1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/methodOop.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef COMPILER2
  63 #ifdef TARGET_ARCH_MODEL_x86_32
  64 # include "adfiles/ad_x86_32.hpp"
  65 #endif
  66 #ifdef TARGET_ARCH_MODEL_x86_64
  67 # include "adfiles/ad_x86_64.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_MODEL_sparc
  70 # include "adfiles/ad_sparc.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_zero
  73 # include "adfiles/ad_zero.hpp"
  74 #endif
  75 #endif
  76 
  77 bool DeoptimizationMarker::_is_active = false;
  78 
  79 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  80                                          int  caller_adjustment,
  81                                          int  number_of_frames,
  82                                          intptr_t* frame_sizes,
  83                                          address* frame_pcs,
  84                                          BasicType return_type) {
  85   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  86   _caller_adjustment         = caller_adjustment;
  87   _number_of_frames          = number_of_frames;
  88   _frame_sizes               = frame_sizes;
  89   _frame_pcs                 = frame_pcs;
  90   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  91   _return_type               = return_type;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _initial_fp                = 0;
  95   _unpack_kind               = 0;
  96   _sender_sp_temp            = 0;
  97 
  98   _total_frame_sizes         = size_of_frames();
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print("%d ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   thread->inc_in_deopt_handler();
 153 
 154   return fetch_unroll_info_helper(thread);
 155 JRT_END
 156 
 157 
 158 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 159 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 160 
 161   // Note: there is a safepoint safety issue here. No matter whether we enter
 162   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 163   // the vframeArray is created.
 164   //
 165 
 166   // Allocate our special deoptimization ResourceMark
 167   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 168   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 169   thread->set_deopt_mark(dmark);
 170 
 171   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 172   RegisterMap map(thread, true);
 173   RegisterMap dummy_map(thread, false);
 174   // Now get the deoptee with a valid map
 175   frame deoptee = stub_frame.sender(&map);
 176 
 177   // Create a growable array of VFrames where each VFrame represents an inlined
 178   // Java frame.  This storage is allocated with the usual system arena.
 179   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 180   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 181   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 182   while (!vf->is_top()) {
 183     assert(vf->is_compiled_frame(), "Wrong frame type");
 184     chunk->push(compiledVFrame::cast(vf));
 185     vf = vf->sender();
 186   }
 187   assert(vf->is_compiled_frame(), "Wrong frame type");
 188   chunk->push(compiledVFrame::cast(vf));
 189 
 190 #ifdef COMPILER2
 191   // Reallocate the non-escaping objects and restore their fields. Then
 192   // relock objects if synchronization on them was eliminated.
 193   if (DoEscapeAnalysis) {
 194     if (EliminateAllocations) {
 195       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 196       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 197 
 198       // The flag return_oop() indicates call sites which return oop
 199       // in compiled code. Such sites include java method calls,
 200       // runtime calls (for example, used to allocate new objects/arrays
 201       // on slow code path) and any other calls generated in compiled code.
 202       // It is not guaranteed that we can get such information here only
 203       // by analyzing bytecode in deoptimized frames. This is why this flag
 204       // is set during method compilation (see Compile::Process_OopMap_Node()).
 205       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 206       Handle return_value;
 207       if (save_oop_result) {
 208         // Reallocation may trigger GC. If deoptimization happened on return from
 209         // call which returns oop we need to save it since it is not in oopmap.
 210         oop result = deoptee.saved_oop_result(&map);
 211         assert(result == NULL || result->is_oop(), "must be oop");
 212         return_value = Handle(thread, result);
 213         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 214         if (TraceDeoptimization) {
 215           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 216         }
 217       }
 218       bool reallocated = false;
 219       if (objects != NULL) {
 220         JRT_BLOCK
 221           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 222         JRT_END
 223       }
 224       if (reallocated) {
 225         reassign_fields(&deoptee, &map, objects);
 226 #ifndef PRODUCT
 227         if (TraceDeoptimization) {
 228           ttyLocker ttyl;
 229           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 230           print_objects(objects);
 231         }
 232 #endif
 233       }
 234       if (save_oop_result) {
 235         // Restore result.
 236         deoptee.set_saved_oop_result(&map, return_value());
 237       }
 238     }
 239     if (EliminateLocks) {
 240 #ifndef PRODUCT
 241       bool first = true;
 242 #endif
 243       for (int i = 0; i < chunk->length(); i++) {
 244         compiledVFrame* cvf = chunk->at(i);
 245         assert (cvf->scope() != NULL,"expect only compiled java frames");
 246         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 247         if (monitors->is_nonempty()) {
 248           relock_objects(monitors, thread);
 249 #ifndef PRODUCT
 250           if (TraceDeoptimization) {
 251             ttyLocker ttyl;
 252             for (int j = 0; j < monitors->length(); j++) {
 253               MonitorInfo* mi = monitors->at(j);
 254               if (mi->eliminated()) {
 255                 if (first) {
 256                   first = false;
 257                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 258                 }
 259                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 260               }
 261             }
 262           }
 263 #endif
 264         }
 265       }
 266     }
 267   }
 268 #endif // COMPILER2
 269   // Ensure that no safepoint is taken after pointers have been stored
 270   // in fields of rematerialized objects.  If a safepoint occurs from here on
 271   // out the java state residing in the vframeArray will be missed.
 272   No_Safepoint_Verifier no_safepoint;
 273 
 274   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 275 
 276   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 277   thread->set_vframe_array_head(array);
 278 
 279   // Now that the vframeArray has been created if we have any deferred local writes
 280   // added by jvmti then we can free up that structure as the data is now in the
 281   // vframeArray
 282 
 283   if (thread->deferred_locals() != NULL) {
 284     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 285     int i = 0;
 286     do {
 287       // Because of inlining we could have multiple vframes for a single frame
 288       // and several of the vframes could have deferred writes. Find them all.
 289       if (list->at(i)->id() == array->original().id()) {
 290         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 291         list->remove_at(i);
 292         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 293         delete dlv;
 294       } else {
 295         i++;
 296       }
 297     } while ( i < list->length() );
 298     if (list->length() == 0) {
 299       thread->set_deferred_locals(NULL);
 300       // free the list and elements back to C heap.
 301       delete list;
 302     }
 303 
 304   }
 305 
 306 #ifndef SHARK
 307   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 308   CodeBlob* cb = stub_frame.cb();
 309   // Verify we have the right vframeArray
 310   assert(cb->frame_size() >= 0, "Unexpected frame size");
 311   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 312 
 313   // If the deopt call site is a MethodHandle invoke call site we have
 314   // to adjust the unpack_sp.
 315   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 316   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 317     unpack_sp = deoptee.unextended_sp();
 318 
 319 #ifdef ASSERT
 320   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 321   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 322 #endif
 323 #else
 324   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 325 #endif // !SHARK
 326 
 327   // This is a guarantee instead of an assert because if vframe doesn't match
 328   // we will unpack the wrong deoptimized frame and wind up in strange places
 329   // where it will be very difficult to figure out what went wrong. Better
 330   // to die an early death here than some very obscure death later when the
 331   // trail is cold.
 332   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 333   // in that it will fail to detect a problem when there is one. This needs
 334   // more work in tiger timeframe.
 335   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 336 
 337   int number_of_frames = array->frames();
 338 
 339   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 340   // virtual activation, which is the reverse of the elements in the vframes array.
 341   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 342   // +1 because we always have an interpreter return address for the final slot.
