1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 #include <math.h>
  76 
  77 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
  78 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
  79                       char*, int, char*, int, char*, int);
  80 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
  81                       char*, int, char*, int, char*, int);
  82 
  83 // Implementation of SharedRuntime
  84 
  85 #ifndef PRODUCT
  86 // For statistics
  87 int SharedRuntime::_ic_miss_ctr = 0;
  88 int SharedRuntime::_wrong_method_ctr = 0;
  89 int SharedRuntime::_resolve_static_ctr = 0;
  90 int SharedRuntime::_resolve_virtual_ctr = 0;
  91 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
  92 int SharedRuntime::_implicit_null_throws = 0;
  93 int SharedRuntime::_implicit_div0_throws = 0;
  94 int SharedRuntime::_throw_null_ctr = 0;
  95 
  96 int SharedRuntime::_nof_normal_calls = 0;
  97 int SharedRuntime::_nof_optimized_calls = 0;
  98 int SharedRuntime::_nof_inlined_calls = 0;
  99 int SharedRuntime::_nof_megamorphic_calls = 0;
 100 int SharedRuntime::_nof_static_calls = 0;
 101 int SharedRuntime::_nof_inlined_static_calls = 0;
 102 int SharedRuntime::_nof_interface_calls = 0;
 103 int SharedRuntime::_nof_optimized_interface_calls = 0;
 104 int SharedRuntime::_nof_inlined_interface_calls = 0;
 105 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 106 int SharedRuntime::_nof_removable_exceptions = 0;
 107 
 108 int SharedRuntime::_new_instance_ctr=0;
 109 int SharedRuntime::_new_array_ctr=0;
 110 int SharedRuntime::_multi1_ctr=0;
 111 int SharedRuntime::_multi2_ctr=0;
 112 int SharedRuntime::_multi3_ctr=0;
 113 int SharedRuntime::_multi4_ctr=0;
 114 int SharedRuntime::_multi5_ctr=0;
 115 int SharedRuntime::_mon_enter_stub_ctr=0;
 116 int SharedRuntime::_mon_exit_stub_ctr=0;
 117 int SharedRuntime::_mon_enter_ctr=0;
 118 int SharedRuntime::_mon_exit_ctr=0;
 119 int SharedRuntime::_partial_subtype_ctr=0;
 120 int SharedRuntime::_jbyte_array_copy_ctr=0;
 121 int SharedRuntime::_jshort_array_copy_ctr=0;
 122 int SharedRuntime::_jint_array_copy_ctr=0;
 123 int SharedRuntime::_jlong_array_copy_ctr=0;
 124 int SharedRuntime::_oop_array_copy_ctr=0;
 125 int SharedRuntime::_checkcast_array_copy_ctr=0;
 126 int SharedRuntime::_unsafe_array_copy_ctr=0;
 127 int SharedRuntime::_generic_array_copy_ctr=0;
 128 int SharedRuntime::_slow_array_copy_ctr=0;
 129 int SharedRuntime::_find_handler_ctr=0;
 130 int SharedRuntime::_rethrow_ctr=0;
 131 
 132 int     SharedRuntime::_ICmiss_index                    = 0;
 133 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 134 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 135 
 136 void SharedRuntime::trace_ic_miss(address at) {
 137   for (int i = 0; i < _ICmiss_index; i++) {
 138     if (_ICmiss_at[i] == at) {
 139       _ICmiss_count[i]++;
 140       return;
 141     }
 142   }
 143   int index = _ICmiss_index++;
 144   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 145   _ICmiss_at[index] = at;
 146   _ICmiss_count[index] = 1;
 147 }
 148 
 149 void SharedRuntime::print_ic_miss_histogram() {
 150   if (ICMissHistogram) {
 151     tty->print_cr ("IC Miss Histogram:");
 152     int tot_misses = 0;
 153     for (int i = 0; i < _ICmiss_index; i++) {
 154       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 155       tot_misses += _ICmiss_count[i];
 156     }
 157     tty->print_cr ("Total IC misses: %7d", tot_misses);
 158   }
 159 }
 160 #endif // PRODUCT
 161 
 162 #ifndef SERIALGC
 163 
 164 // G1 write-barrier pre: executed before a pointer store.
 165 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 166   if (orig == NULL) {
 167     assert(false, "should be optimized out");
 168     return;
 169   }
 170   assert(orig->is_oop(true /* ignore mark word */), "Error");
 171   // store the original value that was in the field reference
 172   thread->satb_mark_queue().enqueue(orig);
 173 JRT_END
 174 
 175 // G1 write-barrier post: executed after a pointer store.
 176 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 177   thread->dirty_card_queue().enqueue(card_addr);
 178 JRT_END
 179 
 180 #endif // !SERIALGC
 181 
 182 
 183 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 184   return x * y;
 185 JRT_END
 186 
 187 
 188 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 189   if (x == min_jlong && y == CONST64(-1)) {
 190     return x;
 191   } else {
 192     return x / y;
 193   }
 194 JRT_END
 195 
 196 
 197 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 198   if (x == min_jlong && y == CONST64(-1)) {
 199     return 0;
 200   } else {
 201     return x % y;
 202   }
 203 JRT_END
 204 
 205 
 206 const juint  float_sign_mask  = 0x7FFFFFFF;
 207 const juint  float_infinity   = 0x7F800000;
 208 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 209 const julong double_infinity  = CONST64(0x7FF0000000000000);
 210 
 211 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 212 #ifdef _WIN64
 213   // 64-bit Windows on amd64 returns the wrong values for
 214   // infinity operands.
 215   union { jfloat f; juint i; } xbits, ybits;
 216   xbits.f = x;
 217   ybits.f = y;
 218   // x Mod Infinity == x unless x is infinity
 219   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 220        ((ybits.i & float_sign_mask) == float_infinity) ) {
 221     return x;
 222   }
 223 #endif
 224   return ((jfloat)fmod((double)x,(double)y));
 225 JRT_END
 226 
 227 
 228 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 229 #ifdef _WIN64
 230   union { jdouble d; julong l; } xbits, ybits;
 231   xbits.d = x;
 232   ybits.d = y;
 233   // x Mod Infinity == x unless x is infinity
 234   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 235        ((ybits.l & double_sign_mask) == double_infinity) ) {
 236     return x;
 237   }
 238 #endif
 239   return ((jdouble)fmod((double)x,(double)y));
 240 JRT_END
 241 
 242 #ifdef __SOFTFP__
 243 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 244   return x + y;
 245 JRT_END
 246 
 247 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 248   return x - y;
 249 JRT_END
 250 
 251 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 252   return x * y;
 253 JRT_END
 254 
 255 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 256   return x / y;
 257 JRT_END
 258 
 259 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 260   return x + y;
 261 JRT_END
 262 
 263 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 264   return x - y;
 265 JRT_END
 266 
 267 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 268   return x * y;
 269 JRT_END
 270 
 271 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 272   return x / y;
 273 JRT_END
 274 
 275 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 276   return (jfloat)x;
 277 JRT_END
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 280   return (jdouble)x;
 281 JRT_END
 282 
 283 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 284   return (jdouble)x;
 285 JRT_END
 286 
 287 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 288   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 289 JRT_END
 290 
 291 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 292   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 293 JRT_END
 294 
 295 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 296   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 297 JRT_END
 298 
 299 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 300   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 301 JRT_END
 302 
 303 // Functions to return the opposite of the aeabi functions for nan.
 304 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 305   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 306 JRT_END
 307 
 308 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 309   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 310 JRT_END
 311 
 312 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 313   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 314 JRT_END
 315 
 316 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 317   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 318 JRT_END
 319 
 320 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 321   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 322 JRT_END
 323 
 324 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 325   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 326 JRT_END
 327 
 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 329   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 330 JRT_END
 331 
 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 333   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 334 JRT_END
 335 
 336 // Intrinsics make gcc generate code for these.
 337 float  SharedRuntime::fneg(float f)   {
 338   return -f;
 339 }
 340 
 341 double SharedRuntime::dneg(double f)  {
 342   return -f;
 343 }
 344 
 345 #endif // __SOFTFP__
 346 
 347 #if defined(__SOFTFP__) || defined(E500V2)
 348 // Intrinsics make gcc generate code for these.
 349 double SharedRuntime::dabs(double f)  {
 350   return (f <= (double)0.0) ? (double)0.0 - f : f;
 351 }
 352 
 353 double SharedRuntime::dsqrt(double f) {
 354   return sqrt(f);
 355 }
 356 #endif
 357 
 358 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 359   if (g_isnan(x))
 360     return 0;
 361   if (x >= (jfloat) max_jint)
 362     return max_jint;
 363   if (x <= (jfloat) min_jint)
 364     return min_jint;
 365   return (jint) x;
 366 JRT_END
 367 
 368 
 369 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 370   if (g_isnan(x))
 371     return 0;
 372   if (x >= (jfloat) max_jlong)
 373     return max_jlong;
 374   if (x <= (jfloat) min_jlong)
 375     return min_jlong;
 376   return (jlong) x;
 377 JRT_END
 378 
 379 
 380 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 381   if (g_isnan(x))
 382     return 0;
 383   if (x >= (jdouble) max_jint)
 384     return max_jint;
 385   if (x <= (jdouble) min_jint)
 386     return min_jint;
 387   return (jint) x;
 388 JRT_END
 389 
 390 
 391 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 392   if (g_isnan(x))
 393     return 0;
 394   if (x >= (jdouble) max_jlong)
 395     return max_jlong;
 396   if (x <= (jdouble) min_jlong)
 397     return min_jlong;
 398   return (jlong) x;
 399 JRT_END
 400 
 401 
 402 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 403   return (jfloat)x;
 404 JRT_END
 405 
 406 
 407 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 408   return (jfloat)x;
 409 JRT_END
 410 
 411 
 412 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 413   return (jdouble)x;
 414 JRT_END
 415 
 416 // Exception handling accross interpreter/compiler boundaries
 417 //
 418 // exception_handler_for_return_address(...) returns the continuation address.
 419 // The continuation address is the entry point of the exception handler of the
 420 // previous frame depending on the return address.
 421 
 422 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 423   assert(frame::verify_return_pc(return_address), "must be a return pc");
 424 
 425   // Reset MethodHandle flag.
 426   thread->set_is_method_handle_return(false);
 427 
 428   // the fastest case first
 429   CodeBlob* blob = CodeCache::find_blob(return_address);
 430   if (blob != NULL && blob->is_nmethod()) {
 431     nmethod* code = (nmethod*)blob;
 432     assert(code != NULL, "nmethod must be present");
 433     // Check if the return address is a MethodHandle call site.
