1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_deoptimization.cpp.incl"
  27 
  28 bool DeoptimizationMarker::_is_active = false;
  29 
  30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  31                                          int  caller_adjustment,
  32                                          int  number_of_frames,
  33                                          intptr_t* frame_sizes,
  34                                          address* frame_pcs,
  35                                          BasicType return_type) {
  36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  37   _caller_adjustment         = caller_adjustment;
  38   _number_of_frames          = number_of_frames;
  39   _frame_sizes               = frame_sizes;
  40   _frame_pcs                 = frame_pcs;
  41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  42   _return_type               = return_type;
  43   // PD (x86 only)
  44   _counter_temp              = 0;
  45   _initial_fp                = 0;
  46   _unpack_kind               = 0;
  47   _sender_sp_temp            = 0;
  48 
  49   _total_frame_sizes         = size_of_frames();
  50 }
  51 
  52 
  53 Deoptimization::UnrollBlock::~UnrollBlock() {
  54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  57 }
  58 
  59 
  60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  61   assert(register_number < RegisterMap::reg_count, "checking register number");
  62   return &_register_block[register_number * 2];
  63 }
  64 
  65 
  66 
  67 int Deoptimization::UnrollBlock::size_of_frames() const {
  68   // Acount first for the adjustment of the initial frame
  69   int result = _caller_adjustment;
  70   for (int index = 0; index < number_of_frames(); index++) {
  71     result += frame_sizes()[index];
  72   }
  73   return result;
  74 }
  75 
  76 
  77 void Deoptimization::UnrollBlock::print() {
  78   ttyLocker ttyl;
  79   tty->print_cr("UnrollBlock");
  80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  81   tty->print(   "  frame_sizes: ");
  82   for (int index = 0; index < number_of_frames(); index++) {
  83     tty->print("%d ", frame_sizes()[index]);
  84   }
  85   tty->cr();
  86 }
  87 
  88 
  89 // In order to make fetch_unroll_info work properly with escape
  90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
  91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
  92 // of previously eliminated objects occurs in realloc_objects, which is
  93 // called from the method fetch_unroll_info_helper below.
  94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  96   // but makes the entry a little slower. There is however a little dance we have to
  97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  98 
  99   // fetch_unroll_info() is called at the beginning of the deoptimization
 100   // handler. Note this fact before we start generating temporary frames
 101   // that can confuse an asynchronous stack walker. This counter is
 102   // decremented at the end of unpack_frames().
 103   thread->inc_in_deopt_handler();
 104 
 105   return fetch_unroll_info_helper(thread);
 106 JRT_END
 107 
 108 
 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 111 
 112   // Note: there is a safepoint safety issue here. No matter whether we enter
 113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 114   // the vframeArray is created.
 115   //
 116 
 117   // Allocate our special deoptimization ResourceMark
 118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 120   thread->set_deopt_mark(dmark);
 121 
 122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 123   RegisterMap map(thread, true);
 124   RegisterMap dummy_map(thread, false);
 125   // Now get the deoptee with a valid map
 126   frame deoptee = stub_frame.sender(&map);
 127 
 128   // Create a growable array of VFrames where each VFrame represents an inlined
 129   // Java frame.  This storage is allocated with the usual system arena.
 130   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 131   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 132   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 133   while (!vf->is_top()) {
 134     assert(vf->is_compiled_frame(), "Wrong frame type");
 135     chunk->push(compiledVFrame::cast(vf));
 136     vf = vf->sender();
 137   }
 138   assert(vf->is_compiled_frame(), "Wrong frame type");
 139   chunk->push(compiledVFrame::cast(vf));
 140 
 141 #ifdef COMPILER2
 142   // Reallocate the non-escaping objects and restore their fields. Then
 143   // relock objects if synchronization on them was eliminated.
 144   if (DoEscapeAnalysis) {
 145     if (EliminateAllocations) {
 146       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 147       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 148 
 149       // The flag return_oop() indicates call sites which return oop
 150       // in compiled code. Such sites include java method calls,
 151       // runtime calls (for example, used to allocate new objects/arrays
 152       // on slow code path) and any other calls generated in compiled code.
 153       // It is not guaranteed that we can get such information here only
 154       // by analyzing bytecode in deoptimized frames. This is why this flag
 155       // is set during method compilation (see Compile::Process_OopMap_Node()).
 156       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 157       Handle return_value;
 158       if (save_oop_result) {
 159         // Reallocation may trigger GC. If deoptimization happened on return from
 160         // call which returns oop we need to save it since it is not in oopmap.
 161         oop result = deoptee.saved_oop_result(&map);
 162         assert(result == NULL || result->is_oop(), "must be oop");
 163         return_value = Handle(thread, result);
 164         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 165         if (TraceDeoptimization) {
 166           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 167         }
 168       }
 169       bool reallocated = false;
 170       if (objects != NULL) {
 171         JRT_BLOCK
 172           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 173         JRT_END
 174       }
 175       if (reallocated) {
 176         reassign_fields(&deoptee, &map, objects);
 177 #ifndef PRODUCT
 178         if (TraceDeoptimization) {
 179           ttyLocker ttyl;
 180           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 181           print_objects(objects);
 182         }
 183 #endif
 184       }
 185       if (save_oop_result) {
 186         // Restore result.
 187         deoptee.set_saved_oop_result(&map, return_value());
 188       }
 189     }
 190     if (EliminateLocks) {
 191 #ifndef PRODUCT
 192       bool first = true;
 193 #endif
 194       for (int i = 0; i < chunk->length(); i++) {
 195         compiledVFrame* cvf = chunk->at(i);
 196         assert (cvf->scope() != NULL,"expect only compiled java frames");
 197         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 198         if (monitors->is_nonempty()) {
 199           relock_objects(monitors, thread);
 200 #ifndef PRODUCT
 201           if (TraceDeoptimization) {
 202             ttyLocker ttyl;
 203             for (int j = 0; j < monitors->length(); j++) {
 204               MonitorInfo* mi = monitors->at(j);
 205               if (mi->eliminated()) {
 206                 if (first) {
 207                   first = false;
 208                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 209                 }
 210                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 211               }
 212             }
 213           }
 214 #endif
 215         }
 216       }
 217     }
 218   }
 219 #endif // COMPILER2
 220   // Ensure that no safepoint is taken after pointers have been stored
 221   // in fields of rematerialized objects.  If a safepoint occurs from here on
 222   // out the java state residing in the vframeArray will be missed.
 223   No_Safepoint_Verifier no_safepoint;
 224 
 225   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 226 
 227   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 228   thread->set_vframe_array_head(array);
 229 
 230   // Now that the vframeArray has been created if we have any deferred local writes
 231   // added by jvmti then we can free up that structure as the data is now in the
 232   // vframeArray
 233 
 234   if (thread->deferred_locals() != NULL) {
 235     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 236     int i = 0;
 237     do {
 238       // Because of inlining we could have multiple vframes for a single frame
 239       // and several of the vframes could have deferred writes. Find them all.
 240       if (list->at(i)->id() == array->original().id()) {
 241         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 242         list->remove_at(i);
 243         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 244         delete dlv;
 245       } else {
 246         i++;
 247       }
 248     } while ( i < list->length() );
 249     if (list->length() == 0) {
 250       thread->set_deferred_locals(NULL);
 251       // free the list and elements back to C heap.
 252       delete list;
 253     }
 254 
 255   }
 256 
 257 #ifndef SHARK
 258   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 259   CodeBlob* cb = stub_frame.cb();
 260   // Verify we have the right vframeArray
 261   assert(cb->frame_size() >= 0, "Unexpected frame size");
 262   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 263 
 264   // If the deopt call site is a MethodHandle invoke call site we have
 265   // to adjust the unpack_sp.
