1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_parse2.cpp.incl"
  27 
  28 extern int explicit_null_checks_inserted,
  29            explicit_null_checks_elided;
  30 
  31 //---------------------------------array_load----------------------------------
  32 void Parse::array_load(BasicType elem_type) {
  33   const Type* elem = Type::TOP;
  34   Node* adr = array_addressing(elem_type, 0, &elem);
  35   if (stopped())  return;     // guaranteed null or range check
  36   _sp -= 2;                   // Pop array and index
  37   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  38   Node* ld = make_load(control(), adr, elem, elem_type, adr_type);
  39   push(ld);
  40 }
  41 
  42 
  43 //--------------------------------array_store----------------------------------
  44 void Parse::array_store(BasicType elem_type) {
  45   Node* adr = array_addressing(elem_type, 1);
  46   if (stopped())  return;     // guaranteed null or range check
  47   Node* val = pop();
  48   _sp -= 2;                   // Pop array and index
  49   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(elem_type);
  50   store_to_memory(control(), adr, val, elem_type, adr_type);
  51 }
  52 
  53 
  54 //------------------------------array_addressing-------------------------------
  55 // Pull array and index from the stack.  Compute pointer-to-element.
  56 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
  57   Node *idx   = peek(0+vals);   // Get from stack without popping
  58   Node *ary   = peek(1+vals);   // in case of exception
  59 
  60   // Null check the array base, with correct stack contents
  61   ary = do_null_check(ary, T_ARRAY);
  62   // Compile-time detect of null-exception?
  63   if (stopped())  return top();
  64 
  65   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
  66   const TypeInt*    sizetype = arytype->size();
  67   const Type*       elemtype = arytype->elem();
  68 
  69   if (UseUniqueSubclasses && result2 != NULL) {
  70     const Type* el = elemtype->make_ptr();
  71     if (el && el->isa_instptr()) {
  72       const TypeInstPtr* toop = el->is_instptr();
  73       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
  74         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
  75         const Type* subklass = Type::get_const_type(toop->klass());
  76         elemtype = subklass->join(el);
  77       }
  78     }
  79   }
  80 
  81   // Check for big class initializers with all constant offsets
  82   // feeding into a known-size array.
  83   const TypeInt* idxtype = _gvn.type(idx)->is_int();
  84   // See if the highest idx value is less than the lowest array bound,
  85   // and if the idx value cannot be negative:
  86   bool need_range_check = true;
  87   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
  88     need_range_check = false;
  89     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
  90   }
  91 
  92   if (!arytype->klass()->is_loaded()) {
  93     // Only fails for some -Xcomp runs
  94     // The class is unloaded.  We have to run this bytecode in the interpreter.
  95     uncommon_trap(Deoptimization::Reason_unloaded,
  96                   Deoptimization::Action_reinterpret,
  97                   arytype->klass(), "!loaded array");
  98     return top();
  99   }
 100 
 101   // Do the range check
 102   if (GenerateRangeChecks && need_range_check) {
 103     Node* tst;
 104     if (sizetype->_hi <= 0) {
 105       // The greatest array bound is negative, so we can conclude that we're
 106       // compiling unreachable code, but the unsigned compare trick used below
 107       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 108       // the uncommon_trap path will always be taken.
 109       tst = _gvn.intcon(0);
 110     } else {
 111       // Range is constant in array-oop, so we can use the original state of mem
 112       Node* len = load_array_length(ary);
 113 
 114       // Test length vs index (standard trick using unsigned compare)
 115       Node* chk = _gvn.transform( new (C, 3) CmpUNode(idx, len) );
 116       BoolTest::mask btest = BoolTest::lt;
 117       tst = _gvn.transform( new (C, 2) BoolNode(chk, btest) );
 118     }
 119     // Branch to failure if out of bounds
 120     { BuildCutout unless(this, tst, PROB_MAX);
 121       if (C->allow_range_check_smearing()) {
 122         // Do not use builtin_throw, since range checks are sometimes
 123         // made more stringent by an optimistic transformation.
 124         // This creates "tentative" range checks at this point,
 125         // which are not guaranteed to throw exceptions.
 126         // See IfNode::Ideal, is_range_check, adjust_check.
 127         uncommon_trap(Deoptimization::Reason_range_check,
 128                       Deoptimization::Action_make_not_entrant,
 129                       NULL, "range_check");
 130       } else {
 131         // If we have already recompiled with the range-check-widening
 132         // heroic optimization turned off, then we must really be throwing
 133         // range check exceptions.
 134         builtin_throw(Deoptimization::Reason_range_check, idx);
 135       }
 136     }
 137   }
 138   // Check for always knowing you are throwing a range-check exception
 139   if (stopped())  return top();
 140 
 141   Node* ptr = array_element_address(ary, idx, type, sizetype);
 142 
 143   if (result2 != NULL)  *result2 = elemtype;
 144 
 145   assert(ptr != top(), "top should go hand-in-hand with stopped");
 146 
 147   return ptr;
 148 }
 149 
 150 
 151 // returns IfNode
 152 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask) {
 153   Node   *cmp = _gvn.transform( new (C, 3) CmpINode( a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 154   Node   *tst = _gvn.transform( new (C, 2) BoolNode( cmp, mask));
 155   IfNode *iff = create_and_map_if( control(), tst, ((mask == BoolTest::eq) ? PROB_STATIC_INFREQUENT : PROB_FAIR), COUNT_UNKNOWN );
 156   return iff;
 157 }
 158 
 159 // return Region node
 160 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 161   Node *region  = new (C, 3) RegionNode(3); // 2 results
 162   record_for_igvn(region);
 163   region->init_req(1, iffalse);
 164   region->init_req(2, iftrue );
 165   _gvn.set_type(region, Type::CONTROL);
 166   region = _gvn.transform(region);
 167   set_control (region);
 168   return region;
 169 }
 170 
 171 
 172 //------------------------------helper for tableswitch-------------------------
 173 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 174   // True branch, use existing map info
 175   { PreserveJVMState pjvms(this);
 176     Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
 177     set_control( iftrue );
 178     profile_switch_case(prof_table_index);
 179     merge_new_path(dest_bci_if_true);
 180   }
 181 
 182   // False branch
 183   Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 184   set_control( iffalse );
 185 }
 186 
 187 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index) {
 188   // True branch, use existing map info
 189   { PreserveJVMState pjvms(this);
 190     Node *iffalse  = _gvn.transform( new (C, 1) IfFalseNode (iff) );
 191     set_control( iffalse );
 192     profile_switch_case(prof_table_index);
 193     merge_new_path(dest_bci_if_true);
 194   }
 195 
 196   // False branch
 197   Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 198   set_control( iftrue );
 199 }
 200 
 201 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index) {
 202   // False branch, use existing map and control()
 203   profile_switch_case(prof_table_index);
 204   merge_new_path(dest_bci);
 205 }
 206 
 207 
 208 extern "C" {
 209   static int jint_cmp(const void *i, const void *j) {
 210     int a = *(jint *)i;
 211     int b = *(jint *)j;
 212     return a > b ? 1 : a < b ? -1 : 0;
 213   }
 214 }
 215 
 216 
 217 // Default value for methodData switch indexing. Must be a negative value to avoid
 218 // conflict with any legal switch index.
 219 #define NullTableIndex -1
 220 
 221 class SwitchRange : public StackObj {
 222   // a range of integers coupled with a bci destination
 223   jint _lo;                     // inclusive lower limit
 224   jint _hi;                     // inclusive upper limit
 225   int _dest;
 226   int _table_index;             // index into method data table
 227 
 228 public:
 229   jint lo() const              { return _lo;   }
 230   jint hi() const              { return _hi;   }
 231   int  dest() const            { return _dest; }
 232   int  table_index() const     { return _table_index; }
 233   bool is_singleton() const    { return _lo == _hi; }
 234 
 235   void setRange(jint lo, jint hi, int dest, int table_index) {
 236     assert(lo <= hi, "must be a non-empty range");
 237     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index;
 238   }
 239   bool adjoinRange(jint lo, jint hi, int dest, int table_index) {
 240     assert(lo <= hi, "must be a non-empty range");
 241     if (lo == _hi+1 && dest == _dest && table_index == _table_index) {
 242       _hi = hi;
 243       return true;
 244     }
 245     return false;
 246   }
 247 
 248   void set (jint value, int dest, int table_index) {
 249     setRange(value, value, dest, table_index);
 250   }
 251   bool adjoin(jint value, int dest, int table_index) {
 252     return adjoinRange(value, value, dest, table_index);
 253   }
 254 
 255   void print(ciEnv* env) {
 256     if (is_singleton())
 257       tty->print(" {%d}=>%d", lo(), dest());
 258     else if (lo() == min_jint)
 259       tty->print(" {..%d}=>%d", hi(), dest());
 260     else if (hi() == max_jint)
 261       tty->print(" {%d..}=>%d", lo(), dest());
 262     else
 263       tty->print(" {%d..%d}=>%d", lo(), hi(), dest());
 264   }
 265 };
 266 
 267 
 268 //-------------------------------do_tableswitch--------------------------------
 269 void Parse::do_tableswitch() {
 270   Node* lookup = pop();
 271 
 272   // Get information about tableswitch
 273   int default_dest = iter().get_dest_table(0);
 274   int lo_index     = iter().get_int_table(1);
 275   int hi_index     = iter().get_int_table(2);
 276   int len          = hi_index - lo_index + 1;
 277 
 278   if (len < 1) {
 279     // If this is a backward branch, add safepoint
 280     maybe_add_safepoint(default_dest);
 281     if (should_add_predicate(default_dest)){
 282       _sp += 1; // set original stack for use by uncommon_trap
 283       add_predicate();
 284       _sp -= 1;
 285     }
 286     merge(default_dest);
 287     return;
 288   }
 289 
 290   // generate decision tree, using trichotomy when possible
 291   int rnum = len+2;
 292   bool makes_backward_branch = false;
 293   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 294   int rp = -1;
 295   if (lo_index != min_jint) {
