1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142   omInUseList = NULL ;
 143   omInUseCount = 0 ;
 144 
 145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 146   _suspend_flags = 0;
 147 
 148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 149   _hashStateX = os::random() ;
 150   _hashStateY = 842502087 ;
 151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 152   _hashStateW = 273326509 ;
 153 
 154   _OnTrap   = 0 ;
 155   _schedctl = NULL ;
 156   _Stalled  = 0 ;
 157   _TypeTag  = 0x2BAD ;
 158 
 159   // Many of the following fields are effectively final - immutable
 160   // Note that nascent threads can't use the Native Monitor-Mutex
 161   // construct until the _MutexEvent is initialized ...
 162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 163   // we might instead use a stack of ParkEvents that we could provision on-demand.
 164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 165   // and ::Release()
 166   _ParkEvent   = ParkEvent::Allocate (this) ;
 167   _SleepEvent  = ParkEvent::Allocate (this) ;
 168   _MutexEvent  = ParkEvent::Allocate (this) ;
 169   _MuxEvent    = ParkEvent::Allocate (this) ;
 170 
 171 #ifdef CHECK_UNHANDLED_OOPS
 172   if (CheckUnhandledOops) {
 173     _unhandled_oops = new UnhandledOops(this);
 174   }
 175 #endif // CHECK_UNHANDLED_OOPS
 176 #ifdef ASSERT
 177   if (UseBiasedLocking) {
 178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 179     assert(this == _real_malloc_address ||
 180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 181            "bug in forced alignment of thread objects");
 182   }
 183 #endif /* ASSERT */
 184 }
 185 
 186 void Thread::initialize_thread_local_storage() {
 187   // Note: Make sure this method only calls
 188   // non-blocking operations. Otherwise, it might not work
 189   // with the thread-startup/safepoint interaction.
 190 
 191   // During Java thread startup, safepoint code should allow this
 192   // method to complete because it may need to allocate memory to
 193   // store information for the new thread.
 194 
 195   // initialize structure dependent on thread local storage
 196   ThreadLocalStorage::set_thread(this);
 197 
 198   // set up any platform-specific state.
 199   os::initialize_thread();
 200 
 201 }
 202 
 203 void Thread::record_stack_base_and_size() {
 204   set_stack_base(os::current_stack_base());
 205   set_stack_size(os::current_stack_size());
 206 }
 207 
 208 
 209 Thread::~Thread() {
 210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 211   ObjectSynchronizer::omFlush (this) ;
 212 
 213   // deallocate data structures
 214   delete resource_area();
 215   // since the handle marks are using the handle area, we have to deallocated the root
 216   // handle mark before deallocating the thread's handle area,
 217   assert(last_handle_mark() != NULL, "check we have an element");
 218   delete last_handle_mark();
 219   assert(last_handle_mark() == NULL, "check we have reached the end");
 220 
 221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 222   // We NULL out the fields for good hygiene.
 223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 227 
 228   delete handle_area();
 229 
 230   // osthread() can be NULL, if creation of thread failed.
 231   if (osthread() != NULL) os::free_thread(osthread());
 232 
 233   delete _SR_lock;
 234 
 235   // clear thread local storage if the Thread is deleting itself
 236   if (this == Thread::current()) {
 237     ThreadLocalStorage::set_thread(NULL);
 238   } else {
 239     // In the case where we're not the current thread, invalidate all the
 240     // caches in case some code tries to get the current thread or the
 241     // thread that was destroyed, and gets stale information.
 242     ThreadLocalStorage::invalidate_all();
 243   }
 244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 245 }
 246 
 247 // NOTE: dummy function for assertion purpose.
 248 void Thread::run() {
 249   ShouldNotReachHere();
 250 }
 251 
 252 #ifdef ASSERT
 253 // Private method to check for dangling thread pointer
 254 void check_for_dangling_thread_pointer(Thread *thread) {
 255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 256          "possibility of dangling Thread pointer");
 257 }
 258 #endif
 259 
 260 
 261 #ifndef PRODUCT
 262 // Tracing method for basic thread operations
 263 void Thread::trace(const char* msg, const Thread* const thread) {
 264   if (!TraceThreadEvents) return;
 265   ResourceMark rm;
 266   ThreadCritical tc;
 267   const char *name = "non-Java thread";
 268   int prio = -1;
 269   if (thread->is_Java_thread()
 270       && !thread->is_Compiler_thread()) {
 271     // The Threads_lock must be held to get information about
 272     // this thread but may not be in some situations when
 273     // tracing  thread events.
 274     bool release_Threads_lock = false;
 275     if (!Threads_lock->owned_by_self()) {
 276       Threads_lock->lock();
 277       release_Threads_lock = true;
 278     }
 279     JavaThread* jt = (JavaThread *)thread;
 280     name = (char *)jt->get_thread_name();
 281     oop thread_oop = jt->threadObj();
 282     if (thread_oop != NULL) {
 283       prio = java_lang_Thread::priority(thread_oop);
 284     }
 285     if (release_Threads_lock) {
 286       Threads_lock->unlock();
 287     }
 288   }
 289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 290 }
 291 #endif
 292 
 293 
 294 ThreadPriority Thread::get_priority(const Thread* const thread) {
 295   trace("get priority", thread);
 296   ThreadPriority priority;
 297   // Can return an error!
 298   (void)os::get_priority(thread, priority);
 299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 300   return priority;
 301 }
 302 
 303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 304   trace("set priority", thread);
 305   debug_only(check_for_dangling_thread_pointer(thread);)
 306   // Can return an error!
 307   (void)os::set_priority(thread, priority);
 308 }
 309 
 310 
 311 void Thread::start(Thread* thread) {
 312   trace("start", thread);
 313   // Start is different from resume in that its safety is guaranteed by context or
 314   // being called from a Java method synchronized on the Thread object.
 315   if (!DisableStartThread) {
 316     if (thread->is_Java_thread()) {
 317       // Initialize the thread state to RUNNABLE before starting this thread.
 318       // Can not set it after the thread started because we do not know the
 319       // exact thread state at that time. It could be in MONITOR_WAIT or
 320       // in SLEEPING or some other state.
 321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 322                                           java_lang_Thread::RUNNABLE);
 323     }
 324     os::start_thread(thread);
 325   }
 326 }
 327 
 328 // Enqueue a VM_Operation to do the job for us - sometime later
 329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 331   VMThread::execute(vm_stop);
 332 }
 333 
 334 
 335 //
 336 // Check if an external suspend request has completed (or has been
 337 // cancelled). Returns true if the thread is externally suspended and
 338 // false otherwise.
 339 //
 340 // The bits parameter returns information about the code path through
 341 // the routine. Useful for debugging:
 342 //
 343 // set in is_ext_suspend_completed():
 344 // 0x00000001 - routine was entered
 345 // 0x00000010 - routine return false at end
 346 // 0x00000100 - thread exited (return false)
 347 // 0x00000200 - suspend request cancelled (return false)
 348 // 0x00000400 - thread suspended (return true)
 349 // 0x00001000 - thread is in a suspend equivalent state (return true)
 350 // 0x00002000 - thread is native and walkable (return true)
 351 // 0x00004000 - thread is native_trans and walkable (needed retry)
 352 //
 353 // set in wait_for_ext_suspend_completion():
 354 // 0x00010000 - routine was entered
 355 // 0x00020000 - suspend request cancelled before loop (return false)
 356 // 0x00040000 - thread suspended before loop (return true)
 357 // 0x00080000 - suspend request cancelled in loop (return false)
 358 // 0x00100000 - thread suspended in loop (return true)
 359 // 0x00200000 - suspend not completed during retry loop (return false)
 360 //
 361 
 362 // Helper class for tracing suspend wait debug bits.
 363 //
 364 // 0x00000100 indicates that the target thread exited before it could
 365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 366 // 0x00080000 each indicate a cancelled suspend request so they don't
 367 // count as wait failures either.
 368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 369 
 370 class TraceSuspendDebugBits : public StackObj {
 371  private:
 372   JavaThread * jt;
 373   bool         is_wait;
 374   bool         called_by_wait;  // meaningful when !is_wait
 375   uint32_t *   bits;
 376 
 377  public:
 378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 379                         uint32_t *_bits) {
 380     jt             = _jt;
 381     is_wait        = _is_wait;
 382     called_by_wait = _called_by_wait;
 383     bits           = _bits;
 384   }
 385 
 386   ~TraceSuspendDebugBits() {
 387     if (!is_wait) {
 388 #if 1
 389       // By default, don't trace bits for is_ext_suspend_completed() calls.
 390       // That trace is very chatty.