 266   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 267   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 268     unpack_sp = deoptee.unextended_sp();
 269 
 270 #ifdef ASSERT
 271   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 272   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 273 #endif
 274 #else
 275   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 276 #endif // !SHARK
 277 
 278   // This is a guarantee instead of an assert because if vframe doesn't match
 279   // we will unpack the wrong deoptimized frame and wind up in strange places
 280   // where it will be very difficult to figure out what went wrong. Better
 281   // to die an early death here than some very obscure death later when the
 282   // trail is cold.
 283   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 284   // in that it will fail to detect a problem when there is one. This needs
 285   // more work in tiger timeframe.
 286   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 287 
 288   int number_of_frames = array->frames();
 289 
 290   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 291   // virtual activation, which is the reverse of the elements in the vframes array.
 292   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 293   // +1 because we always have an interpreter return address for the final slot.
 294   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 295   int callee_parameters = 0;
 296   int callee_locals = 0;
 297   int popframe_extra_args = 0;
 298   // Create an interpreter return address for the stub to use as its return
 299   // address so the skeletal frames are perfectly walkable
 300   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 301 
 302   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 303   // activation be put back on the expression stack of the caller for reexecution
 304   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 305     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 306   }
 307 
 308   //
 309   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 310   // frame_sizes/frame_pcs[1] next oldest frame (int)
 311   // frame_sizes/frame_pcs[n] youngest frame (int)
 312   //
 313   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 314   // owns the space for the return address to it's caller).  Confusing ain't it.
 315   //
 316   // The vframe array can address vframes with indices running from
 317   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 318   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 319   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 320   // so things look a little strange in this loop.
 321   //
 322   for (int index = 0; index < array->frames(); index++ ) {
 323     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 324     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 325     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 326     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 327                                                                                                     callee_locals,
 328                                                                                                     index == 0,
 329                                                                                                     popframe_extra_args);
 330     // This pc doesn't have to be perfect just good enough to identify the frame
 331     // as interpreted so the skeleton frame will be walkable
 332     // The correct pc will be set when the skeleton frame is completely filled out
 333     // The final pc we store in the loop is wrong and will be overwritten below
 334     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 335 
 336     callee_parameters = array->element(index)->method()->size_of_parameters();
 337     callee_locals = array->element(index)->method()->max_locals();
 338     popframe_extra_args = 0;
 339   }
 340 
 341   // Compute whether the root vframe returns a float or double value.
 342   BasicType return_type;
 343   {
 344     HandleMark hm;
 345     methodHandle method(thread, array->element(0)->method());
 346     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 347     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 348   }
 349 
 350   // Compute information for handling adapters and adjusting the frame size of the caller.
 351   int caller_adjustment = 0;
 352 
 353   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 354   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 355   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 356   //
 357   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 358   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 359 
 360   // Compute the amount the oldest interpreter frame will have to adjust
 361   // its caller's stack by. If the caller is a compiled frame then
 362   // we pretend that the callee has no parameters so that the
 363   // extension counts for the full amount of locals and not just
 364   // locals-parms. This is because without a c2i adapter the parm
 365   // area as created by the compiled frame will not be usable by
 366   // the interpreter. (Depending on the calling convention there
 367   // may not even be enough space).
 368 
 369   // QQQ I'd rather see this pushed down into last_frame_adjust
 370   // and have it take the sender (aka caller).
 371 
 372   if (deopt_sender.is_compiled_frame()) {
 373     caller_adjustment = last_frame_adjust(0, callee_locals);
 374   } else if (callee_locals > callee_parameters) {
 375     // The caller frame may need extending to accommodate
 376     // non-parameter locals of the first unpacked interpreted frame.
 377     // Compute that adjustment.
 378     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 379   }
 380 
 381 
 382   // If the sender is deoptimized the we must retrieve the address of the handler
 383   // since the frame will "magically" show the original pc before the deopt
 384   // and we'd undo the deopt.
 385 
 386   frame_pcs[0] = deopt_sender.raw_pc();
 387 
 388 #ifndef SHARK
 389   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 390 #endif // SHARK
 391 
 392   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 393                                       caller_adjustment * BytesPerWord,
 394                                       number_of_frames,
 395                                       frame_sizes,
 396                                       frame_pcs,
 397                                       return_type);
 398 #if defined(IA32) || defined(AMD64)
 399   // We need a way to pass fp to the unpacking code so the skeletal frames
 400   // come out correct. This is only needed for x86 because of c2 using ebp
 401   // as an allocatable register. So this update is useless (and harmless)
 402   // on the other platforms. It would be nice to do this in a different
 403   // way but even the old style deoptimization had a problem with deriving
 404   // this value. NEEDS_CLEANUP
 405   // Note: now that c1 is using c2's deopt blob we must do this on all
 406   // x86 based platforms
 407   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 408   *fp_addr = array->sender().fp(); // was adapter_caller
 409 #endif /* IA32 || AMD64 */
 410 
 411   if (array->frames() > 1) {
 412     if (VerifyStack && TraceDeoptimization) {
 413       tty->print_cr("Deoptimizing method containing inlining");
 414     }
 415   }
 416 
 417   array->set_unroll_block(info);
 418   return info;
 419 }
 420 
 421 // Called to cleanup deoptimization data structures in normal case
 422 // after unpacking to stack and when stack overflow error occurs
 423 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 424                                         vframeArray *array) {
 425 
 426   // Get array if coming from exception
 427   if (array == NULL) {
 428     array = thread->vframe_array_head();
 429   }
 430   thread->set_vframe_array_head(NULL);
 431 
 432   // Free the previous UnrollBlock
 433   vframeArray* old_array = thread->vframe_array_last();
 434   thread->set_vframe_array_last(array);
 435 
 436   if (old_array != NULL) {
 437     UnrollBlock* old_info = old_array->unroll_block();
 438     old_array->set_unroll_block(NULL);
 439     delete old_info;
 440     delete old_array;
 441   }
 442 
 443   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 444   // inside the vframeArray (StackValueCollections)
 445 
 446   delete thread->deopt_mark();
 447   thread->set_deopt_mark(NULL);
 448 
 449 
 450   if (JvmtiExport::can_pop_frame()) {
 451 #ifndef CC_INTERP
 452     // Regardless of whether we entered this routine with the pending
 453     // popframe condition bit set, we should always clear it now
 454     thread->clear_popframe_condition();
 455 #else
 456     // C++ interpeter will clear has_pending_popframe when it enters
 457     // with method_resume. For deopt_resume2 we clear it now.
 458     if (thread->popframe_forcing_deopt_reexecution())
 459         thread->clear_popframe_condition();
 460 #endif /* CC_INTERP */
 461   }
 462 
 463   // unpack_frames() is called at the end of the deoptimization handler
 464   // and (in C2) at the end of the uncommon trap handler. Note this fact
 465   // so that an asynchronous stack walker can work again. This counter is
 466   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 467   // the beginning of uncommon_trap().
 468   thread->dec_in_deopt_handler();
 469 }
 470 
 471 
 472 // Return BasicType of value being returned
 473 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 474 
 475   // We are already active int he special DeoptResourceMark any ResourceObj's we
 476   // allocate will be freed at the end of the routine.
 477 
 478   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 479   // but makes the entry a little slower. There is however a little dance we have to
 480   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 481   ResetNoHandleMark rnhm; // No-op in release/product versions
 482   HandleMark hm;
 483 
 484   frame stub_frame = thread->last_frame();
 485 
 486   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 487   // must point to the vframeArray for the unpack frame.
