
1111 //-------------------------------init_graph------------------------------------
1112 void Parse::Block::init_graph(Parse* outer) {
1113   // Create the successor list for this parser block.
1114   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1115   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1116   int ns = tfs->length();
1117   int ne = tfe->length();
1118   _num_successors = ns;
1119   _all_successors = ns+ne;
1120   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1121   int p = 0;
1122   for (int i = 0; i < ns+ne; i++) {
1123     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1124     Block* block2 = outer->rpo_at(tf2->rpo());
1125     _successors[i] = block2;
1126 
1127     // Accumulate pred info for the other block, too.
1128     if (i < ns) {
1129       block2->_pred_count++;
1130     } else {
1131       block2->_is_handler = true;
1132     }
1133 
1134     #ifdef ASSERT
1135     // A block's successors must be distinguishable by BCI.
1136     // That is, no bytecode is allowed to branch to two different
1137     // clones of the same code location.
1138     for (int j = 0; j < i; j++) {
1139       Block* block1 = _successors[j];
1140       if (block1 == block2)  continue;  // duplicates are OK
1141       assert(block1->start() != block2->start(), "successors have unique bcis");
1142     }
1143     #endif
1144   }
1145 
1146   // Note: We never call next_path_num along exception paths, so they
1147   // never get processed as "ready".  Also, the input phis of exception
1148   // handlers get specially processed, so that
1149 }
1150 
1151 //---------------------------successor_for_bci---------------------------------
1152 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1153   for (int i = 0; i < all_successors(); i++) {
1154     Block* block2 = successor_at(i);
1155     if (block2->start() == bci)  return block2;
1156   }
1157   // We can actually reach here if ciTypeFlow traps out a block
1158   // due to an unloaded class, and concurrently with compilation the
1159   // class is then loaded, so that a later phase of the parser is
1160   // able to see more of the bytecode CFG.  Or, the flow pass and
1161   // the parser can have a minor difference of opinion about executability
1162   // of bytecodes.  For example, "obj.field = null" is executable even
1163   // if the field's type is an unloaded class; the flow pass used to
1164   // make a trap for such code.
1165   return NULL;
1166 }
1167 
1168 
1169 //-----------------------------stack_type_at-----------------------------------
1170 const Type* Parse::Block::stack_type_at(int i) const {
1171   return get_type(flow()->stack_type_at(i));
1172 }
1173 
1174 
1175 //-----------------------------local_type_at-----------------------------------
1176 const Type* Parse::Block::local_type_at(int i) const {
1177   // Make dead locals fall to bottom.
1178   if (_live_locals.size() == 0) {
1179     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1180     // This bitmap can be zero length if we saw a breakpoint.
1181     // In such cases, pretend they are all live.
1182     ((Block*)this)->_live_locals = live_locals;
1183   }
1184   if (_live_locals.size() > 0 && !_live_locals.at(i))
1185     return Type::BOTTOM;
1186 
1187   return get_type(flow()->local_type_at(i));
1188 }
1189 
1190 
1191 #ifndef PRODUCT
1192 
1193 //----------------------------name_for_bc--------------------------------------
1194 // helper method for BytecodeParseHistogram
1195 static const char* name_for_bc(int i) {
1196   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1197 }
1198 
1199 //----------------------------BytecodeParseHistogram------------------------------------
1200 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1201   _parser   = p;
1202   _compiler = c;
1203   if( ! _initialized ) { _initialized = true; reset(); }
1204 }
1205 
1206 //----------------------------current_count------------------------------------
1207 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1208   switch( bph_type ) {
1209   case BPH_transforms: { return _parser->gvn().made_progress(); }
1210   case BPH_values:     { return _parser->gvn().made_new_values(); }
1211   default: { ShouldNotReachHere(); return 0; }
1212   }
1213 }
1214 
1215 //----------------------------initialized--------------------------------------
1216 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1217 
1218 //----------------------------reset--------------------------------------------
1219 void Parse::BytecodeParseHistogram::reset() {
1220   int i = Bytecodes::number_of_codes;
1221   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1222 }
1223 
1224 //----------------------------set_initial_state--------------------------------
1225 // Record info when starting to parse one bytecode
1226 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1227   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1228     _initial_bytecode    = bc;
1229     _initial_node_count  = _compiler->unique();
1230     _initial_transforms  = current_count(BPH_transforms);
1231     _initial_values      = current_count(BPH_values);
1232   }
1233 }
1234 
1235 //----------------------------record_change--------------------------------
1236 // Record results of parsing one bytecode
1237 void Parse::BytecodeParseHistogram::record_change() {
1238   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1239     ++_bytecodes_parsed[_initial_bytecode];
1240     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1241     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1242     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1243   }
1244 }
1245 
1246 
1247 //----------------------------print--------------------------------------------
1248 void Parse::BytecodeParseHistogram::print(float cutoff) {
1249   ResourceMark rm;
1250   // print profile
1251   int total  = 0;
1252   int i      = 0;
1253   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1254   int abs_sum = 0;
1255   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1256   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1257   if( total == 0 ) { return; }
1258   tty->cr();
1259   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1260   tty->print_cr("relative:  percentage contribution to compiled nodes");
1261   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1262   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1263   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1264   tty->print_cr("values  :  Average number of node values improved per bytecode");
1265   tty->print_cr("name    :  Bytecode name");
1266   tty->cr();
1267   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1268   tty->print_cr("----------------------------------------------------------------------");
1269   while (--i > 0) {
1270     int       abs = _bytecodes_parsed[i];
1271     float     rel = abs * 100.0F / total;
1272     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1273     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1274     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1275     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1276     if (cutoff <= rel) {
1277       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1278       abs_sum += abs;
1279     }
1280   }
1281   tty->print_cr("----------------------------------------------------------------------");
1282   float rel_sum = abs_sum * 100.0F / total;
1283   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1284   tty->print_cr("----------------------------------------------------------------------");
1285   tty->cr();
1286 }
1287 #endif
1288 
1289 //----------------------------load_state_from----------------------------------
1290 // Load block/map/sp.  But not do not touch iter/bci.