 391       return;
 392 #else
 393       if (!called_by_wait) {
 394         // If tracing for is_ext_suspend_completed() is enabled, then only
 395         // trace calls to it from wait_for_ext_suspend_completion()
 396         return;
 397       }
 398 #endif
 399     }
 400 
 401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 404         ResourceMark rm;
 405 
 406         tty->print_cr(
 407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 408             jt->get_thread_name(), *bits);
 409 
 410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 411       }
 412     }
 413   }
 414 };
 415 #undef DEBUG_FALSE_BITS
 416 
 417 
 418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 420 
 421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 422   bool do_trans_retry;           // flag to force the retry
 423 
 424   *bits |= 0x00000001;
 425 
 426   do {
 427     do_trans_retry = false;
 428 
 429     if (is_exiting()) {
 430       // Thread is in the process of exiting. This is always checked
 431       // first to reduce the risk of dereferencing a freed JavaThread.
 432       *bits |= 0x00000100;
 433       return false;
 434     }
 435 
 436     if (!is_external_suspend()) {
 437       // Suspend request is cancelled. This is always checked before
 438       // is_ext_suspended() to reduce the risk of a rogue resume
 439       // confusing the thread that made the suspend request.
 440       *bits |= 0x00000200;
 441       return false;
 442     }
 443 
 444     if (is_ext_suspended()) {
 445       // thread is suspended
 446       *bits |= 0x00000400;
 447       return true;
 448     }
 449 
 450     // Now that we no longer do hard suspends of threads running
 451     // native code, the target thread can be changing thread state
 452     // while we are in this routine:
 453     //
 454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 455     //
 456     // We save a copy of the thread state as observed at this moment
 457     // and make our decision about suspend completeness based on the
 458     // copy. This closes the race where the thread state is seen as
 459     // _thread_in_native_trans in the if-thread_blocked check, but is
 460     // seen as _thread_blocked in if-thread_in_native_trans check.
 461     JavaThreadState save_state = thread_state();
 462 
 463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 464       // If the thread's state is _thread_blocked and this blocking
 465       // condition is known to be equivalent to a suspend, then we can
 466       // consider the thread to be externally suspended. This means that
 467       // the code that sets _thread_blocked has been modified to do
 468       // self-suspension if the blocking condition releases. We also
 469       // used to check for CONDVAR_WAIT here, but that is now covered by
 470       // the _thread_blocked with self-suspension check.
 471       //
 472       // Return true since we wouldn't be here unless there was still an
 473       // external suspend request.
 474       *bits |= 0x00001000;
 475       return true;
 476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 477       // Threads running native code will self-suspend on native==>VM/Java
 478       // transitions. If its stack is walkable (should always be the case
 479       // unless this function is called before the actual java_suspend()
 480       // call), then the wait is done.
 481       *bits |= 0x00002000;
 482       return true;
 483     } else if (!called_by_wait && !did_trans_retry &&
 484                save_state == _thread_in_native_trans &&
 485                frame_anchor()->walkable()) {
 486       // The thread is transitioning from thread_in_native to another
 487       // thread state. check_safepoint_and_suspend_for_native_trans()
 488       // will force the thread to self-suspend. If it hasn't gotten
 489       // there yet we may have caught the thread in-between the native
 490       // code check above and the self-suspend. Lucky us. If we were
 491       // called by wait_for_ext_suspend_completion(), then it
 492       // will be doing the retries so we don't have to.
 493       //
 494       // Since we use the saved thread state in the if-statement above,
 495       // there is a chance that the thread has already transitioned to
 496       // _thread_blocked by the time we get here. In that case, we will
 497       // make a single unnecessary pass through the logic below. This
 498       // doesn't hurt anything since we still do the trans retry.
 499 
 500       *bits |= 0x00004000;
 501 
 502       // Once the thread leaves thread_in_native_trans for another
 503       // thread state, we break out of this retry loop. We shouldn't
 504       // need this flag to prevent us from getting back here, but
 505       // sometimes paranoia is good.
 506       did_trans_retry = true;
 507 
 508       // We wait for the thread to transition to a more usable state.
 509       for (int i = 1; i <= SuspendRetryCount; i++) {
 510         // We used to do an "os::yield_all(i)" call here with the intention
 511         // that yielding would increase on each retry. However, the parameter
 512         // is ignored on Linux which means the yield didn't scale up. Waiting
 513         // on the SR_lock below provides a much more predictable scale up for
 514         // the delay. It also provides a simple/direct point to check for any
 515         // safepoint requests from the VMThread
 516 
 517         // temporarily drops SR_lock while doing wait with safepoint check
 518         // (if we're a JavaThread - the WatcherThread can also call this)
 519         // and increase delay with each retry
 520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 521 
 522         // check the actual thread state instead of what we saved above
 523         if (thread_state() != _thread_in_native_trans) {
 524           // the thread has transitioned to another thread state so
 525           // try all the checks (except this one) one more time.
 526           do_trans_retry = true;
 527           break;
 528         }
 529       } // end retry loop
 530 
 531 
 532     }
 533   } while (do_trans_retry);
 534 
 535   *bits |= 0x00000010;
 536   return false;
 537 }
 538 
 539 //
 540 // Wait for an external suspend request to complete (or be cancelled).
 541 // Returns true if the thread is externally suspended and false otherwise.
 542 //
 543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 544        uint32_t *bits) {
 545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 546                              false /* !called_by_wait */, bits);
 547 
 548   // local flag copies to minimize SR_lock hold time
 549   bool is_suspended;
 550   bool pending;
 551   uint32_t reset_bits;
 552 
 553   // set a marker so is_ext_suspend_completed() knows we are the caller
 554   *bits |= 0x00010000;
 555 
 556   // We use reset_bits to reinitialize the bits value at the top of
 557   // each retry loop. This allows the caller to make use of any
 558   // unused bits for their own marking purposes.
 559   reset_bits = *bits;
 560 
 561   {
 562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 564                                             delay, bits);
 565     pending = is_external_suspend();
 566   }
 567   // must release SR_lock to allow suspension to complete
 568 
 569   if (!pending) {
 570     // A cancelled suspend request is the only false return from
 571     // is_ext_suspend_completed() that keeps us from entering the
 572     // retry loop.
 573     *bits |= 0x00020000;
 574     return false;
 575   }
 576 
 577   if (is_suspended) {
 578     *bits |= 0x00040000;
 579     return true;
 580   }
 581 
 582   for (int i = 1; i <= retries; i++) {
 583     *bits = reset_bits;  // reinit to only track last retry
 584 
 585     // We used to do an "os::yield_all(i)" call here with the intention
 586     // that yielding would increase on each retry. However, the parameter
 587     // is ignored on Linux which means the yield didn't scale up. Waiting
 588     // on the SR_lock below provides a much more predictable scale up for
 589     // the delay. It also provides a simple/direct point to check for any
 590     // safepoint requests from the VMThread
 591 
 592     {
 593       MutexLocker ml(SR_lock());
 594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 595       // can also call this)  and increase delay with each retry
 596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 597 
 598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 599                                               delay, bits);
 600 
 601       // It is possible for the external suspend request to be cancelled
 602       // (by a resume) before the actual suspend operation is completed.
 603       // Refresh our local copy to see if we still need to wait.
 604       pending = is_external_suspend();
 605     }
 606 
 607     if (!pending) {
 608       // A cancelled suspend request is the only false return from
 609       // is_ext_suspend_completed() that keeps us from staying in the
 610       // retry loop.
 611       *bits |= 0x00080000;
 612       return false;
 613     }
 614 
 615     if (is_suspended) {
 616       *bits |= 0x00100000;
 617       return true;
 618     }
 619   } // end retry loop
 620 
 621   // thread did not suspend after all our retries
 622   *bits |= 0x00200000;
 623   return false;
 624 }
 625 
 626 #ifndef PRODUCT
 627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 628 
 629   // This should not need to be atomic as the only way for simultaneous
 630   // updates is via interrupts. Even then this should be rare or non-existant
 631   // and we don't care that much anyway.
 632 
 633   int index = _jmp_ring_index;
 634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 635   _jmp_ring[index]._target = (intptr_t) target;
 636   _jmp_ring[index]._instruction = (intptr_t) instr;
 637   _jmp_ring[index]._file = file;
 638   _jmp_ring[index]._line = line;
 639 }
 640 #endif /* PRODUCT */
 641 
 642 // Called by flat profiler
 643 // Callers have already called wait_for_ext_suspend_completion
 644 // The assertion for that is currently too complex to put here:
 645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 646   bool gotframe = false;
 647   // self suspension saves needed state.
 648   if (has_last_Java_frame() && _anchor.walkable()) {
 649      *_fr = pd_last_frame();
 650      gotframe = true;
 651   }
 652   return gotframe;
 653 }
 654 
 655 void Thread::interrupt(Thread* thread) {
 656   trace("interrupt", thread);
 657   debug_only(check_for_dangling_thread_pointer(thread);)
 658   os::interrupt(thread);
 659 }
 660 
 661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 662   trace("is_interrupted", thread);
 663   debug_only(check_for_dangling_thread_pointer(thread);)
 664   // Note:  If clear_interrupted==false, this simply fetches and
 665   // returns the value of the field osthread()->interrupted().