 488   vframeArray* array = thread->vframe_array_head();
 489 
 490 #ifndef PRODUCT
 491   if (TraceDeoptimization) {
 492     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 493   }
 494 #endif
 495 
 496   UnrollBlock* info = array->unroll_block();
 497 
 498   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 499   array->unpack_to_stack(stub_frame, exec_mode);
 500 
 501   BasicType bt = info->return_type();
 502 
 503   // If we have an exception pending, claim that the return type is an oop
 504   // so the deopt_blob does not overwrite the exception_oop.
 505 
 506   if (exec_mode == Unpack_exception)
 507     bt = T_OBJECT;
 508 
 509   // Cleanup thread deopt data
 510   cleanup_deopt_info(thread, array);
 511 
 512 #ifndef PRODUCT
 513   if (VerifyStack) {
 514     ResourceMark res_mark;
 515 
 516     // Verify that the just-unpacked frames match the interpreter's
 517     // notions of expression stack and locals
 518     vframeArray* cur_array = thread->vframe_array_last();
 519     RegisterMap rm(thread, false);
 520     rm.set_include_argument_oops(false);
 521     bool is_top_frame = true;
 522     int callee_size_of_parameters = 0;
 523     int callee_max_locals = 0;
 524     for (int i = 0; i < cur_array->frames(); i++) {
 525       vframeArrayElement* el = cur_array->element(i);
 526       frame* iframe = el->iframe();
 527       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 528 
 529       // Get the oop map for this bci
 530       InterpreterOopMap mask;
 531       int cur_invoke_parameter_size = 0;
 532       bool try_next_mask = false;
 533       int next_mask_expression_stack_size = -1;
 534       int top_frame_expression_stack_adjustment = 0;
 535       methodHandle mh(thread, iframe->interpreter_frame_method());
 536       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 537       BytecodeStream str(mh);
 538       str.set_start(iframe->interpreter_frame_bci());
 539       int max_bci = mh->code_size();
 540       // Get to the next bytecode if possible
 541       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 542       // Check to see if we can grab the number of outgoing arguments
 543       // at an uncommon trap for an invoke (where the compiler
 544       // generates debug info before the invoke has executed)
 545       Bytecodes::Code cur_code = str.next();
 546       if (cur_code == Bytecodes::_invokevirtual ||
 547           cur_code == Bytecodes::_invokespecial ||
 548           cur_code == Bytecodes::_invokestatic  ||
 549           cur_code == Bytecodes::_invokeinterface) {
 550         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 551         symbolHandle signature(thread, invoke->signature());
 552         ArgumentSizeComputer asc(signature);
 553         cur_invoke_parameter_size = asc.size();
 554         if (cur_code != Bytecodes::_invokestatic) {
 555           // Add in receiver
 556           ++cur_invoke_parameter_size;
 557         }
 558       }
 559       if (str.bci() < max_bci) {
 560         Bytecodes::Code bc = str.next();
 561         if (bc >= 0) {
 562           // The interpreter oop map generator reports results before
 563           // the current bytecode has executed except in the case of
 564           // calls. It seems to be hard to tell whether the compiler
 565           // has emitted debug information matching the "state before"
 566           // a given bytecode or the state after, so we try both
 567           switch (cur_code) {
 568             case Bytecodes::_invokevirtual:
 569             case Bytecodes::_invokespecial:
 570             case Bytecodes::_invokestatic:
 571             case Bytecodes::_invokeinterface:
 572             case Bytecodes::_athrow:
 573               break;
 574             default: {
 575               InterpreterOopMap next_mask;
 576               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 577               next_mask_expression_stack_size = next_mask.expression_stack_size();
 578               // Need to subtract off the size of the result type of
 579               // the bytecode because this is not described in the
 580               // debug info but returned to the interpreter in the TOS
 581               // caching register
 582               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 583               if (bytecode_result_type != T_ILLEGAL) {
 584                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 585               }
 586               assert(top_frame_expression_stack_adjustment >= 0, "");
 587               try_next_mask = true;
 588               break;
 589             }
 590           }
 591         }
 592       }
 593 
 594       // Verify stack depth and oops in frame
 595       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 596       if (!(
 597             /* SPARC */
 598             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 599             /* x86 */
 600             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 601             (try_next_mask &&
 602              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 603                                                                     top_frame_expression_stack_adjustment))) ||
 604             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 605             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 606              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 607             )) {
 608         ttyLocker ttyl;
 609 
 610         // Print out some information that will help us debug the problem
 611         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 612         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 613         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 614                       iframe->interpreter_frame_expression_stack_size());
 615         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 616         tty->print_cr("  try_next_mask = %d", try_next_mask);
 617         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 618         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 619         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 620         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 621         tty->print_cr("  exec_mode = %d", exec_mode);
 622         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 623         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 624         tty->print_cr("  Interpreted frames:");
 625         for (int k = 0; k < cur_array->frames(); k++) {
 626           vframeArrayElement* el = cur_array->element(k);
 627           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 628         }
 629         cur_array->print_on_2(tty);
 630         guarantee(false, "wrong number of expression stack elements during deopt");
 631       }
 632       VerifyOopClosure verify;
 633       iframe->oops_interpreted_do(&verify, &rm, false);
 634       callee_size_of_parameters = mh->size_of_parameters();
 635       callee_max_locals = mh->max_locals();
 636       is_top_frame = false;
 637     }
 638   }
 639 #endif /* !PRODUCT */
 640 
 641 
 642   return bt;
 643 JRT_END
 644 
 645 
 646 int Deoptimization::deoptimize_dependents() {
 647   Threads::deoptimized_wrt_marked_nmethods();
 648   return 0;
 649 }
 650 
 651 
 652 #ifdef COMPILER2
 653 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 654   Handle pending_exception(thread->pending_exception());
 655   const char* exception_file = thread->exception_file();
 656   int exception_line = thread->exception_line();
 657   thread->clear_pending_exception();
 658 
 659   for (int i = 0; i < objects->length(); i++) {
 660     assert(objects->at(i)->is_object(), "invalid debug information");
 661     ObjectValue* sv = (ObjectValue*) objects->at(i);
 662 
 663     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 664     oop obj = NULL;
 665 
 666     if (k->oop_is_instance()) {
 667       instanceKlass* ik = instanceKlass::cast(k());
 668       obj = ik->allocate_instance(CHECK_(false));
 669     } else if (k->oop_is_typeArray()) {
 670       typeArrayKlass* ak = typeArrayKlass::cast(k());
 671       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 672       int len = sv->field_size() / type2size[ak->element_type()];
 673       obj = ak->allocate(len, CHECK_(false));
 674     } else if (k->oop_is_objArray()) {
 675       objArrayKlass* ak = objArrayKlass::cast(k());
 676       obj = ak->allocate(sv->field_size(), CHECK_(false));
 677     }
 678 
 679     assert(obj != NULL, "allocation failed");
 680     assert(sv->value().is_null(), "redundant reallocation");
 681     sv->set_value(obj);
 682   }
 683 
 684   if (pending_exception.not_null()) {
 685     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 686   }
 687 
 688   return true;
 689 }
 690 
 691 // This assumes that the fields are stored in ObjectValue in the same order
 692 // they are yielded by do_nonstatic_fields.
 693 class FieldReassigner: public FieldClosure {
 694   frame* _fr;
 695   RegisterMap* _reg_map;
 696   ObjectValue* _sv;
 697   instanceKlass* _ik;
 698   oop _obj;
 699 
 700   int _i;
 701 public:
 702   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 703     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 704 
 705   int i() const { return _i; }
 706 
 707 
 708   void do_field(fieldDescriptor* fd) {
 709     intptr_t val;
 710     StackValue* value =
 711       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 712     int offset = fd->offset();
 713     switch (fd->field_type()) {
 714     case T_OBJECT: case T_ARRAY:
 715       assert(value->type() == T_OBJECT, "Agreement.");
 716       _obj->obj_field_put(offset, value->get_obj()());
 717       break;
 718 
 719     case T_LONG: case T_DOUBLE: {
 720       assert(value->type() == T_INT, "Agreement.");
 721       StackValue* low =
 722         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 723 #ifdef _LP64
 724       jlong res = (jlong)low->get_int();
 725 #else
 726 #ifdef SPARC
 727       // For SPARC we have to swap high and low words.