 296     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex);
 297   }
 298   for (int j = 0; j < len; j++) {
 299     jint match_int = lo_index+j;
 300     int  dest      = iter().get_dest_table(j+3);
 301     makes_backward_branch |= (dest <= bci());
 302     int  table_index = method_data_update() ? j : NullTableIndex;
 303     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index)) {
 304       ranges[++rp].set(match_int, dest, table_index);
 305     }
 306   }
 307   jint highest = lo_index+(len-1);
 308   assert(ranges[rp].hi() == highest, "");
 309   if (highest != max_jint
 310       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex)) {
 311     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 312   }
 313   assert(rp < len+2, "not too many ranges");
 314 
 315   // Safepoint in case if backward branch observed
 316   if( makes_backward_branch && UseLoopSafepoints )
 317     add_safepoint();
 318 
 319   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 320 }
 321 
 322 
 323 //------------------------------do_lookupswitch--------------------------------
 324 void Parse::do_lookupswitch() {
 325   Node *lookup = pop();         // lookup value
 326   // Get information about lookupswitch
 327   int default_dest = iter().get_dest_table(0);
 328   int len          = iter().get_int_table(1);
 329 
 330   if (len < 1) {    // If this is a backward branch, add safepoint
 331     maybe_add_safepoint(default_dest);
 332     if (should_add_predicate(default_dest)){
 333       _sp += 1; // set original stack for use by uncommon_trap
 334       add_predicate();
 335       _sp -= 1;
 336     }
 337     merge(default_dest);
 338     return;
 339   }
 340 
 341   // generate decision tree, using trichotomy when possible
 342   jint* table = NEW_RESOURCE_ARRAY(jint, len*2);
 343   {
 344     for( int j = 0; j < len; j++ ) {
 345       table[j+j+0] = iter().get_int_table(2+j+j);
 346       table[j+j+1] = iter().get_dest_table(2+j+j+1);
 347     }
 348     qsort( table, len, 2*sizeof(table[0]), jint_cmp );
 349   }
 350 
 351   int rnum = len*2+1;
 352   bool makes_backward_branch = false;
 353   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 354   int rp = -1;
 355   for( int j = 0; j < len; j++ ) {
 356     jint match_int   = table[j+j+0];
 357     int  dest        = table[j+j+1];
 358     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 359     int  table_index = method_data_update() ? j : NullTableIndex;
 360     makes_backward_branch |= (dest <= bci());
 361     if( match_int != next_lo ) {
 362       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex);
 363     }
 364     if( rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index) ) {
 365       ranges[++rp].set(match_int, dest, table_index);
 366     }
 367   }
 368   jint highest = table[2*(len-1)];
 369   assert(ranges[rp].hi() == highest, "");
 370   if( highest != max_jint
 371       && !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex) ) {
 372     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex);
 373   }
 374   assert(rp < rnum, "not too many ranges");
 375 
 376   // Safepoint in case backward branch observed
 377   if( makes_backward_branch && UseLoopSafepoints )
 378     add_safepoint();
 379 
 380   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 381 }
 382 
 383 //----------------------------create_jump_tables-------------------------------
 384 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 385   // Are jumptables enabled
 386   if (!UseJumpTables)  return false;
 387 
 388   // Are jumptables supported
 389   if (!Matcher::has_match_rule(Op_Jump))  return false;
 390 
 391   // Don't make jump table if profiling
 392   if (method_data_update())  return false;
 393 
 394   // Decide if a guard is needed to lop off big ranges at either (or
 395   // both) end(s) of the input set. We'll call this the default target
 396   // even though we can't be sure that it is the true "default".
 397 
 398   bool needs_guard = false;
 399   int default_dest;
 400   int64 total_outlier_size = 0;
 401   int64 hi_size = ((int64)hi->hi()) - ((int64)hi->lo()) + 1;
 402   int64 lo_size = ((int64)lo->hi()) - ((int64)lo->lo()) + 1;
 403 
 404   if (lo->dest() == hi->dest()) {
 405     total_outlier_size = hi_size + lo_size;
 406     default_dest = lo->dest();
 407   } else if (lo_size > hi_size) {
 408     total_outlier_size = lo_size;
 409     default_dest = lo->dest();
 410   } else {
 411     total_outlier_size = hi_size;
 412     default_dest = hi->dest();
 413   }
 414 
 415   // If a guard test will eliminate very sparse end ranges, then
 416   // it is worth the cost of an extra jump.
 417   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 418     needs_guard = true;
 419     if (default_dest == lo->dest()) lo++;
 420     if (default_dest == hi->dest()) hi--;
 421   }
 422 
 423   // Find the total number of cases and ranges
 424   int64 num_cases = ((int64)hi->hi()) - ((int64)lo->lo()) + 1;
 425   int num_range = hi - lo + 1;
 426 
 427   // Don't create table if: too large, too small, or too sparse.
 428   if (num_cases < MinJumpTableSize || num_cases > MaxJumpTableSize)
 429     return false;
 430   if (num_cases > (MaxJumpTableSparseness * num_range))
 431     return false;
 432 
 433   // Normalize table lookups to zero
 434   int lowval = lo->lo();
 435   key_val = _gvn.transform( new (C, 3) SubINode(key_val, _gvn.intcon(lowval)) );
 436 
 437   // Generate a guard to protect against input keyvals that aren't
 438   // in the switch domain.
 439   if (needs_guard) {
 440     Node*   size = _gvn.intcon(num_cases);
 441     Node*   cmp = _gvn.transform( new (C, 3) CmpUNode(key_val, size) );
 442     Node*   tst = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ge) );
 443     IfNode* iff = create_and_map_if( control(), tst, PROB_FAIR, COUNT_UNKNOWN);
 444     jump_if_true_fork(iff, default_dest, NullTableIndex);
 445   }
 446 
 447   // Create an ideal node JumpTable that has projections
 448   // of all possible ranges for a switch statement
 449   // The key_val input must be converted to a pointer offset and scaled.
 450   // Compare Parse::array_addressing above.
 451 #ifdef _LP64
 452   // Clean the 32-bit int into a real 64-bit offset.
 453   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 454   const TypeLong* lkeytype = TypeLong::make(CONST64(0), num_cases-1, Type::WidenMin);
 455   key_val       = _gvn.transform( new (C, 2) ConvI2LNode(key_val, lkeytype) );
 456 #endif
 457   // Shift the value by wordsize so we have an index into the table, rather
 458   // than a switch value
 459   Node *shiftWord = _gvn.MakeConX(wordSize);
 460   key_val = _gvn.transform( new (C, 3) MulXNode( key_val, shiftWord));
 461 
 462   // Create the JumpNode
 463   Node* jtn = _gvn.transform( new (C, 2) JumpNode(control(), key_val, num_cases) );
 464 
 465   // These are the switch destinations hanging off the jumpnode
 466   int i = 0;
 467   for (SwitchRange* r = lo; r <= hi; r++) {
 468     for (int j = r->lo(); j <= r->hi(); j++, i++) {
 469       Node* input = _gvn.transform(new (C, 1) JumpProjNode(jtn, i, r->dest(), j - lowval));
 470       {
 471         PreserveJVMState pjvms(this);
 472         set_control(input);
 473         jump_if_always_fork(r->dest(), r->table_index());
 474       }
 475     }
 476   }
 477   assert(i == num_cases, "miscount of cases");
 478   stop_and_kill_map();  // no more uses for this JVMS
 479   return true;
 480 }
 481 
 482 //----------------------------jump_switch_ranges-------------------------------
 483 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 484   Block* switch_block = block();
 485 
 486   if (switch_depth == 0) {
 487     // Do special processing for the top-level call.
 488     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 489     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 490 
 491     // Decrement pred-numbers for the unique set of nodes.
 492 #ifdef ASSERT
 493     // Ensure that the block's successors are a (duplicate-free) set.
 494     int successors_counted = 0;  // block occurrences in [hi..lo]
 495     int unique_successors = switch_block->num_successors();
 496     for (int i = 0; i < unique_successors; i++) {
 497       Block* target = switch_block->successor_at(i);
 498 
 499       // Check that the set of successors is the same in both places.
 500       int successors_found = 0;
 501       for (SwitchRange* p = lo; p <= hi; p++) {
 502         if (p->dest() == target->start())  successors_found++;
 503       }
 504       assert(successors_found > 0, "successor must be known");
 505       successors_counted += successors_found;
 506     }
 507     assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 508 #endif
 509 
 510     // Maybe prune the inputs, based on the type of key_val.
 511     jint min_val = min_jint;
 512     jint max_val = max_jint;
 513     const TypeInt* ti = key_val->bottom_type()->isa_int();
 514     if (ti != NULL) {
 515       min_val = ti->_lo;
 516       max_val = ti->_hi;
 517       assert(min_val <= max_val, "invalid int type");
 518     }
 519     while (lo->hi() < min_val)  lo++;
 520     if (lo->lo() < min_val)  lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index());
 521     while (hi->lo() > max_val)  hi--;
 522     if (hi->hi() > max_val)  hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index());
 523   }
 524 
 525 #ifndef PRODUCT
 526   if (switch_depth == 0) {
 527     _max_switch_depth = 0;
 528     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 529   }
 530 #endif
 531 
 532   assert(lo <= hi, "must be a non-empty set of ranges");
 533   if (lo == hi) {
 534     jump_if_always_fork(lo->dest(), lo->table_index());
 535   } else {
 536     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
 537     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
 538 
 539     if (create_jump_tables(key_val, lo, hi)) return;
 540 
 541     int nr = hi - lo + 1;
 542 
 543     SwitchRange* mid = lo + nr/2;
 544     // if there is an easy choice, pivot at a singleton:
 545     if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
 546 
 547     assert(lo < mid && mid <= hi, "good pivot choice");
 548     assert(nr != 2 || mid == hi,   "should pick higher of 2");
 549     assert(nr != 3 || mid == hi-1, "should pick middle of 3");
 550 
 551     Node *test_val = _gvn.intcon(mid->lo());
 552 
 553     if (mid->is_singleton()) {
 554       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne);
 555       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index());
 556 
 557       // Special Case:  If there are exactly three ranges, and the high
 558       // and low range each go to the same place, omit the "gt" test,
 559       // since it will not discriminate anything.