1291 void Parse::load_state_from(Block* block) {
1292   set_block(block);
1293   // load the block's JVM state:
1294   set_map(block->start_map());
1295   set_sp( block->start_sp());
1296 }
1297 
1298 
1299 //-----------------------------record_state------------------------------------
1300 void Parse::Block::record_state(Parse* p) {
1301   assert(!is_merged(), "can only record state once, on 1st inflow");
1302   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1303   set_start_map(p->stop());
1304 }
1305 
1306 
1307 //------------------------------do_one_block-----------------------------------
1308 void Parse::do_one_block() {
1309   if (TraceOptoParse) {
1310     Block *b = block();
1311     int ns = b->num_successors();
1312     int nt = b->all_successors();
1313 
1314     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1315                   block()->rpo(), block()->start(), block()->limit());
1316     for (int i = 0; i < nt; i++) {
1317       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1318     }
1319     if (b->is_loop_head()) tty->print("  lphd");
1320     tty->print_cr("");
1321   }
1322 
1323   assert(block()->is_merged(), "must be merged before being parsed");
1324   block()->mark_parsed();
1325   ++_blocks_parsed;
1326 
1327   // Set iterator to start of block.
1328   iter().reset_to_bci(block()->start());
1329 
1330   CompileLog* log = C->log();
1331 
1332   // Parse bytecodes
1333   while (!stopped() && !failing()) {
1334     iter().next();
1335 
1336     // Learn the current bci from the iterator:
1337     set_parse_bci(iter().cur_bci());
1338 
1339     if (bci() == block()->limit()) {
1340       // insert a predicate if it falls through to a loop head block
1341       if (should_add_predicate(bci())){
1342         add_predicate();
1343       }
1344       // Do not walk into the next block until directed by do_all_blocks.
1345       merge(bci());
1346       break;
1347     }
1348     assert(bci() < block()->limit(), "bci still in block");
1349 
1350     if (log != NULL) {
1351       // Output an optional context marker, to help place actions
1352       // that occur during parsing of this BC.  If there is no log
1353       // output until the next context string, this context string
1354       // will be silently ignored.
1355       log->context()->reset();
1356       log->context()->print_cr("<bc code='%d' bci='%d'/>", (int)bc(), bci());
1357     }
1358 
1359     if (block()->has_trap_at(bci())) {
1360       // We must respect the flow pass's traps, because it will refuse
1361       // to produce successors for trapping blocks.
1362       int trap_index = block()->flow()->trap_index();
1363       assert(trap_index != 0, "trap index must be valid");
1364       uncommon_trap(trap_index);
1365       break;
1366     }
1367 
1368     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1369 
1370 #ifdef ASSERT
1371     int pre_bc_sp = sp();
1372     int inputs, depth;
1373     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1374     assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC");
1375 #endif //ASSERT
1376 
1377     do_one_bytecode();
1378 
1379     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
1380 
1381     do_exceptions();
1382 
1383     NOT_PRODUCT( parse_histogram()->record_change(); );
1384 
1385     if (log != NULL)  log->context()->reset();  // done w/ this one
1386 
1387     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1388     // successor which is typically made ready by visiting this bytecode.
1389     // If the successor has several predecessors, then it is a merge
1390     // point, starts a new basic block, and is handled like other basic blocks.