 728       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 729 #else
 730       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 731 #endif //SPARC
 732 #endif
 733       _obj->long_field_put(offset, res);
 734       break;
 735     }
 736     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 737     case T_INT: case T_FLOAT: // 4 bytes.
 738       assert(value->type() == T_INT, "Agreement.");
 739       val = value->get_int();
 740       _obj->int_field_put(offset, (jint)*((jint*)&val));
 741       break;
 742 
 743     case T_SHORT: case T_CHAR: // 2 bytes
 744       assert(value->type() == T_INT, "Agreement.");
 745       val = value->get_int();
 746       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 747       break;
 748 
 749     case T_BOOLEAN: case T_BYTE: // 1 byte
 750       assert(value->type() == T_INT, "Agreement.");
 751       val = value->get_int();
 752       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 753       break;
 754 
 755     default:
 756       ShouldNotReachHere();
 757     }
 758     _i++;
 759   }
 760 };
 761 
 762 // restore elements of an eliminated type array
 763 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 764   int index = 0;
 765   intptr_t val;
 766 
 767   for (int i = 0; i < sv->field_size(); i++) {
 768     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 769     switch(type) {
 770     case T_LONG: case T_DOUBLE: {
 771       assert(value->type() == T_INT, "Agreement.");
 772       StackValue* low =
 773         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 774 #ifdef _LP64
 775       jlong res = (jlong)low->get_int();
 776 #else
 777 #ifdef SPARC
 778       // For SPARC we have to swap high and low words.
 779       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 780 #else
 781       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 782 #endif //SPARC
 783 #endif
 784       obj->long_at_put(index, res);
 785       break;
 786     }
 787 
 788     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 789     case T_INT: case T_FLOAT: // 4 bytes.
 790       assert(value->type() == T_INT, "Agreement.");
 791       val = value->get_int();
 792       obj->int_at_put(index, (jint)*((jint*)&val));
 793       break;
 794 
 795     case T_SHORT: case T_CHAR: // 2 bytes
 796       assert(value->type() == T_INT, "Agreement.");
 797       val = value->get_int();
 798       obj->short_at_put(index, (jshort)*((jint*)&val));
 799       break;
 800 
 801     case T_BOOLEAN: case T_BYTE: // 1 byte
 802       assert(value->type() == T_INT, "Agreement.");
 803       val = value->get_int();
 804       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 805       break;
 806 
 807       default:
 808         ShouldNotReachHere();
 809     }
 810     index++;
 811   }
 812 }
 813 
 814 
 815 // restore fields of an eliminated object array
 816 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 817   for (int i = 0; i < sv->field_size(); i++) {
 818     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 819     assert(value->type() == T_OBJECT, "object element expected");
 820     obj->obj_at_put(i, value->get_obj()());
 821   }
 822 }
 823 
 824 
 825 // restore fields of all eliminated objects and arrays
 826 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 827   for (int i = 0; i < objects->length(); i++) {
 828     ObjectValue* sv = (ObjectValue*) objects->at(i);
 829     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 830     Handle obj = sv->value();
 831     assert(obj.not_null(), "reallocation was missed");
 832 
 833     if (k->oop_is_instance()) {
 834       instanceKlass* ik = instanceKlass::cast(k());
 835       FieldReassigner reassign(fr, reg_map, sv, obj());
 836       ik->do_nonstatic_fields(&reassign);
 837     } else if (k->oop_is_typeArray()) {
 838       typeArrayKlass* ak = typeArrayKlass::cast(k());
 839       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 840     } else if (k->oop_is_objArray()) {
 841       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 842     }
 843   }
 844 }
 845 
 846 
 847 // relock objects for which synchronization was eliminated
 848 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 849   for (int i = 0; i < monitors->length(); i++) {
 850     MonitorInfo* mon_info = monitors->at(i);
 851     if (mon_info->eliminated()) {
 852       assert(mon_info->owner() != NULL, "reallocation was missed");
 853       Handle obj = Handle(mon_info->owner());
 854       markOop mark = obj->mark();
 855       if (UseBiasedLocking && mark->has_bias_pattern()) {
 856         // New allocated objects may have the mark set to anonymously biased.
 857         // Also the deoptimized method may called methods with synchronization
 858         // where the thread-local object is bias locked to the current thread.
 859         assert(mark->is_biased_anonymously() ||
 860                mark->biased_locker() == thread, "should be locked to current thread");
 861         // Reset mark word to unbiased prototype.
 862         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 863         obj->set_mark(unbiased_prototype);
 864       }
 865       BasicLock* lock = mon_info->lock();
 866       ObjectSynchronizer::slow_enter(obj, lock, thread);
 867     }
 868     assert(mon_info->owner()->is_locked(), "object must be locked now");
 869   }
 870 }
 871 
 872 
 873 #ifndef PRODUCT
 874 // print information about reallocated objects
 875 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 876   fieldDescriptor fd;
 877 
 878   for (int i = 0; i < objects->length(); i++) {
 879     ObjectValue* sv = (ObjectValue*) objects->at(i);
 880     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 881     Handle obj = sv->value();
 882 
 883     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 884     k->as_klassOop()->print_value();
 885     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 886     tty->cr();
 887 
 888     if (Verbose) {
 889       k->oop_print_on(obj(), tty);
 890     }
 891   }
 892 }
 893 #endif
 894 #endif // COMPILER2
 895 
 896 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 897 
 898 #ifndef PRODUCT
 899   if (TraceDeoptimization) {
 900     ttyLocker ttyl;
 901     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 902     fr.print_on(tty);
 903     tty->print_cr("     Virtual frames (innermost first):");
 904     for (int index = 0; index < chunk->length(); index++) {
 905       compiledVFrame* vf = chunk->at(index);
 906       tty->print("       %2d - ", index);
 907       vf->print_value();
 908       int bci = chunk->at(index)->raw_bci();
 909       const char* code_name;
 910       if (bci == SynchronizationEntryBCI) {
 911         code_name = "sync entry";
 912       } else {
 913         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 914         code_name = Bytecodes::name(code);
 915       }
 916       tty->print(" - %s", code_name);
 917       tty->print_cr(" @ bci %d ", bci);
 918       if (Verbose) {
 919         vf->print();
 920         tty->cr();
 921       }
 922     }
 923   }
 924 #endif
 925 
 926   // Register map for next frame (used for stack crawl).  We capture
 927   // the state of the deopt'ing frame's caller.  Thus if we need to
 928   // stuff a C2I adapter we can properly fill in the callee-save
 929   // register locations.
 930   frame caller = fr.sender(reg_map);
 931   int frame_size = caller.sp() - fr.sp();
 932 
 933   frame sender = caller;
 934 
 935   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 936   // the vframeArray containing the unpacking information is allocated in the C heap.