 560       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest());
 561       if (eq_test_only) {
 562         assert(mid == hi-1, "");
 563       }
 564 
 565       // if there is a higher range, test for it and process it:
 566       if (mid < hi && !eq_test_only) {
 567         // two comparisons of same values--should enable 1 test for 2 branches
 568         // Use BoolTest::le instead of BoolTest::gt
 569         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le);
 570         Node   *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_le) );
 571         Node   *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_le) );
 572         { PreserveJVMState pjvms(this);
 573           set_control(iffalse);
 574           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
 575         }
 576         set_control(iftrue);
 577       }
 578 
 579     } else {
 580       // mid is a range, not a singleton, so treat mid..hi as a unit
 581       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, BoolTest::ge);
 582 
 583       // if there is a higher range, test for it and process it:
 584       if (mid == hi) {
 585         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index());
 586       } else {
 587         Node *iftrue  = _gvn.transform( new (C, 1) IfTrueNode(iff_ge) );
 588         Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff_ge) );
 589         { PreserveJVMState pjvms(this);
 590           set_control(iftrue);
 591           jump_switch_ranges(key_val, mid, hi, switch_depth+1);
 592         }
 593         set_control(iffalse);
 594       }
 595     }
 596 
 597     // in any case, process the lower range
 598     jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
 599   }
 600 
 601   // Decrease pred_count for each successor after all is done.
 602   if (switch_depth == 0) {
 603     int unique_successors = switch_block->num_successors();
 604     for (int i = 0; i < unique_successors; i++) {
 605       Block* target = switch_block->successor_at(i);
 606       // Throw away the pre-allocated path for each unique successor.
 607       target->next_path_num();
 608     }
 609   }
 610 
 611 #ifndef PRODUCT
 612   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
 613   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
 614     SwitchRange* r;
 615     int nsing = 0;
 616     for( r = lo; r <= hi; r++ ) {
 617       if( r->is_singleton() )  nsing++;
 618     }
 619     tty->print(">>> ");
 620     _method->print_short_name();
 621     tty->print_cr(" switch decision tree");
 622     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
 623                   hi-lo+1, nsing, _max_switch_depth, _est_switch_depth);
 624     if (_max_switch_depth > _est_switch_depth) {
 625       tty->print_cr("******** BAD SWITCH DEPTH ********");
 626     }
 627     tty->print("   ");
 628     for( r = lo; r <= hi; r++ ) {
 629       r->print(env());
 630     }
 631     tty->print_cr("");
 632   }
 633 #endif
 634 }
 635 
 636 void Parse::modf() {
 637   Node *f2 = pop();
 638   Node *f1 = pop();
 639   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
 640                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
 641                               "frem", NULL, //no memory effects
 642                               f1, f2);
 643   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 644 
 645   push(res);
 646 }
 647 
 648 void Parse::modd() {
 649   Node *d2 = pop_pair();
 650   Node *d1 = pop_pair();
 651   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
 652                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
 653                               "drem", NULL, //no memory effects
 654                               d1, top(), d2, top());
 655   Node* res_d   = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 656 
 657 #ifdef ASSERT
 658   Node* res_top = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 1));
 659   assert(res_top == top(), "second value must be top");
 660 #endif
 661 
 662   push_pair(res_d);
 663 }
 664 
 665 void Parse::l2f() {
 666   Node* f2 = pop();
 667   Node* f1 = pop();
 668   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
 669                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
 670                               "l2f", NULL, //no memory effects
 671                               f1, f2);
 672   Node* res = _gvn.transform(new (C, 1) ProjNode(c, TypeFunc::Parms + 0));
 673 
 674   push(res);
 675 }
 676 
 677 void Parse::do_irem() {
 678   // Must keep both values on the expression-stack during null-check
 679   do_null_check(peek(), T_INT);
 680   // Compile-time detect of null-exception?
 681   if (stopped())  return;
 682 
 683   Node* b = pop();
 684   Node* a = pop();
 685 
 686   const Type *t = _gvn.type(b);
 687   if (t != Type::TOP) {
 688     const TypeInt *ti = t->is_int();
 689     if (ti->is_con()) {
 690       int divisor = ti->get_con();
 691       // check for positive power of 2
 692       if (divisor > 0 &&
 693           (divisor & ~(divisor-1)) == divisor) {
 694         // yes !
 695         Node *mask = _gvn.intcon((divisor - 1));
 696         // Sigh, must handle negative dividends
 697         Node *zero = _gvn.intcon(0);
 698         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt);
 699         Node *iff = _gvn.transform( new (C, 1) IfFalseNode(ifff) );
 700         Node *ift = _gvn.transform( new (C, 1) IfTrueNode (ifff) );
 701         Node *reg = jump_if_join(ift, iff);
 702         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
 703         // Negative path; negate/and/negate
 704         Node *neg = _gvn.transform( new (C, 3) SubINode(zero, a) );
 705         Node *andn= _gvn.transform( new (C, 3) AndINode(neg, mask) );
 706         Node *negn= _gvn.transform( new (C, 3) SubINode(zero, andn) );
 707         phi->init_req(1, negn);
 708         // Fast positive case
 709         Node *andx = _gvn.transform( new (C, 3) AndINode(a, mask) );
 710         phi->init_req(2, andx);
 711         // Push the merge
 712         push( _gvn.transform(phi) );
 713         return;
 714       }
 715     }
 716   }
 717   // Default case
 718   push( _gvn.transform( new (C, 3) ModINode(control(),a,b) ) );
 719 }
 720 
 721 // Handle jsr and jsr_w bytecode
 722 void Parse::do_jsr() {
 723   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
 724 
 725   // Store information about current state, tagged with new _jsr_bci
 726   int return_bci = iter().next_bci();
 727   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
 728 
 729   // Update method data
 730   profile_taken_branch(jsr_bci);
 731 
 732   // The way we do things now, there is only one successor block
 733   // for the jsr, because the target code is cloned by ciTypeFlow.
 734   Block* target = successor_for_bci(jsr_bci);
 735 
 736   // What got pushed?
 737   const Type* ret_addr = target->peek();
 738   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
 739 
 740   // Effect on jsr on stack
 741   push(_gvn.makecon(ret_addr));
 742 
 743   // Flow to the jsr.
 744   if (should_add_predicate(jsr_bci)){
 745     add_predicate();
 746   }
 747   merge(jsr_bci);
 748 }
 749 
 750 // Handle ret bytecode
 751 void Parse::do_ret() {
 752   // Find to whom we return.
 753 #if 0 // %%%% MAKE THIS WORK
 754   Node* con = local();
 755   const TypePtr* tp = con->bottom_type()->isa_ptr();
 756   assert(tp && tp->singleton(), "");
 757   int return_bci = (int) tp->get_con();
 758   merge(return_bci);
 759 #else
 760   assert(block()->num_successors() == 1, "a ret can only go one place now");
 761   Block* target = block()->successor_at(0);
 762   assert(!target->is_ready(), "our arrival must be expected");
 763   profile_ret(target->flow()->start());
 764   int pnum = target->next_path_num();
 765   merge_common(target, pnum);
 766 #endif
 767 }
 768 
 769 //--------------------------dynamic_branch_prediction--------------------------
 770 // Try to gather dynamic branch prediction behavior.  Return a probability
 771 // of the branch being taken and set the "cnt" field.  Returns a -1.0
 772 // if we need to use static prediction for some reason.
 773 float Parse::dynamic_branch_prediction(float &cnt) {
 774   ResourceMark rm;
 775 
 776   cnt  = COUNT_UNKNOWN;
 777 
 778   // Use MethodData information if it is available
 779   // FIXME: free the ProfileData structure
 780   ciMethodData* methodData = method()->method_data();
 781   if (!methodData->is_mature())  return PROB_UNKNOWN;
 782   ciProfileData* data = methodData->bci_to_data(bci());
 783   if (!data->is_JumpData())  return PROB_UNKNOWN;
 784 
 785   // get taken and not taken values
 786   int     taken = data->as_JumpData()->taken();
 787   int not_taken = 0;
 788   if (data->is_BranchData()) {
 789     not_taken = data->as_BranchData()->not_taken();
 790   }
 791 
 792   // scale the counts to be commensurate with invocation counts:
 793   taken = method()->scale_count(taken);
 794   not_taken = method()->scale_count(not_taken);
 795 
 796   // Give up if too few counts to be meaningful
 797   if (taken + not_taken < 40) {
 798     if (C->log() != NULL) {
 799       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
 800     }
 801     return PROB_UNKNOWN;
 802   }
 803 
 804   // Compute frequency that we arrive here
 805   int sum = taken + not_taken;
 806   // Adjust, if this block is a cloned private block but the
 807   // Jump counts are shared.  Taken the private counts for
 808   // just this path instead of the shared counts.
 809   if( block()->count() > 0 )
 810     sum = block()->count();
 811   cnt = (float)sum / (float)FreqCountInvocations;
 812 
 813   // Pin probability to sane limits
 814   float prob;
 815   if( !taken )
 816     prob = (0+PROB_MIN) / 2;
 817   else if( !not_taken )
 818     prob = (1+PROB_MAX) / 2;
 819   else {                         // Compute probability of true path
 820     prob = (float)taken / (float)(taken + not_taken);
 821     if (prob > PROB_MAX)  prob = PROB_MAX;
 822     if (prob < PROB_MIN)   prob = PROB_MIN;
 823   }
 824 
 825   assert((cnt > 0.0f) && (prob > 0.0f),
 826          "Bad frequency assignment in if");
 827 
 828   if (C->log() != NULL) {
 829     const char* prob_str = NULL;
 830     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
 831     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
 832     char prob_str_buf[30];
 833     if (prob_str == NULL) {
 834       sprintf(prob_str_buf, "%g", prob);
 835       prob_str = prob_str_buf;
 836     }
 837     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%g' prob='%s'",
 838                    iter().get_dest(), taken, not_taken, cnt, prob_str);
 839   }
 840   return prob;
 841 }
 842 
 843 //-----------------------------branch_prediction-------------------------------
 844 float Parse::branch_prediction(float& cnt,
 845                                BoolTest::mask btest,
 846                                int target_bci) {
 847   float prob = dynamic_branch_prediction(cnt);
 848   // If prob is unknown, switch to static prediction
 849   if (prob != PROB_UNKNOWN)  return prob;
 850 
 851   prob = PROB_FAIR;                   // Set default value
 852   if (btest == BoolTest::eq)          // Exactly equal test?
 853     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
 854   else if (btest == BoolTest::ne)
 855     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
 856 
 857   // If this is a conditional test guarding a backwards branch,
 858   // assume its a loop-back edge.  Make it a likely taken branch.