 434     thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 435     // native nmethods don't have exception handlers
 436     assert(!code->is_native_method(), "no exception handler");
 437     assert(code->header_begin() != code->exception_begin(), "no exception handler");
 438     if (code->is_deopt_pc(return_address)) {
 439       return SharedRuntime::deopt_blob()->unpack_with_exception();
 440     } else {
 441       return code->exception_begin();
 442     }
 443   }
 444 
 445   // Entry code
 446   if (StubRoutines::returns_to_call_stub(return_address)) {
 447     return StubRoutines::catch_exception_entry();
 448   }
 449   // Interpreted code
 450   if (Interpreter::contains(return_address)) {
 451     return Interpreter::rethrow_exception_entry();
 452   }
 453 
 454   // Compiled code
 455   if (CodeCache::contains(return_address)) {
 456     CodeBlob* blob = CodeCache::find_blob(return_address);
 457     if (blob->is_nmethod()) {
 458       nmethod* code = (nmethod*)blob;
 459       assert(code != NULL, "nmethod must be present");
 460       // Check if the return address is a MethodHandle call site.
 461       thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
 462       assert(code->header_begin() != code->exception_begin(), "no exception handler");
 463       return code->exception_begin();
 464     }
 465     if (blob->is_runtime_stub()) {
 466       ShouldNotReachHere();   // callers are responsible for skipping runtime stub frames
 467     }
 468   }
 469   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 470 #ifndef PRODUCT
 471   { ResourceMark rm;
 472     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 473     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 474     tty->print_cr("b) other problem");
 475   }
 476 #endif // PRODUCT
 477   ShouldNotReachHere();
 478   return NULL;
 479 }
 480 
 481 
 482 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 483   return raw_exception_handler_for_return_address(thread, return_address);
 484 JRT_END
 485 
 486 
 487 address SharedRuntime::get_poll_stub(address pc) {
 488   address stub;
 489   // Look up the code blob
 490   CodeBlob *cb = CodeCache::find_blob(pc);
 491 
 492   // Should be an nmethod
 493   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 494 
 495   // Look up the relocation information
 496   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 497     "safepoint polling: type must be poll" );
 498 
 499   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 500     "Only polling locations are used for safepoint");
 501 
 502   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 503   if (at_poll_return) {
 504     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 505            "polling page return stub not created yet");
 506     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 507   } else {
 508     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 509            "polling page safepoint stub not created yet");
 510     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 511   }
 512 #ifndef PRODUCT
 513   if( TraceSafepoint ) {
 514     char buf[256];
 515     jio_snprintf(buf, sizeof(buf),
 516                  "... found polling page %s exception at pc = "
 517                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 518                  at_poll_return ? "return" : "loop",
 519                  (intptr_t)pc, (intptr_t)stub);
 520     tty->print_raw_cr(buf);
 521   }
 522 #endif // PRODUCT
 523   return stub;
 524 }
 525 
 526 
 527 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
 528   assert(caller.is_interpreted_frame(), "");
 529   int args_size = ArgumentSizeComputer(sig).size() + 1;
 530   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 531   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 532   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 533   return result;
 534 }
 535 
 536 
 537 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 538   if (JvmtiExport::can_post_on_exceptions()) {
 539     vframeStream vfst(thread, true);
 540     methodHandle method = methodHandle(thread, vfst.method());
 541     address bcp = method()->bcp_from(vfst.bci());
 542     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 543   }
 544   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 545 }
 546 
 547 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
 548   Handle h_exception = Exceptions::new_exception(thread, name, message);
 549   throw_and_post_jvmti_exception(thread, h_exception);
 550 }
 551 
 552 // The interpreter code to call this tracing function is only
 553 // called/generated when TraceRedefineClasses has the right bits
 554 // set. Since obsolete methods are never compiled, we don't have
 555 // to modify the compilers to generate calls to this function.
 556 //
 557 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 558     JavaThread* thread, methodOopDesc* method))
 559   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 560 
 561   if (method->is_obsolete()) {
 562     // We are calling an obsolete method, but this is not necessarily
 563     // an error. Our method could have been redefined just after we
 564     // fetched the methodOop from the constant pool.
 565 
 566     // RC_TRACE macro has an embedded ResourceMark
 567     RC_TRACE_WITH_THREAD(0x00001000, thread,
 568                          ("calling obsolete method '%s'",
 569                           method->name_and_sig_as_C_string()));
 570     if (RC_TRACE_ENABLED(0x00002000)) {
 571       // this option is provided to debug calls to obsolete methods
 572       guarantee(false, "faulting at call to an obsolete method.");
 573     }
 574   }
 575   return 0;
 576 JRT_END
 577 
 578 // ret_pc points into caller; we are returning caller's exception handler
 579 // for given exception
 580 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 581                                                     bool force_unwind, bool top_frame_only) {
 582   assert(nm != NULL, "must exist");
 583   ResourceMark rm;
 584 
 585   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 586   // determine handler bci, if any
 587   EXCEPTION_MARK;
 588 
 589   int handler_bci = -1;
 590   int scope_depth = 0;
 591   if (!force_unwind) {
 592     int bci = sd->bci();
 593     do {
 594       bool skip_scope_increment = false;
 595       // exception handler lookup
 596       KlassHandle ek (THREAD, exception->klass());
 597       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 598       if (HAS_PENDING_EXCEPTION) {
 599         // We threw an exception while trying to find the exception handler.
 600         // Transfer the new exception to the exception handle which will
 601         // be set into thread local storage, and do another lookup for an
 602         // exception handler for this exception, this time starting at the
 603         // BCI of the exception handler which caused the exception to be
 604         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 605         // argument to ensure that the correct exception is thrown (4870175).
 606         exception = Handle(THREAD, PENDING_EXCEPTION);
 607         CLEAR_PENDING_EXCEPTION;
 608         if (handler_bci >= 0) {
 609           bci = handler_bci;
 610           handler_bci = -1;
 611           skip_scope_increment = true;
 612         }
 613       }
 614       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 615         sd = sd->sender();
 616         if (sd != NULL) {
 617           bci = sd->bci();
 618         }
 619         ++scope_depth;
 620       }
 621     } while (!top_frame_only && handler_bci < 0 && sd != NULL);
 622   }
 623 
 624   // found handling method => lookup exception handler
 625   int catch_pco = ret_pc - nm->code_begin();
 626 
 627   ExceptionHandlerTable table(nm);
 628   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 629   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 630     // Allow abbreviated catch tables.  The idea is to allow a method
 631     // to materialize its exceptions without committing to the exact
 632     // routing of exceptions.  In particular this is needed for adding
 633     // a synthethic handler to unlock monitors when inlining
 634     // synchonized methods since the unlock path isn't represented in
 635     // the bytecodes.
 636     t = table.entry_for(catch_pco, -1, 0);
 637   }
 638 
 639 #ifdef COMPILER1
 640   if (t == NULL && nm->is_compiled_by_c1()) {
 641     assert(nm->unwind_handler_begin() != NULL, "");
 642     return nm->unwind_handler_begin();
 643   }
 644 #endif
 645 
 646   if (t == NULL) {
 647     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 648     tty->print_cr("   Exception:");
 649     exception->print();
 650     tty->cr();
 651     tty->print_cr(" Compiled exception table :");
 652     table.print();
 653     nm->print_code();
 654     guarantee(false, "missing exception handler");
 655     return NULL;
 656   }
 657 
 658   return nm->code_begin() + t->pco();
 659 }
 660 
 661 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 662   // These errors occur only at call sites
 663   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 664 JRT_END
 665 
 666 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 667   // These errors occur only at call sites
 668   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 669 JRT_END
 670 
 671 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 672   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 673 JRT_END
 674 
 675 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 676   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 677 JRT_END
 678 
 679 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 680   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 681   // cache sites (when the callee activation is not yet set up) so we are at a call site
 682   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 683 JRT_END
 684 
 685 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 686   // We avoid using the normal exception construction in this case because
 687   // it performs an upcall to Java, and we're already out of stack space.
 688   klassOop k = SystemDictionary::StackOverflowError_klass();
 689   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 690   Handle exception (thread, exception_oop);
 691   if (StackTraceInThrowable) {
 692     java_lang_Throwable::fill_in_stack_trace(exception);
 693   }
 694   throw_and_post_jvmti_exception(thread, exception);
 695 JRT_END
 696 
 697 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 698                                                            address pc,
 699                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 700 {
 701   address target_pc = NULL;
 702 
 703   if (Interpreter::contains(pc)) {
 704 #ifdef CC_INTERP
 705     // C++ interpreter doesn't throw implicit exceptions
 706     ShouldNotReachHere();
 707 #else
 708     switch (exception_kind) {
 709       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 710       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 711       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 712       default:                      ShouldNotReachHere();
 713     }
 714 #endif // !CC_INTERP
 715   } else {
 716     switch (exception_kind) {
 717       case STACK_OVERFLOW: {
 718         // Stack overflow only occurs upon frame setup; the callee is
 719         // going to be unwound. Dispatch to a shared runtime stub
 720         // which will cause the StackOverflowError to be fabricated
 721         // and processed.
 722         // For stack overflow in deoptimization blob, cleanup thread.
 723         if (thread->deopt_mark() != NULL) {
 724           Deoptimization::cleanup_deopt_info(thread, NULL);
 725         }
 726         return StubRoutines::throw_StackOverflowError_entry();
 727       }
 728 
 729       case IMPLICIT_NULL: {
 730         if (VtableStubs::contains(pc)) {
 731           // We haven't yet entered the callee frame. Fabricate an
 732           // exception and begin dispatching it in the caller. Since
 733           // the caller was at a call site, it's safe to destroy all
 734           // caller-saved registers, as these entry points do.
 735           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 736 
 737           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 738           if (vt_stub == NULL) return NULL;
 739 
 740           if (vt_stub->is_abstract_method_error(pc)) {
 741             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 742             return StubRoutines::throw_AbstractMethodError_entry();
 743           } else {
 744             return StubRoutines::throw_NullPointerException_at_call_entry();
 745           }
 746         } else {
 747           CodeBlob* cb = CodeCache::find_blob(pc);
 748 
 749           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 750           if (cb == NULL) return NULL;
 751 
 752           // Exception happened in CodeCache. Must be either:
 753           // 1. Inline-cache check in C2I handler blob,
 754           // 2. Inline-cache check in nmethod, or
 755           // 3. Implict null exception in nmethod
 756 
 757           if (!cb->is_nmethod()) {
 758             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 759                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 760             // There is no handler here, so we will simply unwind.
 761             return StubRoutines::throw_NullPointerException_at_call_entry();
 762           }
 763 
 764           // Otherwise, it's an nmethod.  Consult its exception handlers.