1391   }
1392 }
1393 
1394 
1395 //------------------------------merge------------------------------------------
1396 void Parse::set_parse_bci(int bci) {
1397   set_bci(bci);
1398   Node_Notes* nn = C->default_node_notes();
1399   if (nn == NULL)  return;
1400 
1401   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1402   if (!DebugInlinedCalls && depth() > 1) {
1403     return;
1404   }
1405 
1406   // Update the JVMS annotation, if present.
1407   JVMState* jvms = nn->jvms();
1408   if (jvms != NULL && jvms->bci() != bci) {
1409     // Update the JVMS.
1410     jvms = jvms->clone_shallow(C);
1411     jvms->set_bci(bci);
1412     nn->set_jvms(jvms);
1413   }
1414 }
1415 
1416 //------------------------------merge------------------------------------------
1417 // Merge the current mapping into the basic block starting at bci
1418 void Parse::merge(int target_bci) {
1419   Block* target = successor_for_bci(target_bci);
1420   if (target == NULL) { handle_missing_successor(target_bci); return; }
1421   assert(!target->is_ready(), "our arrival must be expected");
1422   int pnum = target->next_path_num();
1423   merge_common(target, pnum);
1424 }
1425 
1426 //-------------------------merge_new_path--------------------------------------
1427 // Merge the current mapping into the basic block, using a new path
1428 void Parse::merge_new_path(int target_bci) {
1429   Block* target = successor_for_bci(target_bci);
1430   if (target == NULL) { handle_missing_successor(target_bci); return; }
1431   assert(!target->is_ready(), "new path into frozen graph");
1432   int pnum = target->add_new_path();
1433   merge_common(target, pnum);
1434 }
1435 
1436 //-------------------------merge_exception-------------------------------------
1437 // Merge the current mapping into the basic block starting at bci
1438 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1439 void Parse::merge_exception(int target_bci) {
1440   assert(sp() == 1, "must have only the throw exception on the stack");
1441   Block* target = successor_for_bci(target_bci);
1442   if (target == NULL) { handle_missing_successor(target_bci); return; }
1443   assert(target->is_handler(), "exceptions are handled by special blocks");
1444   int pnum = target->add_new_path();
1445   merge_common(target, pnum);
1446 }
1447 
1448 //--------------------handle_missing_successor---------------------------------
1449 void Parse::handle_missing_successor(int target_bci) {
1450 #ifndef PRODUCT
1451   Block* b = block();
1452   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1453   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1454 #endif
1455   ShouldNotReachHere();
1456 }
1457 
1458 //--------------------------merge_common---------------------------------------
1459 void Parse::merge_common(Parse::Block* target, int pnum) {
1460   if (TraceOptoParse) {
1461     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1462   }
1463 
1464   // Zap extra stack slots to top
1465   assert(sp() == target->start_sp(), "");
1466   clean_stack(sp());
1467 
1468   if (!target->is_merged()) {   // No prior mapping at this bci
1469     if (TraceOptoParse) { tty->print(" with empty state");  }
1470 
1471     // If this path is dead, do not bother capturing it as a merge.
1472     // It is "as if" we had 1 fewer predecessors from the beginning.
1473     if (stopped()) {
1474       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1475       return;
1476     }
1477 
1478     // Record that a new block has been merged.
1479     ++_blocks_merged;
1480 
1481     // Make a region if we know there are multiple or unpredictable inputs.
1482     // (Also, if this is a plain fall-through, we might see another region,
1483     // which must not be allowed into this block's map.)
1484     if (pnum > PhiNode::Input         // Known multiple inputs.
1485         || target->is_handler()       // These have unpredictable inputs.
1486         || target->is_loop_head()     // Known multiple inputs
1487         || control()->is_Region()) {  // We must hide this guy.
1488       // Add a Region to start the new basic block.  Phis will be added
1489       // later lazily.
1490       int edges = target->pred_count();
1491       if (edges < pnum)  edges = pnum;  // might be a new path!
1492       Node *r = new (C, edges+1) RegionNode(edges+1);
1493       gvn().set_type(r, Type::CONTROL);
1494       record_for_igvn(r);
1495       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1496       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1497       r->init_req(pnum, control());
1498       set_control(r);
1499     }
1500 
1501     // Convert the existing Parser mapping into a mapping at this bci.
1502     store_state_to(target);
1503     assert(target->is_merged(), "do not come here twice");
1504 
1505   } else {                      // Prior mapping at this bci
1506     if (TraceOptoParse) {  tty->print(" with previous state"); }
1507 
1508     // We must not manufacture more phis if the target is already parsed.