 937   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 938   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 939 
 940   // Compare the vframeArray to the collected vframes
 941   assert(array->structural_compare(thread, chunk), "just checking");
 942   Events::log("# vframes = %d", (intptr_t)chunk->length());
 943 
 944 #ifndef PRODUCT
 945   if (TraceDeoptimization) {
 946     ttyLocker ttyl;
 947     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 948   }
 949 #endif // PRODUCT
 950 
 951   return array;
 952 }
 953 
 954 
 955 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
 956   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 957   for (int i = 0; i < monitors->length(); i++) {
 958     MonitorInfo* mon_info = monitors->at(i);
 959     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
 960       objects_to_revoke->append(Handle(mon_info->owner()));
 961     }
 962   }
 963 }
 964 
 965 
 966 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
 967   if (!UseBiasedLocking) {
 968     return;
 969   }
 970 
 971   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 972 
 973   // Unfortunately we don't have a RegisterMap available in most of
 974   // the places we want to call this routine so we need to walk the
 975   // stack again to update the register map.
 976   if (map == NULL || !map->update_map()) {
 977     StackFrameStream sfs(thread, true);
 978     bool found = false;
 979     while (!found && !sfs.is_done()) {
 980       frame* cur = sfs.current();
 981       sfs.next();
 982       found = cur->id() == fr.id();
 983     }
 984     assert(found, "frame to be deoptimized not found on target thread's stack");
 985     map = sfs.register_map();
 986   }
 987 
 988   vframe* vf = vframe::new_vframe(&fr, map, thread);
 989   compiledVFrame* cvf = compiledVFrame::cast(vf);
 990   // Revoke monitors' biases in all scopes
 991   while (!cvf->is_top()) {
 992     collect_monitors(cvf, objects_to_revoke);
 993     cvf = compiledVFrame::cast(cvf->sender());
 994   }
 995   collect_monitors(cvf, objects_to_revoke);
 996 
 997   if (SafepointSynchronize::is_at_safepoint()) {
 998     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
 999   } else {
1000     BiasedLocking::revoke(objects_to_revoke);
1001   }
1002 }
1003 
1004 
1005 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1006   if (!UseBiasedLocking) {
1007     return;
1008   }
1009 
1010   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1011   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1012   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1013     if (jt->has_last_Java_frame()) {
1014       StackFrameStream sfs(jt, true);
1015       while (!sfs.is_done()) {
1016         frame* cur = sfs.current();
1017         if (cb->contains(cur->pc())) {
1018           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1019           compiledVFrame* cvf = compiledVFrame::cast(vf);
1020           // Revoke monitors' biases in all scopes
1021           while (!cvf->is_top()) {
1022             collect_monitors(cvf, objects_to_revoke);
1023             cvf = compiledVFrame::cast(cvf->sender());
1024           }
1025           collect_monitors(cvf, objects_to_revoke);
1026         }
1027         sfs.next();
1028       }
1029     }
1030   }
1031   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1032 }
1033 
1034 
1035 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1036   assert(fr.can_be_deoptimized(), "checking frame type");
1037 
1038   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1039 
1040   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1041 
1042   // Patch the nmethod so that when execution returns to it we will
1043   // deopt the execution state and return to the interpreter.
1044   fr.deoptimize(thread);
1045 }
1046 
1047 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1048   // Deoptimize only if the frame comes from compile code.
1049   // Do not deoptimize the frame which is already patched
1050   // during the execution of the loops below.
1051   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1052     return;
1053   }
1054   ResourceMark rm;
1055   DeoptimizationMarker dm;
1056   if (UseBiasedLocking) {
1057     revoke_biases_of_monitors(thread, fr, map);
1058   }
1059   deoptimize_single_frame(thread, fr);
1060 
1061 }
1062 
1063 
1064 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1065   // Compute frame and register map based on thread and sp.
1066   RegisterMap reg_map(thread, UseBiasedLocking);
1067   frame fr = thread->last_frame();
1068   while (fr.id() != id) {
1069     fr = fr.sender(&reg_map);
1070   }
1071   deoptimize(thread, fr, &reg_map);
1072 }
1073 
1074 
1075 // JVMTI PopFrame support
1076 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1077 {
1078   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1079 }
1080 JRT_END
1081 
1082 
1083 #if defined(COMPILER2) || defined(SHARK)
1084 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1085   // in case of an unresolved klass entry, load the class.
1086   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1087     klassOop tk = constant_pool->klass_at(index, CHECK);
1088     return;
1089   }
1090 
1091   if (!constant_pool->tag_at(index).is_symbol()) return;
1092 
1093   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1094   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1095 
1096   // class name?
1097   if (symbol->byte_at(0) != '(') {
1098     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1099     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1100     return;
1101   }
1102 
1103   // then it must be a signature!
1104   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1105     if (ss.is_object()) {
1106       symbolOop s = ss.as_symbol(CHECK);
1107       symbolHandle class_name (THREAD, s);
1108       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1109       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1110     }
1111   }
1112 }
1113 
1114 
1115 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1116   EXCEPTION_MARK;
1117   load_class_by_index(constant_pool, index, THREAD);
1118   if (HAS_PENDING_EXCEPTION) {
1119     // Exception happened during classloading. We ignore the exception here, since it
1120     // is going to be rethrown since the current activation is going to be deoptimzied and
1121     // the interpreter will re-execute the bytecode.
1122     CLEAR_PENDING_EXCEPTION;
1123   }
1124 }
1125 
1126 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1127   HandleMark hm;
1128 
1129   // uncommon_trap() is called at the beginning of the uncommon trap
1130   // handler. Note this fact before we start generating temporary frames
1131   // that can confuse an asynchronous stack walker. This counter is
1132   // decremented at the end of unpack_frames().
1133   thread->inc_in_deopt_handler();
1134 
1135   // We need to update the map if we have biased locking.
1136   RegisterMap reg_map(thread, UseBiasedLocking);
1137   frame stub_frame = thread->last_frame();
1138   frame fr = stub_frame.sender(&reg_map);
1139   // Make sure the calling nmethod is not getting deoptimized and removed
1140   // before we are done with it.
1141   nmethodLocker nl(fr.pc());
1142 
1143   {
1144     ResourceMark rm;
1145 
1146     // Revoke biases of any monitors in the frame to ensure we can migrate them
1147     revoke_biases_of_monitors(thread, fr, &reg_map);
1148 
1149     DeoptReason reason = trap_request_reason(trap_request);
1150     DeoptAction action = trap_request_action(trap_request);
1151     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1152 
1153     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1154     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1155     compiledVFrame* cvf = compiledVFrame::cast(vf);
1156 
1157     nmethod* nm = cvf->code();
1158 
1159     ScopeDesc*      trap_scope  = cvf->scope();
1160     methodHandle    trap_method = trap_scope->method();
1161     int             trap_bci    = trap_scope->bci();
1162     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1163 
1164     // Record this event in the histogram.
1165     gather_statistics(reason, action, trap_bc);
1166 
1167     // Ensure that we can record deopt. history:
1168     bool create_if_missing = ProfileTraps;
1169 
1170     methodDataHandle trap_mdo
1171       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1172 
1173     // Print a bunch of diagnostics, if requested.
1174     if (TraceDeoptimization || LogCompilation) {
1175       ResourceMark rm;
1176       ttyLocker ttyl;
1177       char buf[100];
1178       if (xtty != NULL) {
1179         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1180                          os::current_thread_id(),
1181                          format_trap_request(buf, sizeof(buf), trap_request));
1182         nm->log_identity(xtty);
1183       }
1184       symbolHandle class_name;
1185       bool unresolved = false;
1186       if (unloaded_class_index >= 0) {
1187         constantPoolHandle constants (THREAD, trap_method->constants());
1188         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1189           class_name = symbolHandle(THREAD,
1190             constants->klass_name_at(unloaded_class_index));
1191           unresolved = true;
1192           if (xtty != NULL)
1193             xtty->print(" unresolved='1'");
1194         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1195           class_name = symbolHandle(THREAD,
1196             constants->symbol_at(unloaded_class_index));
1197         }
1198         if (xtty != NULL)
1199           xtty->name(class_name);
1200       }
1201       if (xtty != NULL && trap_mdo.not_null()) {
1202         // Dump the relevant MDO state.