 859   if (target_bci < bci()) {
 860     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
 861       // Since it's an OSR, we probably have profile data, but since
 862       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
 863       // Let's make a special check here for completely zero counts.
 864       ciMethodData* methodData = method()->method_data();
 865       if (!methodData->is_empty()) {
 866         ciProfileData* data = methodData->bci_to_data(bci());
 867         // Only stop for truly zero counts, which mean an unknown part
 868         // of the OSR-ed method, and we want to deopt to gather more stats.
 869         // If you have ANY counts, then this loop is simply 'cold' relative
 870         // to the OSR loop.
 871         if (data->as_BranchData()->taken() +
 872             data->as_BranchData()->not_taken() == 0 ) {
 873           // This is the only way to return PROB_UNKNOWN:
 874           return PROB_UNKNOWN;
 875         }
 876       }
 877     }
 878     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
 879   }
 880 
 881   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
 882   return prob;
 883 }
 884 
 885 // The magic constants are chosen so as to match the output of
 886 // branch_prediction() when the profile reports a zero taken count.
 887 // It is important to distinguish zero counts unambiguously, because
 888 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
 889 // very small but nonzero probabilities, which if confused with zero
 890 // counts would keep the program recompiling indefinitely.
 891 bool Parse::seems_never_taken(float prob) {
 892   return prob < PROB_MIN;
 893 }
 894 
 895 // True if the comparison seems to be the kind that will not change its
 896 // statistics from true to false.  See comments in adjust_map_after_if.
 897 // This question is only asked along paths which are already
 898 // classifed as untaken (by seems_never_taken), so really,
 899 // if a path is never taken, its controlling comparison is
 900 // already acting in a stable fashion.  If the comparison
 901 // seems stable, we will put an expensive uncommon trap
 902 // on the untaken path.  To be conservative, and to allow
 903 // partially executed counted loops to be compiled fully,
 904 // we will plant uncommon traps only after pointer comparisons.
 905 bool Parse::seems_stable_comparison(BoolTest::mask btest, Node* cmp) {
 906   for (int depth = 4; depth > 0; depth--) {
 907     // The following switch can find CmpP here over half the time for
 908     // dynamic language code rich with type tests.
 909     // Code using counted loops or array manipulations (typical
 910     // of benchmarks) will have many (>80%) CmpI instructions.
 911     switch (cmp->Opcode()) {
 912     case Op_CmpP:
 913       // A never-taken null check looks like CmpP/BoolTest::eq.
 914       // These certainly should be closed off as uncommon traps.
 915       if (btest == BoolTest::eq)
 916         return true;
 917       // A never-failed type check looks like CmpP/BoolTest::ne.
 918       // Let's put traps on those, too, so that we don't have to compile
 919       // unused paths with indeterminate dynamic type information.
 920       if (ProfileDynamicTypes)
 921         return true;
 922       return false;
 923 
 924     case Op_CmpI:
 925       // A small minority (< 10%) of CmpP are masked as CmpI,
 926       // as if by boolean conversion ((p == q? 1: 0) != 0).
 927       // Detect that here, even if it hasn't optimized away yet.
 928       // Specifically, this covers the 'instanceof' operator.
 929       if (btest == BoolTest::ne || btest == BoolTest::eq) {
 930         if (_gvn.type(cmp->in(2))->singleton() &&
 931             cmp->in(1)->is_Phi()) {
 932           PhiNode* phi = cmp->in(1)->as_Phi();
 933           int true_path = phi->is_diamond_phi();
 934           if (true_path > 0 &&
 935               _gvn.type(phi->in(1))->singleton() &&
 936               _gvn.type(phi->in(2))->singleton()) {
 937             // phi->region->if_proj->ifnode->bool->cmp
 938             BoolNode* bol = phi->in(0)->in(1)->in(0)->in(1)->as_Bool();
 939             btest = bol->_test._test;
 940             cmp = bol->in(1);
 941             continue;
 942           }
 943         }
 944       }
 945       return false;
 946     }
 947   }
 948   return false;
 949 }
 950 
 951 //-------------------------------repush_if_args--------------------------------
 952 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
 953 inline int Parse::repush_if_args() {
 954 #ifndef PRODUCT
 955   if (PrintOpto && WizardMode) {
 956     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
 957                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
 958     method()->print_name(); tty->cr();
 959   }
 960 #endif
 961   int bc_depth = - Bytecodes::depth(iter().cur_bc());
 962   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
 963   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
 964   assert(argument(0) != NULL, "must exist");
 965   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
 966   _sp += bc_depth;
 967   return bc_depth;
 968 }
 969 
 970 //----------------------------------do_ifnull----------------------------------
 971 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
 972   int target_bci = iter().get_dest();
 973 
 974   Block* branch_block = successor_for_bci(target_bci);
 975   Block* next_block   = successor_for_bci(iter().next_bci());
 976 
 977   float cnt;
 978   float prob = branch_prediction(cnt, btest, target_bci);
 979   if (prob == PROB_UNKNOWN) {
 980     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
 981 #ifndef PRODUCT
 982     if (PrintOpto && Verbose)
 983       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
 984 #endif
 985     repush_if_args(); // to gather stats on loop
 986     // We need to mark this branch as taken so that if we recompile we will
 987     // see that it is possible. In the tiered system the interpreter doesn't
 988     // do profiling and by the time we get to the lower tier from the interpreter
 989     // the path may be cold again. Make sure it doesn't look untaken
 990     profile_taken_branch(target_bci, !ProfileInterpreter);
 991     uncommon_trap(Deoptimization::Reason_unreached,
 992                   Deoptimization::Action_reinterpret,
 993                   NULL, "cold");
 994     if (EliminateAutoBox) {
 995       // Mark the successor blocks as parsed
 996       branch_block->next_path_num();
 997       next_block->next_path_num();
 998     }
 999     return;
1000   }
1001 
1002   explicit_null_checks_inserted++;
1003 
1004   // Generate real control flow
1005   Node   *tst = _gvn.transform( new (C, 2) BoolNode( c, btest ) );
1006 
1007   // Sanity check the probability value
1008   assert(prob > 0.0f,"Bad probability in Parser");
1009  // Need xform to put node in hash table
1010   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1011   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1012   // True branch
1013   { PreserveJVMState pjvms(this);
1014     Node* iftrue  = _gvn.transform( new (C, 1) IfTrueNode (iff) );
1015     set_control(iftrue);
1016 
1017     if (stopped()) {            // Path is dead?
1018       explicit_null_checks_elided++;
1019       if (EliminateAutoBox) {
1020         // Mark the successor block as parsed
1021         branch_block->next_path_num();
1022       }
1023     } else {                    // Path is live.
1024       // Update method data
1025       profile_taken_branch(target_bci);
1026       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1027       if (!stopped()) {
1028         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
1029           int nargs = repush_if_args(); // set original stack for uncommon_trap
1030           add_predicate();
1031           _sp -= nargs;
1032         }
1033         merge(target_bci);
1034       }
1035     }
1036   }
1037 
1038   // False branch
1039   Node* iffalse = _gvn.transform( new (C, 1) IfFalseNode(iff) );
1040   set_control(iffalse);
1041 
1042   if (stopped()) {              // Path is dead?
1043     explicit_null_checks_elided++;
1044     if (EliminateAutoBox) {
1045       // Mark the successor block as parsed
1046       next_block->next_path_num();
1047     }
1048   } else  {                     // Path is live.
1049     // Update method data
1050     profile_not_taken_branch();
1051     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1052                         next_block, branch_block);
1053   }
1054 }
1055 
1056 //------------------------------------do_if------------------------------------
1057 void Parse::do_if(BoolTest::mask btest, Node* c) {
1058   int target_bci = iter().get_dest();
1059 
1060   Block* branch_block = successor_for_bci(target_bci);
1061   Block* next_block   = successor_for_bci(iter().next_bci());
1062 
1063   float cnt;
1064   float prob = branch_prediction(cnt, btest, target_bci);
1065   float untaken_prob = 1.0 - prob;
1066 
1067   if (prob == PROB_UNKNOWN) {
1068 #ifndef PRODUCT
1069     if (PrintOpto && Verbose)
1070       tty->print_cr("Never-taken edge stops compilation at bci %d",bci());
1071 #endif
1072     repush_if_args(); // to gather stats on loop
1073     // We need to mark this branch as taken so that if we recompile we will
1074     // see that it is possible. In the tiered system the interpreter doesn't
1075     // do profiling and by the time we get to the lower tier from the interpreter
1076     // the path may be cold again. Make sure it doesn't look untaken
1077     profile_taken_branch(target_bci, !ProfileInterpreter);
1078     uncommon_trap(Deoptimization::Reason_unreached,
1079                   Deoptimization::Action_reinterpret,
1080                   NULL, "cold");
1081     if (EliminateAutoBox) {
1082       // Mark the successor blocks as parsed
1083       branch_block->next_path_num();
1084       next_block->next_path_num();
1085     }
1086     return;
1087   }
1088 
1089   // Sanity check the probability value
1090   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1091 
1092   bool taken_if_true = true;
1093   // Convert BoolTest to canonical form:
1094   if (!BoolTest(btest).is_canonical()) {
1095     btest         = BoolTest(btest).negate();
1096     taken_if_true = false;
1097     // prob is NOT updated here; it remains the probability of the taken
1098     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1099   }
1100   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1101 
1102   Node* tst0 = new (C, 2) BoolNode(c, btest);
1103   Node* tst = _gvn.transform(tst0);
1104   BoolTest::mask taken_btest   = BoolTest::illegal;
1105   BoolTest::mask untaken_btest = BoolTest::illegal;
1106 
1107   if (tst->is_Bool()) {
1108     // Refresh c from the transformed bool node, since it may be
1109     // simpler than the original c.  Also re-canonicalize btest.
1110     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1111     // That can arise from statements like: if (x instanceof C) ...
1112     if (tst != tst0) {
1113       // Canonicalize one more time since transform can change it.
1114       btest = tst->as_Bool()->_test._test;
1115       if (!BoolTest(btest).is_canonical()) {
1116         // Reverse edges one more time...