1509     bool nophi = target->is_parsed();
1510 
1511     SafePointNode* newin = map();// Hang on to incoming mapping
1512     Block* save_block = block(); // Hang on to incoming block;
1513     load_state_from(target);    // Get prior mapping
1514 
1515     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1516     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1517     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1518     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1519 
1520     // Iterate over my current mapping and the old mapping.
1521     // Where different, insert Phi functions.
1522     // Use any existing Phi functions.
1523     assert(control()->is_Region(), "must be merging to a region");
1524     RegionNode* r = control()->as_Region();
1525 
1526     // Compute where to merge into
1527     // Merge incoming control path
1528     r->init_req(pnum, newin->control());
1529 
1530     if (pnum == 1) {            // Last merge for this Region?
1531       if (!block()->flow()->is_irreducible_entry()) {
1532         Node* result = _gvn.transform_no_reclaim(r);
1533         if (r != result && TraceOptoParse) {
1534           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1535         }
1536       }
1537       record_for_igvn(r);
1538     }
1539 
1540     // Update all the non-control inputs to map:
1541     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1542     bool check_elide_phi = target->is_SEL_backedge(save_block);
1543     for (uint j = 1; j < newin->req(); j++) {
1544       Node* m = map()->in(j);   // Current state of target.
1545       Node* n = newin->in(j);   // Incoming change to target state.
1546       PhiNode* phi;
1547       if (m->is_Phi() && m->as_Phi()->region() == r)
1548         phi = m->as_Phi();
1549       else
1550         phi = NULL;
1551       if (m != n) {             // Different; must merge
1552         switch (j) {
1553         // Frame pointer and Return Address never changes
1554         case TypeFunc::FramePtr:// Drop m, use the original value
1555         case TypeFunc::ReturnAdr:
1556           break;
1557         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1558           assert(phi == NULL, "the merge contains phis, not vice versa");
1559           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1560           continue;
1561         default:                // All normal stuff
1562           if (phi == NULL) {
1563             if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1564               phi = ensure_phi(j, nophi);
1565             }
1566           }
1567           break;
1568         }
1569       }
1570       // At this point, n might be top if:
1571       //  - there is no phi (because TypeFlow detected a conflict), or
1572       //  - the corresponding control edges is top (a dead incoming path)
1573       // It is a bug if we create a phi which sees a garbage value on a live path.
1574 
1575       if (phi != NULL) {
1576         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1577         assert(phi->region() == r, "");
1578         phi->set_req(pnum, n);  // Then add 'n' to the merge
1579         if (pnum == PhiNode::Input) {
1580           // Last merge for this Phi.
1581           // So far, Phis have had a reasonable type from ciTypeFlow.
1582           // Now _gvn will join that with the meet of current inputs.
1583           // BOTTOM is never permissible here, 'cause pessimistically
1584           // Phis of pointers cannot lose the basic pointer type.
1585           debug_only(const Type* bt1 = phi->bottom_type());
1586           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1587           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1588           debug_only(const Type* bt2 = phi->bottom_type());
1589           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1590           record_for_igvn(phi);
1591         }
1592       }
1593     } // End of for all values to be merged
1594 
1595     if (pnum == PhiNode::Input &&
1596         !r->in(0)) {         // The occasional useless Region
1597       assert(control() == r, "");
1598       set_control(r->nonnull_req());
1599     }
1600 
1601     // newin has been subsumed into the lazy merge, and is now dead.
1602     set_block(save_block);
1603 
1604     stop();                     // done with this guy, for now
1605   }
1606 
1607   if (TraceOptoParse) {
1608     tty->print_cr(" on path %d", pnum);
1609   }
1610 
1611   // Done with this parser state.
1612   assert(stopped(), "");
1613 }
1614 
1615 
1616 //--------------------------merge_memory_edges---------------------------------
1617 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1618   // (nophi means we must not create phis, because we already parsed here)
1619   assert(n != NULL, "");
1620   // Merge the inputs to the MergeMems
1621   MergeMemNode* m = merged_memory();
1622 
1623   assert(control()->is_Region(), "must be merging to a region");
1624   RegionNode* r = control()->as_Region();
1625 
1626   PhiNode* base = NULL;
1627   MergeMemNode* remerge = NULL;
1628   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1629     Node *p = mms.force_memory();
1630     Node *q = mms.memory2();
1631     if (mms.is_empty() && nophi) {
1632       // Trouble:  No new splits allowed after a loop body is parsed.
1633       // Instead, wire the new split into a MergeMem on the backedge.
1634       // The optimizer will sort it out, slicing the phi.