1203         // This is the deopt count for the current reason, any previous
1204         // reasons or recompiles seen at this point.
1205         int dcnt = trap_mdo->trap_count(reason);
1206         if (dcnt != 0)
1207           xtty->print(" count='%d'", dcnt);
1208         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1209         int dos = (pdata == NULL)? 0: pdata->trap_state();
1210         if (dos != 0) {
1211           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1212           if (trap_state_is_recompiled(dos)) {
1213             int recnt2 = trap_mdo->overflow_recompile_count();
1214             if (recnt2 != 0)
1215               xtty->print(" recompiles2='%d'", recnt2);
1216           }
1217         }
1218       }
1219       if (xtty != NULL) {
1220         xtty->stamp();
1221         xtty->end_head();
1222       }
1223       if (TraceDeoptimization) {  // make noise on the tty
1224         tty->print("Uncommon trap occurred in");
1225         nm->method()->print_short_name(tty);
1226         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1227                    fr.pc(),
1228                    (int) os::current_thread_id(),
1229                    trap_reason_name(reason),
1230                    trap_action_name(action),
1231                    unloaded_class_index);
1232         if (class_name.not_null()) {
1233           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1234           class_name->print_symbol_on(tty);
1235         }
1236         tty->cr();
1237       }
1238       if (xtty != NULL) {
1239         // Log the precise location of the trap.
1240         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1241           xtty->begin_elem("jvms bci='%d'", sd->bci());
1242           xtty->method(sd->method());
1243           xtty->end_elem();
1244           if (sd->is_top())  break;
1245         }
1246         xtty->tail("uncommon_trap");
1247       }
1248     }
1249     // (End diagnostic printout.)
1250 
1251     // Load class if necessary
1252     if (unloaded_class_index >= 0) {
1253       constantPoolHandle constants(THREAD, trap_method->constants());
1254       load_class_by_index(constants, unloaded_class_index);
1255     }
1256 
1257     // Flush the nmethod if necessary and desirable.
1258     //
1259     // We need to avoid situations where we are re-flushing the nmethod
1260     // because of a hot deoptimization site.  Repeated flushes at the same
1261     // point need to be detected by the compiler and avoided.  If the compiler
1262     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1263     // module must take measures to avoid an infinite cycle of recompilation
1264     // and deoptimization.  There are several such measures:
1265     //
1266     //   1. If a recompilation is ordered a second time at some site X
1267     //   and for the same reason R, the action is adjusted to 'reinterpret',
1268     //   to give the interpreter time to exercise the method more thoroughly.
1269     //   If this happens, the method's overflow_recompile_count is incremented.
1270     //
1271     //   2. If the compiler fails to reduce the deoptimization rate, then
1272     //   the method's overflow_recompile_count will begin to exceed the set
1273     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1274     //   is adjusted to 'make_not_compilable', and the method is abandoned
1275     //   to the interpreter.  This is a performance hit for hot methods,
1276     //   but is better than a disastrous infinite cycle of recompilations.
1277     //   (Actually, only the method containing the site X is abandoned.)
1278     //
1279     //   3. In parallel with the previous measures, if the total number of
1280     //   recompilations of a method exceeds the much larger set limit
1281     //   PerMethodRecompilationCutoff, the method is abandoned.
1282     //   This should only happen if the method is very large and has
1283     //   many "lukewarm" deoptimizations.  The code which enforces this
1284     //   limit is elsewhere (class nmethod, class methodOopDesc).
1285     //
1286     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1287     // to recompile at each bytecode independently of the per-BCI cutoff.
1288     //
1289     // The decision to update code is up to the compiler, and is encoded
1290     // in the Action_xxx code.  If the compiler requests Action_none
1291     // no trap state is changed, no compiled code is changed, and the
1292     // computation suffers along in the interpreter.
1293     //
1294     // The other action codes specify various tactics for decompilation
1295     // and recompilation.  Action_maybe_recompile is the loosest, and
1296     // allows the compiled code to stay around until enough traps are seen,
1297     // and until the compiler gets around to recompiling the trapping method.
1298     //
1299     // The other actions cause immediate removal of the present code.
1300 
1301     bool update_trap_state = true;
1302     bool make_not_entrant = false;
1303     bool make_not_compilable = false;
1304     bool reprofile = false;
1305     switch (action) {
1306     case Action_none:
1307       // Keep the old code.
1308       update_trap_state = false;
1309       break;
1310     case Action_maybe_recompile:
1311       // Do not need to invalidate the present code, but we can
1312       // initiate another
1313       // Start compiler without (necessarily) invalidating the nmethod.
1314       // The system will tolerate the old code, but new code should be
1315       // generated when possible.
1316       break;
1317     case Action_reinterpret:
1318       // Go back into the interpreter for a while, and then consider
1319       // recompiling form scratch.
1320       make_not_entrant = true;
1321       // Reset invocation counter for outer most method.
1322       // This will allow the interpreter to exercise the bytecodes
1323       // for a while before recompiling.
1324       // By contrast, Action_make_not_entrant is immediate.
1325       //
1326       // Note that the compiler will track null_check, null_assert,
1327       // range_check, and class_check events and log them as if they
1328       // had been traps taken from compiled code.  This will update
1329       // the MDO trap history so that the next compilation will
1330       // properly detect hot trap sites.
1331       reprofile = true;
1332       break;
1333     case Action_make_not_entrant:
1334       // Request immediate recompilation, and get rid of the old code.
1335       // Make them not entrant, so next time they are called they get
1336       // recompiled.  Unloaded classes are loaded now so recompile before next
1337       // time they are called.  Same for uninitialized.  The interpreter will
1338       // link the missing class, if any.
1339       make_not_entrant = true;
1340       break;
1341     case Action_make_not_compilable:
1342       // Give up on compiling this method at all.
1343       make_not_entrant = true;
1344       make_not_compilable = true;
1345       break;
1346     default:
1347       ShouldNotReachHere();
1348     }
1349 
1350     // Setting +ProfileTraps fixes the following, on all platforms:
1351     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1352     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1353     // recompile relies on a methodDataOop to record heroic opt failures.
1354 
1355     // Whether the interpreter is producing MDO data or not, we also need
1356     // to use the MDO to detect hot deoptimization points and control
1357     // aggressive optimization.
1358     bool inc_recompile_count = false;
1359     ProfileData* pdata = NULL;
1360     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1361       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1362       uint this_trap_count = 0;
1363       bool maybe_prior_trap = false;
1364       bool maybe_prior_recompile = false;
1365       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1366                                    //outputs:
1367                                    this_trap_count,
1368                                    maybe_prior_trap,
1369                                    maybe_prior_recompile);
1370       // Because the interpreter also counts null, div0, range, and class
1371       // checks, these traps from compiled code are double-counted.
1372       // This is harmless; it just means that the PerXTrapLimit values
1373       // are in effect a little smaller than they look.
1374 
1375       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1376       if (per_bc_reason != Reason_none) {
1377         // Now take action based on the partially known per-BCI history.
1378         if (maybe_prior_trap
1379             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1380           // If there are too many traps at this BCI, force a recompile.
1381           // This will allow the compiler to see the limit overflow, and
1382           // take corrective action, if possible.  The compiler generally
1383           // does not use the exact PerBytecodeTrapLimit value, but instead
1384           // changes its tactics if it sees any traps at all.  This provides
1385           // a little hysteresis, delaying a recompile until a trap happens
1386           // several times.
1387           //
1388           // Actually, since there is only one bit of counter per BCI,
1389           // the possible per-BCI counts are {0,1,(per-method count)}.