 666   return os::is_interrupted(thread, clear_interrupted);
 667 }
 668 
 669 
 670 // GC Support
 671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 672   jint thread_parity = _oops_do_parity;
 673   if (thread_parity != strong_roots_parity) {
 674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 675     if (res == thread_parity) return true;
 676     else {
 677       guarantee(res == strong_roots_parity, "Or else what?");
 678       assert(SharedHeap::heap()->n_par_threads() > 0,
 679              "Should only fail when parallel.");
 680       return false;
 681     }
 682   }
 683   assert(SharedHeap::heap()->n_par_threads() > 0,
 684          "Should only fail when parallel.");
 685   return false;
 686 }
 687 
 688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 689   active_handles()->oops_do(f);
 690   // Do oop for ThreadShadow
 691   f->do_oop((oop*)&_pending_exception);
 692   handle_area()->oops_do(f);
 693 }
 694 
 695 void Thread::nmethods_do(CodeBlobClosure* cf) {
 696   // no nmethods in a generic thread...
 697 }
 698 
 699 void Thread::print_on(outputStream* st) const {
 700   // get_priority assumes osthread initialized
 701   if (osthread() != NULL) {
 702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 703     osthread()->print_on(st);
 704   }
 705   debug_only(if (WizardMode) print_owned_locks_on(st);)
 706 }
 707 
 708 // Thread::print_on_error() is called by fatal error handler. Don't use
 709 // any lock or allocate memory.
 710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 711   if      (is_VM_thread())                  st->print("VMThread");
 712   else if (is_Compiler_thread())            st->print("CompilerThread");
 713   else if (is_Java_thread())                st->print("JavaThread");
 714   else if (is_GC_task_thread())             st->print("GCTaskThread");
 715   else if (is_Watcher_thread())             st->print("WatcherThread");
 716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 717   else st->print("Thread");
 718 
 719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 720             _stack_base - _stack_size, _stack_base);
 721 
 722   if (osthread()) {
 723     st->print(" [id=%d]", osthread()->thread_id());
 724   }
 725 }
 726 
 727 #ifdef ASSERT
 728 void Thread::print_owned_locks_on(outputStream* st) const {
 729   Monitor *cur = _owned_locks;
 730   if (cur == NULL) {
 731     st->print(" (no locks) ");
 732   } else {
 733     st->print_cr(" Locks owned:");
 734     while(cur) {
 735       cur->print_on(st);
 736       cur = cur->next();
 737     }
 738   }
 739 }
 740 
 741 static int ref_use_count  = 0;
 742 
 743 bool Thread::owns_locks_but_compiled_lock() const {
 744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 745     if (cur != Compile_lock) return true;
 746   }
 747   return false;
 748 }
 749 
 750 
 751 #endif
 752 
 753 #ifndef PRODUCT
 754 
 755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 757 // no threads which allow_vm_block's are held
 758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 759     // Check if current thread is allowed to block at a safepoint
 760     if (!(_allow_safepoint_count == 0))
 761       fatal("Possible safepoint reached by thread that does not allow it");
 762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 763       fatal("LEAF method calling lock?");
 764     }
 765 
 766 #ifdef ASSERT
 767     if (potential_vm_operation && is_Java_thread()
 768         && !Universe::is_bootstrapping()) {
 769       // Make sure we do not hold any locks that the VM thread also uses.
 770       // This could potentially lead to deadlocks
 771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 772         // Threads_lock is special, since the safepoint synchronization will not start before this is
 773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 774         // since it is used to transfer control between JavaThreads and the VMThread
 775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 776         if ( (cur->allow_vm_block() &&
 777               cur != Threads_lock &&
 778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 779               cur != VMOperationRequest_lock &&
 780               cur != VMOperationQueue_lock) ||
 781               cur->rank() == Mutex::special) {
 782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 783         }
 784       }
 785     }
 786 
 787     if (GCALotAtAllSafepoints) {
 788       // We could enter a safepoint here and thus have a gc
 789       InterfaceSupport::check_gc_alot();
 790     }
 791 #endif
 792 }
 793 #endif
 794 
 795 bool Thread::is_in_stack(address adr) const {
 796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 797   address end = os::current_stack_pointer();
 798   if (stack_base() >= adr && adr >= end) return true;
 799 
 800   return false;
 801 }
 802 
 803 
 804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 806 // used for compilation in the future. If that change is made, the need for these methods
 807 // should be revisited, and they should be removed if possible.
 808 
 809 bool Thread::is_lock_owned(address adr) const {
 810   return on_local_stack(adr);
 811 }
 812 
 813 bool Thread::set_as_starting_thread() {
 814  // NOTE: this must be called inside the main thread.
 815   return os::create_main_thread((JavaThread*)this);
 816 }
 817 
 818 static void initialize_class(symbolHandle class_name, TRAPS) {
 819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 820   instanceKlass::cast(klass)->initialize(CHECK);
 821 }
 822 
 823 
 824 // Creates the initial ThreadGroup
 825 static Handle create_initial_thread_group(TRAPS) {
 826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 827   instanceKlassHandle klass (THREAD, k);
 828 
 829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 830   {
 831     JavaValue result(T_VOID);
 832     JavaCalls::call_special(&result,
 833                             system_instance,
 834                             klass,
 835                             vmSymbolHandles::object_initializer_name(),
 836                             vmSymbolHandles::void_method_signature(),
 837                             CHECK_NH);
 838   }
 839   Universe::set_system_thread_group(system_instance());
 840 
 841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 842   {
 843     JavaValue result(T_VOID);
 844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 845     JavaCalls::call_special(&result,
 846                             main_instance,
 847                             klass,
 848                             vmSymbolHandles::object_initializer_name(),
 849                             vmSymbolHandles::threadgroup_string_void_signature(),
 850                             system_instance,
 851                             string,
 852                             CHECK_NH);
 853   }
 854   return main_instance;
 855 }
 856 
 857 // Creates the initial Thread
 858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 860   instanceKlassHandle klass (THREAD, k);
 861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 862 
 863   java_lang_Thread::set_thread(thread_oop(), thread);
 864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 865   thread->set_threadObj(thread_oop());
 866 
 867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 868 
 869   JavaValue result(T_VOID);
 870   JavaCalls::call_special(&result, thread_oop,
 871                                    klass,
 872                                    vmSymbolHandles::object_initializer_name(),
 873                                    vmSymbolHandles::threadgroup_string_void_signature(),
 874                                    thread_group,
 875                                    string,
 876                                    CHECK_NULL);
 877   return thread_oop();
 878 }
 879 
 880 static void call_initializeSystemClass(TRAPS) {
 881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 882   instanceKlassHandle klass (THREAD, k);
 883 
 884   JavaValue result(T_VOID);
 885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 886                                          vmSymbolHandles::void_method_signature(), CHECK);
 887 }
 888 
 889 #ifdef KERNEL
 890 static void set_jkernel_boot_classloader_hook(TRAPS) {
 891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 892   instanceKlassHandle klass (THREAD, k);
 893 
 894   if (k == NULL) {
 895     // sun.jkernel.DownloadManager may not present in the JDK; just return
 896     return;
 897   }
 898 
 899   JavaValue result(T_VOID);
 900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 901                                          vmSymbolHandles::void_method_signature(), CHECK);
 902 }
 903 #endif // KERNEL
 904 
 905 static void reset_vm_info_property(TRAPS) {
 906   // the vm info string
 907   ResourceMark rm(THREAD);
 908   const char *vm_info = VM_Version::vm_info_string();
 909 
 910   // java.lang.System class
 911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 912   instanceKlassHandle klass (THREAD, k);
 913 
 914   // setProperty arguments
 915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 917 
 918   // return value
 919   JavaValue r(T_OBJECT);
 920 
 921   // public static String setProperty(String key, String value);
 922   JavaCalls::call_static(&r,
 923                          klass,
 924                          vmSymbolHandles::setProperty_name(),
 925                          vmSymbolHandles::string_string_string_signature(),
 926                          key_str,
 927                          value_str,
 928                          CHECK);
 929 }
 930 
 931 
 932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 933   assert(thread_group.not_null(), "thread group should be specified");
 934   assert(threadObj() == NULL, "should only create Java thread object once");
 935 
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 937   instanceKlassHandle klass (THREAD, k);
 938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 939 
 940   java_lang_Thread::set_thread(thread_oop(), this);
 941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 942   set_threadObj(thread_oop());
 943 
 944   JavaValue result(T_VOID);
 945   if (thread_name != NULL) {
 946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 947     // Thread gets assigned specified name and null target
 948     JavaCalls::call_special(&result,
 949                             thread_oop,
 950                             klass,
 951                             vmSymbolHandles::object_initializer_name(),
 952                             vmSymbolHandles::threadgroup_string_void_signature(),
 953                             thread_group, // Argument 1
 954                             name,         // Argument 2
 955                             THREAD);
 956   } else {
 957     // Thread gets assigned name "Thread-nnn" and null target
 958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 959     JavaCalls::call_special(&result,
 960                             thread_oop,
 961                             klass,
 962                             vmSymbolHandles::object_initializer_name(),
 963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 964                             thread_group, // Argument 1
 965                             Handle(),     // Argument 2
 966                             THREAD);
 967   }
 968 
 969 
 970   if (daemon) {
 971       java_lang_Thread::set_daemon(thread_oop());
 972   }
 973 
 974   if (HAS_PENDING_EXCEPTION) {
 975     return;
 976   }
 977 
 978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
 979   Handle threadObj(this, this->threadObj());
 980 
 981   JavaCalls::call_special(&result,
 982                          thread_group,
 983                          group,
 984                          vmSymbolHandles::add_method_name(),
 985                          vmSymbolHandles::thread_void_signature(),
 986                          threadObj,          // Arg 1
 987                          THREAD);
 988 
 989 
 990 }
 991 
 992 // NamedThread --  non-JavaThread subclasses with multiple
 993 // uniquely named instances should derive from this.