1635       if (remerge == NULL) {
1636         assert(base != NULL, "");
1637         assert(base->in(0) != NULL, "should not be xformed away");
1638         remerge = MergeMemNode::make(C, base->in(pnum));
1639         gvn().set_type(remerge, Type::MEMORY);
1640         base->set_req(pnum, remerge);
1641       }
1642       remerge->set_memory_at(mms.alias_idx(), q);
1643       continue;
1644     }
1645     assert(!q->is_MergeMem(), "");
1646     PhiNode* phi;
1647     if (p != q) {
1648       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1649     } else {
1650       if (p->is_Phi() && p->as_Phi()->region() == r)
1651         phi = p->as_Phi();
1652       else
1653         phi = NULL;
1654     }
1655     // Insert q into local phi
1656     if (phi != NULL) {
1657       assert(phi->region() == r, "");
1658       p = phi;
1659       phi->set_req(pnum, q);
1660       if (mms.at_base_memory()) {
1661         base = phi;  // delay transforming it
1662       } else if (pnum == 1) {
1663         record_for_igvn(phi);
1664         p = _gvn.transform_no_reclaim(phi);
1665       }
1666       mms.set_memory(p);// store back through the iterator
1667     }
1668   }
1669   // Transform base last, in case we must fiddle with remerging.
1670   if (base != NULL && pnum == 1) {
1671     record_for_igvn(base);
1672     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1673   }
1674 }
1675 
1676 
1677 //------------------------ensure_phis_everywhere-------------------------------
1678 void Parse::ensure_phis_everywhere() {
1679   ensure_phi(TypeFunc::I_O);
1680 
1681   // Ensure a phi on all currently known memories.
1682   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1683     ensure_memory_phi(mms.alias_idx());
1684     debug_only(mms.set_memory());  // keep the iterator happy
1685   }
1686 
1687   // Note:  This is our only chance to create phis for memory slices.
1688   // If we miss a slice that crops up later, it will have to be
1689   // merged into the base-memory phi that we are building here.
1690   // Later, the optimizer will comb out the knot, and build separate
1691   // phi-loops for each memory slice that matters.
1692 
1693   // Monitors must nest nicely and not get confused amongst themselves.
1694   // Phi-ify everything up to the monitors, though.
1695   uint monoff = map()->jvms()->monoff();
1696   uint nof_monitors = map()->jvms()->nof_monitors();
1697 
1698   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1699   bool check_elide_phi = block()->is_SEL_head();
1700   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1701     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1702       ensure_phi(i);
1703     }
1704   }
1705 
1706   // Even monitors need Phis, though they are well-structured.
1707   // This is true for OSR methods, and also for the rare cases where
1708   // a monitor object is the subject of a replace_in_map operation.
1709   // See bugs 4426707 and 5043395.
1710   for (uint m = 0; m < nof_monitors; m++) {
1711     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1712   }
1713 }
1714 
1715 
1716 //-----------------------------add_new_path------------------------------------
1717 // Add a previously unaccounted predecessor to this block.
1718 int Parse::Block::add_new_path() {
1719   // If there is no map, return the lowest unused path number.
1720   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1721 
1722   SafePointNode* map = start_map();
1723   if (!map->control()->is_Region())
1724     return pred_count()+1;  // there may be a region some day
1725   RegionNode* r = map->control()->as_Region();
1726 
1727   // Add new path to the region.
1728   uint pnum = r->req();
1729   r->add_req(NULL);
1730 
1731   for (uint i = 1; i < map->req(); i++) {
1732     Node* n = map->in(i);
1733     if (i == TypeFunc::Memory) {
1734       // Ensure a phi on all currently known memories.
1735       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1736         Node* phi = mms.memory();
1737         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1738           assert(phi->req() == pnum, "must be same size as region");
1739           phi->add_req(NULL);
1740         }
1741       }
1742     } else {
1743       if (n->is_Phi() && n->as_Phi()->region() == r) {
1744         assert(n->req() == pnum, "must be same size as region");
1745         n->add_req(NULL);
1746       }
1747     }
1748   }
1749 
1750   return pnum;
1751 }
1752 
1753 //------------------------------ensure_phi-------------------------------------
1754 // Turn the idx'th entry of the current map into a Phi
1755 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1756   SafePointNode* map = this->map();
1757   Node* region = map->control();
1758   assert(region->is_Region(), "");
1759 
1760   Node* o = map->in(idx);
1761   assert(o != NULL, "");
1762 
1763   if (o == top())  return NULL; // TOP always merges into TOP
1764 
1765   if (o->is_Phi() && o->as_Phi()->region() == region) {
1766     return o->as_Phi();
1767   }
1768 
1769   // Now use a Phi here for merging
1770   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1771   const JVMState* jvms = map->jvms();
1772   const Type* t;
1773   if (jvms->is_loc(idx)) {
1774     t = block()->local_type_at(idx - jvms->locoff());
1775   } else if (jvms->is_stk(idx)) {
1776     t = block()->stack_type_at(idx - jvms->stkoff());
1777   } else if (jvms->is_mon(idx)) {
1778     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1779     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1780   } else if ((uint)idx < TypeFunc::Parms) {
1781     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1782   } else {
1783     assert(false, "no type information for this phi");
1784   }
1785 
1786   // If the type falls to bottom, then this must be a local that
1787   // is mixing ints and oops or some such.  Forcing it to top
1788   // makes it go dead.