1390           // This produces accurate results if in fact there is only
1391           // one hot trap site, but begins to get fuzzy if there are
1392           // many sites.  For example, if there are ten sites each
1393           // trapping two or more times, they each get the blame for
1394           // all of their traps.
1395           make_not_entrant = true;
1396         }
1397 
1398         // Detect repeated recompilation at the same BCI, and enforce a limit.
1399         if (make_not_entrant && maybe_prior_recompile) {
1400           // More than one recompile at this point.
1401           inc_recompile_count = maybe_prior_trap;
1402         }
1403       } else {
1404         // For reasons which are not recorded per-bytecode, we simply
1405         // force recompiles unconditionally.
1406         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1407         make_not_entrant = true;
1408       }
1409 
1410       // Go back to the compiler if there are too many traps in this method.
1411       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1412         // If there are too many traps in this method, force a recompile.
1413         // This will allow the compiler to see the limit overflow, and
1414         // take corrective action, if possible.
1415         // (This condition is an unlikely backstop only, because the
1416         // PerBytecodeTrapLimit is more likely to take effect first,
1417         // if it is applicable.)
1418         make_not_entrant = true;
1419       }
1420 
1421       // Here's more hysteresis:  If there has been a recompile at
1422       // this trap point already, run the method in the interpreter
1423       // for a while to exercise it more thoroughly.
1424       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1425         reprofile = true;
1426       }
1427 
1428     }
1429 
1430     // Take requested actions on the method:
1431 
1432     // Recompile
1433     if (make_not_entrant) {
1434       if (!nm->make_not_entrant()) {
1435         return; // the call did not change nmethod's state
1436       }
1437 
1438       if (pdata != NULL) {
1439         // Record the recompilation event, if any.
1440         int tstate0 = pdata->trap_state();
1441         int tstate1 = trap_state_set_recompiled(tstate0, true);
1442         if (tstate1 != tstate0)
1443           pdata->set_trap_state(tstate1);
1444       }
1445     }
1446 
1447     if (inc_recompile_count) {
1448       trap_mdo->inc_overflow_recompile_count();
1449       if ((uint)trap_mdo->overflow_recompile_count() >
1450           (uint)PerBytecodeRecompilationCutoff) {
1451         // Give up on the method containing the bad BCI.
1452         if (trap_method() == nm->method()) {
1453           make_not_compilable = true;
1454         } else {
1455           trap_method->set_not_compilable(CompLevel_full_optimization);
1456           // But give grace to the enclosing nm->method().
1457         }
1458       }
1459     }
1460 
1461     // Reprofile
1462     if (reprofile) {
1463       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1464     }
1465 
1466     // Give up compiling
1467     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1468       assert(make_not_entrant, "consistent");
1469       nm->method()->set_not_compilable(CompLevel_full_optimization);
1470     }
1471 
1472   } // Free marked resources
1473 
1474 }
1475 JRT_END
1476 
1477 methodDataOop
1478 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1479                                 bool create_if_missing) {
1480   Thread* THREAD = thread;
1481   methodDataOop mdo = m()->method_data();
1482   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1483     // Build an MDO.  Ignore errors like OutOfMemory;
1484     // that simply means we won't have an MDO to update.
1485     methodOopDesc::build_interpreter_method_data(m, THREAD);
1486     if (HAS_PENDING_EXCEPTION) {
1487       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1488       CLEAR_PENDING_EXCEPTION;
1489     }
1490     mdo = m()->method_data();
1491   }
1492   return mdo;
1493 }
1494 
1495 ProfileData*
1496 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1497                                          int trap_bci,
1498                                          Deoptimization::DeoptReason reason,
1499                                          //outputs:
1500                                          uint& ret_this_trap_count,
1501                                          bool& ret_maybe_prior_trap,
1502                                          bool& ret_maybe_prior_recompile) {
1503   uint prior_trap_count = trap_mdo->trap_count(reason);
1504   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1505 
1506   // If the runtime cannot find a place to store trap history,
1507   // it is estimated based on the general condition of the method.
1508   // If the method has ever been recompiled, or has ever incurred
1509   // a trap with the present reason , then this BCI is assumed
1510   // (pessimistically) to be the culprit.
1511   bool maybe_prior_trap      = (prior_trap_count != 0);
1512   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1513   ProfileData* pdata = NULL;
1514 
1515 
1516   // For reasons which are recorded per bytecode, we check per-BCI data.
1517   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1518   if (per_bc_reason != Reason_none) {
1519     // Find the profile data for this BCI.  If there isn't one,
1520     // try to allocate one from the MDO's set of spares.
1521     // This will let us detect a repeated trap at this point.
1522     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1523 
1524     if (pdata != NULL) {
1525       // Query the trap state of this profile datum.
1526       int tstate0 = pdata->trap_state();
1527       if (!trap_state_has_reason(tstate0, per_bc_reason))
1528         maybe_prior_trap = false;
1529       if (!trap_state_is_recompiled(tstate0))
1530         maybe_prior_recompile = false;
1531 
1532       // Update the trap state of this profile datum.
1533       int tstate1 = tstate0;
1534       // Record the reason.
1535       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1536       // Store the updated state on the MDO, for next time.
1537       if (tstate1 != tstate0)
1538         pdata->set_trap_state(tstate1);
1539     } else {
1540       if (LogCompilation && xtty != NULL) {
1541         ttyLocker ttyl;
1542         // Missing MDP?  Leave a small complaint in the log.
1543         xtty->elem("missing_mdp bci='%d'", trap_bci);
1544       }
1545     }
1546   }
1547 
1548   // Return results:
1549   ret_this_trap_count = this_trap_count;
1550   ret_maybe_prior_trap = maybe_prior_trap;
1551   ret_maybe_prior_recompile = maybe_prior_recompile;
1552   return pdata;
1553 }
1554 
1555 void
1556 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1557   ResourceMark rm;
1558   // Ignored outputs:
1559   uint ignore_this_trap_count;
1560   bool ignore_maybe_prior_trap;
1561   bool ignore_maybe_prior_recompile;
1562   query_update_method_data(trap_mdo, trap_bci,
1563                            (DeoptReason)reason,
1564                            ignore_this_trap_count,
1565                            ignore_maybe_prior_trap,
1566                            ignore_maybe_prior_recompile);
1567 }
1568 
1569 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1570 
1571   // Still in Java no safepoints
1572   {
1573     // This enters VM and may safepoint
1574     uncommon_trap_inner(thread, trap_request);
1575   }
1576   return fetch_unroll_info_helper(thread);
1577 }
1578 
1579 // Local derived constants.
1580 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1581 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1582 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1583 
1584 //---------------------------trap_state_reason---------------------------------
1585 Deoptimization::DeoptReason
1586 Deoptimization::trap_state_reason(int trap_state) {
1587   // This assert provides the link between the width of DataLayout::trap_bits
1588   // and the encoding of "recorded" reasons.  It ensures there are enough
1589   // bits to store all needed reasons in the per-BCI MDO profile.