 994 NamedThread::NamedThread() : Thread() {
 995   _name = NULL;
 996   _processed_thread = NULL;
 997 }
 998 
 999 NamedThread::~NamedThread() {
1000   if (_name != NULL) {
1001     FREE_C_HEAP_ARRAY(char, _name);
1002     _name = NULL;
1003   }
1004 }
1005 
1006 void NamedThread::set_name(const char* format, ...) {
1007   guarantee(_name == NULL, "Only get to set name once.");
1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1009   guarantee(_name != NULL, "alloc failure");
1010   va_list ap;
1011   va_start(ap, format);
1012   jio_vsnprintf(_name, max_name_len, format, ap);
1013   va_end(ap);
1014 }
1015 
1016 // ======= WatcherThread ========
1017 
1018 // The watcher thread exists to simulate timer interrupts.  It should
1019 // be replaced by an abstraction over whatever native support for
1020 // timer interrupts exists on the platform.
1021 
1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1023 volatile bool  WatcherThread::_should_terminate = false;
1024 
1025 WatcherThread::WatcherThread() : Thread() {
1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1027   if (os::create_thread(this, os::watcher_thread)) {
1028     _watcher_thread = this;
1029 
1030     // Set the watcher thread to the highest OS priority which should not be
1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1032     // is created. The only normal thread using this priority is the reference
1033     // handler thread, which runs for very short intervals only.
1034     // If the VMThread's priority is not lower than the WatcherThread profiling
1035     // will be inaccurate.
1036     os::set_priority(this, MaxPriority);
1037     if (!DisableStartThread) {
1038       os::start_thread(this);
1039     }
1040   }
1041 }
1042 
1043 void WatcherThread::run() {
1044   assert(this == watcher_thread(), "just checking");
1045 
1046   this->record_stack_base_and_size();
1047   this->initialize_thread_local_storage();
1048   this->set_active_handles(JNIHandleBlock::allocate_block());
1049   while(!_should_terminate) {
1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1051     assert(watcher_thread() == this,  "thread consistency check");
1052 
1053     // Calculate how long it'll be until the next PeriodicTask work
1054     // should be done, and sleep that amount of time.
1055     size_t time_to_wait = PeriodicTask::time_to_wait();
1056 
1057     // we expect this to timeout - we only ever get unparked when
1058     // we should terminate
1059     {
1060       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1061 
1062       jlong prev_time = os::javaTimeNanos();
1063       for (;;) {
1064         int res= _SleepEvent->park(time_to_wait);
1065         if (res == OS_TIMEOUT || _should_terminate)
1066           break;
1067         // spurious wakeup of some kind
1068         jlong now = os::javaTimeNanos();
1069         time_to_wait -= (now - prev_time) / 1000000;
1070         if (time_to_wait <= 0)
1071           break;
1072         prev_time = now;
1073       }
1074     }
1075 
1076     if (is_error_reported()) {
1077       // A fatal error has happened, the error handler(VMError::report_and_die)
1078       // should abort JVM after creating an error log file. However in some
1079       // rare cases, the error handler itself might deadlock. Here we try to
1080       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1081       //
1082       // This code is in WatcherThread because WatcherThread wakes up
1083       // periodically so the fatal error handler doesn't need to do anything;
1084       // also because the WatcherThread is less likely to crash than other
1085       // threads.
1086 
1087       for (;;) {
1088         if (!ShowMessageBoxOnError
1089          && (OnError == NULL || OnError[0] == '\0')
1090          && Arguments::abort_hook() == NULL) {
1091              os::sleep(this, 2 * 60 * 1000, false);
1092              fdStream err(defaultStream::output_fd());
1093              err.print_raw_cr("# [ timer expired, abort... ]");
1094              // skip atexit/vm_exit/vm_abort hooks
1095              os::die();
1096         }
1097 
1098         // Wake up 5 seconds later, the fatal handler may reset OnError or
1099         // ShowMessageBoxOnError when it is ready to abort.
1100         os::sleep(this, 5 * 1000, false);
1101       }
1102     }
1103 
1104     PeriodicTask::real_time_tick(time_to_wait);
1105 
1106     // If we have no more tasks left due to dynamic disenrollment,
1107     // shut down the thread since we don't currently support dynamic enrollment
1108     if (PeriodicTask::num_tasks() == 0) {
1109       _should_terminate = true;
1110     }
1111   }
1112 
1113   // Signal that it is terminated
1114   {
1115     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1116     _watcher_thread = NULL;
1117     Terminator_lock->notify();
1118   }
1119 
1120   // Thread destructor usually does this..
1121   ThreadLocalStorage::set_thread(NULL);
1122 }
1123 
1124 void WatcherThread::start() {
1125   if (watcher_thread() == NULL) {
1126     _should_terminate = false;
1127     // Create the single instance of WatcherThread
1128     new WatcherThread();
1129   }
1130 }
1131 
1132 void WatcherThread::stop() {
1133   // it is ok to take late safepoints here, if needed
1134   MutexLocker mu(Terminator_lock);
1135   _should_terminate = true;
1136   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1137 
1138   Thread* watcher = watcher_thread();
1139   if (watcher != NULL)
1140     watcher->_SleepEvent->unpark();
1141 
1142   while(watcher_thread() != NULL) {
1143     // This wait should make safepoint checks, wait without a timeout,
1144     // and wait as a suspend-equivalent condition.
1145     //
1146     // Note: If the FlatProfiler is running, then this thread is waiting
1147     // for the WatcherThread to terminate and the WatcherThread, via the
1148     // FlatProfiler task, is waiting for the external suspend request on
1149     // this thread to complete. wait_for_ext_suspend_completion() will
1150     // eventually timeout, but that takes time. Making this wait a
1151     // suspend-equivalent condition solves that timeout problem.
1152     //
1153     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1154                           Mutex::_as_suspend_equivalent_flag);
1155   }
1156 }
1157 
1158 void WatcherThread::print_on(outputStream* st) const {
1159   st->print("\"%s\" ", name());
1160   Thread::print_on(st);
1161   st->cr();
1162 }
1163 
1164 // ======= JavaThread ========
1165 
1166 // A JavaThread is a normal Java thread
1167 
1168 void JavaThread::initialize() {
1169   // Initialize fields
1170 
1171   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1172   set_claimed_par_id(-1);
1173 
1174   set_saved_exception_pc(NULL);
1175   set_threadObj(NULL);
1176   _anchor.clear();
1177   set_entry_point(NULL);
1178   set_jni_functions(jni_functions());
1179   set_callee_target(NULL);
1180   set_vm_result(NULL);
1181   set_vm_result_2(NULL);
1182   set_vframe_array_head(NULL);
1183   set_vframe_array_last(NULL);
1184   set_deferred_locals(NULL);
1185   set_deopt_mark(NULL);
1186   clear_must_deopt_id();
1187   set_monitor_chunks(NULL);
1188   set_next(NULL);
1189   set_thread_state(_thread_new);
1190   _terminated = _not_terminated;
1191   _privileged_stack_top = NULL;
1192   _array_for_gc = NULL;
1193   _suspend_equivalent = false;
1194   _in_deopt_handler = 0;
1195   _doing_unsafe_access = false;
1196   _stack_guard_state = stack_guard_unused;
1197   _exception_oop = NULL;
1198   _exception_pc  = 0;
1199   _exception_handler_pc = 0;
1200   _exception_stack_size = 0;
1201   _jvmti_thread_state= NULL;
1202   _should_post_on_exceptions_flag = JNI_FALSE;
1203   _jvmti_get_loaded_classes_closure = NULL;
1204   _interp_only_mode    = 0;
1205   _special_runtime_exit_condition = _no_async_condition;
1206   _pending_async_exception = NULL;
1207   _is_compiling = false;
1208   _thread_stat = NULL;
1209   _thread_stat = new ThreadStatistics();
1210   _blocked_on_compilation = false;
1211   _jni_active_critical = 0;
1212   _do_not_unlock_if_synchronized = false;
1213   _cached_monitor_info = NULL;
1214   _parker = Parker::Allocate(this) ;
1215 
1216 #ifndef PRODUCT
1217   _jmp_ring_index = 0;
1218   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1219     record_jump(NULL, NULL, NULL, 0);
1220   }
1221 #endif /* PRODUCT */
1222 
1223   set_thread_profiler(NULL);
1224   if (FlatProfiler::is_active()) {
1225     // This is where we would decide to either give each thread it's own profiler
1226     // or use one global one from FlatProfiler,
1227     // or up to some count of the number of profiled threads, etc.