 765           nmethod* nm = (nmethod*)cb;
 766           if (nm->inlinecache_check_contains(pc)) {
 767             // exception happened inside inline-cache check code
 768             // => the nmethod is not yet active (i.e., the frame
 769             // is not set up yet) => use return address pushed by
 770             // caller => don't push another return address
 771             return StubRoutines::throw_NullPointerException_at_call_entry();
 772           }
 773 
 774 #ifndef PRODUCT
 775           _implicit_null_throws++;
 776 #endif
 777           target_pc = nm->continuation_for_implicit_exception(pc);
 778           // If there's an unexpected fault, target_pc might be NULL,
 779           // in which case we want to fall through into the normal
 780           // error handling code.
 781         }
 782 
 783         break; // fall through
 784       }
 785 
 786 
 787       case IMPLICIT_DIVIDE_BY_ZERO: {
 788         nmethod* nm = CodeCache::find_nmethod(pc);
 789         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 790 #ifndef PRODUCT
 791         _implicit_div0_throws++;
 792 #endif
 793         target_pc = nm->continuation_for_implicit_exception(pc);
 794         // If there's an unexpected fault, target_pc might be NULL,
 795         // in which case we want to fall through into the normal
 796         // error handling code.
 797         break; // fall through
 798       }
 799 
 800       default: ShouldNotReachHere();
 801     }
 802 
 803     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 804 
 805     // for AbortVMOnException flag
 806     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 807     if (exception_kind == IMPLICIT_NULL) {
 808       Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 809     } else {
 810       Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 811     }
 812     return target_pc;
 813   }
 814 
 815   ShouldNotReachHere();
 816   return NULL;
 817 }
 818 
 819 
 820 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 821 {
 822   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 823 }
 824 JNI_END
 825 
 826 
 827 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 828   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 829 }
 830 
 831 
 832 #ifndef PRODUCT
 833 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 834   const frame f = thread->last_frame();
 835   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 836 #ifndef PRODUCT
 837   methodHandle mh(THREAD, f.interpreter_frame_method());
 838   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 839 #endif // !PRODUCT
 840   return preserve_this_value;
 841 JRT_END
 842 #endif // !PRODUCT
 843 
 844 
 845 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 846   os::yield_all(attempts);
 847 JRT_END
 848 
 849 
 850 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 851   assert(obj->is_oop(), "must be a valid oop");
 852   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 853   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 854 JRT_END
 855 
 856 
 857 jlong SharedRuntime::get_java_tid(Thread* thread) {
 858   if (thread != NULL) {
 859     if (thread->is_Java_thread()) {
 860       oop obj = ((JavaThread*)thread)->threadObj();
 861       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 862     }
 863   }
 864   return 0;
 865 }
 866 
 867 /**
 868  * This function ought to be a void function, but cannot be because
 869  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 870  * 6254741.  Once that is fixed we can remove the dummy return value.
 871  */
 872 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 873   return dtrace_object_alloc_base(Thread::current(), o);
 874 }
 875 
 876 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 877   assert(DTraceAllocProbes, "wrong call");
 878   Klass* klass = o->blueprint();
 879   int size = o->size();
 880   symbolOop name = klass->name();
 881   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 882                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 883   return 0;
 884 }
 885 
 886 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 887     JavaThread* thread, methodOopDesc* method))
 888   assert(DTraceMethodProbes, "wrong call");
 889   symbolOop kname = method->klass_name();
 890   symbolOop name = method->name();
 891   symbolOop sig = method->signature();
 892   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 893       kname->bytes(), kname->utf8_length(),
 894       name->bytes(), name->utf8_length(),
 895       sig->bytes(), sig->utf8_length());
 896   return 0;
 897 JRT_END
 898 
 899 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 900     JavaThread* thread, methodOopDesc* method))
 901   assert(DTraceMethodProbes, "wrong call");
 902   symbolOop kname = method->klass_name();
 903   symbolOop name = method->name();
 904   symbolOop sig = method->signature();
 905   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
 906       kname->bytes(), kname->utf8_length(),
 907       name->bytes(), name->utf8_length(),
 908       sig->bytes(), sig->utf8_length());
 909   return 0;
 910 JRT_END
 911 
 912 
 913 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 914 // for a call current in progress, i.e., arguments has been pushed on stack
 915 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 916 // vtable updates, etc.  Caller frame must be compiled.
 917 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 918   ResourceMark rm(THREAD);
 919 
 920   // last java frame on stack (which includes native call frames)
 921   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 922 
 923   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 924 }
 925 
 926 
 927 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 928 // for a call current in progress, i.e., arguments has been pushed on stack
 929 // but callee has not been invoked yet.  Caller frame must be compiled.
 930 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 931                                               vframeStream& vfst,
 932                                               Bytecodes::Code& bc,
 933                                               CallInfo& callinfo, TRAPS) {
 934   Handle receiver;
 935   Handle nullHandle;  //create a handy null handle for exception returns
 936 
 937   assert(!vfst.at_end(), "Java frame must exist");
 938 
 939   // Find caller and bci from vframe
 940   methodHandle caller (THREAD, vfst.method());
 941   int          bci    = vfst.bci();
 942 
 943   // Find bytecode
 944   Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
 945   bc = bytecode->java_code();
 946   int bytecode_index = bytecode->index();
 947 
 948   // Find receiver for non-static call
 949   if (bc != Bytecodes::_invokestatic) {
 950     // This register map must be update since we need to find the receiver for
 951     // compiled frames. The receiver might be in a register.
 952     RegisterMap reg_map2(thread);
 953     frame stubFrame   = thread->last_frame();
 954     // Caller-frame is a compiled frame
 955     frame callerFrame = stubFrame.sender(&reg_map2);
 956 
 957     methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
 958     if (callee.is_null()) {
 959       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
 960     }
 961     // Retrieve from a compiled argument list
 962     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
 963 
 964     if (receiver.is_null()) {
 965       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
 966     }
 967   }
 968 
 969   // Resolve method. This is parameterized by bytecode.
 970   constantPoolHandle constants (THREAD, caller->constants());
 971   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
 972   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
 973 
 974 #ifdef ASSERT
 975   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
 976   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
 977     assert(receiver.not_null(), "should have thrown exception");
 978     KlassHandle receiver_klass (THREAD, receiver->klass());
 979     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
 980                             // klass is already loaded
 981     KlassHandle static_receiver_klass (THREAD, rk);
 982     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
 983     if (receiver_klass->oop_is_instance()) {
 984       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
 985         tty->print_cr("ERROR: Klass not yet initialized!!");
 986         receiver_klass.print();
 987       }
 988       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
 989     }
 990   }
 991 #endif
 992 
 993   return receiver;
 994 }
 995 
 996 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
 997   ResourceMark rm(THREAD);
 998   // We need first to check if any Java activations (compiled, interpreted)
 999   // exist on the stack since last JavaCall.  If not, we need
1000   // to get the target method from the JavaCall wrapper.
1001   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1002   methodHandle callee_method;
1003   if (vfst.at_end()) {
1004     // No Java frames were found on stack since we did the JavaCall.
1005     // Hence the stack can only contain an entry_frame.  We need to
1006     // find the target method from the stub frame.
1007     RegisterMap reg_map(thread, false);
1008     frame fr = thread->last_frame();
1009     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1010     fr = fr.sender(&reg_map);
1011     assert(fr.is_entry_frame(), "must be");
1012     // fr is now pointing to the entry frame.
1013     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1014     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1015   } else {
1016     Bytecodes::Code bc;
1017     CallInfo callinfo;
1018     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1019     callee_method = callinfo.selected_method();
1020   }
1021   assert(callee_method()->is_method(), "must be");
1022   return callee_method;
1023 }
1024 
1025 // Resolves a call.
1026 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1027                                            bool is_virtual,
1028                                            bool is_optimized, TRAPS) {
1029   methodHandle callee_method;
1030   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1031   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1032     int retry_count = 0;
1033     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1034            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1035       // If has a pending exception then there is no need to re-try to
1036       // resolve this method.
1037       // If the method has been redefined, we need to try again.
1038       // Hack: we have no way to update the vtables of arrays, so don't
1039       // require that java.lang.Object has been updated.
1040 
1041       // It is very unlikely that method is redefined more than 100 times
1042       // in the middle of resolve. If it is looping here more than 100 times
1043       // means then there could be a bug here.
1044       guarantee((retry_count++ < 100),
1045                 "Could not resolve to latest version of redefined method");
1046       // method is redefined in the middle of resolve so re-try.
1047       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1048     }
1049   }
1050   return callee_method;
1051 }
1052 
1053 // Resolves a call.  The compilers generate code for calls that go here
1054 // and are patched with the real destination of the call.
1055 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1056                                            bool is_virtual,
1057                                            bool is_optimized, TRAPS) {
1058 
1059   ResourceMark rm(thread);
1060   RegisterMap cbl_map(thread, false);
1061   frame caller_frame = thread->last_frame().sender(&cbl_map);
1062 
1063   CodeBlob* caller_cb = caller_frame.cb();
1064   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1065   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1066   // make sure caller is not getting deoptimized
1067   // and removed before we are done with it.
1068   // CLEANUP - with lazy deopt shouldn't need this lock
1069   nmethodLocker caller_lock(caller_nm);
1070 
1071 
1072   // determine call info & receiver
1073   // note: a) receiver is NULL for static calls
1074   //       b) an exception is thrown if receiver is NULL for non-static calls
1075   CallInfo call_info;
1076   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1077   Handle receiver = find_callee_info(thread, invoke_code,
1078                                      call_info, CHECK_(methodHandle()));
1079   methodHandle callee_method = call_info.selected_method();
1080 
1081   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1082          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1083 
1084 #ifndef PRODUCT
1085   // tracing/debugging/statistics
1086   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1087                 (is_virtual) ? (&_resolve_virtual_ctr) :
1088                                (&_resolve_static_ctr);
1089   Atomic::inc(addr);
1090 
1091   if (TraceCallFixup) {
1092     ResourceMark rm(thread);
1093     tty->print("resolving %s%s (%s) call to",
1094       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1095       Bytecodes::name(invoke_code));
1096     callee_method->print_short_name(tty);
1097     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1098   }
1099 #endif
1100 
1101   // JSR 292
1102   // If the resolved method is a MethodHandle invoke target the call
1103   // site must be a MethodHandle call site.
1104   if (callee_method->is_method_handle_invoke()) {
1105     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1106   }
1107 
1108   // Compute entry points. This might require generation of C2I converter
1109   // frames, so we cannot be holding any locks here. Furthermore, the
1110   // computation of the entry points is independent of patching the call.  We
1111   // always return the entry-point, but we only patch the stub if the call has
1112   // not been deoptimized.  Return values: For a virtual call this is an
1113   // (cached_oop, destination address) pair. For a static call/optimized
1114   // virtual this is just a destination address.