1117         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1118         btest = tst->as_Bool()->_test._test;
1119         assert(BoolTest(btest).is_canonical(), "sanity");
1120         taken_if_true = !taken_if_true;
1121       }
1122       c = tst->in(1);
1123     }
1124     BoolTest::mask neg_btest = BoolTest(btest).negate();
1125     taken_btest   = taken_if_true ?     btest : neg_btest;
1126     untaken_btest = taken_if_true ? neg_btest :     btest;
1127   }
1128 
1129   // Generate real control flow
1130   float true_prob = (taken_if_true ? prob : untaken_prob);
1131   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1132   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1133   Node* taken_branch   = new (C, 1) IfTrueNode(iff);
1134   Node* untaken_branch = new (C, 1) IfFalseNode(iff);
1135   if (!taken_if_true) {  // Finish conversion to canonical form
1136     Node* tmp      = taken_branch;
1137     taken_branch   = untaken_branch;
1138     untaken_branch = tmp;
1139   }
1140 
1141   // Branch is taken:
1142   { PreserveJVMState pjvms(this);
1143     taken_branch = _gvn.transform(taken_branch);
1144     set_control(taken_branch);
1145 
1146     if (stopped()) {
1147       if (EliminateAutoBox) {
1148         // Mark the successor block as parsed
1149         branch_block->next_path_num();
1150       }
1151     } else {
1152       // Update method data
1153       profile_taken_branch(target_bci);
1154       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1155       if (!stopped()) {
1156         if (should_add_predicate(target_bci)){ // add a predicate if it branches to a loop
1157           int nargs = repush_if_args(); // set original stack for the uncommon_trap
1158           add_predicate();
1159           _sp -= nargs;
1160         }
1161         merge(target_bci);
1162       }
1163     }
1164   }
1165 
1166   untaken_branch = _gvn.transform(untaken_branch);
1167   set_control(untaken_branch);
1168 
1169   // Branch not taken.
1170   if (stopped()) {
1171     if (EliminateAutoBox) {
1172       // Mark the successor block as parsed
1173       next_block->next_path_num();
1174     }
1175   } else {
1176     // Update method data
1177     profile_not_taken_branch();
1178     adjust_map_after_if(untaken_btest, c, untaken_prob,
1179                         next_block, branch_block);
1180   }
1181 }
1182 
1183 //----------------------------adjust_map_after_if------------------------------
1184 // Adjust the JVM state to reflect the result of taking this path.
1185 // Basically, it means inspecting the CmpNode controlling this
1186 // branch, seeing how it constrains a tested value, and then
1187 // deciding if it's worth our while to encode this constraint
1188 // as graph nodes in the current abstract interpretation map.
1189 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1190                                 Block* path, Block* other_path) {
1191   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1192     return;                             // nothing to do
1193 
1194   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1195 
1196   if (seems_never_taken(prob) && seems_stable_comparison(btest, c)) {
1197     // If this might possibly turn into an implicit null check,
1198     // and the null has never yet been seen, we need to generate
1199     // an uncommon trap, so as to recompile instead of suffering
1200     // with very slow branches.  (We'll get the slow branches if
1201     // the program ever changes phase and starts seeing nulls here.)
1202     //
1203     // We do not inspect for a null constant, since a node may
1204     // optimize to 'null' later on.
1205     //
1206     // Null checks, and other tests which expect inequality,
1207     // show btest == BoolTest::eq along the non-taken branch.
1208     // On the other hand, type tests, must-be-null tests,
1209     // and other tests which expect pointer equality,
1210     // show btest == BoolTest::ne along the non-taken branch.
1211     // We prune both types of branches if they look unused.
1212     repush_if_args();
1213     // We need to mark this branch as taken so that if we recompile we will
1214     // see that it is possible. In the tiered system the interpreter doesn't
1215     // do profiling and by the time we get to the lower tier from the interpreter
1216     // the path may be cold again. Make sure it doesn't look untaken
1217     if (is_fallthrough) {
1218       profile_not_taken_branch(!ProfileInterpreter);
1219     } else {
1220       profile_taken_branch(iter().get_dest(), !ProfileInterpreter);
1221     }
1222     uncommon_trap(Deoptimization::Reason_unreached,
1223                   Deoptimization::Action_reinterpret,
1224                   NULL,
1225                   (is_fallthrough ? "taken always" : "taken never"));
1226     return;
1227   }
1228 
1229   Node* val = c->in(1);
1230   Node* con = c->in(2);
1231   const Type* tcon = _gvn.type(con);
1232   const Type* tval = _gvn.type(val);
1233   bool have_con = tcon->singleton();
1234   if (tval->singleton()) {
1235     if (!have_con) {
1236       // Swap, so constant is in con.
1237       con  = val;
1238       tcon = tval;
1239       val  = c->in(2);
1240       tval = _gvn.type(val);
1241       btest = BoolTest(btest).commute();
1242       have_con = true;
1243     } else {
1244       // Do we have two constants?  Then leave well enough alone.
1245       have_con = false;
1246     }
1247   }
1248   if (!have_con)                        // remaining adjustments need a con
1249     return;
1250 
1251 
1252   int val_in_map = map()->find_edge(val);
1253   if (val_in_map < 0)  return;          // replace_in_map would be useless
1254   {
1255     JVMState* jvms = this->jvms();
1256     if (!(jvms->is_loc(val_in_map) ||
1257           jvms->is_stk(val_in_map)))
1258       return;                           // again, it would be useless
1259   }
1260 
1261   // Check for a comparison to a constant, and "know" that the compared
1262   // value is constrained on this path.
1263   assert(tcon->singleton(), "");
1264   ConstraintCastNode* ccast = NULL;
1265   Node* cast = NULL;
1266 
1267   switch (btest) {
1268   case BoolTest::eq:                    // Constant test?
1269     {
1270       const Type* tboth = tcon->join(tval);
1271       if (tboth == tval)  break;        // Nothing to gain.
1272       if (tcon->isa_int()) {
1273         ccast = new (C, 2) CastIINode(val, tboth);
1274       } else if (tcon == TypePtr::NULL_PTR) {
1275         // Cast to null, but keep the pointer identity temporarily live.
1276         ccast = new (C, 2) CastPPNode(val, tboth);
1277       } else {
1278         const TypeF* tf = tcon->isa_float_constant();
1279         const TypeD* td = tcon->isa_double_constant();
1280         // Exclude tests vs float/double 0 as these could be
1281         // either +0 or -0.  Just because you are equal to +0
1282         // doesn't mean you ARE +0!
1283         if ((!tf || tf->_f != 0.0) &&
1284             (!td || td->_d != 0.0))
1285           cast = con;                   // Replace non-constant val by con.
1286       }
1287     }
1288     break;
1289 
1290   case BoolTest::ne:
1291     if (tcon == TypePtr::NULL_PTR) {
1292       cast = cast_not_null(val, false);
1293     }
1294     break;
1295 
1296   default:
1297     // (At this point we could record int range types with CastII.)
1298     break;
1299   }
1300 
1301   if (ccast != NULL) {
1302     const Type* tcc = ccast->as_Type()->type();
1303     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1304     // Delay transform() call to allow recovery of pre-cast value
1305     // at the control merge.
1306     ccast->set_req(0, control());
1307     _gvn.set_type_bottom(ccast);
1308     record_for_igvn(ccast);
1309     cast = ccast;
1310   }
1311 
1312   if (cast != NULL) {                   // Here's the payoff.
1313     replace_in_map(val, cast);
1314   }
1315 }
1316 
1317 
1318 //------------------------------do_one_bytecode--------------------------------
1319 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1320 void Parse::do_one_bytecode() {
1321   Node *a, *b, *c, *d;          // Handy temps
1322   BoolTest::mask btest;
1323   int i;
1324 
1325   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1326 
1327   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1328                           "out of nodes parsing method")) {
1329     return;
1330   }
1331 
1332 #ifdef ASSERT
1333   // for setting breakpoints
1334   if (TraceOptoParse) {
1335     tty->print(" @");
1336     dump_bci(bci());
1337   }
1338 #endif
1339 
1340   switch (bc()) {
1341   case Bytecodes::_nop:
1342     // do nothing
1343     break;
1344   case Bytecodes::_lconst_0:
1345     push_pair(longcon(0));
1346     break;
1347 
1348   case Bytecodes::_lconst_1:
1349     push_pair(longcon(1));
1350     break;
1351 
1352   case Bytecodes::_fconst_0:
1353     push(zerocon(T_FLOAT));
1354     break;
1355 
1356   case Bytecodes::_fconst_1:
1357     push(makecon(TypeF::ONE));
1358     break;
1359 
1360   case Bytecodes::_fconst_2:
1361     push(makecon(TypeF::make(2.0f)));
1362     break;
1363 
1364   case Bytecodes::_dconst_0:
1365     push_pair(zerocon(T_DOUBLE));
1366     break;
1367 
1368   case Bytecodes::_dconst_1:
1369     push_pair(makecon(TypeD::ONE));
1370     break;
1371 
1372   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1373   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1374   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1375   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1376   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1377   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1378   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1379   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1380   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1381   case Bytecodes::_aconst_null: push(null());  break;
1382   case Bytecodes::_ldc:
1383   case Bytecodes::_ldc_w:
1384   case Bytecodes::_ldc2_w:
1385     // If the constant is unresolved, run this BC once in the interpreter.