1228     ThreadProfiler* pp = new ThreadProfiler();
1229     pp->engage();
1230     set_thread_profiler(pp);
1231   }
1232 
1233   // Setup safepoint state info for this thread
1234   ThreadSafepointState::create(this);
1235 
1236   debug_only(_java_call_counter = 0);
1237 
1238   // JVMTI PopFrame support
1239   _popframe_condition = popframe_inactive;
1240   _popframe_preserved_args = NULL;
1241   _popframe_preserved_args_size = 0;
1242 
1243   pd_initialize();
1244 }
1245 
1246 #ifndef SERIALGC
1247 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1248 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1249 #endif // !SERIALGC
1250 
1251 JavaThread::JavaThread(bool is_attaching) :
1252   Thread()
1253 #ifndef SERIALGC
1254   , _satb_mark_queue(&_satb_mark_queue_set),
1255   _dirty_card_queue(&_dirty_card_queue_set)
1256 #endif // !SERIALGC
1257 {
1258   initialize();
1259   _is_attaching = is_attaching;
1260   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1261 }
1262 
1263 bool JavaThread::reguard_stack(address cur_sp) {
1264   if (_stack_guard_state != stack_guard_yellow_disabled) {
1265     return true; // Stack already guarded or guard pages not needed.
1266   }
1267 
1268   if (register_stack_overflow()) {
1269     // For those architectures which have separate register and
1270     // memory stacks, we must check the register stack to see if
1271     // it has overflowed.
1272     return false;
1273   }
1274 
1275   // Java code never executes within the yellow zone: the latter is only
1276   // there to provoke an exception during stack banging.  If java code
1277   // is executing there, either StackShadowPages should be larger, or
1278   // some exception code in c1, c2 or the interpreter isn't unwinding
1279   // when it should.
1280   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1281 
1282   enable_stack_yellow_zone();
1283   return true;
1284 }
1285 
1286 bool JavaThread::reguard_stack(void) {
1287   return reguard_stack(os::current_stack_pointer());
1288 }
1289 
1290 
1291 void JavaThread::block_if_vm_exited() {
1292   if (_terminated == _vm_exited) {
1293     // _vm_exited is set at safepoint, and Threads_lock is never released
1294     // we will block here forever
1295     Threads_lock->lock_without_safepoint_check();
1296     ShouldNotReachHere();
1297   }
1298 }
1299 
1300 
1301 // Remove this ifdef when C1 is ported to the compiler interface.
1302 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1303 
1304 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1305   Thread()
1306 #ifndef SERIALGC
1307   , _satb_mark_queue(&_satb_mark_queue_set),
1308   _dirty_card_queue(&_dirty_card_queue_set)
1309 #endif // !SERIALGC
1310 {
1311   if (TraceThreadEvents) {
1312     tty->print_cr("creating thread %p", this);
1313   }
1314   initialize();
1315   _is_attaching = false;
1316   set_entry_point(entry_point);
1317   // Create the native thread itself.
1318   // %note runtime_23
1319   os::ThreadType thr_type = os::java_thread;
1320   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1321                                                      os::java_thread;
1322   os::create_thread(this, thr_type, stack_sz);
1323 
1324   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1325   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1326   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1327   // the exception consists of creating the exception object & initializing it, initialization
1328   // will leave the VM via a JavaCall and then all locks must be unlocked).
1329   //
1330   // The thread is still suspended when we reach here. Thread must be explicit started
1331   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1332   // by calling Threads:add. The reason why this is not done here, is because the thread
1333   // object must be fully initialized (take a look at JVM_Start)
1334 }
1335 
1336 JavaThread::~JavaThread() {
1337   if (TraceThreadEvents) {
1338       tty->print_cr("terminate thread %p", this);
1339   }
1340 
1341   // JSR166 -- return the parker to the free list
1342   Parker::Release(_parker);
1343   _parker = NULL ;
1344 
1345   // Free any remaining  previous UnrollBlock
1346   vframeArray* old_array = vframe_array_last();
1347 
1348   if (old_array != NULL) {
1349     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1350     old_array->set_unroll_block(NULL);
1351     delete old_info;
1352     delete old_array;
1353   }
1354 
1355   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1356   if (deferred != NULL) {
1357     // This can only happen if thread is destroyed before deoptimization occurs.
1358     assert(deferred->length() != 0, "empty array!");
1359     do {
1360       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1361       deferred->remove_at(0);
1362       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1363       delete dlv;
1364     } while (deferred->length() != 0);
1365     delete deferred;
1366   }
1367 
1368   // All Java related clean up happens in exit
1369   ThreadSafepointState::destroy(this);
1370   if (_thread_profiler != NULL) delete _thread_profiler;
1371   if (_thread_stat != NULL) delete _thread_stat;
1372 }
1373 
1374 
1375 // The first routine called by a new Java thread
1376 void JavaThread::run() {
1377   // initialize thread-local alloc buffer related fields
1378   this->initialize_tlab();
1379 
1380   // used to test validitity of stack trace backs
1381   this->record_base_of_stack_pointer();
1382 
1383   // Record real stack base and size.
1384   this->record_stack_base_and_size();
1385 
1386   // Initialize thread local storage; set before calling MutexLocker
1387   this->initialize_thread_local_storage();
1388 
1389   this->create_stack_guard_pages();
1390 
1391   this->cache_global_variables();
1392 
1393   // Thread is now sufficient initialized to be handled by the safepoint code as being
1394   // in the VM. Change thread state from _thread_new to _thread_in_vm
1395   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1396 
1397   assert(JavaThread::current() == this, "sanity check");
1398   assert(!Thread::current()->owns_locks(), "sanity check");
1399 
1400   DTRACE_THREAD_PROBE(start, this);
1401 
1402   // This operation might block. We call that after all safepoint checks for a new thread has
1403   // been completed.
1404   this->set_active_handles(JNIHandleBlock::allocate_block());
1405 
1406   if (JvmtiExport::should_post_thread_life()) {
1407     JvmtiExport::post_thread_start(this);
1408   }
1409 
1410   // We call another function to do the rest so we are sure that the stack addresses used
1411   // from there will be lower than the stack base just computed
1412   thread_main_inner();
1413 
1414   // Note, thread is no longer valid at this point!
1415 }
1416 
1417 
1418 void JavaThread::thread_main_inner() {
1419   assert(JavaThread::current() == this, "sanity check");
1420   assert(this->threadObj() != NULL, "just checking");
1421 
1422   // Execute thread entry point. If this thread is being asked to restart,
1423   // or has been stopped before starting, do not reexecute entry point.
1424   // Note: Due to JVM_StopThread we can have pending exceptions already!
1425   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1426     // enter the thread's entry point only if we have no pending exceptions
1427     HandleMark hm(this);
1428     this->entry_point()(this, this);
1429   }
1430 
1431   DTRACE_THREAD_PROBE(stop, this);
1432 
1433   this->exit(false);
1434   delete this;
1435 }
1436 
1437 
1438 static void ensure_join(JavaThread* thread) {
1439   // We do not need to grap the Threads_lock, since we are operating on ourself.
1440   Handle threadObj(thread, thread->threadObj());
1441   assert(threadObj.not_null(), "java thread object must exist");
1442   ObjectLocker lock(threadObj, thread);
1443   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1444   thread->clear_pending_exception();
1445   // It is of profound importance that we set the stillborn bit and reset the thread object,
1446   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1447   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1448   // is dead when it gets notified.
1449   java_lang_Thread::set_stillborn(threadObj());
1450   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1451   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1452   java_lang_Thread::set_thread(threadObj(), NULL);
1453   lock.notify_all(thread);
1454   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1455   thread->clear_pending_exception();
1456 }
1457 
1458 
1459 // For any new cleanup additions, please check to see if they need to be applied to
1460 // cleanup_failed_attach_current_thread as well.