1115 
1116   StaticCallInfo static_call_info;
1117   CompiledICInfo virtual_call_info;
1118 
1119   // Make sure the callee nmethod does not get deoptimized and removed before
1120   // we are done patching the code.
1121   nmethod* callee_nm = callee_method->code();
1122   nmethodLocker nl_callee(callee_nm);
1123 #ifdef ASSERT
1124   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1125 #endif
1126 
1127   if (is_virtual) {
1128     assert(receiver.not_null(), "sanity check");
1129     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1130     KlassHandle h_klass(THREAD, receiver->klass());
1131     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1132                      is_optimized, static_bound, virtual_call_info,
1133                      CHECK_(methodHandle()));
1134   } else {
1135     // static call
1136     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1137   }
1138 
1139   // grab lock, check for deoptimization and potentially patch caller
1140   {
1141     MutexLocker ml_patch(CompiledIC_lock);
1142 
1143     // Now that we are ready to patch if the methodOop was redefined then
1144     // don't update call site and let the caller retry.
1145 
1146     if (!callee_method->is_old()) {
1147 #ifdef ASSERT
1148       // We must not try to patch to jump to an already unloaded method.
1149       if (dest_entry_point != 0) {
1150         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1151                "should not unload nmethod while locked");
1152       }
1153 #endif
1154       if (is_virtual) {
1155         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1156         if (inline_cache->is_clean()) {
1157           inline_cache->set_to_monomorphic(virtual_call_info);
1158         }
1159       } else {
1160         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1161         if (ssc->is_clean()) ssc->set(static_call_info);
1162       }
1163     }
1164 
1165   } // unlock CompiledIC_lock
1166 
1167   return callee_method;
1168 }
1169 
1170 
1171 // Inline caches exist only in compiled code
1172 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1173 #ifdef ASSERT
1174   RegisterMap reg_map(thread, false);
1175   frame stub_frame = thread->last_frame();
1176   assert(stub_frame.is_runtime_frame(), "sanity check");
1177   frame caller_frame = stub_frame.sender(&reg_map);
1178   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1179 #endif /* ASSERT */
1180 
1181   methodHandle callee_method;
1182   JRT_BLOCK
1183     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1184     // Return methodOop through TLS
1185     thread->set_vm_result(callee_method());
1186   JRT_BLOCK_END
1187   // return compiled code entry point after potential safepoints
1188   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1189   return callee_method->verified_code_entry();
1190 JRT_END
1191 
1192 
1193 // Handle call site that has been made non-entrant
1194 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1195   // 6243940 We might end up in here if the callee is deoptimized
1196   // as we race to call it.  We don't want to take a safepoint if
1197   // the caller was interpreted because the caller frame will look
1198   // interpreted to the stack walkers and arguments are now
1199   // "compiled" so it is much better to make this transition
1200   // invisible to the stack walking code. The i2c path will
1201   // place the callee method in the callee_target. It is stashed
1202   // there because if we try and find the callee by normal means a
1203   // safepoint is possible and have trouble gc'ing the compiled args.
1204   RegisterMap reg_map(thread, false);
1205   frame stub_frame = thread->last_frame();
1206   assert(stub_frame.is_runtime_frame(), "sanity check");
1207   frame caller_frame = stub_frame.sender(&reg_map);
1208 
1209   // MethodHandle invokes don't have a CompiledIC and should always
1210   // simply redispatch to the callee_target.
1211   address   sender_pc = caller_frame.pc();
1212   CodeBlob* sender_cb = caller_frame.cb();
1213   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1214   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1215   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1216     // If the callee_target is set, then we have come here via an i2c
1217     // adapter.
1218     methodOop callee = thread->callee_target();
1219     if (callee != NULL) {
1220       assert(callee->is_method(), "sanity");
1221       is_mh_invoke_via_adapter = true;
1222     }
1223   }
1224 
1225   if (caller_frame.is_interpreted_frame() ||
1226       caller_frame.is_entry_frame()       ||
1227       is_mh_invoke_via_adapter) {
1228     methodOop callee = thread->callee_target();
1229     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1230     thread->set_vm_result(callee);
1231     thread->set_callee_target(NULL);
1232     return callee->get_c2i_entry();
1233   }
1234 
1235   // Must be compiled to compiled path which is safe to stackwalk
1236   methodHandle callee_method;
1237   JRT_BLOCK
1238     // Force resolving of caller (if we called from compiled frame)
1239     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1240     thread->set_vm_result(callee_method());
1241   JRT_BLOCK_END
1242   // return compiled code entry point after potential safepoints
1243   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1244   return callee_method->verified_code_entry();
1245 JRT_END
1246 
1247 
1248 // resolve a static call and patch code
1249 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1250   methodHandle callee_method;
1251   JRT_BLOCK
1252     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1253     thread->set_vm_result(callee_method());
1254   JRT_BLOCK_END
1255   // return compiled code entry point after potential safepoints
1256   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1257   return callee_method->verified_code_entry();
1258 JRT_END
1259 
1260 
1261 // resolve virtual call and update inline cache to monomorphic
1262 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1263   methodHandle callee_method;
1264   JRT_BLOCK
1265     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1266     thread->set_vm_result(callee_method());
1267   JRT_BLOCK_END
1268   // return compiled code entry point after potential safepoints
1269   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1270   return callee_method->verified_code_entry();
1271 JRT_END
1272 
1273 
1274 // Resolve a virtual call that can be statically bound (e.g., always
1275 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1276 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1277   methodHandle callee_method;
1278   JRT_BLOCK
1279     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1280     thread->set_vm_result(callee_method());
1281   JRT_BLOCK_END
1282   // return compiled code entry point after potential safepoints
1283   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1284   return callee_method->verified_code_entry();
1285 JRT_END
1286 
1287 
1288 
1289 
1290 
1291 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1292   ResourceMark rm(thread);
1293   CallInfo call_info;
1294   Bytecodes::Code bc;
1295 
1296   // receiver is NULL for static calls. An exception is thrown for NULL
1297   // receivers for non-static calls
1298   Handle receiver = find_callee_info(thread, bc, call_info,
1299                                      CHECK_(methodHandle()));
1300   // Compiler1 can produce virtual call sites that can actually be statically bound
1301   // If we fell thru to below we would think that the site was going megamorphic
1302   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1303   // we'd try and do a vtable dispatch however methods that can be statically bound
1304   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1305   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1306   // plain ic_miss) and the site will be converted to an optimized virtual call site
1307   // never to miss again. I don't believe C2 will produce code like this but if it
1308   // did this would still be the correct thing to do for it too, hence no ifdef.
1309   //
1310   if (call_info.resolved_method()->can_be_statically_bound()) {
1311     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1312     if (TraceCallFixup) {
1313       RegisterMap reg_map(thread, false);
1314       frame caller_frame = thread->last_frame().sender(&reg_map);
1315       ResourceMark rm(thread);
1316       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1317       callee_method->print_short_name(tty);
1318       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1319       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1320     }
1321     return callee_method;
1322   }
1323 
1324   methodHandle callee_method = call_info.selected_method();
1325 
1326   bool should_be_mono = false;
1327 
1328 #ifndef PRODUCT
1329   Atomic::inc(&_ic_miss_ctr);
1330 
1331   // Statistics & Tracing
1332   if (TraceCallFixup) {
1333     ResourceMark rm(thread);
1334     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1335     callee_method->print_short_name(tty);
1336     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1337   }
1338 
1339   if (ICMissHistogram) {
1340     MutexLocker m(VMStatistic_lock);
1341     RegisterMap reg_map(thread, false);
1342     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1343     // produce statistics under the lock
1344     trace_ic_miss(f.pc());
1345   }
1346 #endif
1347 
1348   // install an event collector so that when a vtable stub is created the
1349   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1350   // event can't be posted when the stub is created as locks are held
1351   // - instead the event will be deferred until the event collector goes
1352   // out of scope.
1353   JvmtiDynamicCodeEventCollector event_collector;
1354 
1355   // Update inline cache to megamorphic. Skip update if caller has been
1356   // made non-entrant or we are called from interpreted.
1357   { MutexLocker ml_patch (CompiledIC_lock);
1358     RegisterMap reg_map(thread, false);
1359     frame caller_frame = thread->last_frame().sender(&reg_map);
1360     CodeBlob* cb = caller_frame.cb();
1361     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1362       // Not a non-entrant nmethod, so find inline_cache
1363       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1364       bool should_be_mono = false;
1365       if (inline_cache->is_optimized()) {
1366         if (TraceCallFixup) {
1367           ResourceMark rm(thread);
1368           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1369           callee_method->print_short_name(tty);
1370           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1371         }
1372         should_be_mono = true;
1373       } else {
1374         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1375         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1376 
1377           if (receiver()->klass() == ic_oop->holder_klass()) {
1378             // This isn't a real miss. We must have seen that compiled code
1379             // is now available and we want the call site converted to a
1380             // monomorphic compiled call site.
1381             // We can't assert for callee_method->code() != NULL because it
1382             // could have been deoptimized in the meantime
1383             if (TraceCallFixup) {
1384               ResourceMark rm(thread);
1385               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1386               callee_method->print_short_name(tty);
1387               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1388             }
1389             should_be_mono = true;
1390           }
1391         }
1392       }
1393 
1394       if (should_be_mono) {
1395 
1396         // We have a path that was monomorphic but was going interpreted
1397         // and now we have (or had) a compiled entry. We correct the IC
1398         // by using a new icBuffer.
1399         CompiledICInfo info;
1400         KlassHandle receiver_klass(THREAD, receiver()->klass());
1401         inline_cache->compute_monomorphic_entry(callee_method,
1402                                                 receiver_klass,
1403                                                 inline_cache->is_optimized(),
1404                                                 false,
1405                                                 info, CHECK_(methodHandle()));
1406         inline_cache->set_to_monomorphic(info);
1407       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1408         // Change to megamorphic
1409         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1410       } else {
1411         // Either clean or megamorphic
1412       }
1413     }
1414   } // Release CompiledIC_lock
1415 
1416   return callee_method;
1417 }
1418 
1419 //
1420 // Resets a call-site in compiled code so it will get resolved again.
1421 // This routines handles both virtual call sites, optimized virtual call
1422 // sites, and static call sites. Typically used to change a call sites
1423 // destination from compiled to interpreted.
1424 //
1425 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1426   ResourceMark rm(thread);
1427   RegisterMap reg_map(thread, false);
1428   frame stub_frame = thread->last_frame();
1429   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1430   frame caller = stub_frame.sender(&reg_map);
1431 
1432   // Do nothing if the frame isn't a live compiled frame.