 343   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 344   int callee_parameters = 0;
 345   int callee_locals = 0;
 346   int popframe_extra_args = 0;
 347   // Create an interpreter return address for the stub to use as its return
 348   // address so the skeletal frames are perfectly walkable
 349   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 350 
 351   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 352   // activation be put back on the expression stack of the caller for reexecution
 353   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 354     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 355   }
 356 
 357   //
 358   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 359   // frame_sizes/frame_pcs[1] next oldest frame (int)
 360   // frame_sizes/frame_pcs[n] youngest frame (int)
 361   //
 362   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 363   // owns the space for the return address to it's caller).  Confusing ain't it.
 364   //
 365   // The vframe array can address vframes with indices running from
 366   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 367   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 368   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 369   // so things look a little strange in this loop.
 370   //
 371   for (int index = 0; index < array->frames(); index++ ) {
 372     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 373     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 374     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 375     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 376                                                                                                     callee_locals,
 377                                                                                                     index == 0,
 378                                                                                                     popframe_extra_args);
 379     // This pc doesn't have to be perfect just good enough to identify the frame
 380     // as interpreted so the skeleton frame will be walkable
 381     // The correct pc will be set when the skeleton frame is completely filled out
 382     // The final pc we store in the loop is wrong and will be overwritten below
 383     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 384 
 385     callee_parameters = array->element(index)->method()->size_of_parameters();
 386     callee_locals = array->element(index)->method()->max_locals();
 387     popframe_extra_args = 0;
 388   }
 389 
 390   // Compute whether the root vframe returns a float or double value.
 391   BasicType return_type;
 392   {
 393     HandleMark hm;
 394     methodHandle method(thread, array->element(0)->method());
 395     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 396     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 397   }
 398 
 399   // Compute information for handling adapters and adjusting the frame size of the caller.
 400   int caller_adjustment = 0;
 401 
 402   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 403   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 404   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 405   //
 406   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 407   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 408 
 409   // Compute the amount the oldest interpreter frame will have to adjust
 410   // its caller's stack by. If the caller is a compiled frame then
 411   // we pretend that the callee has no parameters so that the
 412   // extension counts for the full amount of locals and not just
 413   // locals-parms. This is because without a c2i adapter the parm
 414   // area as created by the compiled frame will not be usable by
 415   // the interpreter. (Depending on the calling convention there
 416   // may not even be enough space).
 417 
 418   // QQQ I'd rather see this pushed down into last_frame_adjust
 419   // and have it take the sender (aka caller).
 420 
 421   if (deopt_sender.is_compiled_frame()) {
 422     caller_adjustment = last_frame_adjust(0, callee_locals);
 423   } else if (callee_locals > callee_parameters) {
 424     // The caller frame may need extending to accommodate
 425     // non-parameter locals of the first unpacked interpreted frame.
 426     // Compute that adjustment.
 427     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 428   }
 429 
 430 
 431   // If the sender is deoptimized the we must retrieve the address of the handler
 432   // since the frame will "magically" show the original pc before the deopt
 433   // and we'd undo the deopt.
 434 
 435   frame_pcs[0] = deopt_sender.raw_pc();
 436 
 437 #ifndef SHARK
 438   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 439 #endif // SHARK
 440 
 441   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 442                                       caller_adjustment * BytesPerWord,
 443                                       number_of_frames,
 444                                       frame_sizes,
 445                                       frame_pcs,
 446                                       return_type);
 447 #if defined(IA32) || defined(AMD64)
 448   // We need a way to pass fp to the unpacking code so the skeletal frames
 449   // come out correct. This is only needed for x86 because of c2 using ebp
 450   // as an allocatable register. So this update is useless (and harmless)
 451   // on the other platforms. It would be nice to do this in a different
 452   // way but even the old style deoptimization had a problem with deriving
 453   // this value. NEEDS_CLEANUP
 454   // Note: now that c1 is using c2's deopt blob we must do this on all
 455   // x86 based platforms
 456   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 457   *fp_addr = array->sender().fp(); // was adapter_caller
 458 #endif /* IA32 || AMD64 */
 459 
 460   if (array->frames() > 1) {
 461     if (VerifyStack && TraceDeoptimization) {
 462       tty->print_cr("Deoptimizing method containing inlining");
 463     }
 464   }
 465 
 466   array->set_unroll_block(info);
 467   return info;
 468 }
 469 
 470 // Called to cleanup deoptimization data structures in normal case
 471 // after unpacking to stack and when stack overflow error occurs
 472 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 473                                         vframeArray *array) {
 474 
 475   // Get array if coming from exception
 476   if (array == NULL) {
 477     array = thread->vframe_array_head();
 478   }
 479   thread->set_vframe_array_head(NULL);
 480 
 481   // Free the previous UnrollBlock
 482   vframeArray* old_array = thread->vframe_array_last();
 483   thread->set_vframe_array_last(array);
 484 
 485   if (old_array != NULL) {
 486     UnrollBlock* old_info = old_array->unroll_block();
 487     old_array->set_unroll_block(NULL);
 488     delete old_info;
 489     delete old_array;
 490   }
 491 
 492   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 493   // inside the vframeArray (StackValueCollections)
 494 
 495   delete thread->deopt_mark();
 496   thread->set_deopt_mark(NULL);
 497 
 498 
 499   if (JvmtiExport::can_pop_frame()) {
 500 #ifndef CC_INTERP
 501     // Regardless of whether we entered this routine with the pending
 502     // popframe condition bit set, we should always clear it now
 503     thread->clear_popframe_condition();
 504 #else
 505     // C++ interpeter will clear has_pending_popframe when it enters
 506     // with method_resume. For deopt_resume2 we clear it now.
 507     if (thread->popframe_forcing_deopt_reexecution())
 508         thread->clear_popframe_condition();
 509 #endif /* CC_INTERP */
 510   }
 511 
 512   // unpack_frames() is called at the end of the deoptimization handler
 513   // and (in C2) at the end of the uncommon trap handler. Note this fact
 514   // so that an asynchronous stack walker can work again. This counter is
 515   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 516   // the beginning of uncommon_trap().
 517   thread->dec_in_deopt_handler();
 518 }
 519 
 520 
 521 // Return BasicType of value being returned
 522 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 523 
 524   // We are already active int he special DeoptResourceMark any ResourceObj's we
 525   // allocate will be freed at the end of the routine.
 526 
 527   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 528   // but makes the entry a little slower. There is however a little dance we have to
 529   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 530   ResetNoHandleMark rnhm; // No-op in release/product versions
 531   HandleMark hm;
 532 
 533   frame stub_frame = thread->last_frame();
 534 
 535   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 536   // must point to the vframeArray for the unpack frame.
 537   vframeArray* array = thread->vframe_array_head();
 538 
 539 #ifndef PRODUCT
 540   if (TraceDeoptimization) {
 541     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 542   }
 543 #endif
 544 
 545   UnrollBlock* info = array->unroll_block();
 546 
 547   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 548   array->unpack_to_stack(stub_frame, exec_mode);
 549 
 550   BasicType bt = info->return_type();
 551 
 552   // If we have an exception pending, claim that the return type is an oop
 553   // so the deopt_blob does not overwrite the exception_oop.