1386     {
1387       ciConstant constant = iter().get_constant();
1388       if (constant.basic_type() == T_OBJECT &&
1389           !constant.as_object()->is_loaded()) {
1390         int index = iter().get_constant_pool_index();
1391         constantTag tag = iter().get_constant_pool_tag(index);
1392         uncommon_trap(Deoptimization::make_trap_request
1393                       (Deoptimization::Reason_unloaded,
1394                        Deoptimization::Action_reinterpret,
1395                        index),
1396                       NULL, tag.internal_name());
1397         break;
1398       }
1399       assert(constant.basic_type() != T_OBJECT || !constant.as_object()->is_klass(),
1400              "must be java_mirror of klass");
1401       bool pushed = push_constant(constant, true);
1402       guarantee(pushed, "must be possible to push this constant");
1403     }
1404 
1405     break;
1406 
1407   case Bytecodes::_aload_0:
1408     push( local(0) );
1409     break;
1410   case Bytecodes::_aload_1:
1411     push( local(1) );
1412     break;
1413   case Bytecodes::_aload_2:
1414     push( local(2) );
1415     break;
1416   case Bytecodes::_aload_3:
1417     push( local(3) );
1418     break;
1419   case Bytecodes::_aload:
1420     push( local(iter().get_index()) );
1421     break;
1422 
1423   case Bytecodes::_fload_0:
1424   case Bytecodes::_iload_0:
1425     push( local(0) );
1426     break;
1427   case Bytecodes::_fload_1:
1428   case Bytecodes::_iload_1:
1429     push( local(1) );
1430     break;
1431   case Bytecodes::_fload_2:
1432   case Bytecodes::_iload_2:
1433     push( local(2) );
1434     break;
1435   case Bytecodes::_fload_3:
1436   case Bytecodes::_iload_3:
1437     push( local(3) );
1438     break;
1439   case Bytecodes::_fload:
1440   case Bytecodes::_iload:
1441     push( local(iter().get_index()) );
1442     break;
1443   case Bytecodes::_lload_0:
1444     push_pair_local( 0 );
1445     break;
1446   case Bytecodes::_lload_1:
1447     push_pair_local( 1 );
1448     break;
1449   case Bytecodes::_lload_2:
1450     push_pair_local( 2 );
1451     break;
1452   case Bytecodes::_lload_3:
1453     push_pair_local( 3 );
1454     break;
1455   case Bytecodes::_lload:
1456     push_pair_local( iter().get_index() );
1457     break;
1458 
1459   case Bytecodes::_dload_0:
1460     push_pair_local(0);
1461     break;
1462   case Bytecodes::_dload_1:
1463     push_pair_local(1);
1464     break;
1465   case Bytecodes::_dload_2:
1466     push_pair_local(2);
1467     break;
1468   case Bytecodes::_dload_3:
1469     push_pair_local(3);
1470     break;
1471   case Bytecodes::_dload:
1472     push_pair_local(iter().get_index());
1473     break;
1474   case Bytecodes::_fstore_0:
1475   case Bytecodes::_istore_0:
1476   case Bytecodes::_astore_0:
1477     set_local( 0, pop() );
1478     break;
1479   case Bytecodes::_fstore_1:
1480   case Bytecodes::_istore_1:
1481   case Bytecodes::_astore_1:
1482     set_local( 1, pop() );
1483     break;
1484   case Bytecodes::_fstore_2:
1485   case Bytecodes::_istore_2:
1486   case Bytecodes::_astore_2:
1487     set_local( 2, pop() );
1488     break;
1489   case Bytecodes::_fstore_3:
1490   case Bytecodes::_istore_3:
1491   case Bytecodes::_astore_3:
1492     set_local( 3, pop() );
1493     break;
1494   case Bytecodes::_fstore:
1495   case Bytecodes::_istore:
1496   case Bytecodes::_astore:
1497     set_local( iter().get_index(), pop() );
1498     break;
1499   // long stores
1500   case Bytecodes::_lstore_0:
1501     set_pair_local( 0, pop_pair() );
1502     break;
1503   case Bytecodes::_lstore_1:
1504     set_pair_local( 1, pop_pair() );
1505     break;
1506   case Bytecodes::_lstore_2:
1507     set_pair_local( 2, pop_pair() );
1508     break;
1509   case Bytecodes::_lstore_3:
1510     set_pair_local( 3, pop_pair() );
1511     break;
1512   case Bytecodes::_lstore:
1513     set_pair_local( iter().get_index(), pop_pair() );
1514     break;
1515 
1516   // double stores
1517   case Bytecodes::_dstore_0:
1518     set_pair_local( 0, dstore_rounding(pop_pair()) );
1519     break;
1520   case Bytecodes::_dstore_1:
1521     set_pair_local( 1, dstore_rounding(pop_pair()) );
1522     break;
1523   case Bytecodes::_dstore_2:
1524     set_pair_local( 2, dstore_rounding(pop_pair()) );
1525     break;
1526   case Bytecodes::_dstore_3:
1527     set_pair_local( 3, dstore_rounding(pop_pair()) );
1528     break;
1529   case Bytecodes::_dstore:
1530     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
1531     break;
1532 
1533   case Bytecodes::_pop:  _sp -= 1;   break;
1534   case Bytecodes::_pop2: _sp -= 2;   break;
1535   case Bytecodes::_swap:
1536     a = pop();
1537     b = pop();
1538     push(a);
1539     push(b);
1540     break;
1541   case Bytecodes::_dup:
1542     a = pop();
1543     push(a);
1544     push(a);
1545     break;
1546   case Bytecodes::_dup_x1:
1547     a = pop();
1548     b = pop();
1549     push( a );
1550     push( b );
1551     push( a );
1552     break;
1553   case Bytecodes::_dup_x2:
1554     a = pop();
1555     b = pop();
1556     c = pop();
1557     push( a );
1558     push( c );
1559     push( b );
1560     push( a );
1561     break;
1562   case Bytecodes::_dup2:
1563     a = pop();
1564     b = pop();
1565     push( b );
1566     push( a );
1567     push( b );
1568     push( a );
1569     break;
1570 
1571   case Bytecodes::_dup2_x1:
1572     // before: .. c, b, a
1573     // after:  .. b, a, c, b, a
1574     // not tested
1575     a = pop();
1576     b = pop();
1577     c = pop();
1578     push( b );
1579     push( a );
1580     push( c );
1581     push( b );
1582     push( a );
1583     break;
1584   case Bytecodes::_dup2_x2:
1585     // before: .. d, c, b, a
1586     // after:  .. b, a, d, c, b, a
1587     // not tested
1588     a = pop();
1589     b = pop();
1590     c = pop();
1591     d = pop();
1592     push( b );
1593     push( a );
1594     push( d );
1595     push( c );
1596     push( b );
1597     push( a );
1598     break;
1599 
1600   case Bytecodes::_arraylength: {
1601     // Must do null-check with value on expression stack
1602     Node *ary = do_null_check(peek(), T_ARRAY);
1603     // Compile-time detect of null-exception?
1604     if (stopped())  return;
1605     a = pop();
1606     push(load_array_length(a));
1607     break;
1608   }
1609 
1610   case Bytecodes::_baload: array_load(T_BYTE);   break;
1611   case Bytecodes::_caload: array_load(T_CHAR);   break;
1612   case Bytecodes::_iaload: array_load(T_INT);    break;
1613   case Bytecodes::_saload: array_load(T_SHORT);  break;
1614   case Bytecodes::_faload: array_load(T_FLOAT);  break;
1615   case Bytecodes::_aaload: array_load(T_OBJECT); break;
1616   case Bytecodes::_laload: {
1617     a = array_addressing(T_LONG, 0);
1618     if (stopped())  return;     // guaranteed null or range check
1619     _sp -= 2;                   // Pop array and index
1620     push_pair( make_load(control(), a, TypeLong::LONG, T_LONG, TypeAryPtr::LONGS));
1621     break;
1622   }
1623   case Bytecodes::_daload: {
1624     a = array_addressing(T_DOUBLE, 0);
1625     if (stopped())  return;     // guaranteed null or range check
1626     _sp -= 2;                   // Pop array and index
1627     push_pair( make_load(control(), a, Type::DOUBLE, T_DOUBLE, TypeAryPtr::DOUBLES));
1628     break;
1629   }
1630   case Bytecodes::_bastore: array_store(T_BYTE);  break;
1631   case Bytecodes::_castore: array_store(T_CHAR);  break;
1632   case Bytecodes::_iastore: array_store(T_INT);   break;
1633   case Bytecodes::_sastore: array_store(T_SHORT); break;
1634   case Bytecodes::_fastore: array_store(T_FLOAT); break;
1635   case Bytecodes::_aastore: {
1636     d = array_addressing(T_OBJECT, 1);
1637     if (stopped())  return;     // guaranteed null or range check
1638     array_store_check();
1639     c = pop();                  // Oop to store
1640     b = pop();                  // index (already used)
1641     a = pop();                  // the array itself
1642     const TypeOopPtr* elemtype  = _gvn.type(a)->is_aryptr()->elem()->make_oopptr();
1643     const TypeAryPtr* adr_type = TypeAryPtr::OOPS;
1644     Node* store = store_oop_to_array(control(), a, d, adr_type, c, elemtype, T_OBJECT);
1645     break;
1646   }
1647   case Bytecodes::_lastore: {
1648     a = array_addressing(T_LONG, 2);
1649     if (stopped())  return;     // guaranteed null or range check
1650     c = pop_pair();
1651     _sp -= 2;                   // Pop array and index
1652     store_to_memory(control(), a, c, T_LONG, TypeAryPtr::LONGS);
1653     break;
1654   }
1655   case Bytecodes::_dastore: {
1656     a = array_addressing(T_DOUBLE, 2);
1657     if (stopped())  return;     // guaranteed null or range check
1658     c = pop_pair();
1659     _sp -= 2;                   // Pop array and index
1660     c = dstore_rounding(c);
1661     store_to_memory(control(), a, c, T_DOUBLE, TypeAryPtr::DOUBLES);
1662     break;
1663   }
1664   case Bytecodes::_getfield:
1665     do_getfield();
1666     break;
1667 
1668   case Bytecodes::_getstatic:
1669     do_getstatic();
1670     break;
1671 
1672   case Bytecodes::_putfield:
1673     do_putfield();
1674     break;
1675 
1676   case Bytecodes::_putstatic:
1677     do_putstatic();
1678     break;
1679 
1680   case Bytecodes::_irem:
1681     do_irem();
1682     break;
1683   case Bytecodes::_idiv:
1684     // Must keep both values on the expression-stack during null-check
1685     do_null_check(peek(), T_INT);
1686     // Compile-time detect of null-exception?