1433   // nmethod could be deoptimized by the time we get here
1434   // so no update to the caller is needed.
1435 
1436   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1437 
1438     address pc = caller.pc();
1439     Events::log("update call-site at pc " INTPTR_FORMAT, pc);
1440 
1441     // Default call_addr is the location of the "basic" call.
1442     // Determine the address of the call we a reresolving. With
1443     // Inline Caches we will always find a recognizable call.
1444     // With Inline Caches disabled we may or may not find a
1445     // recognizable call. We will always find a call for static
1446     // calls and for optimized virtual calls. For vanilla virtual
1447     // calls it depends on the state of the UseInlineCaches switch.
1448     //
1449     // With Inline Caches disabled we can get here for a virtual call
1450     // for two reasons:
1451     //   1 - calling an abstract method. The vtable for abstract methods
1452     //       will run us thru handle_wrong_method and we will eventually
1453     //       end up in the interpreter to throw the ame.
1454     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1455     //       call and between the time we fetch the entry address and
1456     //       we jump to it the target gets deoptimized. Similar to 1
1457     //       we will wind up in the interprter (thru a c2i with c2).
1458     //
1459     address call_addr = NULL;
1460     {
1461       // Get call instruction under lock because another thread may be
1462       // busy patching it.
1463       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1464       // Location of call instruction
1465       if (NativeCall::is_call_before(pc)) {
1466         NativeCall *ncall = nativeCall_before(pc);
1467         call_addr = ncall->instruction_address();
1468       }
1469     }
1470 
1471     // Check for static or virtual call
1472     bool is_static_call = false;
1473     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1474     // Make sure nmethod doesn't get deoptimized and removed until
1475     // this is done with it.
1476     // CLEANUP - with lazy deopt shouldn't need this lock
1477     nmethodLocker nmlock(caller_nm);
1478 
1479     if (call_addr != NULL) {
1480       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1481       int ret = iter.next(); // Get item
1482       if (ret) {
1483         assert(iter.addr() == call_addr, "must find call");
1484         if (iter.type() == relocInfo::static_call_type) {
1485           is_static_call = true;
1486         } else {
1487           assert(iter.type() == relocInfo::virtual_call_type ||
1488                  iter.type() == relocInfo::opt_virtual_call_type
1489                 , "unexpected relocInfo. type");
1490         }
1491       } else {
1492         assert(!UseInlineCaches, "relocation info. must exist for this address");
1493       }
1494 
1495       // Cleaning the inline cache will force a new resolve. This is more robust
1496       // than directly setting it to the new destination, since resolving of calls
1497       // is always done through the same code path. (experience shows that it
1498       // leads to very hard to track down bugs, if an inline cache gets updated
1499       // to a wrong method). It should not be performance critical, since the
1500       // resolve is only done once.
1501 
1502       MutexLocker ml(CompiledIC_lock);
1503       //
1504       // We do not patch the call site if the nmethod has been made non-entrant
1505       // as it is a waste of time
1506       //
1507       if (caller_nm->is_in_use()) {
1508         if (is_static_call) {
1509           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1510           ssc->set_to_clean();
1511         } else {
1512           // compiled, dispatched call (which used to call an interpreted method)
1513           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1514           inline_cache->set_to_clean();
1515         }
1516       }
1517     }
1518 
1519   }
1520 
1521   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1522 
1523 
1524 #ifndef PRODUCT
1525   Atomic::inc(&_wrong_method_ctr);
1526 
1527   if (TraceCallFixup) {
1528     ResourceMark rm(thread);
1529     tty->print("handle_wrong_method reresolving call to");
1530     callee_method->print_short_name(tty);
1531     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1532   }
1533 #endif
1534 
1535   return callee_method;
1536 }
1537 
1538 // ---------------------------------------------------------------------------
1539 // We are calling the interpreter via a c2i. Normally this would mean that
1540 // we were called by a compiled method. However we could have lost a race
1541 // where we went int -> i2c -> c2i and so the caller could in fact be
1542 // interpreted. If the caller is compiled we attempt to patch the caller
1543 // so he no longer calls into the interpreter.
1544 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1545   methodOop moop(method);
1546 
1547   address entry_point = moop->from_compiled_entry();
1548 
1549   // It's possible that deoptimization can occur at a call site which hasn't
1550   // been resolved yet, in which case this function will be called from
1551   // an nmethod that has been patched for deopt and we can ignore the
1552   // request for a fixup.
1553   // Also it is possible that we lost a race in that from_compiled_entry
1554   // is now back to the i2c in that case we don't need to patch and if
1555   // we did we'd leap into space because the callsite needs to use
1556   // "to interpreter" stub in order to load up the methodOop. Don't
1557   // ask me how I know this...
1558 
1559   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1560   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1561     return;
1562   }
1563 
1564   // The check above makes sure this is a nmethod.
1565   nmethod* nm = cb->as_nmethod_or_null();
1566   assert(nm, "must be");
1567 
1568   // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
1569   // to implement MethodHandle actions.
1570   if (nm->is_method_handle_return(caller_pc)) {
1571     return;
1572   }
1573 
1574   // There is a benign race here. We could be attempting to patch to a compiled
1575   // entry point at the same time the callee is being deoptimized. If that is
1576   // the case then entry_point may in fact point to a c2i and we'd patch the
1577   // call site with the same old data. clear_code will set code() to NULL
1578   // at the end of it. If we happen to see that NULL then we can skip trying
1579   // to patch. If we hit the window where the callee has a c2i in the
1580   // from_compiled_entry and the NULL isn't present yet then we lose the race
1581   // and patch the code with the same old data. Asi es la vida.
1582 
1583   if (moop->code() == NULL) return;
1584 
1585   if (nm->is_in_use()) {
1586 
1587     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1588     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1589     if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
1590       NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
1591       //
1592       // bug 6281185. We might get here after resolving a call site to a vanilla
1593       // virtual call. Because the resolvee uses the verified entry it may then
1594       // see compiled code and attempt to patch the site by calling us. This would
1595       // then incorrectly convert the call site to optimized and its downhill from
1596       // there. If you're lucky you'll get the assert in the bugid, if not you've
1597       // just made a call site that could be megamorphic into a monomorphic site
1598       // for the rest of its life! Just another racing bug in the life of
1599       // fixup_callers_callsite ...
1600       //
1601       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1602       iter.next();
1603       assert(iter.has_current(), "must have a reloc at java call site");
1604       relocInfo::relocType typ = iter.reloc()->type();
1605       if ( typ != relocInfo::static_call_type &&
1606            typ != relocInfo::opt_virtual_call_type &&
1607            typ != relocInfo::static_stub_type) {
1608         return;
1609       }
1610       address destination = call->destination();
1611       if (destination != entry_point) {
1612         CodeBlob* callee = CodeCache::find_blob(destination);
1613         // callee == cb seems weird. It means calling interpreter thru stub.
1614         if (callee == cb || callee->is_adapter_blob()) {
1615           // static call or optimized virtual
1616           if (TraceCallFixup) {
1617             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1618             moop->print_short_name(tty);
1619             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1620           }
1621           call->set_destination_mt_safe(entry_point);
1622         } else {
1623           if (TraceCallFixup) {
1624             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1625             moop->print_short_name(tty);
1626             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1627           }
1628           // assert is too strong could also be resolve destinations.
1629           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1630         }
1631       } else {
1632           if (TraceCallFixup) {
1633             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1634             moop->print_short_name(tty);
1635             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1636           }
1637       }
1638     }
1639   }
1640 
1641 IRT_END
1642 
1643 
1644 // same as JVM_Arraycopy, but called directly from compiled code
1645 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1646                                                 oopDesc* dest, jint dest_pos,
1647                                                 jint length,
1648                                                 JavaThread* thread)) {
1649 #ifndef PRODUCT
1650   _slow_array_copy_ctr++;
1651 #endif
1652   // Check if we have null pointers
1653   if (src == NULL || dest == NULL) {
1654     THROW(vmSymbols::java_lang_NullPointerException());
1655   }
1656   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1657   // even though the copy_array API also performs dynamic checks to ensure
1658   // that src and dest are truly arrays (and are conformable).
1659   // The copy_array mechanism is awkward and could be removed, but
1660   // the compilers don't call this function except as a last resort,
1661   // so it probably doesn't matter.
1662   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1663                                         (arrayOopDesc*)dest, dest_pos,
1664                                         length, thread);
1665 }
1666 JRT_END
1667 
1668 char* SharedRuntime::generate_class_cast_message(
1669     JavaThread* thread, const char* objName) {
1670 
1671   // Get target class name from the checkcast instruction
1672   vframeStream vfst(thread, true);
1673   assert(!vfst.at_end(), "Java frame must exist");
1674   Bytecode_checkcast* cc = Bytecode_checkcast_at(
1675     vfst.method()->bcp_from(vfst.bci()));
1676   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1677     cc->index(), thread));
1678   return generate_class_cast_message(objName, targetKlass->external_name());
1679 }
1680 
1681 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1682                                                         oopDesc* required,
1683                                                         oopDesc* actual) {
1684   if (TraceMethodHandles) {
1685     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1686                   thread, required, actual);
1687   }
1688   assert(EnableMethodHandles, "");
1689   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1690   char* message = NULL;
1691   if (singleKlass != NULL) {
1692     const char* objName = "argument or return value";
1693     if (actual != NULL) {
1694       // be flexible about the junk passed in:
1695       klassOop ak = (actual->is_klass()
1696                      ? (klassOop)actual
1697                      : actual->klass());
1698       objName = Klass::cast(ak)->external_name();
1699     }
1700     Klass* targetKlass = Klass::cast(required->is_klass()
1701                                      ? (klassOop)required
1702                                      : java_lang_Class::as_klassOop(required));
1703     message = generate_class_cast_message(objName, targetKlass->external_name());
1704   } else {
1705     // %%% need to get the MethodType string, without messing around too much
1706     // Get a signature from the invoke instruction
1707     const char* mhName = "method handle";
1708     const char* targetType = "the required signature";
1709     vframeStream vfst(thread, true);
1710     if (!vfst.at_end()) {
1711       Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
1712       methodHandle target;
1713       {
1714         EXCEPTION_MARK;
1715         target = call->static_target(THREAD);
1716         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1717       }
1718       if (target.not_null()
1719           && target->is_method_handle_invoke()
1720           && required == target->method_handle_type()) {
1721         targetType = target->signature()->as_C_string();
1722       }
1723     }
1724     klassOop kignore; int fignore;
1725     methodOop actual_method = MethodHandles::decode_method(actual,
1726                                                           kignore, fignore);
1727     if (actual_method != NULL) {
1728       if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
1729         mhName = "$";
1730       else
1731         mhName = actual_method->signature()->as_C_string();
1732       if (mhName[0] == '$')
1733         mhName = actual_method->signature()->as_C_string();
1734     }
1735     message = generate_class_cast_message(mhName, targetType,
1736                                           " cannot be called as ");
1737   }
1738   if (TraceMethodHandles) {
1739     tty->print_cr("WrongMethodType => message=%s", message);
1740   }
1741   return message;
1742 }
1743 
1744 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1745                                                             oopDesc* required) {
1746   if (required == NULL)  return NULL;
1747   if (required->klass() == SystemDictionary::Class_klass())
1748     return required;
1749   if (required->is_klass())
1750     return Klass::cast(klassOop(required))->java_mirror();
1751   return NULL;
1752 }
1753 
1754 
1755 char* SharedRuntime::generate_class_cast_message(
1756     const char* objName, const char* targetKlassName, const char* desc) {
1757   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1758 
1759   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1760   if (NULL == message) {
1761     // Shouldn't happen, but don't cause even more problems if it does
1762     message = const_cast<char*>(objName);
1763   } else {
1764     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1765   }
1766   return message;
1767 }
1768 
1769 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1770   (void) JavaThread::current()->reguard_stack();
1771 JRT_END
1772 
1773 
1774 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1775 #ifndef PRODUCT
1776 int SharedRuntime::_monitor_enter_ctr=0;
1777 #endif
1778 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1779   oop obj(_obj);
1780 #ifndef PRODUCT
1781   _monitor_enter_ctr++;             // monitor enter slow
1782 #endif
1783   if (PrintBiasedLockingStatistics) {
1784     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1785   }
1786   Handle h_obj(THREAD, obj);
1787   if (UseBiasedLocking) {
1788     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1789     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1790   } else {
1791     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1792   }
1793   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1794 JRT_END
1795 
1796 #ifndef PRODUCT
1797 int SharedRuntime::_monitor_exit_ctr=0;
1798 #endif
1799 // Handles the uncommon cases of monitor unlocking in compiled code
1800 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1801    oop obj(_obj);
1802 #ifndef PRODUCT
1803   _monitor_exit_ctr++;              // monitor exit slow
1804 #endif
1805   Thread* THREAD = JavaThread::current();
1806   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1807   // testing was unable to ever fire the assert that guarded it so I have removed it.