 554 
 555   if (exec_mode == Unpack_exception)
 556     bt = T_OBJECT;
 557 
 558   // Cleanup thread deopt data
 559   cleanup_deopt_info(thread, array);
 560 
 561 #ifndef PRODUCT
 562   if (VerifyStack) {
 563     ResourceMark res_mark;
 564 
 565     // Verify that the just-unpacked frames match the interpreter's
 566     // notions of expression stack and locals
 567     vframeArray* cur_array = thread->vframe_array_last();
 568     RegisterMap rm(thread, false);
 569     rm.set_include_argument_oops(false);
 570     bool is_top_frame = true;
 571     int callee_size_of_parameters = 0;
 572     int callee_max_locals = 0;
 573     for (int i = 0; i < cur_array->frames(); i++) {
 574       vframeArrayElement* el = cur_array->element(i);
 575       frame* iframe = el->iframe();
 576       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 577 
 578       // Get the oop map for this bci
 579       InterpreterOopMap mask;
 580       int cur_invoke_parameter_size = 0;
 581       bool try_next_mask = false;
 582       int next_mask_expression_stack_size = -1;
 583       int top_frame_expression_stack_adjustment = 0;
 584       methodHandle mh(thread, iframe->interpreter_frame_method());
 585       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 586       BytecodeStream str(mh);
 587       str.set_start(iframe->interpreter_frame_bci());
 588       int max_bci = mh->code_size();
 589       // Get to the next bytecode if possible
 590       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 591       // Check to see if we can grab the number of outgoing arguments
 592       // at an uncommon trap for an invoke (where the compiler
 593       // generates debug info before the invoke has executed)
 594       Bytecodes::Code cur_code = str.next();
 595       if (cur_code == Bytecodes::_invokevirtual ||
 596           cur_code == Bytecodes::_invokespecial ||
 597           cur_code == Bytecodes::_invokestatic  ||
 598           cur_code == Bytecodes::_invokeinterface) {
 599         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 600         symbolHandle signature(thread, invoke->signature());
 601         ArgumentSizeComputer asc(signature);
 602         cur_invoke_parameter_size = asc.size();
 603         if (cur_code != Bytecodes::_invokestatic) {
 604           // Add in receiver
 605           ++cur_invoke_parameter_size;
 606         }
 607       }
 608       if (str.bci() < max_bci) {
 609         Bytecodes::Code bc = str.next();
 610         if (bc >= 0) {
 611           // The interpreter oop map generator reports results before
 612           // the current bytecode has executed except in the case of
 613           // calls. It seems to be hard to tell whether the compiler
 614           // has emitted debug information matching the "state before"
 615           // a given bytecode or the state after, so we try both
 616           switch (cur_code) {
 617             case Bytecodes::_invokevirtual:
 618             case Bytecodes::_invokespecial:
 619             case Bytecodes::_invokestatic:
 620             case Bytecodes::_invokeinterface:
 621             case Bytecodes::_athrow:
 622               break;
 623             default: {
 624               InterpreterOopMap next_mask;
 625               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 626               next_mask_expression_stack_size = next_mask.expression_stack_size();
 627               // Need to subtract off the size of the result type of
 628               // the bytecode because this is not described in the
 629               // debug info but returned to the interpreter in the TOS
 630               // caching register
 631               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 632               if (bytecode_result_type != T_ILLEGAL) {
 633                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 634               }
 635               assert(top_frame_expression_stack_adjustment >= 0, "");
 636               try_next_mask = true;
 637               break;
 638             }
 639           }
 640         }
 641       }
 642 
 643       // Verify stack depth and oops in frame
 644       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 645       if (!(
 646             /* SPARC */
 647             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 648             /* x86 */
 649             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 650             (try_next_mask &&
 651              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 652                                                                     top_frame_expression_stack_adjustment))) ||
 653             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 654             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 655              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 656             )) {
 657         ttyLocker ttyl;
 658 
 659         // Print out some information that will help us debug the problem
 660         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 661         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 662         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 663                       iframe->interpreter_frame_expression_stack_size());
 664         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 665         tty->print_cr("  try_next_mask = %d", try_next_mask);
 666         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 667         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 668         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 669         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 670         tty->print_cr("  exec_mode = %d", exec_mode);
 671         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 672         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 673         tty->print_cr("  Interpreted frames:");
 674         for (int k = 0; k < cur_array->frames(); k++) {
 675           vframeArrayElement* el = cur_array->element(k);
 676           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 677         }
 678         cur_array->print_on_2(tty);
 679         guarantee(false, "wrong number of expression stack elements during deopt");
 680       }
 681       VerifyOopClosure verify;
 682       iframe->oops_interpreted_do(&verify, &rm, false);
 683       callee_size_of_parameters = mh->size_of_parameters();
 684       callee_max_locals = mh->max_locals();
 685       is_top_frame = false;
 686     }
 687   }
 688 #endif /* !PRODUCT */
 689 
 690 
 691   return bt;
 692 JRT_END
 693 
 694 
 695 int Deoptimization::deoptimize_dependents() {
 696   Threads::deoptimized_wrt_marked_nmethods();
 697   return 0;
 698 }
 699 
 700 
 701 #ifdef COMPILER2
 702 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 703   Handle pending_exception(thread->pending_exception());
 704   const char* exception_file = thread->exception_file();
 705   int exception_line = thread->exception_line();
 706   thread->clear_pending_exception();
 707 
 708   for (int i = 0; i < objects->length(); i++) {
 709     assert(objects->at(i)->is_object(), "invalid debug information");
 710     ObjectValue* sv = (ObjectValue*) objects->at(i);
 711 
 712     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 713     oop obj = NULL;
 714 
 715     if (k->oop_is_instance()) {
 716       instanceKlass* ik = instanceKlass::cast(k());
 717       obj = ik->allocate_instance(CHECK_(false));
 718     } else if (k->oop_is_typeArray()) {
 719       typeArrayKlass* ak = typeArrayKlass::cast(k());
 720       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 721       int len = sv->field_size() / type2size[ak->element_type()];
 722       obj = ak->allocate(len, CHECK_(false));
 723     } else if (k->oop_is_objArray()) {
 724       objArrayKlass* ak = objArrayKlass::cast(k());
 725       obj = ak->allocate(sv->field_size(), CHECK_(false));
 726     }
 727 
 728     assert(obj != NULL, "allocation failed");
 729     assert(sv->value().is_null(), "redundant reallocation");
 730     sv->set_value(obj);
 731   }
 732 
 733   if (pending_exception.not_null()) {
 734     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 735   }
 736 
 737   return true;
 738 }
 739 
 740 // This assumes that the fields are stored in ObjectValue in the same order
 741 // they are yielded by do_nonstatic_fields.
 742 class FieldReassigner: public FieldClosure {
 743   frame* _fr;
 744   RegisterMap* _reg_map;
 745   ObjectValue* _sv;
 746   instanceKlass* _ik;
 747   oop _obj;
 748 
 749   int _i;
 750 public:
 751   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 752     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 753 
 754   int i() const { return _i; }
 755 
 756 
 757   void do_field(fieldDescriptor* fd) {
 758     intptr_t val;
 759     StackValue* value =
 760       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 761     int offset = fd->offset();
 762     switch (fd->field_type()) {
 763     case T_OBJECT: case T_ARRAY:
 764       assert(value->type() == T_OBJECT, "Agreement.");
 765       _obj->obj_field_put(offset, value->get_obj()());
 766       break;
 767 
 768     case T_LONG: case T_DOUBLE: {
 769       assert(value->type() == T_INT, "Agreement.");
 770       StackValue* low =
 771         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 772 #ifdef _LP64
 773       jlong res = (jlong)low->get_int();
 774 #else
 775 #ifdef SPARC
 776       // For SPARC we have to swap high and low words.
 777       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 778 #else
 779       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 780 #endif //SPARC
 781 #endif
 782       _obj->long_field_put(offset, res);
 783       break;
 784     }
 785     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 786     case T_INT: case T_FLOAT: // 4 bytes.