1789   if (t == Type::BOTTOM) {
1790     map->set_req(idx, top());
1791     return NULL;
1792   }
1793 
1794   // Do not create phis for top either.
1795   // A top on a non-null control flow must be an unused even after the.phi.
1796   if (t == Type::TOP || t == Type::HALF) {
1797     map->set_req(idx, top());
1798     return NULL;
1799   }
1800 
1801   PhiNode* phi = PhiNode::make(region, o, t);
1802   gvn().set_type(phi, t);
1803   if (C->do_escape_analysis()) record_for_igvn(phi);
1804   map->set_req(idx, phi);
1805   return phi;
1806 }
1807 
1808 //--------------------------ensure_memory_phi----------------------------------
1809 // Turn the idx'th slice of the current memory into a Phi
1810 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1811   MergeMemNode* mem = merged_memory();
1812   Node* region = control();
1813   assert(region->is_Region(), "");
1814 
1815   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1816   assert(o != NULL && o != top(), "");
1817 
1818   PhiNode* phi;
1819   if (o->is_Phi() && o->as_Phi()->region() == region) {
1820     phi = o->as_Phi();
1821     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1822       // clone the shared base memory phi to make a new memory split
1823       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1824       const Type* t = phi->bottom_type();
1825       const TypePtr* adr_type = C->get_adr_type(idx);
1826       phi = phi->slice_memory(adr_type);
1827       gvn().set_type(phi, t);
1828     }
1829     return phi;
1830   }
1831 
1832   // Now use a Phi here for merging
1833   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1834   const Type* t = o->bottom_type();
1835   const TypePtr* adr_type = C->get_adr_type(idx);
1836   phi = PhiNode::make(region, o, t, adr_type);
1837   gvn().set_type(phi, t);
1838   if (idx == Compile::AliasIdxBot)
1839     mem->set_base_memory(phi);
1840   else
1841     mem->set_memory_at(idx, phi);
1842   return phi;
1843 }
1844 
1845 //------------------------------call_register_finalizer-----------------------
1846 // Check the klass of the receiver and call register_finalizer if the
1847 // class need finalization.
1848 void Parse::call_register_finalizer() {
1849   Node* receiver = local(0);
1850   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1851          "must have non-null instance type");
1852 
1853   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1854   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1855     // The type isn't known exactly so see if CHA tells us anything.
1856     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1857     if (!Dependencies::has_finalizable_subclass(ik)) {
1858       // No finalizable subclasses so skip the dynamic check.
1859       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1860       return;
1861     }
1862   }
1863 
1864   // Insert a dynamic test for whether the instance needs
1865   // finalization.  In general this will fold up since the concrete
1866   // class is often visible so the access flags are constant.
1867   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1868   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1869 
1870   Node* access_flags_addr = basic_plus_adr(klass, klass, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
1871   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1872 
1873   Node* mask  = _gvn.transform(new (C, 3) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1874   Node* check = _gvn.transform(new (C, 3) CmpINode(mask, intcon(0)));
1875   Node* test  = _gvn.transform(new (C, 2) BoolNode(check, BoolTest::ne));
1876 
1877   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1878 
1879   RegionNode* result_rgn = new (C, 3) RegionNode(3);
1880   record_for_igvn(result_rgn);
1881 
1882   Node *skip_register = _gvn.transform(new (C, 1) IfFalseNode(iff));
1883   result_rgn->init_req(1, skip_register);
1884 
1885   Node *needs_register = _gvn.transform(new (C, 1) IfTrueNode(iff));
1886   set_control(needs_register);
1887   if (stopped()) {
1888     // There is no slow path.