1461 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1462   assert(this == JavaThread::current(),  "thread consistency check");
1463   if (!InitializeJavaLangSystem) return;
1464 
1465   HandleMark hm(this);
1466   Handle uncaught_exception(this, this->pending_exception());
1467   this->clear_pending_exception();
1468   Handle threadObj(this, this->threadObj());
1469   assert(threadObj.not_null(), "Java thread object should be created");
1470 
1471   if (get_thread_profiler() != NULL) {
1472     get_thread_profiler()->disengage();
1473     ResourceMark rm;
1474     get_thread_profiler()->print(get_thread_name());
1475   }
1476 
1477 
1478   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1479   {
1480     EXCEPTION_MARK;
1481 
1482     CLEAR_PENDING_EXCEPTION;
1483   }
1484   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1485   // has to be fixed by a runtime query method
1486   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1487     // JSR-166: change call from from ThreadGroup.uncaughtException to
1488     // java.lang.Thread.dispatchUncaughtException
1489     if (uncaught_exception.not_null()) {
1490       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1491       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1492         (address)uncaught_exception(), (address)threadObj(), (address)group());
1493       {
1494         EXCEPTION_MARK;
1495         // Check if the method Thread.dispatchUncaughtException() exists. If so
1496         // call it.  Otherwise we have an older library without the JSR-166 changes,
1497         // so call ThreadGroup.uncaughtException()
1498         KlassHandle recvrKlass(THREAD, threadObj->klass());
1499         CallInfo callinfo;
1500         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1501         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1502                                            vmSymbolHandles::dispatchUncaughtException_name(),
1503                                            vmSymbolHandles::throwable_void_signature(),
1504                                            KlassHandle(), false, false, THREAD);
1505         CLEAR_PENDING_EXCEPTION;
1506         methodHandle method = callinfo.selected_method();
1507         if (method.not_null()) {
1508           JavaValue result(T_VOID);
1509           JavaCalls::call_virtual(&result,
1510                                   threadObj, thread_klass,
1511                                   vmSymbolHandles::dispatchUncaughtException_name(),
1512                                   vmSymbolHandles::throwable_void_signature(),
1513                                   uncaught_exception,
1514                                   THREAD);
1515         } else {
1516           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1517           JavaValue result(T_VOID);
1518           JavaCalls::call_virtual(&result,
1519                                   group, thread_group,
1520                                   vmSymbolHandles::uncaughtException_name(),
1521                                   vmSymbolHandles::thread_throwable_void_signature(),
1522                                   threadObj,           // Arg 1
1523                                   uncaught_exception,  // Arg 2
1524                                   THREAD);
1525         }
1526         CLEAR_PENDING_EXCEPTION;
1527       }
1528     }
1529 
1530     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1531     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1532     // is deprecated anyhow.
1533     { int count = 3;
1534       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1535         EXCEPTION_MARK;
1536         JavaValue result(T_VOID);
1537         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1538         JavaCalls::call_virtual(&result,
1539                               threadObj, thread_klass,
1540                               vmSymbolHandles::exit_method_name(),
1541                               vmSymbolHandles::void_method_signature(),
1542                               THREAD);
1543         CLEAR_PENDING_EXCEPTION;
1544       }
1545     }
1546 
1547     // notify JVMTI
1548     if (JvmtiExport::should_post_thread_life()) {
1549       JvmtiExport::post_thread_end(this);
1550     }
1551 
1552     // We have notified the agents that we are exiting, before we go on,
1553     // we must check for a pending external suspend request and honor it
1554     // in order to not surprise the thread that made the suspend request.
1555     while (true) {
1556       {
1557         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1558         if (!is_external_suspend()) {
1559           set_terminated(_thread_exiting);
1560           ThreadService::current_thread_exiting(this);
1561           break;
1562         }
1563         // Implied else:
1564         // Things get a little tricky here. We have a pending external
1565         // suspend request, but we are holding the SR_lock so we
1566         // can't just self-suspend. So we temporarily drop the lock
1567         // and then self-suspend.
1568       }
1569 
1570       ThreadBlockInVM tbivm(this);
1571       java_suspend_self();
1572 
1573       // We're done with this suspend request, but we have to loop around
1574       // and check again. Eventually we will get SR_lock without a pending
1575       // external suspend request and will be able to mark ourselves as
1576       // exiting.
1577     }
1578     // no more external suspends are allowed at this point
1579   } else {
1580     // before_exit() has already posted JVMTI THREAD_END events
1581   }
1582 
1583   // Notify waiters on thread object. This has to be done after exit() is called
1584   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1585   // group should have the destroyed bit set before waiters are notified).
1586   ensure_join(this);
1587   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1588 
1589   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1590   // held by this thread must be released.  A detach operation must only
1591   // get here if there are no Java frames on the stack.  Therefore, any
1592   // owned monitors at this point MUST be JNI-acquired monitors which are
1593   // pre-inflated and in the monitor cache.
1594   //
1595   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1596   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1597     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1598     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1599     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1600   }
1601 
1602   // These things needs to be done while we are still a Java Thread. Make sure that thread
1603   // is in a consistent state, in case GC happens
1604   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1605 
1606   if (active_handles() != NULL) {
1607     JNIHandleBlock* block = active_handles();
1608     set_active_handles(NULL);
1609     JNIHandleBlock::release_block(block);
1610   }
1611 
1612   if (free_handle_block() != NULL) {
1613     JNIHandleBlock* block = free_handle_block();
1614     set_free_handle_block(NULL);
1615     JNIHandleBlock::release_block(block);
1616   }
1617 
1618   // These have to be removed while this is still a valid thread.
1619   remove_stack_guard_pages();
1620 
1621   if (UseTLAB) {
1622     tlab().make_parsable(true);  // retire TLAB
1623   }
1624 
1625   if (jvmti_thread_state() != NULL) {
1626     JvmtiExport::cleanup_thread(this);
1627   }
1628 
1629 #ifndef SERIALGC
1630   // We must flush G1-related buffers before removing a thread from
1631   // the list of active threads.
1632   if (UseG1GC) {
1633     flush_barrier_queues();
1634   }
1635 #endif
1636 
1637   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1638   Threads::remove(this);
1639 }
1640 
1641 #ifndef SERIALGC
1642 // Flush G1-related queues.
1643 void JavaThread::flush_barrier_queues() {
1644   satb_mark_queue().flush();
1645   dirty_card_queue().flush();
1646 }
1647 #endif
1648 
1649 void JavaThread::cleanup_failed_attach_current_thread() {
1650   if (get_thread_profiler() != NULL) {
1651     get_thread_profiler()->disengage();
1652     ResourceMark rm;
1653     get_thread_profiler()->print(get_thread_name());
1654   }
1655 
1656   if (active_handles() != NULL) {
1657     JNIHandleBlock* block = active_handles();
1658     set_active_handles(NULL);
1659     JNIHandleBlock::release_block(block);
1660   }
1661 
1662   if (free_handle_block() != NULL) {
1663     JNIHandleBlock* block = free_handle_block();
1664     set_free_handle_block(NULL);
1665     JNIHandleBlock::release_block(block);
1666   }
1667 
1668   // These have to be removed while this is still a valid thread.
1669   remove_stack_guard_pages();
1670 
1671   if (UseTLAB) {
1672     tlab().make_parsable(true);  // retire TLAB, if any
1673   }
1674 
1675 #ifndef SERIALGC
1676   if (UseG1GC) {
1677     flush_barrier_queues();
1678   }
1679 #endif
1680 
1681   Threads::remove(this);
1682   delete this;
1683 }
1684 
1685 
1686 
1687 
1688 JavaThread* JavaThread::active() {
1689   Thread* thread = ThreadLocalStorage::thread();
1690   assert(thread != NULL, "just checking");
1691   if (thread->is_Java_thread()) {
1692     return (JavaThread*) thread;
1693   } else {
1694     assert(thread->is_VM_thread(), "this must be a vm thread");
1695     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1696     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1697     assert(ret->is_Java_thread(), "must be a Java thread");
1698     return ret;
1699   }
1700 }
1701 
1702 bool JavaThread::is_lock_owned(address adr) const {
1703   if (Thread::is_lock_owned(adr)) return true;
1704 
1705   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1706     if (chunk->contains(adr)) return true;
1707   }
1708 
1709   return false;
1710 }
1711 
1712 
1713 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1714   chunk->set_next(monitor_chunks());
1715   set_monitor_chunks(chunk);
1716 }
1717 
1718 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1719   guarantee(monitor_chunks() != NULL, "must be non empty");
1720   if (monitor_chunks() == chunk) {
1721     set_monitor_chunks(chunk->next());
1722   } else {
1723     MonitorChunk* prev = monitor_chunks();
1724     while (prev->next() != chunk) prev = prev->next();
1725     prev->set_next(chunk->next());
1726   }
1727 }
1728 
1729 // JVM support.
1730 
1731 // Note: this function shouldn't block if it's called in
1732 // _thread_in_native_trans state (such as from
1733 // check_special_condition_for_native_trans()).