 787       assert(value->type() == T_INT, "Agreement.");
 788       val = value->get_int();
 789       _obj->int_field_put(offset, (jint)*((jint*)&val));
 790       break;
 791 
 792     case T_SHORT: case T_CHAR: // 2 bytes
 793       assert(value->type() == T_INT, "Agreement.");
 794       val = value->get_int();
 795       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 796       break;
 797 
 798     case T_BOOLEAN: case T_BYTE: // 1 byte
 799       assert(value->type() == T_INT, "Agreement.");
 800       val = value->get_int();
 801       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 802       break;
 803 
 804     default:
 805       ShouldNotReachHere();
 806     }
 807     _i++;
 808   }
 809 };
 810 
 811 // restore elements of an eliminated type array
 812 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 813   int index = 0;
 814   intptr_t val;
 815 
 816   for (int i = 0; i < sv->field_size(); i++) {
 817     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 818     switch(type) {
 819     case T_LONG: case T_DOUBLE: {
 820       assert(value->type() == T_INT, "Agreement.");
 821       StackValue* low =
 822         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 823 #ifdef _LP64
 824       jlong res = (jlong)low->get_int();
 825 #else
 826 #ifdef SPARC
 827       // For SPARC we have to swap high and low words.
 828       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 829 #else
 830       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 831 #endif //SPARC
 832 #endif
 833       obj->long_at_put(index, res);
 834       break;
 835     }
 836 
 837     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 838     case T_INT: case T_FLOAT: // 4 bytes.
 839       assert(value->type() == T_INT, "Agreement.");
 840       val = value->get_int();
 841       obj->int_at_put(index, (jint)*((jint*)&val));
 842       break;
 843 
 844     case T_SHORT: case T_CHAR: // 2 bytes
 845       assert(value->type() == T_INT, "Agreement.");
 846       val = value->get_int();
 847       obj->short_at_put(index, (jshort)*((jint*)&val));
 848       break;
 849 
 850     case T_BOOLEAN: case T_BYTE: // 1 byte
 851       assert(value->type() == T_INT, "Agreement.");
 852       val = value->get_int();
 853       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 854       break;
 855 
 856       default:
 857         ShouldNotReachHere();
 858     }
 859     index++;
 860   }
 861 }
 862 
 863 
 864 // restore fields of an eliminated object array
 865 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 866   for (int i = 0; i < sv->field_size(); i++) {
 867     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 868     assert(value->type() == T_OBJECT, "object element expected");
 869     obj->obj_at_put(i, value->get_obj()());
 870   }
 871 }
 872 
 873 
 874 // restore fields of all eliminated objects and arrays
 875 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 876   for (int i = 0; i < objects->length(); i++) {
 877     ObjectValue* sv = (ObjectValue*) objects->at(i);
 878     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 879     Handle obj = sv->value();
 880     assert(obj.not_null(), "reallocation was missed");
 881 
 882     if (k->oop_is_instance()) {
 883       instanceKlass* ik = instanceKlass::cast(k());
 884       FieldReassigner reassign(fr, reg_map, sv, obj());
 885       ik->do_nonstatic_fields(&reassign);
 886     } else if (k->oop_is_typeArray()) {
 887       typeArrayKlass* ak = typeArrayKlass::cast(k());
 888       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 889     } else if (k->oop_is_objArray()) {
 890       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 891     }
 892   }
 893 }
 894 
 895 
 896 // relock objects for which synchronization was eliminated
 897 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 898   for (int i = 0; i < monitors->length(); i++) {
 899     MonitorInfo* mon_info = monitors->at(i);
 900     if (mon_info->eliminated()) {
 901       assert(mon_info->owner() != NULL, "reallocation was missed");
 902       Handle obj = Handle(mon_info->owner());
 903       markOop mark = obj->mark();
 904       if (UseBiasedLocking && mark->has_bias_pattern()) {
 905         // New allocated objects may have the mark set to anonymously biased.
 906         // Also the deoptimized method may called methods with synchronization
 907         // where the thread-local object is bias locked to the current thread.
 908         assert(mark->is_biased_anonymously() ||
 909                mark->biased_locker() == thread, "should be locked to current thread");
 910         // Reset mark word to unbiased prototype.
 911         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 912         obj->set_mark(unbiased_prototype);
 913       }
 914       BasicLock* lock = mon_info->lock();
 915       ObjectSynchronizer::slow_enter(obj, lock, thread);
 916     }
 917     assert(mon_info->owner()->is_locked(), "object must be locked now");
 918   }
 919 }
 920 
 921 
 922 #ifndef PRODUCT
 923 // print information about reallocated objects
 924 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 925   fieldDescriptor fd;
 926 
 927   for (int i = 0; i < objects->length(); i++) {
 928     ObjectValue* sv = (ObjectValue*) objects->at(i);
 929     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 930     Handle obj = sv->value();
 931 
 932     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 933     k->as_klassOop()->print_value();
 934     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 935     tty->cr();
 936 
 937     if (Verbose) {
 938       k->oop_print_on(obj(), tty);
 939     }
 940   }
 941 }
 942 #endif
 943 #endif // COMPILER2
 944 
 945 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 946 
 947 #ifndef PRODUCT
 948   if (TraceDeoptimization) {
 949     ttyLocker ttyl;
 950     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 951     fr.print_on(tty);
 952     tty->print_cr("     Virtual frames (innermost first):");
 953     for (int index = 0; index < chunk->length(); index++) {
 954       compiledVFrame* vf = chunk->at(index);
 955       tty->print("       %2d - ", index);
 956       vf->print_value();
 957       int bci = chunk->at(index)->raw_bci();
 958       const char* code_name;
 959       if (bci == SynchronizationEntryBCI) {
 960         code_name = "sync entry";
 961       } else {
 962         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 963         code_name = Bytecodes::name(code);
 964       }
 965       tty->print(" - %s", code_name);
 966       tty->print_cr(" @ bci %d ", bci);
 967       if (Verbose) {
 968         vf->print();
 969         tty->cr();
 970       }
 971     }
 972   }
 973 #endif
 974 
 975   // Register map for next frame (used for stack crawl).  We capture
 976   // the state of the deopt'ing frame's caller.  Thus if we need to
 977   // stuff a C2I adapter we can properly fill in the callee-save
 978   // register locations.
 979   frame caller = fr.sender(reg_map);
 980   int frame_size = caller.sp() - fr.sp();
 981 
 982   frame sender = caller;
 983 
 984   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 985   // the vframeArray containing the unpacking information is allocated in the C heap.
 986   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 987   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 988 
 989   // Compare the vframeArray to the collected vframes
 990   assert(array->structural_compare(thread, chunk), "just checking");
 991   Events::log("# vframes = %d", (intptr_t)chunk->length());
 992 
 993 #ifndef PRODUCT
 994   if (TraceDeoptimization) {
 995     ttyLocker ttyl;
 996     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 997   }
 998 #endif // PRODUCT
 999 
1000   return array;
1001 }
1002 
1003 
1004 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1005   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1006   for (int i = 0; i < monitors->length(); i++) {
1007     MonitorInfo* mon_info = monitors->at(i);
1008     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1009       objects_to_revoke->append(Handle(mon_info->owner()));
1010     }
1011   }
1012 }
1013 
1014 
1015 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1016   if (!UseBiasedLocking) {
1017     return;
1018   }
1019 
1020   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1021 
1022   // Unfortunately we don't have a RegisterMap available in most of
1023   // the places we want to call this routine so we need to walk the
1024   // stack again to update the register map.