1889     result_rgn->init_req(2, top());
1890   } else {
1891     Node *call = make_runtime_call(RC_NO_LEAF,
1892                                    OptoRuntime::register_finalizer_Type(),
1893                                    OptoRuntime::register_finalizer_Java(),
1894                                    NULL, TypePtr::BOTTOM,
1895                                    receiver);
1896     make_slow_call_ex(call, env()->Throwable_klass(), true);
1897 
1898     Node* fast_io  = call->in(TypeFunc::I_O);
1899     Node* fast_mem = call->in(TypeFunc::Memory);
1900     // These two phis are pre-filled with copies of of the fast IO and Memory
1901     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1902     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1903 
1904     result_rgn->init_req(2, control());
1905     io_phi    ->init_req(2, i_o());
1906     mem_phi   ->init_req(2, reset_memory());
1907 
1908     set_all_memory( _gvn.transform(mem_phi) );
1909     set_i_o(        _gvn.transform(io_phi) );
1910   }
1911 
1912   set_control( _gvn.transform(result_rgn) );
1913 }
1914 
1915 //------------------------------return_current---------------------------------
1916 // Append current _map to _exit_return
1917 void Parse::return_current(Node* value) {
1918   if (RegisterFinalizersAtInit &&
1919       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1920     call_register_finalizer();
1921   }
1922 
1923   // Do not set_parse_bci, so that return goo is credited to the return insn.
1924   set_bci(InvocationEntryBci);
1925   if (method()->is_synchronized() && GenerateSynchronizationCode) {
1926     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1927   }
1928   if (C->env()->dtrace_method_probes()) {
1929     make_dtrace_method_exit(method());
1930   }
1931   SafePointNode* exit_return = _exits.map();
1932   exit_return->in( TypeFunc::Control  )->add_req( control() );
1933   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
1934   Node *mem = exit_return->in( TypeFunc::Memory   );
1935   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
1936     if (mms.is_empty()) {
1937       // get a copy of the base memory, and patch just this one input
1938       const TypePtr* adr_type = mms.adr_type(C);
1939       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
1940       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
1941       gvn().set_type_bottom(phi);
1942       phi->del_req(phi->req()-1);  // prepare to re-patch
1943       mms.set_memory(phi);
1944     }
1945     mms.memory()->add_req(mms.memory2());
1946   }
1947 
1948   // frame pointer is always same, already captured
1949   if (value != NULL) {
1950     // If returning oops to an interface-return, there is a silent free
1951     // cast from oop to interface allowed by the Verifier.  Make it explicit
1952     // here.
1953     Node* phi = _exits.argument(0);
1954     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
1955     if( tr && tr->klass()->is_loaded() &&
1956         tr->klass()->is_interface() ) {
1957       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
1958       if (tp && tp->klass()->is_loaded() &&
1959           !tp->klass()->is_interface()) {
1960         // sharpen the type eagerly; this eases certain assert checking
1961         if (tp->higher_equal(TypeInstPtr::NOTNULL))
1962           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
1963         value = _gvn.transform(new (C, 2) CheckCastPPNode(0,value,tr));
1964       }
1965     }
1966     phi->add_req(value);
1967   }
1968 
1969   stop_and_kill_map();          // This CFG path dies here
1970 }
1971 
1972 
1973 //------------------------------add_safepoint----------------------------------
1974 void Parse::add_safepoint() {
1975   // See if we can avoid this safepoint.  No need for a SafePoint immediately
1976   // after a Call (except Leaf Call) or another SafePoint.
1977   Node *proj = control();
1978   bool add_poll_param = SafePointNode::needs_polling_address_input();
1979   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
1980   if( proj->is_Proj() ) {
1981     Node *n0 = proj->in(0);
1982     if( n0->is_Catch() ) {
1983       n0 = n0->in(0)->in(0);
1984       assert( n0->is_Call(), "expect a call here" );
1985     }
1986     if( n0->is_Call() ) {
1987       if( n0->as_Call()->guaranteed_safepoint() )
1988         return;
1989     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
1990       return;
1991     }
1992   }
1993 
1994   // Clear out dead values from the debug info.
1995   kill_dead_locals();
1996 
1997   // Clone the JVM State
1998   SafePointNode *sfpnt = new (C, parms) SafePointNode(parms, NULL);
1999 
2000   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2001   // SafePoint we need our GC state to be safe; i.e. we need all our current
2002   // write barriers (card marks) to not float down after the SafePoint so we
2003   // must read raw memory.  Likewise we need all oop stores to match the card
2004   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2005   // state on a deopt).
2006 
2007   // We do not need to WRITE the memory state after a SafePoint.  The control
2008   // edge will keep card-marks and oop-stores from floating up from below a
2009   // SafePoint and our true dependency added here will keep them from floating
2010   // down below a SafePoint.
2011 
2012   // Clone the current memory state
2013   Node* mem = MergeMemNode::make(C, map()->memory());
2014 
2015   mem = _gvn.transform(mem);
2016 
2017   // Pass control through the safepoint
2018   sfpnt->init_req(TypeFunc::Control  , control());
2019   // Fix edges normally used by a call
2020   sfpnt->init_req(TypeFunc::I_O      , top() );
2021   sfpnt->init_req(TypeFunc::Memory   , mem   );
2022   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2023   sfpnt->init_req(TypeFunc::FramePtr , top() );
2024 
2025   // Create a node for the polling address
2026   if( add_poll_param ) {
2027     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2028     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2029   }
2030 
2031   // Fix up the JVM State edges
2032   add_safepoint_edges(sfpnt);
2033   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2034   set_control(transformed_sfpnt);
2035 
2036   // Provide an edge from root to safepoint.  This makes the safepoint
2037   // appear useful until the parse has completed.