1734 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1735 
1736   if (has_last_Java_frame() && has_async_condition()) {
1737     // If we are at a polling page safepoint (not a poll return)
1738     // then we must defer async exception because live registers
1739     // will be clobbered by the exception path. Poll return is
1740     // ok because the call we a returning from already collides
1741     // with exception handling registers and so there is no issue.
1742     // (The exception handling path kills call result registers but
1743     //  this is ok since the exception kills the result anyway).
1744 
1745     if (is_at_poll_safepoint()) {
1746       // if the code we are returning to has deoptimized we must defer
1747       // the exception otherwise live registers get clobbered on the
1748       // exception path before deoptimization is able to retrieve them.
1749       //
1750       RegisterMap map(this, false);
1751       frame caller_fr = last_frame().sender(&map);
1752       assert(caller_fr.is_compiled_frame(), "what?");
1753       if (caller_fr.is_deoptimized_frame()) {
1754         if (TraceExceptions) {
1755           ResourceMark rm;
1756           tty->print_cr("deferred async exception at compiled safepoint");
1757         }
1758         return;
1759       }
1760     }
1761   }
1762 
1763   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1764   if (condition == _no_async_condition) {
1765     // Conditions have changed since has_special_runtime_exit_condition()
1766     // was called:
1767     // - if we were here only because of an external suspend request,
1768     //   then that was taken care of above (or cancelled) so we are done
1769     // - if we were here because of another async request, then it has
1770     //   been cleared between the has_special_runtime_exit_condition()
1771     //   and now so again we are done
1772     return;
1773   }
1774 
1775   // Check for pending async. exception
1776   if (_pending_async_exception != NULL) {
1777     // Only overwrite an already pending exception, if it is not a threadDeath.
1778     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1779 
1780       // We cannot call Exceptions::_throw(...) here because we cannot block
1781       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1782 
1783       if (TraceExceptions) {
1784         ResourceMark rm;
1785         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1786         if (has_last_Java_frame() ) {
1787           frame f = last_frame();
1788           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1789         }
1790         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1791       }
1792       _pending_async_exception = NULL;
1793       clear_has_async_exception();
1794     }
1795   }
1796 
1797   if (check_unsafe_error &&
1798       condition == _async_unsafe_access_error && !has_pending_exception()) {
1799     condition = _no_async_condition;  // done
1800     switch (thread_state()) {
1801     case _thread_in_vm:
1802       {
1803         JavaThread* THREAD = this;
1804         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1805       }
1806     case _thread_in_native:
1807       {
1808         ThreadInVMfromNative tiv(this);
1809         JavaThread* THREAD = this;
1810         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1811       }
1812     case _thread_in_Java:
1813       {
1814         ThreadInVMfromJava tiv(this);
1815         JavaThread* THREAD = this;
1816         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1817       }
1818     default:
1819       ShouldNotReachHere();
1820     }
1821   }
1822 
1823   assert(condition == _no_async_condition || has_pending_exception() ||
1824          (!check_unsafe_error && condition == _async_unsafe_access_error),
1825          "must have handled the async condition, if no exception");
1826 }
1827 
1828 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1829   //
1830   // Check for pending external suspend. Internal suspend requests do
1831   // not use handle_special_runtime_exit_condition().
1832   // If JNIEnv proxies are allowed, don't self-suspend if the target
1833   // thread is not the current thread. In older versions of jdbx, jdbx
1834   // threads could call into the VM with another thread's JNIEnv so we
1835   // can be here operating on behalf of a suspended thread (4432884).
1836   bool do_self_suspend = is_external_suspend_with_lock();
1837   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1838     //
1839     // Because thread is external suspended the safepoint code will count
1840     // thread as at a safepoint. This can be odd because we can be here
1841     // as _thread_in_Java which would normally transition to _thread_blocked
1842     // at a safepoint. We would like to mark the thread as _thread_blocked
1843     // before calling java_suspend_self like all other callers of it but
1844     // we must then observe proper safepoint protocol. (We can't leave
1845     // _thread_blocked with a safepoint in progress). However we can be
1846     // here as _thread_in_native_trans so we can't use a normal transition
1847     // constructor/destructor pair because they assert on that type of
1848     // transition. We could do something like:
1849     //
1850     // JavaThreadState state = thread_state();
1851     // set_thread_state(_thread_in_vm);
1852     // {
1853     //   ThreadBlockInVM tbivm(this);
1854     //   java_suspend_self()
1855     // }
1856     // set_thread_state(_thread_in_vm_trans);
1857     // if (safepoint) block;
1858     // set_thread_state(state);
1859     //
1860     // but that is pretty messy. Instead we just go with the way the
1861     // code has worked before and note that this is the only path to
1862     // java_suspend_self that doesn't put the thread in _thread_blocked
1863     // mode.
1864 
1865     frame_anchor()->make_walkable(this);
1866     java_suspend_self();
1867 
1868     // We might be here for reasons in addition to the self-suspend request
1869     // so check for other async requests.
1870   }
1871 
1872   if (check_asyncs) {
1873     check_and_handle_async_exceptions();
1874   }
1875 }
1876 
1877 void JavaThread::send_thread_stop(oop java_throwable)  {
1878   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1879   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1880   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1881 
1882   // Do not throw asynchronous exceptions against the compiler thread
1883   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1884   if (is_Compiler_thread()) return;
1885 
1886   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1887   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1888     java_lang_Thread::set_stillborn(threadObj());
1889   }
1890 
1891   {
1892     // Actually throw the Throwable against the target Thread - however
1893     // only if there is no thread death exception installed already.
1894     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1895       // If the topmost frame is a runtime stub, then we are calling into
1896       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1897       // must deoptimize the caller before continuing, as the compiled  exception handler table
1898       // may not be valid
1899       if (has_last_Java_frame()) {
1900         frame f = last_frame();
1901         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1902           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1903           RegisterMap reg_map(this, UseBiasedLocking);
1904           frame compiled_frame = f.sender(&reg_map);
1905           if (compiled_frame.can_be_deoptimized()) {
1906             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1907           }
1908         }
1909       }
1910 
1911       // Set async. pending exception in thread.
1912       set_pending_async_exception(java_throwable);
1913 
1914       if (TraceExceptions) {
1915        ResourceMark rm;
1916        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1917       }
1918       // for AbortVMOnException flag
1919       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1920     }
1921   }
1922 
1923 
1924   // Interrupt thread so it will wake up from a potential wait()
1925   Thread::interrupt(this);
1926 }
1927 
1928 // External suspension mechanism.
1929 //
1930 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1931 // to any VM_locks and it is at a transition
1932 // Self-suspension will happen on the transition out of the vm.
1933 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1934 //
1935 // Guarantees on return:
1936 //   + Target thread will not execute any new bytecode (that's why we need to
1937 //     force a safepoint)
1938 //   + Target thread will not enter any new monitors
1939 //
1940 void JavaThread::java_suspend() {
1941   { MutexLocker mu(Threads_lock);
1942     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1943        return;
1944     }
1945   }
1946 
1947   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1948     if (!is_external_suspend()) {
1949       // a racing resume has cancelled us; bail out now
1950       return;
1951     }
1952 
1953     // suspend is done
1954     uint32_t debug_bits = 0;
1955     // Warning: is_ext_suspend_completed() may temporarily drop the
1956     // SR_lock to allow the thread to reach a stable thread state if
1957     // it is currently in a transient thread state.
1958     if (is_ext_suspend_completed(false /* !called_by_wait */,
1959                                  SuspendRetryDelay, &debug_bits) ) {
1960       return;
1961     }
1962   }
1963 
1964   VM_ForceSafepoint vm_suspend;
1965   VMThread::execute(&vm_suspend);
1966 }
1967 
1968 // Part II of external suspension.
1969 // A JavaThread self suspends when it detects a pending external suspend
1970 // request. This is usually on transitions. It is also done in places
1971 // where continuing to the next transition would surprise the caller,
1972 // e.g., monitor entry.
1973 //
1974 // Returns the number of times that the thread self-suspended.
1975 //
1976 // Note: DO NOT call java_suspend_self() when you just want to block current
1977 //       thread. java_suspend_self() is the second stage of cooperative
1978 //       suspension for external suspend requests and should only be used
1979 //       to complete an external suspend request.
1980 //
1981 int JavaThread::java_suspend_self() {
1982   int ret = 0;
1983 
1984   // we are in the process of exiting so don't suspend
1985   if (is_exiting()) {
1986      clear_external_suspend();
1987      return ret;
1988   }
1989 
1990   assert(_anchor.walkable() ||
1991     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1992     "must have walkable stack");
1993 
1994   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1995 
1996   assert(!this->is_ext_suspended(),
1997     "a thread trying to self-suspend should not already be suspended");
1998 
1999   if (this->is_suspend_equivalent()) {
2000     // If we are self-suspending as a result of the lifting of a
2001     // suspend equivalent condition, then the suspend_equivalent
2002     // flag is not cleared until we set the ext_suspended flag so
2003     // that wait_for_ext_suspend_completion() returns consistent
2004     // results.