1025   if (map == NULL || !map->update_map()) {
1026     StackFrameStream sfs(thread, true);
1027     bool found = false;
1028     while (!found && !sfs.is_done()) {
1029       frame* cur = sfs.current();
1030       sfs.next();
1031       found = cur->id() == fr.id();
1032     }
1033     assert(found, "frame to be deoptimized not found on target thread's stack");
1034     map = sfs.register_map();
1035   }
1036 
1037   vframe* vf = vframe::new_vframe(&fr, map, thread);
1038   compiledVFrame* cvf = compiledVFrame::cast(vf);
1039   // Revoke monitors' biases in all scopes
1040   while (!cvf->is_top()) {
1041     collect_monitors(cvf, objects_to_revoke);
1042     cvf = compiledVFrame::cast(cvf->sender());
1043   }
1044   collect_monitors(cvf, objects_to_revoke);
1045 
1046   if (SafepointSynchronize::is_at_safepoint()) {
1047     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1048   } else {
1049     BiasedLocking::revoke(objects_to_revoke);
1050   }
1051 }
1052 
1053 
1054 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1055   if (!UseBiasedLocking) {
1056     return;
1057   }
1058 
1059   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1060   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1061   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1062     if (jt->has_last_Java_frame()) {
1063       StackFrameStream sfs(jt, true);
1064       while (!sfs.is_done()) {
1065         frame* cur = sfs.current();
1066         if (cb->contains(cur->pc())) {
1067           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1068           compiledVFrame* cvf = compiledVFrame::cast(vf);
1069           // Revoke monitors' biases in all scopes
1070           while (!cvf->is_top()) {
1071             collect_monitors(cvf, objects_to_revoke);
1072             cvf = compiledVFrame::cast(cvf->sender());
1073           }
1074           collect_monitors(cvf, objects_to_revoke);
1075         }
1076         sfs.next();
1077       }
1078     }
1079   }
1080   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1081 }
1082 
1083 
1084 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1085   assert(fr.can_be_deoptimized(), "checking frame type");
1086 
1087   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1088 
1089   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1090 
1091   // Patch the nmethod so that when execution returns to it we will
1092   // deopt the execution state and return to the interpreter.
1093   fr.deoptimize(thread);
1094 }
1095 
1096 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1097   // Deoptimize only if the frame comes from compile code.
1098   // Do not deoptimize the frame which is already patched
1099   // during the execution of the loops below.
1100   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1101     return;
1102   }
1103   ResourceMark rm;
1104   DeoptimizationMarker dm;
1105   if (UseBiasedLocking) {
1106     revoke_biases_of_monitors(thread, fr, map);
1107   }
1108   deoptimize_single_frame(thread, fr);
1109 
1110 }
1111 
1112 
1113 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1114   // Compute frame and register map based on thread and sp.
1115   RegisterMap reg_map(thread, UseBiasedLocking);
1116   frame fr = thread->last_frame();
1117   while (fr.id() != id) {
1118     fr = fr.sender(&reg_map);
1119   }
1120   deoptimize(thread, fr, &reg_map);
1121 }
1122 
1123 
1124 // JVMTI PopFrame support
1125 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1126 {
1127   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1128 }
1129 JRT_END
1130 
1131 
1132 #if defined(COMPILER2) || defined(SHARK)
1133 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1134   // in case of an unresolved klass entry, load the class.
1135   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1136     klassOop tk = constant_pool->klass_at(index, CHECK);
1137     return;
1138   }
1139 
1140   if (!constant_pool->tag_at(index).is_symbol()) return;
1141 
1142   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1143   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1144 
1145   // class name?
1146   if (symbol->byte_at(0) != '(') {
1147     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1148     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1149     return;
1150   }
1151 
1152   // then it must be a signature!
1153   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1154     if (ss.is_object()) {
1155       symbolOop s = ss.as_symbol(CHECK);
1156       symbolHandle class_name (THREAD, s);
1157       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1158       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1159     }
1160   }
1161 }
1162 
1163 
1164 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1165   EXCEPTION_MARK;
1166   load_class_by_index(constant_pool, index, THREAD);
1167   if (HAS_PENDING_EXCEPTION) {
1168     // Exception happened during classloading. We ignore the exception here, since it
1169     // is going to be rethrown since the current activation is going to be deoptimzied and
1170     // the interpreter will re-execute the bytecode.
1171     CLEAR_PENDING_EXCEPTION;
1172   }
1173 }
1174 
1175 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1176   HandleMark hm;
1177 
1178   // uncommon_trap() is called at the beginning of the uncommon trap
1179   // handler. Note this fact before we start generating temporary frames
1180   // that can confuse an asynchronous stack walker. This counter is
1181   // decremented at the end of unpack_frames().
1182   thread->inc_in_deopt_handler();
1183 
1184   // We need to update the map if we have biased locking.
1185   RegisterMap reg_map(thread, UseBiasedLocking);
1186   frame stub_frame = thread->last_frame();
1187   frame fr = stub_frame.sender(&reg_map);
1188   // Make sure the calling nmethod is not getting deoptimized and removed
1189   // before we are done with it.
1190   nmethodLocker nl(fr.pc());
1191 
1192   {
1193     ResourceMark rm;
1194 
1195     // Revoke biases of any monitors in the frame to ensure we can migrate them
1196     revoke_biases_of_monitors(thread, fr, &reg_map);
1197 
1198     DeoptReason reason = trap_request_reason(trap_request);
1199     DeoptAction action = trap_request_action(trap_request);
1200     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1201 
1202     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1203     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1204     compiledVFrame* cvf = compiledVFrame::cast(vf);
1205 
1206     nmethod* nm = cvf->code();
1207 
1208     ScopeDesc*      trap_scope  = cvf->scope();
1209     methodHandle    trap_method = trap_scope->method();
1210     int             trap_bci    = trap_scope->bci();
1211     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1212 
1213     // Record this event in the histogram.
1214     gather_statistics(reason, action, trap_bc);
1215 
1216     // Ensure that we can record deopt. history:
1217     bool create_if_missing = ProfileTraps;
1218 
1219     methodDataHandle trap_mdo
1220       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1221 
1222     // Print a bunch of diagnostics, if requested.
1223     if (TraceDeoptimization || LogCompilation) {
1224       ResourceMark rm;
1225       ttyLocker ttyl;
1226       char buf[100];
1227       if (xtty != NULL) {
1228         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1229                          os::current_thread_id(),
1230                          format_trap_request(buf, sizeof(buf), trap_request));
1231         nm->log_identity(xtty);
1232       }
1233       symbolHandle class_name;
1234       bool unresolved = false;
1235       if (unloaded_class_index >= 0) {
1236         constantPoolHandle constants (THREAD, trap_method->constants());
1237         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1238           class_name = symbolHandle(THREAD,
1239             constants->klass_name_at(unloaded_class_index));
1240           unresolved = true;
1241           if (xtty != NULL)
1242             xtty->print(" unresolved='1'");
1243         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1244           class_name = symbolHandle(THREAD,
1245             constants->symbol_at(unloaded_class_index));
1246         }
1247         if (xtty != NULL)
1248           xtty->name(class_name);
1249       }
1250       if (xtty != NULL && trap_mdo.not_null()) {
1251         // Dump the relevant MDO state.
1252         // This is the deopt count for the current reason, any previous
1253         // reasons or recompiles seen at this point.