1808   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1809 #undef MIGHT_HAVE_PENDING
1810 #ifdef MIGHT_HAVE_PENDING
1811   // Save and restore any pending_exception around the exception mark.
1812   // While the slow_exit must not throw an exception, we could come into
1813   // this routine with one set.
1814   oop pending_excep = NULL;
1815   const char* pending_file;
1816   int pending_line;
1817   if (HAS_PENDING_EXCEPTION) {
1818     pending_excep = PENDING_EXCEPTION;
1819     pending_file  = THREAD->exception_file();
1820     pending_line  = THREAD->exception_line();
1821     CLEAR_PENDING_EXCEPTION;
1822   }
1823 #endif /* MIGHT_HAVE_PENDING */
1824 
1825   {
1826     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1827     EXCEPTION_MARK;
1828     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1829   }
1830 
1831 #ifdef MIGHT_HAVE_PENDING
1832   if (pending_excep != NULL) {
1833     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1834   }
1835 #endif /* MIGHT_HAVE_PENDING */
1836 JRT_END
1837 
1838 #ifndef PRODUCT
1839 
1840 void SharedRuntime::print_statistics() {
1841   ttyLocker ttyl;
1842   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1843 
1844   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1845   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1846   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1847 
1848   SharedRuntime::print_ic_miss_histogram();
1849 
1850   if (CountRemovableExceptions) {
1851     if (_nof_removable_exceptions > 0) {
1852       Unimplemented(); // this counter is not yet incremented
1853       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1854     }
1855   }
1856 
1857   // Dump the JRT_ENTRY counters
1858   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1859   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1860   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1861   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1862   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1863   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1864   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1865 
1866   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1867   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1868   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1869   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1870   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1871 
1872   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1873   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1874   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1875   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1876   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1877   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1878   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1879   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1880   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1881   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1882   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1883   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1884   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1885   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1886   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1887   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1888 
1889   AdapterHandlerLibrary::print_statistics();
1890 
1891   if (xtty != NULL)  xtty->tail("statistics");
1892 }
1893 
1894 inline double percent(int x, int y) {
1895   return 100.0 * x / MAX2(y, 1);
1896 }
1897 
1898 class MethodArityHistogram {
1899  public:
1900   enum { MAX_ARITY = 256 };
1901  private:
1902   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1903   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1904   static int _max_arity;                      // max. arity seen
1905   static int _max_size;                       // max. arg size seen
1906 
1907   static void add_method_to_histogram(nmethod* nm) {
1908     methodOop m = nm->method();
1909     ArgumentCount args(m->signature());
1910     int arity   = args.size() + (m->is_static() ? 0 : 1);
1911     int argsize = m->size_of_parameters();
1912     arity   = MIN2(arity, MAX_ARITY-1);
1913     argsize = MIN2(argsize, MAX_ARITY-1);
1914     int count = nm->method()->compiled_invocation_count();
1915     _arity_histogram[arity]  += count;
1916     _size_histogram[argsize] += count;
1917     _max_arity = MAX2(_max_arity, arity);
1918     _max_size  = MAX2(_max_size, argsize);
1919   }
1920 
1921   void print_histogram_helper(int n, int* histo, const char* name) {
1922     const int N = MIN2(5, n);
1923     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1924     double sum = 0;
1925     double weighted_sum = 0;
1926     int i;
1927     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1928     double rest = sum;
1929     double percent = sum / 100;
1930     for (i = 0; i <= N; i++) {
1931       rest -= histo[i];
1932       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1933     }
1934     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1935     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1936   }
1937 
1938   void print_histogram() {
1939     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1940     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1941     tty->print_cr("\nSame for parameter size (in words):");
1942     print_histogram_helper(_max_size, _size_histogram, "size");
1943     tty->cr();
1944   }
1945 
1946  public:
1947   MethodArityHistogram() {
1948     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1949     _max_arity = _max_size = 0;
1950     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
1951     CodeCache::nmethods_do(add_method_to_histogram);
1952     print_histogram();
1953   }
1954 };
1955 
1956 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1957 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1958 int MethodArityHistogram::_max_arity;
1959 int MethodArityHistogram::_max_size;
1960 
1961 void SharedRuntime::print_call_statistics(int comp_total) {
1962   tty->print_cr("Calls from compiled code:");
1963   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1964   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1965   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1966   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1967   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1968   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1969   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1970   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1971   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1972   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1973   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1974   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1975   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1976   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1977   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1978   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1979   tty->cr();
1980   tty->print_cr("Note 1: counter updates are not MT-safe.");
1981   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1982   tty->print_cr("        %% in nested categories are relative to their category");
1983   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1984   tty->cr();
1985 
1986   MethodArityHistogram h;
1987 }
1988 #endif
1989 
1990 
1991 // A simple wrapper class around the calling convention information
1992 // that allows sharing of adapters for the same calling convention.
1993 class AdapterFingerPrint : public CHeapObj {
1994  private:
1995   union {
1996     int  _compact[3];
1997     int* _fingerprint;
1998   } _value;
1999   int _length; // A negative length indicates the fingerprint is in the compact form,
2000                // Otherwise _value._fingerprint is the array.
2001 
2002   // Remap BasicTypes that are handled equivalently by the adapters.
2003   // These are correct for the current system but someday it might be
2004   // necessary to make this mapping platform dependent.
2005   static BasicType adapter_encoding(BasicType in) {
2006     assert((~0xf & in) == 0, "must fit in 4 bits");
2007     switch(in) {
2008       case T_BOOLEAN:
2009       case T_BYTE:
2010       case T_SHORT:
2011       case T_CHAR:
2012         // There are all promoted to T_INT in the calling convention
2013         return T_INT;
2014 
2015       case T_OBJECT:
2016       case T_ARRAY:
2017 #ifdef _LP64
2018         return T_LONG;
2019 #else
2020         return T_INT;
2021 #endif
2022 
2023       case T_INT:
2024       case T_LONG:
2025       case T_FLOAT:
2026       case T_DOUBLE:
2027       case T_VOID:
2028         return in;
2029 
2030       default:
2031         ShouldNotReachHere();
2032         return T_CONFLICT;
2033     }
2034   }
2035 
2036  public:
2037   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2038     // The fingerprint is based on the BasicType signature encoded
2039     // into an array of ints with four entries per int.
2040     int* ptr;
2041     int len = (total_args_passed + 3) >> 2;
2042     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2043       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2044       // Storing the signature encoded as signed chars hits about 98%
2045       // of the time.