2038   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2039     assert(C->root() != NULL, "Expect parse is still valid");
2040     C->root()->add_prec(transformed_sfpnt);
2041   }
2042 }
2043 
2044 //------------------------------should_add_predicate--------------------------
2045 bool Parse::should_add_predicate(int target_bci) {
2046   if (!UseLoopPredicate) return false;
2047   Block* target = successor_for_bci(target_bci);
2048   if (target != NULL          &&
2049       target->is_loop_head()  &&
2050       block()->rpo() < target->rpo()) {
2051     return true;
2052   }
2053   return false;
2054 }
2055 
2056 //------------------------------add_predicate---------------------------------
2057 void Parse::add_predicate() {
2058   assert(UseLoopPredicate,"use only for loop predicate");
2059   Node *cont    = _gvn.intcon(1);
2060   Node* opq     = _gvn.transform(new (C, 2) Opaque1Node(C, cont));
2061   Node *bol     = _gvn.transform(new (C, 2) Conv2BNode(opq));
2062   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
2063   Node* iffalse = _gvn.transform(new (C, 1) IfFalseNode(iff));
2064   C->add_predicate_opaq(opq);
2065   {
2066     PreserveJVMState pjvms(this);
2067     set_control(iffalse);
2068     uncommon_trap(Deoptimization::Reason_predicate,
2069                   Deoptimization::Action_maybe_recompile);
2070   }
2071   Node* iftrue = _gvn.transform(new (C, 1) IfTrueNode(iff));
2072   set_control(iftrue);
2073 }
2074 
2075 #ifndef PRODUCT
2076 //------------------------show_parse_info--------------------------------------
2077 void Parse::show_parse_info() {
2078   InlineTree* ilt = NULL;
2079   if (C->ilt() != NULL) {
2080     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2081     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2082   }
2083   if (PrintCompilation && Verbose) {
2084     if (depth() == 1) {
2085       if( ilt->count_inlines() ) {
2086         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2087                      ilt->count_inline_bcs());
2088         tty->cr();
2089       }
2090     } else {
2091       if (method()->is_synchronized())         tty->print("s");
2092       if (method()->has_exception_handlers())  tty->print("!");
2093       // Check this is not the final compiled version
2094       if (C->trap_can_recompile()) {
2095         tty->print("-");
2096       } else {
2097         tty->print(" ");
2098       }
2099       method()->print_short_name();
2100       if (is_osr_parse()) {
2101         tty->print(" @ %d", osr_bci());
2102       }
2103       tty->print(" (%d bytes)",method()->code_size());
2104       if (ilt->count_inlines()) {
2105         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2106                    ilt->count_inline_bcs());
2107       }
2108       tty->cr();
2109     }
2110   }
2111   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2112     // Print that we succeeded; suppress this message on the first osr parse.
2113 
2114     if (method()->is_synchronized())         tty->print("s");
2115     if (method()->has_exception_handlers())  tty->print("!");
2116     // Check this is not the final compiled version
2117     if (C->trap_can_recompile() && depth() == 1) {
2118       tty->print("-");
2119     } else {
2120       tty->print(" ");
2121     }
2122     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2123     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2124     method()->print_short_name();
2125     if (is_osr_parse()) {
2126       tty->print(" @ %d", osr_bci());
2127     }
2128     if (ilt->caller_bci() != -1) {
2129       tty->print(" @ %d", ilt->caller_bci());
2130     }
2131     tty->print(" (%d bytes)",method()->code_size());
2132     if (ilt->count_inlines()) {
2133       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2134                  ilt->count_inline_bcs());
2135     }
2136     tty->cr();
2137   }
2138 }
2139 
2140 
2141 //------------------------------dump-------------------------------------------
2142 // Dump information associated with the bytecodes of current _method
2143 void Parse::dump() {
2144   if( method() != NULL ) {
2145     // Iterate over bytecodes
2146     ciBytecodeStream iter(method());
2147     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2148       dump_bci( iter.cur_bci() );
2149       tty->cr();
2150     }
2151   }
2152 }
2153 
2154 // Dump information associated with a byte code index, 'bci'
2155 void Parse::dump_bci(int bci) {
2156   // Output info on merge-points, cloning, and within _jsr..._ret
2157   // NYI
2158   tty->print(" bci:%d", bci);
2159 }
2160 
2161 #endif