1254         int dcnt = trap_mdo->trap_count(reason);
1255         if (dcnt != 0)
1256           xtty->print(" count='%d'", dcnt);
1257         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1258         int dos = (pdata == NULL)? 0: pdata->trap_state();
1259         if (dos != 0) {
1260           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1261           if (trap_state_is_recompiled(dos)) {
1262             int recnt2 = trap_mdo->overflow_recompile_count();
1263             if (recnt2 != 0)
1264               xtty->print(" recompiles2='%d'", recnt2);
1265           }
1266         }
1267       }
1268       if (xtty != NULL) {
1269         xtty->stamp();
1270         xtty->end_head();
1271       }
1272       if (TraceDeoptimization) {  // make noise on the tty
1273         tty->print("Uncommon trap occurred in");
1274         nm->method()->print_short_name(tty);
1275         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1276                    fr.pc(),
1277                    (int) os::current_thread_id(),
1278                    trap_reason_name(reason),
1279                    trap_action_name(action),
1280                    unloaded_class_index);
1281         if (class_name.not_null()) {
1282           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1283           class_name->print_symbol_on(tty);
1284         }
1285         tty->cr();
1286       }
1287       if (xtty != NULL) {
1288         // Log the precise location of the trap.
1289         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1290           xtty->begin_elem("jvms bci='%d'", sd->bci());
1291           xtty->method(sd->method());
1292           xtty->end_elem();
1293           if (sd->is_top())  break;
1294         }
1295         xtty->tail("uncommon_trap");
1296       }
1297     }
1298     // (End diagnostic printout.)
1299 
1300     // Load class if necessary
1301     if (unloaded_class_index >= 0) {
1302       constantPoolHandle constants(THREAD, trap_method->constants());
1303       load_class_by_index(constants, unloaded_class_index);
1304     }
1305 
1306     // Flush the nmethod if necessary and desirable.
1307     //
1308     // We need to avoid situations where we are re-flushing the nmethod
1309     // because of a hot deoptimization site.  Repeated flushes at the same
1310     // point need to be detected by the compiler and avoided.  If the compiler
1311     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1312     // module must take measures to avoid an infinite cycle of recompilation
1313     // and deoptimization.  There are several such measures:
1314     //
1315     //   1. If a recompilation is ordered a second time at some site X
1316     //   and for the same reason R, the action is adjusted to 'reinterpret',
1317     //   to give the interpreter time to exercise the method more thoroughly.
1318     //   If this happens, the method's overflow_recompile_count is incremented.
1319     //
1320     //   2. If the compiler fails to reduce the deoptimization rate, then
1321     //   the method's overflow_recompile_count will begin to exceed the set
1322     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1323     //   is adjusted to 'make_not_compilable', and the method is abandoned
1324     //   to the interpreter.  This is a performance hit for hot methods,
1325     //   but is better than a disastrous infinite cycle of recompilations.
1326     //   (Actually, only the method containing the site X is abandoned.)
1327     //
1328     //   3. In parallel with the previous measures, if the total number of
1329     //   recompilations of a method exceeds the much larger set limit
1330     //   PerMethodRecompilationCutoff, the method is abandoned.
1331     //   This should only happen if the method is very large and has
1332     //   many "lukewarm" deoptimizations.  The code which enforces this
1333     //   limit is elsewhere (class nmethod, class methodOopDesc).
1334     //
1335     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1336     // to recompile at each bytecode independently of the per-BCI cutoff.
1337     //
1338     // The decision to update code is up to the compiler, and is encoded
1339     // in the Action_xxx code.  If the compiler requests Action_none
1340     // no trap state is changed, no compiled code is changed, and the
1341     // computation suffers along in the interpreter.
1342     //
1343     // The other action codes specify various tactics for decompilation
1344     // and recompilation.  Action_maybe_recompile is the loosest, and
1345     // allows the compiled code to stay around until enough traps are seen,
1346     // and until the compiler gets around to recompiling the trapping method.
1347     //
1348     // The other actions cause immediate removal of the present code.
1349 
1350     bool update_trap_state = true;
1351     bool make_not_entrant = false;
1352     bool make_not_compilable = false;
1353     bool reprofile = false;
1354     switch (action) {
1355     case Action_none:
1356       // Keep the old code.
1357       update_trap_state = false;
1358       break;
1359     case Action_maybe_recompile:
1360       // Do not need to invalidate the present code, but we can
1361       // initiate another
1362       // Start compiler without (necessarily) invalidating the nmethod.
1363       // The system will tolerate the old code, but new code should be
1364       // generated when possible.
1365       break;
1366     case Action_reinterpret:
1367       // Go back into the interpreter for a while, and then consider
1368       // recompiling form scratch.
1369       make_not_entrant = true;
1370       // Reset invocation counter for outer most method.
1371       // This will allow the interpreter to exercise the bytecodes
1372       // for a while before recompiling.
1373       // By contrast, Action_make_not_entrant is immediate.
1374       //
1375       // Note that the compiler will track null_check, null_assert,
1376       // range_check, and class_check events and log them as if they
1377       // had been traps taken from compiled code.  This will update
1378       // the MDO trap history so that the next compilation will
1379       // properly detect hot trap sites.
1380       reprofile = true;
1381       break;
1382     case Action_make_not_entrant:
1383       // Request immediate recompilation, and get rid of the old code.
1384       // Make them not entrant, so next time they are called they get
1385       // recompiled.  Unloaded classes are loaded now so recompile before next
1386       // time they are called.  Same for uninitialized.  The interpreter will
1387       // link the missing class, if any.
1388       make_not_entrant = true;
1389       break;
1390     case Action_make_not_compilable:
1391       // Give up on compiling this method at all.
1392       make_not_entrant = true;
1393       make_not_compilable = true;
1394       break;
1395     default:
1396       ShouldNotReachHere();
1397     }
1398 
1399     // Setting +ProfileTraps fixes the following, on all platforms:
1400     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1401     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1402     // recompile relies on a methodDataOop to record heroic opt failures.
1403 
1404     // Whether the interpreter is producing MDO data or not, we also need
1405     // to use the MDO to detect hot deoptimization points and control
1406     // aggressive optimization.
1407     bool inc_recompile_count = false;
1408     ProfileData* pdata = NULL;
1409     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1410       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1411       uint this_trap_count = 0;
1412       bool maybe_prior_trap = false;
1413       bool maybe_prior_recompile = false;
1414       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1415                                    //outputs:
1416                                    this_trap_count,
1417                                    maybe_prior_trap,
1418                                    maybe_prior_recompile);
1419       // Because the interpreter also counts null, div0, range, and class
1420       // checks, these traps from compiled code are double-counted.
1421       // This is harmless; it just means that the PerXTrapLimit values
1422       // are in effect a little smaller than they look.
1423 
1424       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1425       if (per_bc_reason != Reason_none) {
1426         // Now take action based on the partially known per-BCI history.
1427         if (maybe_prior_trap
1428             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1429           // If there are too many traps at this BCI, force a recompile.
1430           // This will allow the compiler to see the limit overflow, and
1431           // take corrective action, if possible.  The compiler generally
1432           // does not use the exact PerBytecodeTrapLimit value, but instead
1433           // changes its tactics if it sees any traps at all.  This provides
1434           // a little hysteresis, delaying a recompile until a trap happens
1435           // several times.
1436           //
1437           // Actually, since there is only one bit of counter per BCI,
1438           // the possible per-BCI counts are {0,1,(per-method count)}.
1439           // This produces accurate results if in fact there is only
1440           // one hot trap site, but begins to get fuzzy if there are
1441           // many sites.  For example, if there are ten sites each
1442           // trapping two or more times, they each get the blame for
1443           // all of their traps.
1444           make_not_entrant = true;
1445         }
1446 
1447         // Detect repeated recompilation at the same BCI, and enforce a limit.