1590   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1591   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1592   trap_state -= recompile_bit;
1593   if (trap_state == DS_REASON_MASK) {
1594     return Reason_many;
1595   } else {
1596     assert((int)Reason_none == 0, "state=0 => Reason_none");
1597     return (DeoptReason)trap_state;
1598   }
1599 }
1600 //-------------------------trap_state_has_reason-------------------------------
1601 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1602   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1603   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1604   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1605   trap_state -= recompile_bit;
1606   if (trap_state == DS_REASON_MASK) {
1607     return -1;  // true, unspecifically (bottom of state lattice)
1608   } else if (trap_state == reason) {
1609     return 1;   // true, definitely
1610   } else if (trap_state == 0) {
1611     return 0;   // false, definitely (top of state lattice)
1612   } else {
1613     return 0;   // false, definitely
1614   }
1615 }
1616 //-------------------------trap_state_add_reason-------------------------------
1617 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1618   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1619   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1620   trap_state -= recompile_bit;
1621   if (trap_state == DS_REASON_MASK) {
1622     return trap_state + recompile_bit;     // already at state lattice bottom
1623   } else if (trap_state == reason) {
1624     return trap_state + recompile_bit;     // the condition is already true
1625   } else if (trap_state == 0) {
1626     return reason + recompile_bit;          // no condition has yet been true
1627   } else {
1628     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1629   }
1630 }
1631 //-----------------------trap_state_is_recompiled------------------------------
1632 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1633   return (trap_state & DS_RECOMPILE_BIT) != 0;
1634 }
1635 //-----------------------trap_state_set_recompiled-----------------------------
1636 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1637   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1638   else    return trap_state & ~DS_RECOMPILE_BIT;
1639 }
1640 //---------------------------format_trap_state---------------------------------
1641 // This is used for debugging and diagnostics, including hotspot.log output.
1642 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1643                                               int trap_state) {
1644   DeoptReason reason      = trap_state_reason(trap_state);
1645   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1646   // Re-encode the state from its decoded components.
1647   int decoded_state = 0;
1648   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1649     decoded_state = trap_state_add_reason(decoded_state, reason);
1650   if (recomp_flag)
1651     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1652   // If the state re-encodes properly, format it symbolically.
1653   // Because this routine is used for debugging and diagnostics,
1654   // be robust even if the state is a strange value.
1655   size_t len;
1656   if (decoded_state != trap_state) {
1657     // Random buggy state that doesn't decode??
1658     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1659   } else {
1660     len = jio_snprintf(buf, buflen, "%s%s",
1661                        trap_reason_name(reason),
1662                        recomp_flag ? " recompiled" : "");
1663   }
1664   if (len >= buflen)
1665     buf[buflen-1] = '\0';
1666   return buf;
1667 }
1668 
1669 
1670 //--------------------------------statics--------------------------------------
1671 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1672   = Deoptimization::Action_reinterpret;
1673 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1674   // Note:  Keep this in sync. with enum DeoptReason.
1675   "none",
1676   "null_check",
1677   "null_assert",
1678   "range_check",
1679   "class_check",
1680   "array_check",
1681   "intrinsic",
1682   "bimorphic",
1683   "unloaded",
1684   "uninitialized",
1685   "unreached",
1686   "unhandled",
1687   "constraint",
1688   "div0_check",
1689   "age",
1690   "predicate"
1691 };
1692 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1693   // Note:  Keep this in sync. with enum DeoptAction.
1694   "none",
1695   "maybe_recompile",
1696   "reinterpret",
1697   "make_not_entrant",
1698   "make_not_compilable"
1699 };
1700 
1701 const char* Deoptimization::trap_reason_name(int reason) {
1702   if (reason == Reason_many)  return "many";
1703   if ((uint)reason < Reason_LIMIT)
1704     return _trap_reason_name[reason];
1705   static char buf[20];
1706   sprintf(buf, "reason%d", reason);
1707   return buf;
1708 }
1709 const char* Deoptimization::trap_action_name(int action) {
1710   if ((uint)action < Action_LIMIT)
1711     return _trap_action_name[action];
1712   static char buf[20];
1713   sprintf(buf, "action%d", action);
1714   return buf;
1715 }
1716 
1717 // This is used for debugging and diagnostics, including hotspot.log output.
1718 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1719                                                 int trap_request) {
1720   jint unloaded_class_index = trap_request_index(trap_request);
1721   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1722   const char* action = trap_action_name(trap_request_action(trap_request));
1723   size_t len;
1724   if (unloaded_class_index < 0) {
1725     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1726                        reason, action);
1727   } else {
1728     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1729                        reason, action, unloaded_class_index);
1730   }
1731   if (len >= buflen)
1732     buf[buflen-1] = '\0';
1733   return buf;
1734 }
1735 
1736 juint Deoptimization::_deoptimization_hist
1737         [Deoptimization::Reason_LIMIT]
1738     [1 + Deoptimization::Action_LIMIT]
1739         [Deoptimization::BC_CASE_LIMIT]
1740   = {0};
1741 
1742 enum {
1743   LSB_BITS = 8,
1744   LSB_MASK = right_n_bits(LSB_BITS)
1745 };
1746 
1747 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1748                                        Bytecodes::Code bc) {
1749   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1750   assert(action >= 0 && action < Action_LIMIT, "oob");
1751   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1752   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1753   juint* cases = _deoptimization_hist[reason][1+action];
1754   juint* bc_counter_addr = NULL;
1755   juint  bc_counter      = 0;
1756   // Look for an unused counter, or an exact match to this BC.
1757   if (bc != Bytecodes::_illegal) {
1758     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1759       juint* counter_addr = &cases[bc_case];
1760       juint  counter = *counter_addr;
1761       if ((counter == 0 && bc_counter_addr == NULL)
1762           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1763         // this counter is either free or is already devoted to this BC
1764         bc_counter_addr = counter_addr;
1765         bc_counter = counter | bc;
1766       }
1767     }
1768   }
1769   if (bc_counter_addr == NULL) {
1770     // Overflow, or no given bytecode.
1771     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1772     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1773   }
1774   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1775 }
1776 
1777 jint Deoptimization::total_deoptimization_count() {
1778   return _deoptimization_hist[Reason_none][0][0];
1779 }
1780 
1781 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1782   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1783   return _deoptimization_hist[reason][0][0];
1784 }
1785 
1786 void Deoptimization::print_statistics() {
1787   juint total = total_deoptimization_count();
1788   juint account = total;
1789   if (total != 0) {
1790     ttyLocker ttyl;
1791     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1792     tty->print_cr("Deoptimization traps recorded:");
1793     #define PRINT_STAT_LINE(name, r) \
1794       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1795     PRINT_STAT_LINE("total", total);
1796     // For each non-zero entry in the histogram, print the reason,
1797     // the action, and (if specifically known) the type of bytecode.
1798     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1799       for (int action = 0; action < Action_LIMIT; action++) {
1800         juint* cases = _deoptimization_hist[reason][1+action];
1801         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1802           juint counter = cases[bc_case];
1803           if (counter != 0) {
1804             char name[1*K];
1805             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1806             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1807               bc = Bytecodes::_illegal;
1808             sprintf(name, "%s/%s/%s",
1809                     trap_reason_name(reason),
1810                     trap_action_name(action),
1811                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1812             juint r = counter >> LSB_BITS;
1813             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1814             account -= r;
1815           }
1816         }
1817       }
1818     }
1819     if (account != 0) {
1820       PRINT_STAT_LINE("unaccounted", account);
1821     }
1822     #undef PRINT_STAT_LINE
1823     if (xtty != NULL)  xtty->tail("statistics");
1824   }
1825 }
1826 #else // COMPILER2 || SHARK
1827 
1828 
1829 // Stubs for C1 only system.
1830 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1831   return false;
1832 }
1833 
1834 const char* Deoptimization::trap_reason_name(int reason) {
1835   return "unknown";
1836 }
1837 
1838 void Deoptimization::print_statistics() {
1839   // no output
1840 }
1841 
1842 void
1843 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1844   // no udpate
1845 }
1846 
1847 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1848   return 0;
1849 }
1850 
1851 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1852                                        Bytecodes::Code bc) {
1853   // no update
1854 }
1855 
1856 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1857                                               int trap_state) {
1858   jio_snprintf(buf, buflen, "#%d", trap_state);
1859   return buf;
1860 }
1861 
1862 #endif // COMPILER2 || SHARK