2046       _length = -len;
2047       ptr = _value._compact;
2048     } else {
2049       _length = len;
2050       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2051       ptr = _value._fingerprint;
2052     }
2053 
2054     // Now pack the BasicTypes with 4 per int
2055     int sig_index = 0;
2056     for (int index = 0; index < len; index++) {
2057       int value = 0;
2058       for (int byte = 0; byte < 4; byte++) {
2059         if (sig_index < total_args_passed) {
2060           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2061         }
2062       }
2063       ptr[index] = value;
2064     }
2065   }
2066 
2067   ~AdapterFingerPrint() {
2068     if (_length > 0) {
2069       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2070     }
2071   }
2072 
2073   int value(int index) {
2074     if (_length < 0) {
2075       return _value._compact[index];
2076     }
2077     return _value._fingerprint[index];
2078   }
2079   int length() {
2080     if (_length < 0) return -_length;
2081     return _length;
2082   }
2083 
2084   bool is_compact() {
2085     return _length <= 0;
2086   }
2087 
2088   unsigned int compute_hash() {
2089     int hash = 0;
2090     for (int i = 0; i < length(); i++) {
2091       int v = value(i);
2092       hash = (hash << 8) ^ v ^ (hash >> 5);
2093     }
2094     return (unsigned int)hash;
2095   }
2096 
2097   const char* as_string() {
2098     stringStream st;
2099     for (int i = 0; i < length(); i++) {
2100       st.print(PTR_FORMAT, value(i));
2101     }
2102     return st.as_string();
2103   }
2104 
2105   bool equals(AdapterFingerPrint* other) {
2106     if (other->_length != _length) {
2107       return false;
2108     }
2109     if (_length < 0) {
2110       return _value._compact[0] == other->_value._compact[0] &&
2111              _value._compact[1] == other->_value._compact[1] &&
2112              _value._compact[2] == other->_value._compact[2];
2113     } else {
2114       for (int i = 0; i < _length; i++) {
2115         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2116           return false;
2117         }
2118       }
2119     }
2120     return true;
2121   }
2122 };
2123 
2124 
2125 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2126 class AdapterHandlerTable : public BasicHashtable {
2127   friend class AdapterHandlerTableIterator;
2128 
2129  private:
2130 
2131 #ifndef PRODUCT
2132   static int _lookups; // number of calls to lookup
2133   static int _buckets; // number of buckets checked
2134   static int _equals;  // number of buckets checked with matching hash
2135   static int _hits;    // number of successful lookups
2136   static int _compact; // number of equals calls with compact signature
2137 #endif
2138 
2139   AdapterHandlerEntry* bucket(int i) {
2140     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2141   }
2142 
2143  public:
2144   AdapterHandlerTable()
2145     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2146 
2147   // Create a new entry suitable for insertion in the table
2148   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2149     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2150     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2151     return entry;
2152   }
2153 
2154   // Insert an entry into the table
2155   void add(AdapterHandlerEntry* entry) {
2156     int index = hash_to_index(entry->hash());
2157     add_entry(index, entry);
2158   }
2159 
2160   void free_entry(AdapterHandlerEntry* entry) {
2161     entry->deallocate();
2162     BasicHashtable::free_entry(entry);
2163   }
2164 
2165   // Find a entry with the same fingerprint if it exists
2166   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2167     NOT_PRODUCT(_lookups++);
2168     AdapterFingerPrint fp(total_args_passed, sig_bt);
2169     unsigned int hash = fp.compute_hash();
2170     int index = hash_to_index(hash);
2171     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2172       NOT_PRODUCT(_buckets++);
2173       if (e->hash() == hash) {
2174         NOT_PRODUCT(_equals++);
2175         if (fp.equals(e->fingerprint())) {
2176 #ifndef PRODUCT
2177           if (fp.is_compact()) _compact++;
2178           _hits++;
2179 #endif
2180           return e;
2181         }
2182       }
2183     }
2184     return NULL;
2185   }
2186 
2187 #ifndef PRODUCT
2188   void print_statistics() {
2189     ResourceMark rm;
2190     int longest = 0;
2191     int empty = 0;
2192     int total = 0;
2193     int nonempty = 0;
2194     for (int index = 0; index < table_size(); index++) {
2195       int count = 0;
2196       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2197         count++;
2198       }
2199       if (count != 0) nonempty++;
2200       if (count == 0) empty++;
2201       if (count > longest) longest = count;
2202       total += count;
2203     }
2204     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2205                   empty, longest, total, total / (double)nonempty);
2206     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2207                   _lookups, _buckets, _equals, _hits, _compact);
2208   }
2209 #endif
2210 };
2211 
2212 
2213 #ifndef PRODUCT
2214 
2215 int AdapterHandlerTable::_lookups;
2216 int AdapterHandlerTable::_buckets;
2217 int AdapterHandlerTable::_equals;
2218 int AdapterHandlerTable::_hits;
2219 int AdapterHandlerTable::_compact;
2220 
2221 #endif
2222 
2223 class AdapterHandlerTableIterator : public StackObj {
2224  private:
2225   AdapterHandlerTable* _table;
2226   int _index;
2227   AdapterHandlerEntry* _current;
2228 
2229   void scan() {
2230     while (_index < _table->table_size()) {
2231       AdapterHandlerEntry* a = _table->bucket(_index);
2232       _index++;
2233       if (a != NULL) {
2234         _current = a;
2235         return;
2236       }
2237     }
2238   }
2239 
2240  public:
2241   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2242     scan();
2243   }
2244   bool has_next() {
2245     return _current != NULL;
2246   }
2247   AdapterHandlerEntry* next() {
2248     if (_current != NULL) {
2249       AdapterHandlerEntry* result = _current;
2250       _current = _current->next();
2251       if (_current == NULL) scan();
2252       return result;
2253     } else {
2254       return NULL;
2255     }
2256   }
2257 };
2258 
2259 
2260 // ---------------------------------------------------------------------------
2261 // Implementation of AdapterHandlerLibrary
2262 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2263 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2264 const int AdapterHandlerLibrary_size = 16*K;
2265 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2266 
2267 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2268   // Should be called only when AdapterHandlerLibrary_lock is active.
2269   if (_buffer == NULL) // Initialize lazily
2270       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2271   return _buffer;
2272 }
2273 
2274 void AdapterHandlerLibrary::initialize() {
2275   if (_adapters != NULL) return;
2276   _adapters = new AdapterHandlerTable();
2277 
2278   // Create a special handler for abstract methods.  Abstract methods
2279   // are never compiled so an i2c entry is somewhat meaningless, but
2280   // fill it in with something appropriate just in case.  Pass handle
2281   // wrong method for the c2i transitions.
2282   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2283   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2284                                                               StubRoutines::throw_AbstractMethodError_entry(),
2285                                                               wrong_method, wrong_method);
2286 }
2287 
2288 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2289                                                       address i2c_entry,
2290                                                       address c2i_entry,
2291                                                       address c2i_unverified_entry) {
2292   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2293 }
2294 
2295 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2296   // Use customized signature handler.  Need to lock around updates to
2297   // the AdapterHandlerTable (it is not safe for concurrent readers
2298   // and a single writer: this could be fixed if it becomes a
2299   // problem).
2300 
2301   // Get the address of the ic_miss handlers before we grab the
2302   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2303   // was caused by the initialization of the stubs happening
2304   // while we held the lock and then notifying jvmti while
2305   // holding it. This just forces the initialization to be a little
2306   // earlier.
2307   address ic_miss = SharedRuntime::get_ic_miss_stub();
2308   assert(ic_miss != NULL, "must have handler");
2309 
2310   ResourceMark rm;
2311 
2312   NOT_PRODUCT(int insts_size);
2313   AdapterBlob* B = NULL;
2314   AdapterHandlerEntry* entry = NULL;
2315   AdapterFingerPrint* fingerprint = NULL;
2316   {
2317     MutexLocker mu(AdapterHandlerLibrary_lock);
2318     // make sure data structure is initialized
2319     initialize();
2320 
2321     if (method->is_abstract()) {
2322       return _abstract_method_handler;
2323     }
2324 
2325     // Fill in the signature array, for the calling-convention call.
2326     int total_args_passed = method->size_of_parameters(); // All args on stack
2327 
2328     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2329     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2330     int i = 0;
2331     if (!method->is_static())  // Pass in receiver first
2332       sig_bt[i++] = T_OBJECT;
2333     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2334       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2335       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2336         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2337     }
2338     assert(i == total_args_passed, "");
2339 
2340     // Lookup method signature's fingerprint
2341     entry = _adapters->lookup(total_args_passed, sig_bt);
2342 
2343 #ifdef ASSERT
2344     AdapterHandlerEntry* shared_entry = NULL;
2345     if (VerifyAdapterSharing && entry != NULL) {
2346       shared_entry = entry;
2347       entry = NULL;
2348     }
2349 #endif
2350 
2351     if (entry != NULL) {
2352       return entry;
2353     }
2354 
2355     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2356     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2357 
2358     // Make a C heap allocated version of the fingerprint to store in the adapter
2359     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2360 
2361     // Create I2C & C2I handlers
2362 
2363     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2364     if (buf != NULL) {
2365       CodeBuffer buffer(buf);
2366       short buffer_locs[20];
2367       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2368                                              sizeof(buffer_locs)/sizeof(relocInfo));
2369       MacroAssembler _masm(&buffer);
2370 
2371       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2372                                                      total_args_passed,
2373                                                      comp_args_on_stack,
2374                                                      sig_bt,
2375                                                      regs,
2376                                                      fingerprint);
2377 
2378 #ifdef ASSERT
2379       if (VerifyAdapterSharing) {
2380         if (shared_entry != NULL) {
2381           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2382                  "code must match");
2383           // Release the one just created and return the original
2384           _adapters->free_entry(entry);
2385           return shared_entry;
2386         } else  {
2387           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2388         }
2389       }
2390 #endif
2391 
2392       B = AdapterBlob::create(&buffer);
2393       NOT_PRODUCT(insts_size = buffer.insts_size());
2394     }
2395     if (B == NULL) {
2396       // CodeCache is full, disable compilation
2397       // Ought to log this but compile log is only per compile thread
2398       // and we're some non descript Java thread.
2399       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2400       CompileBroker::handle_full_code_cache();
2401       return NULL; // Out of CodeCache space
2402     }
2403     entry->relocate(B->content_begin());
2404 #ifndef PRODUCT
2405     // debugging suppport
2406     if (PrintAdapterHandlers) {
2407       tty->cr();
2408       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2409                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2410                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2411       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2412       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2413     }
2414 #endif
2415 
2416     _adapters->add(entry);
2417   }
2418   // Outside of the lock
2419   if (B != NULL) {
2420     char blob_id[256];
2421     jio_snprintf(blob_id,
2422                  sizeof(blob_id),
2423                  "%s(%s)@" PTR_FORMAT,
2424                  B->name(),
2425                  fingerprint->as_string(),
2426                  B->content_begin());
2427     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2428 
2429     if (JvmtiExport::should_post_dynamic_code_generated()) {
2430       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2431     }
2432   }
2433   return entry;
2434 }
2435 
2436 void AdapterHandlerEntry::relocate(address new_base) {
2437     ptrdiff_t delta = new_base - _i2c_entry;
2438     _i2c_entry += delta;
2439     _c2i_entry += delta;
2440     _c2i_unverified_entry += delta;
2441 }
2442 
2443 
2444 void AdapterHandlerEntry::deallocate() {
2445   delete _fingerprint;
2446 #ifdef ASSERT
2447   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2448   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2449 #endif
2450 }
2451 
2452 
2453 #ifdef ASSERT
2454 // Capture the code before relocation so that it can be compared
2455 // against other versions.  If the code is captured after relocation
2456 // then relative instructions won't be equivalent.
2457 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2458   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2459   _code_length = length;
2460   memcpy(_saved_code, buffer, length);
2461   _total_args_passed = total_args_passed;
2462   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2463   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2464 }
2465 
2466 
2467 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2468   if (length != _code_length) {
2469     return false;
2470   }
2471   for (int i = 0; i < length; i++) {
2472     if (buffer[i] != _saved_code[i]) {
2473       return false;
2474     }
2475   }
2476   return true;
2477 }
2478 #endif
2479 
2480 
2481 // Create a native wrapper for this native method.  The wrapper converts the
2482 // java compiled calling convention to the native convention, handlizes
2483 // arguments, and transitions to native.  On return from the native we transition
2484 // back to java blocking if a safepoint is in progress.