1448         if (make_not_entrant && maybe_prior_recompile) {
1449           // More than one recompile at this point.
1450           inc_recompile_count = maybe_prior_trap;
1451         }
1452       } else {
1453         // For reasons which are not recorded per-bytecode, we simply
1454         // force recompiles unconditionally.
1455         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1456         make_not_entrant = true;
1457       }
1458 
1459       // Go back to the compiler if there are too many traps in this method.
1460       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1461         // If there are too many traps in this method, force a recompile.
1462         // This will allow the compiler to see the limit overflow, and
1463         // take corrective action, if possible.
1464         // (This condition is an unlikely backstop only, because the
1465         // PerBytecodeTrapLimit is more likely to take effect first,
1466         // if it is applicable.)
1467         make_not_entrant = true;
1468       }
1469 
1470       // Here's more hysteresis:  If there has been a recompile at
1471       // this trap point already, run the method in the interpreter
1472       // for a while to exercise it more thoroughly.
1473       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1474         reprofile = true;
1475       }
1476 
1477     }
1478 
1479     // Take requested actions on the method:
1480 
1481     // Recompile
1482     if (make_not_entrant) {
1483       if (!nm->make_not_entrant()) {
1484         return; // the call did not change nmethod's state
1485       }
1486 
1487       if (pdata != NULL) {
1488         // Record the recompilation event, if any.
1489         int tstate0 = pdata->trap_state();
1490         int tstate1 = trap_state_set_recompiled(tstate0, true);
1491         if (tstate1 != tstate0)
1492           pdata->set_trap_state(tstate1);
1493       }
1494     }
1495 
1496     if (inc_recompile_count) {
1497       trap_mdo->inc_overflow_recompile_count();
1498       if ((uint)trap_mdo->overflow_recompile_count() >
1499           (uint)PerBytecodeRecompilationCutoff) {
1500         // Give up on the method containing the bad BCI.
1501         if (trap_method() == nm->method()) {
1502           make_not_compilable = true;
1503         } else {
1504           trap_method->set_not_compilable(CompLevel_full_optimization);
1505           // But give grace to the enclosing nm->method().
1506         }
1507       }
1508     }
1509 
1510     // Reprofile
1511     if (reprofile) {
1512       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1513     }
1514 
1515     // Give up compiling
1516     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1517       assert(make_not_entrant, "consistent");
1518       nm->method()->set_not_compilable(CompLevel_full_optimization);
1519     }
1520 
1521   } // Free marked resources
1522 
1523 }
1524 JRT_END
1525 
1526 methodDataOop
1527 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1528                                 bool create_if_missing) {
1529   Thread* THREAD = thread;
1530   methodDataOop mdo = m()->method_data();
1531   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1532     // Build an MDO.  Ignore errors like OutOfMemory;
1533     // that simply means we won't have an MDO to update.
1534     methodOopDesc::build_interpreter_method_data(m, THREAD);
1535     if (HAS_PENDING_EXCEPTION) {
1536       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1537       CLEAR_PENDING_EXCEPTION;
1538     }
1539     mdo = m()->method_data();
1540   }
1541   return mdo;
1542 }
1543 
1544 ProfileData*
1545 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1546                                          int trap_bci,
1547                                          Deoptimization::DeoptReason reason,
1548                                          //outputs:
1549                                          uint& ret_this_trap_count,
1550                                          bool& ret_maybe_prior_trap,
1551                                          bool& ret_maybe_prior_recompile) {
1552   uint prior_trap_count = trap_mdo->trap_count(reason);
1553   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1554 
1555   // If the runtime cannot find a place to store trap history,
1556   // it is estimated based on the general condition of the method.
1557   // If the method has ever been recompiled, or has ever incurred
1558   // a trap with the present reason , then this BCI is assumed
1559   // (pessimistically) to be the culprit.
1560   bool maybe_prior_trap      = (prior_trap_count != 0);
1561   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1562   ProfileData* pdata = NULL;
1563 
1564 
1565   // For reasons which are recorded per bytecode, we check per-BCI data.
1566   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1567   if (per_bc_reason != Reason_none) {
1568     // Find the profile data for this BCI.  If there isn't one,
1569     // try to allocate one from the MDO's set of spares.
1570     // This will let us detect a repeated trap at this point.
1571     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1572 
1573     if (pdata != NULL) {
1574       // Query the trap state of this profile datum.
1575       int tstate0 = pdata->trap_state();
1576       if (!trap_state_has_reason(tstate0, per_bc_reason))
1577         maybe_prior_trap = false;
1578       if (!trap_state_is_recompiled(tstate0))
1579         maybe_prior_recompile = false;
1580 
1581       // Update the trap state of this profile datum.
1582       int tstate1 = tstate0;
1583       // Record the reason.
1584       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1585       // Store the updated state on the MDO, for next time.
1586       if (tstate1 != tstate0)
1587         pdata->set_trap_state(tstate1);
1588     } else {
1589       if (LogCompilation && xtty != NULL) {
1590         ttyLocker ttyl;
1591         // Missing MDP?  Leave a small complaint in the log.
1592         xtty->elem("missing_mdp bci='%d'", trap_bci);
1593       }
1594     }
1595   }
1596 
1597   // Return results:
1598   ret_this_trap_count = this_trap_count;
1599   ret_maybe_prior_trap = maybe_prior_trap;
1600   ret_maybe_prior_recompile = maybe_prior_recompile;
1601   return pdata;
1602 }
1603 
1604 void
1605 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1606   ResourceMark rm;
1607   // Ignored outputs:
1608   uint ignore_this_trap_count;
1609   bool ignore_maybe_prior_trap;
1610   bool ignore_maybe_prior_recompile;
1611   query_update_method_data(trap_mdo, trap_bci,
1612                            (DeoptReason)reason,
1613                            ignore_this_trap_count,
1614                            ignore_maybe_prior_trap,
1615                            ignore_maybe_prior_recompile);
1616 }
1617 
1618 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1619 
1620   // Still in Java no safepoints
1621   {
1622     // This enters VM and may safepoint
1623     uncommon_trap_inner(thread, trap_request);
1624   }
1625   return fetch_unroll_info_helper(thread);
1626 }
1627 
1628 // Local derived constants.
1629 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1630 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1631 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1632 
1633 //---------------------------trap_state_reason---------------------------------
1634 Deoptimization::DeoptReason
1635 Deoptimization::trap_state_reason(int trap_state) {
1636   // This assert provides the link between the width of DataLayout::trap_bits
1637   // and the encoding of "recorded" reasons.  It ensures there are enough
1638   // bits to store all needed reasons in the per-BCI MDO profile.