1687     if (stopped())  return;
1688     b = pop();
1689     a = pop();
1690     push( _gvn.transform( new (C, 3) DivINode(control(),a,b) ) );
1691     break;
1692   case Bytecodes::_imul:
1693     b = pop(); a = pop();
1694     push( _gvn.transform( new (C, 3) MulINode(a,b) ) );
1695     break;
1696   case Bytecodes::_iadd:
1697     b = pop(); a = pop();
1698     push( _gvn.transform( new (C, 3) AddINode(a,b) ) );
1699     break;
1700   case Bytecodes::_ineg:
1701     a = pop();
1702     push( _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),a)) );
1703     break;
1704   case Bytecodes::_isub:
1705     b = pop(); a = pop();
1706     push( _gvn.transform( new (C, 3) SubINode(a,b) ) );
1707     break;
1708   case Bytecodes::_iand:
1709     b = pop(); a = pop();
1710     push( _gvn.transform( new (C, 3) AndINode(a,b) ) );
1711     break;
1712   case Bytecodes::_ior:
1713     b = pop(); a = pop();
1714     push( _gvn.transform( new (C, 3) OrINode(a,b) ) );
1715     break;
1716   case Bytecodes::_ixor:
1717     b = pop(); a = pop();
1718     push( _gvn.transform( new (C, 3) XorINode(a,b) ) );
1719     break;
1720   case Bytecodes::_ishl:
1721     b = pop(); a = pop();
1722     push( _gvn.transform( new (C, 3) LShiftINode(a,b) ) );
1723     break;
1724   case Bytecodes::_ishr:
1725     b = pop(); a = pop();
1726     push( _gvn.transform( new (C, 3) RShiftINode(a,b) ) );
1727     break;
1728   case Bytecodes::_iushr:
1729     b = pop(); a = pop();
1730     push( _gvn.transform( new (C, 3) URShiftINode(a,b) ) );
1731     break;
1732 
1733   case Bytecodes::_fneg:
1734     a = pop();
1735     b = _gvn.transform(new (C, 2) NegFNode (a));
1736     push(b);
1737     break;
1738 
1739   case Bytecodes::_fsub:
1740     b = pop();
1741     a = pop();
1742     c = _gvn.transform( new (C, 3) SubFNode(a,b) );
1743     d = precision_rounding(c);
1744     push( d );
1745     break;
1746 
1747   case Bytecodes::_fadd:
1748     b = pop();
1749     a = pop();
1750     c = _gvn.transform( new (C, 3) AddFNode(a,b) );
1751     d = precision_rounding(c);
1752     push( d );
1753     break;
1754 
1755   case Bytecodes::_fmul:
1756     b = pop();
1757     a = pop();
1758     c = _gvn.transform( new (C, 3) MulFNode(a,b) );
1759     d = precision_rounding(c);
1760     push( d );
1761     break;
1762 
1763   case Bytecodes::_fdiv:
1764     b = pop();
1765     a = pop();
1766     c = _gvn.transform( new (C, 3) DivFNode(0,a,b) );
1767     d = precision_rounding(c);
1768     push( d );
1769     break;
1770 
1771   case Bytecodes::_frem:
1772     if (Matcher::has_match_rule(Op_ModF)) {
1773       // Generate a ModF node.
1774       b = pop();
1775       a = pop();
1776       c = _gvn.transform( new (C, 3) ModFNode(0,a,b) );
1777       d = precision_rounding(c);
1778       push( d );
1779     }
1780     else {
1781       // Generate a call.
1782       modf();
1783     }
1784     break;
1785 
1786   case Bytecodes::_fcmpl:
1787     b = pop();
1788     a = pop();
1789     c = _gvn.transform( new (C, 3) CmpF3Node( a, b));
1790     push(c);
1791     break;
1792   case Bytecodes::_fcmpg:
1793     b = pop();
1794     a = pop();
1795 
1796     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
1797     // which negates the result sign except for unordered.  Flip the unordered
1798     // as well by using CmpF3 which implements unordered-lesser instead of
1799     // unordered-greater semantics.  Finally, commute the result bits.  Result
1800     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
1801     c = _gvn.transform( new (C, 3) CmpF3Node( b, a));
1802     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1803     push(c);
1804     break;
1805 
1806   case Bytecodes::_f2i:
1807     a = pop();
1808     push(_gvn.transform(new (C, 2) ConvF2INode(a)));
1809     break;
1810 
1811   case Bytecodes::_d2i:
1812     a = pop_pair();
1813     b = _gvn.transform(new (C, 2) ConvD2INode(a));
1814     push( b );
1815     break;
1816 
1817   case Bytecodes::_f2d:
1818     a = pop();
1819     b = _gvn.transform( new (C, 2) ConvF2DNode(a));
1820     push_pair( b );
1821     break;
1822 
1823   case Bytecodes::_d2f:
1824     a = pop_pair();
1825     b = _gvn.transform( new (C, 2) ConvD2FNode(a));
1826     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
1827     //b = _gvn.transform(new (C, 2) RoundFloatNode(0, b) );
1828     push( b );
1829     break;
1830 
1831   case Bytecodes::_l2f:
1832     if (Matcher::convL2FSupported()) {
1833       a = pop_pair();
1834       b = _gvn.transform( new (C, 2) ConvL2FNode(a));
1835       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
1836       // Rather than storing the result into an FP register then pushing
1837       // out to memory to round, the machine instruction that implements
1838       // ConvL2D is responsible for rounding.
1839       // c = precision_rounding(b);
1840       c = _gvn.transform(b);
1841       push(c);
1842     } else {
1843       l2f();
1844     }
1845     break;
1846 
1847   case Bytecodes::_l2d:
1848     a = pop_pair();
1849     b = _gvn.transform( new (C, 2) ConvL2DNode(a));
1850     // For i486.ad, rounding is always necessary (see _l2f above).
1851     // c = dprecision_rounding(b);
1852     c = _gvn.transform(b);
1853     push_pair(c);
1854     break;
1855 
1856   case Bytecodes::_f2l:
1857     a = pop();
1858     b = _gvn.transform( new (C, 2) ConvF2LNode(a));
1859     push_pair(b);
1860     break;
1861 
1862   case Bytecodes::_d2l:
1863     a = pop_pair();
1864     b = _gvn.transform( new (C, 2) ConvD2LNode(a));
1865     push_pair(b);
1866     break;
1867 
1868   case Bytecodes::_dsub:
1869     b = pop_pair();
1870     a = pop_pair();
1871     c = _gvn.transform( new (C, 3) SubDNode(a,b) );
1872     d = dprecision_rounding(c);
1873     push_pair( d );
1874     break;
1875 
1876   case Bytecodes::_dadd:
1877     b = pop_pair();
1878     a = pop_pair();
1879     c = _gvn.transform( new (C, 3) AddDNode(a,b) );
1880     d = dprecision_rounding(c);
1881     push_pair( d );
1882     break;
1883 
1884   case Bytecodes::_dmul:
1885     b = pop_pair();
1886     a = pop_pair();
1887     c = _gvn.transform( new (C, 3) MulDNode(a,b) );
1888     d = dprecision_rounding(c);
1889     push_pair( d );
1890     break;
1891 
1892   case Bytecodes::_ddiv:
1893     b = pop_pair();
1894     a = pop_pair();
1895     c = _gvn.transform( new (C, 3) DivDNode(0,a,b) );
1896     d = dprecision_rounding(c);
1897     push_pair( d );
1898     break;
1899 
1900   case Bytecodes::_dneg:
1901     a = pop_pair();
1902     b = _gvn.transform(new (C, 2) NegDNode (a));
1903     push_pair(b);
1904     break;
1905 
1906   case Bytecodes::_drem:
1907     if (Matcher::has_match_rule(Op_ModD)) {
1908       // Generate a ModD node.
1909       b = pop_pair();
1910       a = pop_pair();
1911       // a % b
1912 
1913       c = _gvn.transform( new (C, 3) ModDNode(0,a,b) );
1914       d = dprecision_rounding(c);
1915       push_pair( d );
1916     }
1917     else {
1918       // Generate a call.
1919       modd();
1920     }
1921     break;
1922 
1923   case Bytecodes::_dcmpl:
1924     b = pop_pair();
1925     a = pop_pair();
1926     c = _gvn.transform( new (C, 3) CmpD3Node( a, b));
1927     push(c);
1928     break;
1929 
1930   case Bytecodes::_dcmpg:
1931     b = pop_pair();
1932     a = pop_pair();
1933     // Same as dcmpl but need to flip the unordered case.
1934     // Commute the inputs, which negates the result sign except for unordered.
1935     // Flip the unordered as well by using CmpD3 which implements
1936     // unordered-lesser instead of unordered-greater semantics.
1937     // Finally, negate the result bits.  Result is same as using a
1938     // CmpD3Greater except we did it with CmpD3 alone.
1939     c = _gvn.transform( new (C, 3) CmpD3Node( b, a));
1940     c = _gvn.transform( new (C, 3) SubINode(_gvn.intcon(0),c) );
1941     push(c);
1942     break;
1943 
1944 
1945     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
1946   case Bytecodes::_land:
1947     b = pop_pair();
1948     a = pop_pair();
1949     c = _gvn.transform( new (C, 3) AndLNode(a,b) );
1950     push_pair(c);
1951     break;
1952   case Bytecodes::_lor:
1953     b = pop_pair();
1954     a = pop_pair();
1955     c = _gvn.transform( new (C, 3) OrLNode(a,b) );
1956     push_pair(c);
1957     break;
1958   case Bytecodes::_lxor:
1959     b = pop_pair();
1960     a = pop_pair();
1961     c = _gvn.transform( new (C, 3) XorLNode(a,b) );
1962     push_pair(c);
1963     break;
1964 
1965   case Bytecodes::_lshl:
1966     b = pop();                  // the shift count
1967     a = pop_pair();             // value to be shifted
1968     c = _gvn.transform( new (C, 3) LShiftLNode(a,b) );
1969     push_pair(c);
1970     break;
1971   case Bytecodes::_lshr:
1972     b = pop();                  // the shift count
1973     a = pop_pair();             // value to be shifted
1974     c = _gvn.transform( new (C, 3) RShiftLNode(a,b) );
1975     push_pair(c);
1976     break;
1977   case Bytecodes::_lushr:
1978     b = pop();                  // the shift count
1979     a = pop_pair();             // value to be shifted
1980     c = _gvn.transform( new (C, 3) URShiftLNode(a,b) );
1981     push_pair(c);
1982     break;
1983   case Bytecodes::_lmul:
1984     b = pop_pair();
1985     a = pop_pair();
1986     c = _gvn.transform( new (C, 3) MulLNode(a,b) );
1987     push_pair(c);
1988     break;
1989 
1990   case Bytecodes::_lrem:
1991     // Must keep both values on the expression-stack during null-check
1992     assert(peek(0) == top(), "long word order");
1993     do_null_check(peek(1), T_LONG);
1994     // Compile-time detect of null-exception?