2485 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2486   ResourceMark rm;
2487   nmethod* nm = NULL;
2488 
2489   if (PrintCompilation) {
2490     ttyLocker ttyl;
2491     tty->print("---   n%s ", (method->is_synchronized() ? "s" : " "));
2492     method->print_short_name(tty);
2493     if (method->is_static()) {
2494       tty->print(" (static)");
2495     }
2496     tty->cr();
2497   }
2498 
2499   assert(method->has_native_function(), "must have something valid to call!");
2500 
2501   {
2502     // perform the work while holding the lock, but perform any printing outside the lock
2503     MutexLocker mu(AdapterHandlerLibrary_lock);
2504     // See if somebody beat us to it
2505     nm = method->code();
2506     if (nm) {
2507       return nm;
2508     }
2509 
2510     ResourceMark rm;
2511 
2512     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2513     if (buf != NULL) {
2514       CodeBuffer buffer(buf);
2515       double locs_buf[20];
2516       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2517       MacroAssembler _masm(&buffer);
2518 
2519       // Fill in the signature array, for the calling-convention call.
2520       int total_args_passed = method->size_of_parameters();
2521 
2522       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2523       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2524       int i=0;
2525       if( !method->is_static() )  // Pass in receiver first
2526         sig_bt[i++] = T_OBJECT;
2527       SignatureStream ss(method->signature());
2528       for( ; !ss.at_return_type(); ss.next()) {
2529         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2530         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2531           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2532       }
2533       assert( i==total_args_passed, "" );
2534       BasicType ret_type = ss.type();
2535 
2536       // Now get the compiled-Java layout as input arguments
2537       int comp_args_on_stack;
2538       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2539 
2540       // Generate the compiled-to-native wrapper code
2541       nm = SharedRuntime::generate_native_wrapper(&_masm,
2542                                                   method,
2543                                                   total_args_passed,
2544                                                   comp_args_on_stack,
2545                                                   sig_bt,regs,
2546                                                   ret_type);
2547     }
2548   }
2549 
2550   // Must unlock before calling set_code
2551 
2552   // Install the generated code.
2553   if (nm != NULL) {
2554     method->set_code(method, nm);
2555     nm->post_compiled_method_load_event();
2556   } else {
2557     // CodeCache is full, disable compilation
2558     CompileBroker::handle_full_code_cache();
2559   }
2560   return nm;
2561 }
2562 
2563 #ifdef HAVE_DTRACE_H
2564 // Create a dtrace nmethod for this method.  The wrapper converts the
2565 // java compiled calling convention to the native convention, makes a dummy call
2566 // (actually nops for the size of the call instruction, which become a trap if
2567 // probe is enabled). The returns to the caller. Since this all looks like a
2568 // leaf no thread transition is needed.
2569 
2570 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2571   ResourceMark rm;
2572   nmethod* nm = NULL;
2573 
2574   if (PrintCompilation) {
2575     ttyLocker ttyl;
2576     tty->print("---   n%s  ");
2577     method->print_short_name(tty);
2578     if (method->is_static()) {
2579       tty->print(" (static)");
2580     }
2581     tty->cr();
2582   }
2583 
2584   {
2585     // perform the work while holding the lock, but perform any printing
2586     // outside the lock
2587     MutexLocker mu(AdapterHandlerLibrary_lock);
2588     // See if somebody beat us to it
2589     nm = method->code();
2590     if (nm) {
2591       return nm;
2592     }
2593 
2594     ResourceMark rm;
2595 
2596     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2597     if (buf != NULL) {
2598       CodeBuffer buffer(buf);
2599       // Need a few relocation entries
2600       double locs_buf[20];
2601       buffer.insts()->initialize_shared_locs(
2602         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2603       MacroAssembler _masm(&buffer);
2604 
2605       // Generate the compiled-to-native wrapper code
2606       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2607     }
2608   }
2609   return nm;
2610 }
2611 
2612 // the dtrace method needs to convert java lang string to utf8 string.
2613 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2614   typeArrayOop jlsValue  = java_lang_String::value(src);
2615   int          jlsOffset = java_lang_String::offset(src);
2616   int          jlsLen    = java_lang_String::length(src);
2617   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2618                                            jlsValue->char_at_addr(jlsOffset);
2619   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2620 }
2621 #endif // ndef HAVE_DTRACE_H
2622 
2623 // -------------------------------------------------------------------------
2624 // Java-Java calling convention
2625 // (what you use when Java calls Java)
2626 
2627 //------------------------------name_for_receiver----------------------------------
2628 // For a given signature, return the VMReg for parameter 0.
2629 VMReg SharedRuntime::name_for_receiver() {
2630   VMRegPair regs;
2631   BasicType sig_bt = T_OBJECT;
2632   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2633   // Return argument 0 register.  In the LP64 build pointers
2634   // take 2 registers, but the VM wants only the 'main' name.
2635   return regs.first();
2636 }
2637 
2638 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
2639   // This method is returning a data structure allocating as a
2640   // ResourceObject, so do not put any ResourceMarks in here.
2641   char *s = sig->as_C_string();
2642   int len = (int)strlen(s);
2643   *s++; len--;                  // Skip opening paren
2644   char *t = s+len;
2645   while( *(--t) != ')' ) ;      // Find close paren
2646 
2647   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2648   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2649   int cnt = 0;
2650   if (has_receiver) {
2651     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2652   }
2653 
2654   while( s < t ) {
2655     switch( *s++ ) {            // Switch on signature character
2656     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2657     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2658     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2659     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2660     case 'I': sig_bt[cnt++] = T_INT;     break;
2661     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2662     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2663     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2664     case 'V': sig_bt[cnt++] = T_VOID;    break;
2665     case 'L':                   // Oop
2666       while( *s++ != ';'  ) ;   // Skip signature
2667       sig_bt[cnt++] = T_OBJECT;
2668       break;
2669     case '[': {                 // Array
2670       do {                      // Skip optional size
2671         while( *s >= '0' && *s <= '9' ) s++;
2672       } while( *s++ == '[' );   // Nested arrays?
2673       // Skip element type
2674       if( s[-1] == 'L' )
2675         while( *s++ != ';'  ) ; // Skip signature
2676       sig_bt[cnt++] = T_ARRAY;
2677       break;
2678     }
2679     default : ShouldNotReachHere();
2680     }
2681   }
2682   assert( cnt < 256, "grow table size" );
2683 
2684   int comp_args_on_stack;
2685   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2686 
2687   // the calling convention doesn't count out_preserve_stack_slots so
2688   // we must add that in to get "true" stack offsets.
2689 
2690   if (comp_args_on_stack) {
2691     for (int i = 0; i < cnt; i++) {
2692       VMReg reg1 = regs[i].first();
2693       if( reg1->is_stack()) {
2694         // Yuck
2695         reg1 = reg1->bias(out_preserve_stack_slots());
2696       }
2697       VMReg reg2 = regs[i].second();
2698       if( reg2->is_stack()) {
2699         // Yuck
2700         reg2 = reg2->bias(out_preserve_stack_slots());
2701       }
2702       regs[i].set_pair(reg2, reg1);
2703     }
2704   }
2705 
2706   // results
2707   *arg_size = cnt;
2708   return regs;
2709 }
2710 
2711 // OSR Migration Code
2712 //
2713 // This code is used convert interpreter frames into compiled frames.  It is
2714 // called from very start of a compiled OSR nmethod.  A temp array is
2715 // allocated to hold the interesting bits of the interpreter frame.  All
2716 // active locks are inflated to allow them to move.  The displaced headers and
2717 // active interpeter locals are copied into the temp buffer.  Then we return
2718 // back to the compiled code.  The compiled code then pops the current
2719 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2720 // copies the interpreter locals and displaced headers where it wants.
2721 // Finally it calls back to free the temp buffer.
2722 //
2723 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2724 
2725 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2726 
2727 #ifdef IA64
2728   ShouldNotReachHere(); // NYI
2729 #endif /* IA64 */
2730 
2731   //
2732   // This code is dependent on the memory layout of the interpreter local
2733   // array and the monitors. On all of our platforms the layout is identical
2734   // so this code is shared. If some platform lays the their arrays out
2735   // differently then this code could move to platform specific code or
2736   // the code here could be modified to copy items one at a time using
2737   // frame accessor methods and be platform independent.
2738 
2739   frame fr = thread->last_frame();
2740   assert( fr.is_interpreted_frame(), "" );
2741   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2742 
2743   // Figure out how many monitors are active.
2744   int active_monitor_count = 0;
2745   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2746        kptr < fr.interpreter_frame_monitor_begin();
2747        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2748     if( kptr->obj() != NULL ) active_monitor_count++;
2749   }
2750 
2751   // QQQ we could place number of active monitors in the array so that compiled code
2752   // could double check it.
2753 
2754   methodOop moop = fr.interpreter_frame_method();
2755   int max_locals = moop->max_locals();
2756   // Allocate temp buffer, 1 word per local & 2 per active monitor
2757   int buf_size_words = max_locals + active_monitor_count*2;
2758   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2759 
2760   // Copy the locals.  Order is preserved so that loading of longs works.
2761   // Since there's no GC I can copy the oops blindly.
2762   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2763   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2764                        (HeapWord*)&buf[0],
2765                        max_locals);
2766 
2767   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2768   int i = max_locals;
2769   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2770        kptr2 < fr.interpreter_frame_monitor_begin();
2771        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2772     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2773       BasicLock *lock = kptr2->lock();
2774       // Inflate so the displaced header becomes position-independent
2775       if (lock->displaced_header()->is_unlocked())
2776         ObjectSynchronizer::inflate_helper(kptr2->obj());
2777       // Now the displaced header is free to move
2778       buf[i++] = (intptr_t)lock->displaced_header();
2779       buf[i++] = (intptr_t)kptr2->obj();
2780     }
2781   }
2782   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2783 
2784   return buf;
2785 JRT_END
2786 
2787 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2788   FREE_C_HEAP_ARRAY(intptr_t,buf);
2789 JRT_END
2790 
2791 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2792   AdapterHandlerTableIterator iter(_adapters);
2793   while (iter.has_next()) {
2794     AdapterHandlerEntry* a = iter.next();
2795     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2796   }
2797   return false;
2798 }
2799 
2800 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2801   AdapterHandlerTableIterator iter(_adapters);
2802   while (iter.has_next()) {
2803     AdapterHandlerEntry* a = iter.next();
2804     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2805       st->print("Adapter for signature: ");
2806       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2807                    a->fingerprint()->as_string(),
2808                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2809 
2810       return;
2811     }
2812   }
2813   assert(false, "Should have found handler");
2814 }
2815 
2816 #ifndef PRODUCT
2817 
2818 void AdapterHandlerLibrary::print_statistics() {
2819   _adapters->print_statistics();
2820 }
2821 
2822 #endif /* PRODUCT */