1639   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1640   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1641   trap_state -= recompile_bit;
1642   if (trap_state == DS_REASON_MASK) {
1643     return Reason_many;
1644   } else {
1645     assert((int)Reason_none == 0, "state=0 => Reason_none");
1646     return (DeoptReason)trap_state;
1647   }
1648 }
1649 //-------------------------trap_state_has_reason-------------------------------
1650 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1651   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1652   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1653   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1654   trap_state -= recompile_bit;
1655   if (trap_state == DS_REASON_MASK) {
1656     return -1;  // true, unspecifically (bottom of state lattice)
1657   } else if (trap_state == reason) {
1658     return 1;   // true, definitely
1659   } else if (trap_state == 0) {
1660     return 0;   // false, definitely (top of state lattice)
1661   } else {
1662     return 0;   // false, definitely
1663   }
1664 }
1665 //-------------------------trap_state_add_reason-------------------------------
1666 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1667   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1668   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1669   trap_state -= recompile_bit;
1670   if (trap_state == DS_REASON_MASK) {
1671     return trap_state + recompile_bit;     // already at state lattice bottom
1672   } else if (trap_state == reason) {
1673     return trap_state + recompile_bit;     // the condition is already true
1674   } else if (trap_state == 0) {
1675     return reason + recompile_bit;          // no condition has yet been true
1676   } else {
1677     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1678   }
1679 }
1680 //-----------------------trap_state_is_recompiled------------------------------
1681 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1682   return (trap_state & DS_RECOMPILE_BIT) != 0;
1683 }
1684 //-----------------------trap_state_set_recompiled-----------------------------
1685 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1686   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1687   else    return trap_state & ~DS_RECOMPILE_BIT;
1688 }
1689 //---------------------------format_trap_state---------------------------------
1690 // This is used for debugging and diagnostics, including hotspot.log output.
1691 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1692                                               int trap_state) {
1693   DeoptReason reason      = trap_state_reason(trap_state);
1694   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1695   // Re-encode the state from its decoded components.
1696   int decoded_state = 0;
1697   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1698     decoded_state = trap_state_add_reason(decoded_state, reason);
1699   if (recomp_flag)
1700     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1701   // If the state re-encodes properly, format it symbolically.
1702   // Because this routine is used for debugging and diagnostics,
1703   // be robust even if the state is a strange value.
1704   size_t len;
1705   if (decoded_state != trap_state) {
1706     // Random buggy state that doesn't decode??
1707     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1708   } else {
1709     len = jio_snprintf(buf, buflen, "%s%s",
1710                        trap_reason_name(reason),
1711                        recomp_flag ? " recompiled" : "");
1712   }
1713   if (len >= buflen)
1714     buf[buflen-1] = '\0';
1715   return buf;
1716 }
1717 
1718 
1719 //--------------------------------statics--------------------------------------
1720 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1721   = Deoptimization::Action_reinterpret;
1722 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1723   // Note:  Keep this in sync. with enum DeoptReason.
1724   "none",
1725   "null_check",
1726   "null_assert",
1727   "range_check",
1728   "class_check",
1729   "array_check",
1730   "intrinsic",
1731   "bimorphic",
1732   "unloaded",
1733   "uninitialized",
1734   "unreached",
1735   "unhandled",
1736   "constraint",
1737   "div0_check",
1738   "age",
1739   "predicate"
1740 };
1741 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1742   // Note:  Keep this in sync. with enum DeoptAction.
1743   "none",
1744   "maybe_recompile",
1745   "reinterpret",
1746   "make_not_entrant",
1747   "make_not_compilable"
1748 };
1749 
1750 const char* Deoptimization::trap_reason_name(int reason) {
1751   if (reason == Reason_many)  return "many";
1752   if ((uint)reason < Reason_LIMIT)
1753     return _trap_reason_name[reason];
1754   static char buf[20];
1755   sprintf(buf, "reason%d", reason);
1756   return buf;
1757 }
1758 const char* Deoptimization::trap_action_name(int action) {
1759   if ((uint)action < Action_LIMIT)
1760     return _trap_action_name[action];
1761   static char buf[20];
1762   sprintf(buf, "action%d", action);
1763   return buf;
1764 }
1765 
1766 // This is used for debugging and diagnostics, including hotspot.log output.
1767 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1768                                                 int trap_request) {
1769   jint unloaded_class_index = trap_request_index(trap_request);
1770   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1771   const char* action = trap_action_name(trap_request_action(trap_request));
1772   size_t len;
1773   if (unloaded_class_index < 0) {
1774     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1775                        reason, action);
1776   } else {
1777     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1778                        reason, action, unloaded_class_index);
1779   }
1780   if (len >= buflen)
1781     buf[buflen-1] = '\0';
1782   return buf;
1783 }
1784 
1785 juint Deoptimization::_deoptimization_hist
1786         [Deoptimization::Reason_LIMIT]
1787     [1 + Deoptimization::Action_LIMIT]
1788         [Deoptimization::BC_CASE_LIMIT]
1789   = {0};
1790 
1791 enum {
1792   LSB_BITS = 8,
1793   LSB_MASK = right_n_bits(LSB_BITS)
1794 };
1795 
1796 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1797                                        Bytecodes::Code bc) {
1798   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1799   assert(action >= 0 && action < Action_LIMIT, "oob");
1800   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1801   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1802   juint* cases = _deoptimization_hist[reason][1+action];
1803   juint* bc_counter_addr = NULL;
1804   juint  bc_counter      = 0;
1805   // Look for an unused counter, or an exact match to this BC.
1806   if (bc != Bytecodes::_illegal) {
1807     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1808       juint* counter_addr = &cases[bc_case];
1809       juint  counter = *counter_addr;
1810       if ((counter == 0 && bc_counter_addr == NULL)
1811           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1812         // this counter is either free or is already devoted to this BC
1813         bc_counter_addr = counter_addr;
1814         bc_counter = counter | bc;
1815       }
1816     }
1817   }
1818   if (bc_counter_addr == NULL) {
1819     // Overflow, or no given bytecode.
1820     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1821     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1822   }
1823   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1824 }
1825 
1826 jint Deoptimization::total_deoptimization_count() {
1827   return _deoptimization_hist[Reason_none][0][0];
1828 }
1829 
1830 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1831   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1832   return _deoptimization_hist[reason][0][0];
1833 }
1834 
1835 void Deoptimization::print_statistics() {
1836   juint total = total_deoptimization_count();
1837   juint account = total;
1838   if (total != 0) {
1839     ttyLocker ttyl;
1840     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1841     tty->print_cr("Deoptimization traps recorded:");
1842     #define PRINT_STAT_LINE(name, r) \
1843       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1844     PRINT_STAT_LINE("total", total);
1845     // For each non-zero entry in the histogram, print the reason,
1846     // the action, and (if specifically known) the type of bytecode.
1847     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1848       for (int action = 0; action < Action_LIMIT; action++) {
1849         juint* cases = _deoptimization_hist[reason][1+action];
1850         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1851           juint counter = cases[bc_case];
1852           if (counter != 0) {
1853             char name[1*K];
1854             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1855             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1856               bc = Bytecodes::_illegal;
1857             sprintf(name, "%s/%s/%s",
1858                     trap_reason_name(reason),
1859                     trap_action_name(action),
1860                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1861             juint r = counter >> LSB_BITS;
1862             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1863             account -= r;
1864           }
1865         }
1866       }
1867     }
1868     if (account != 0) {
1869       PRINT_STAT_LINE("unaccounted", account);
1870     }
1871     #undef PRINT_STAT_LINE
1872     if (xtty != NULL)  xtty->tail("statistics");
1873   }
1874 }
1875 #else // COMPILER2 || SHARK
1876 
1877 
1878 // Stubs for C1 only system.
1879 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1880   return false;
1881 }
1882 
1883 const char* Deoptimization::trap_reason_name(int reason) {
1884   return "unknown";
1885 }
1886 
1887 void Deoptimization::print_statistics() {
1888   // no output
1889 }
1890 
1891 void
1892 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1893   // no udpate
1894 }
1895 
1896 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1897   return 0;
1898 }
1899 
1900 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1901                                        Bytecodes::Code bc) {
1902   // no update
1903 }
1904 
1905 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1906                                               int trap_state) {
1907   jio_snprintf(buf, buflen, "#%d", trap_state);
1908   return buf;
1909 }
1910 
1911 #endif // COMPILER2 || SHARK