1995     if (stopped())  return;
1996     b = pop_pair();
1997     a = pop_pair();
1998     c = _gvn.transform( new (C, 3) ModLNode(control(),a,b) );
1999     push_pair(c);
2000     break;
2001 
2002   case Bytecodes::_ldiv:
2003     // Must keep both values on the expression-stack during null-check
2004     assert(peek(0) == top(), "long word order");
2005     do_null_check(peek(1), T_LONG);
2006     // Compile-time detect of null-exception?
2007     if (stopped())  return;
2008     b = pop_pair();
2009     a = pop_pair();
2010     c = _gvn.transform( new (C, 3) DivLNode(control(),a,b) );
2011     push_pair(c);
2012     break;
2013 
2014   case Bytecodes::_ladd:
2015     b = pop_pair();
2016     a = pop_pair();
2017     c = _gvn.transform( new (C, 3) AddLNode(a,b) );
2018     push_pair(c);
2019     break;
2020   case Bytecodes::_lsub:
2021     b = pop_pair();
2022     a = pop_pair();
2023     c = _gvn.transform( new (C, 3) SubLNode(a,b) );
2024     push_pair(c);
2025     break;
2026   case Bytecodes::_lcmp:
2027     // Safepoints are now inserted _before_ branches.  The long-compare
2028     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2029     // slew of control flow.  These are usually followed by a CmpI vs zero and
2030     // a branch; this pattern then optimizes to the obvious long-compare and
2031     // branch.  However, if the branch is backwards there's a Safepoint
2032     // inserted.  The inserted Safepoint captures the JVM state at the
2033     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2034     // long-compare is used to control a loop the debug info will force
2035     // computation of the 3-way value, even though the generated code uses a
2036     // long-compare and branch.  We try to rectify the situation by inserting
2037     // a SafePoint here and have it dominate and kill the safepoint added at a
2038     // following backwards branch.  At this point the JVM state merely holds 2
2039     // longs but not the 3-way value.
2040     if( UseLoopSafepoints ) {
2041       switch( iter().next_bc() ) {
2042       case Bytecodes::_ifgt:
2043       case Bytecodes::_iflt:
2044       case Bytecodes::_ifge:
2045       case Bytecodes::_ifle:
2046       case Bytecodes::_ifne:
2047       case Bytecodes::_ifeq:
2048         // If this is a backwards branch in the bytecodes, add Safepoint
2049         maybe_add_safepoint(iter().next_get_dest());
2050       }
2051     }
2052     b = pop_pair();
2053     a = pop_pair();
2054     c = _gvn.transform( new (C, 3) CmpL3Node( a, b ));
2055     push(c);
2056     break;
2057 
2058   case Bytecodes::_lneg:
2059     a = pop_pair();
2060     b = _gvn.transform( new (C, 3) SubLNode(longcon(0),a));
2061     push_pair(b);
2062     break;
2063   case Bytecodes::_l2i:
2064     a = pop_pair();
2065     push( _gvn.transform( new (C, 2) ConvL2INode(a)));
2066     break;
2067   case Bytecodes::_i2l:
2068     a = pop();
2069     b = _gvn.transform( new (C, 2) ConvI2LNode(a));
2070     push_pair(b);
2071     break;
2072   case Bytecodes::_i2b:
2073     // Sign extend
2074     a = pop();
2075     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(24)) );
2076     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(24)) );
2077     push( a );
2078     break;
2079   case Bytecodes::_i2s:
2080     a = pop();
2081     a = _gvn.transform( new (C, 3) LShiftINode(a,_gvn.intcon(16)) );
2082     a = _gvn.transform( new (C, 3) RShiftINode(a,_gvn.intcon(16)) );
2083     push( a );
2084     break;
2085   case Bytecodes::_i2c:
2086     a = pop();
2087     push( _gvn.transform( new (C, 3) AndINode(a,_gvn.intcon(0xFFFF)) ) );
2088     break;
2089 
2090   case Bytecodes::_i2f:
2091     a = pop();
2092     b = _gvn.transform( new (C, 2) ConvI2FNode(a) ) ;
2093     c = precision_rounding(b);
2094     push (b);
2095     break;
2096 
2097   case Bytecodes::_i2d:
2098     a = pop();
2099     b = _gvn.transform( new (C, 2) ConvI2DNode(a));
2100     push_pair(b);
2101     break;
2102 
2103   case Bytecodes::_iinc:        // Increment local
2104     i = iter().get_index();     // Get local index
2105     set_local( i, _gvn.transform( new (C, 3) AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2106     break;
2107 
2108   // Exit points of synchronized methods must have an unlock node
2109   case Bytecodes::_return:
2110     return_current(NULL);
2111     break;
2112 
2113   case Bytecodes::_ireturn:
2114   case Bytecodes::_areturn:
2115   case Bytecodes::_freturn:
2116     return_current(pop());
2117     break;
2118   case Bytecodes::_lreturn:
2119     return_current(pop_pair());
2120     break;
2121   case Bytecodes::_dreturn:
2122     return_current(pop_pair());
2123     break;
2124 
2125   case Bytecodes::_athrow:
2126     // null exception oop throws NULL pointer exception
2127     do_null_check(peek(), T_OBJECT);
2128     if (stopped())  return;
2129     // Hook the thrown exception directly to subsequent handlers.
2130     if (BailoutToInterpreterForThrows) {
2131       // Keep method interpreted from now on.
2132       uncommon_trap(Deoptimization::Reason_unhandled,
2133                     Deoptimization::Action_make_not_compilable);
2134       return;
2135     }
2136     if (env()->jvmti_can_post_on_exceptions()) {
2137       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2138       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2139     }
2140     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2141     add_exception_state(make_exception_state(peek()));
2142     break;
2143 
2144   case Bytecodes::_goto:   // fall through
2145   case Bytecodes::_goto_w: {
2146     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2147 
2148     // If this is a backwards branch in the bytecodes, add Safepoint
2149     maybe_add_safepoint(target_bci);
2150 
2151     // Update method data
2152     profile_taken_branch(target_bci);
2153 
2154     // Add loop predicate if it goes to a loop
2155     if (should_add_predicate(target_bci)){
2156       add_predicate();
2157     }
2158     // Merge the current control into the target basic block
2159     merge(target_bci);
2160 
2161     // See if we can get some profile data and hand it off to the next block
2162     Block *target_block = block()->successor_for_bci(target_bci);
2163     if (target_block->pred_count() != 1)  break;
2164     ciMethodData* methodData = method()->method_data();
2165     if (!methodData->is_mature())  break;
2166     ciProfileData* data = methodData->bci_to_data(bci());
2167     assert( data->is_JumpData(), "" );
2168     int taken = ((ciJumpData*)data)->taken();
2169     taken = method()->scale_count(taken);
2170     target_block->set_count(taken);
2171     break;
2172   }
2173 
2174   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2175   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2176   handle_if_null:
2177     // If this is a backwards branch in the bytecodes, add Safepoint
2178     maybe_add_safepoint(iter().get_dest());
2179     a = null();
2180     b = pop();
2181     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2182     do_ifnull(btest, c);
2183     break;
2184 
2185   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2186   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2187   handle_if_acmp:
2188     // If this is a backwards branch in the bytecodes, add Safepoint
2189     maybe_add_safepoint(iter().get_dest());
2190     a = pop();
2191     b = pop();
2192     c = _gvn.transform( new (C, 3) CmpPNode(b, a) );
2193     do_if(btest, c);
2194     break;
2195 
2196   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2197   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2198   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2199   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2200   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2201   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2202   handle_ifxx:
2203     // If this is a backwards branch in the bytecodes, add Safepoint
2204     maybe_add_safepoint(iter().get_dest());
2205     a = _gvn.intcon(0);
2206     b = pop();
2207     c = _gvn.transform( new (C, 3) CmpINode(b, a) );
2208     do_if(btest, c);
2209     break;
2210 
2211   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2212   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2213   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2214   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2215   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2216   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2217   handle_if_icmp:
2218     // If this is a backwards branch in the bytecodes, add Safepoint
2219     maybe_add_safepoint(iter().get_dest());
2220     a = pop();
2221     b = pop();
2222     c = _gvn.transform( new (C, 3) CmpINode( b, a ) );
2223     do_if(btest, c);
2224     break;
2225 
2226   case Bytecodes::_tableswitch:
2227     do_tableswitch();
2228     break;
2229 
2230   case Bytecodes::_lookupswitch:
2231     do_lookupswitch();
2232     break;
2233 
2234   case Bytecodes::_invokestatic:
2235   case Bytecodes::_invokedynamic:
2236   case Bytecodes::_invokespecial:
2237   case Bytecodes::_invokevirtual:
2238   case Bytecodes::_invokeinterface:
2239     do_call();
2240     break;
2241   case Bytecodes::_checkcast:
2242     do_checkcast();
2243     break;
2244   case Bytecodes::_instanceof:
2245     do_instanceof();
2246     break;
2247   case Bytecodes::_anewarray:
2248     do_anewarray();
2249     break;
2250   case Bytecodes::_newarray:
2251     do_newarray((BasicType)iter().get_index());
2252     break;
2253   case Bytecodes::_multianewarray:
2254     do_multianewarray();
2255     break;
2256   case Bytecodes::_new:
2257     do_new();
2258     break;
2259 
2260   case Bytecodes::_jsr:
2261   case Bytecodes::_jsr_w:
2262     do_jsr();
2263     break;
2264 
2265   case Bytecodes::_ret:
2266     do_ret();
2267     break;
2268 
2269 
2270   case Bytecodes::_monitorenter:
2271     do_monitor_enter();
2272     break;
2273 
2274   case Bytecodes::_monitorexit:
2275     do_monitor_exit();
2276     break;
2277 
2278   case Bytecodes::_breakpoint:
2279     // Breakpoint set concurrently to compile
2280     // %%% use an uncommon trap?
2281     C->record_failure("breakpoint in method");
2282     return;
2283 
2284   default:
2285 #ifndef PRODUCT
2286     map()->dump(99);
2287 #endif
2288     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2289     ShouldNotReachHere();
2290   }
2291 
2292 #ifndef PRODUCT
2293   IdealGraphPrinter *printer = IdealGraphPrinter::printer();
2294   if(printer) {
2295     char buffer[256];
2296     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2297     bool old = printer->traverse_outs();
2298     printer->set_traverse_outs(true);
2299     printer->print_method(C, buffer, 4);
2300     printer->set_traverse_outs(old);
2301   }
2302 #endif
2303 }