2005     this->clear_suspend_equivalent();
2006   }
2007 
2008   // A racing resume may have cancelled us before we grabbed SR_lock
2009   // above. Or another external suspend request could be waiting for us
2010   // by the time we return from SR_lock()->wait(). The thread
2011   // that requested the suspension may already be trying to walk our
2012   // stack and if we return now, we can change the stack out from under
2013   // it. This would be a "bad thing (TM)" and cause the stack walker
2014   // to crash. We stay self-suspended until there are no more pending
2015   // external suspend requests.
2016   while (is_external_suspend()) {
2017     ret++;
2018     this->set_ext_suspended();
2019 
2020     // _ext_suspended flag is cleared by java_resume()
2021     while (is_ext_suspended()) {
2022       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2023     }
2024   }
2025 
2026   return ret;
2027 }
2028 
2029 #ifdef ASSERT
2030 // verify the JavaThread has not yet been published in the Threads::list, and
2031 // hence doesn't need protection from concurrent access at this stage
2032 void JavaThread::verify_not_published() {
2033   if (!Threads_lock->owned_by_self()) {
2034    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2035    assert( !Threads::includes(this),
2036            "java thread shouldn't have been published yet!");
2037   }
2038   else {
2039    assert( !Threads::includes(this),
2040            "java thread shouldn't have been published yet!");
2041   }
2042 }
2043 #endif
2044 
2045 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2046 // progress or when _suspend_flags is non-zero.
2047 // Current thread needs to self-suspend if there is a suspend request and/or
2048 // block if a safepoint is in progress.
2049 // Async exception ISN'T checked.
2050 // Note only the ThreadInVMfromNative transition can call this function
2051 // directly and when thread state is _thread_in_native_trans
2052 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2053   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2054 
2055   JavaThread *curJT = JavaThread::current();
2056   bool do_self_suspend = thread->is_external_suspend();
2057 
2058   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2059 
2060   // If JNIEnv proxies are allowed, don't self-suspend if the target
2061   // thread is not the current thread. In older versions of jdbx, jdbx
2062   // threads could call into the VM with another thread's JNIEnv so we
2063   // can be here operating on behalf of a suspended thread (4432884).
2064   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2065     JavaThreadState state = thread->thread_state();
2066 
2067     // We mark this thread_blocked state as a suspend-equivalent so
2068     // that a caller to is_ext_suspend_completed() won't be confused.
2069     // The suspend-equivalent state is cleared by java_suspend_self().
2070     thread->set_suspend_equivalent();
2071 
2072     // If the safepoint code sees the _thread_in_native_trans state, it will
2073     // wait until the thread changes to other thread state. There is no
2074     // guarantee on how soon we can obtain the SR_lock and complete the
2075     // self-suspend request. It would be a bad idea to let safepoint wait for
2076     // too long. Temporarily change the state to _thread_blocked to
2077     // let the VM thread know that this thread is ready for GC. The problem
2078     // of changing thread state is that safepoint could happen just after
2079     // java_suspend_self() returns after being resumed, and VM thread will
2080     // see the _thread_blocked state. We must check for safepoint
2081     // after restoring the state and make sure we won't leave while a safepoint
2082     // is in progress.
2083     thread->set_thread_state(_thread_blocked);
2084     thread->java_suspend_self();
2085     thread->set_thread_state(state);
2086     // Make sure new state is seen by VM thread
2087     if (os::is_MP()) {
2088       if (UseMembar) {
2089         // Force a fence between the write above and read below
2090         OrderAccess::fence();
2091       } else {
2092         // Must use this rather than serialization page in particular on Windows
2093         InterfaceSupport::serialize_memory(thread);
2094       }
2095     }
2096   }
2097 
2098   if (SafepointSynchronize::do_call_back()) {
2099     // If we are safepointing, then block the caller which may not be
2100     // the same as the target thread (see above).
2101     SafepointSynchronize::block(curJT);
2102   }
2103 
2104   if (thread->is_deopt_suspend()) {
2105     thread->clear_deopt_suspend();
2106     RegisterMap map(thread, false);
2107     frame f = thread->last_frame();
2108     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2109       f = f.sender(&map);
2110     }
2111     if (f.id() == thread->must_deopt_id()) {
2112       thread->clear_must_deopt_id();
2113       f.deoptimize(thread);
2114     } else {
2115       fatal("missed deoptimization!");
2116     }
2117   }
2118 }
2119 
2120 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2121 // progress or when _suspend_flags is non-zero.
2122 // Current thread needs to self-suspend if there is a suspend request and/or
2123 // block if a safepoint is in progress.
2124 // Also check for pending async exception (not including unsafe access error).
2125 // Note only the native==>VM/Java barriers can call this function and when
2126 // thread state is _thread_in_native_trans.
2127 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2128   check_safepoint_and_suspend_for_native_trans(thread);
2129 
2130   if (thread->has_async_exception()) {
2131     // We are in _thread_in_native_trans state, don't handle unsafe
2132     // access error since that may block.
2133     thread->check_and_handle_async_exceptions(false);
2134   }
2135 }
2136 
2137 // We need to guarantee the Threads_lock here, since resumes are not
2138 // allowed during safepoint synchronization
2139 // Can only resume from an external suspension
2140 void JavaThread::java_resume() {
2141   assert_locked_or_safepoint(Threads_lock);
2142 
2143   // Sanity check: thread is gone, has started exiting or the thread
2144   // was not externally suspended.
2145   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2146     return;
2147   }
2148 
2149   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2150 
2151   clear_external_suspend();
2152 
2153   if (is_ext_suspended()) {
2154     clear_ext_suspended();
2155     SR_lock()->notify_all();
2156   }
2157 }
2158 
2159 void JavaThread::create_stack_guard_pages() {
2160   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2161   address low_addr = stack_base() - stack_size();
2162   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2163 
2164   int allocate = os::allocate_stack_guard_pages();
2165   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2166 
2167   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2168     warning("Attempt to allocate stack guard pages failed.");
2169     return;
2170   }
2171 
2172   if (os::guard_memory((char *) low_addr, len)) {
2173     _stack_guard_state = stack_guard_enabled;
2174   } else {
2175     warning("Attempt to protect stack guard pages failed.");
2176     if (os::uncommit_memory((char *) low_addr, len)) {
2177       warning("Attempt to deallocate stack guard pages failed.");
2178     }
2179   }
2180 }
2181 
2182 void JavaThread::remove_stack_guard_pages() {
2183   if (_stack_guard_state == stack_guard_unused) return;
2184   address low_addr = stack_base() - stack_size();
2185   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2186 
2187   if (os::allocate_stack_guard_pages()) {
2188     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2189       _stack_guard_state = stack_guard_unused;
2190     } else {
2191       warning("Attempt to deallocate stack guard pages failed.");
2192     }
2193   } else {
2194     if (_stack_guard_state == stack_guard_unused) return;
2195     if (os::unguard_memory((char *) low_addr, len)) {
2196       _stack_guard_state = stack_guard_unused;
2197     } else {
2198         warning("Attempt to unprotect stack guard pages failed.");
2199     }
2200   }
2201 }
2202 
2203 void JavaThread::enable_stack_yellow_zone() {
2204   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2205   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2206 
2207   // The base notation is from the stacks point of view, growing downward.
2208   // We need to adjust it to work correctly with guard_memory()
2209   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2210 
2211   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2212   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2213 
2214   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2215     _stack_guard_state = stack_guard_enabled;
2216   } else {
2217     warning("Attempt to guard stack yellow zone failed.");
2218   }
2219   enable_register_stack_guard();
2220 }
2221 
2222 void JavaThread::disable_stack_yellow_zone() {
2223   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2224   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2225 
2226   // Simply return if called for a thread that does not use guard pages.
2227   if (_stack_guard_state == stack_guard_unused) return;
2228 
2229   // The base notation is from the stacks point of view, growing downward.
2230   // We need to adjust it to work correctly with guard_memory()
2231   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2232 
2233   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2234     _stack_guard_state = stack_guard_yellow_disabled;
2235   } else {
2236     warning("Attempt to unguard stack yellow zone failed.");
2237   }
2238   disable_register_stack_guard();
2239 }
2240 
2241 void JavaThread::enable_stack_red_zone() {
2242   // The base notation is from the stacks point of view, growing downward.
2243   // We need to adjust it to work correctly with guard_memory()
2244   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2245   address base = stack_red_zone_base() - stack_red_zone_size();
2246 
2247   guarantee(base < stack_base(),"Error calculating stack red zone");
2248   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2249 
2250   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2251     warning("Attempt to guard stack red zone failed.");
2252   }
2253 }
2254 
2255 void JavaThread::disable_stack_red_zone() {
2256   // The base notation is from the stacks point of view, growing downward.
2257   // We need to adjust it to work correctly with guard_memory()
2258   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2259   address base = stack_red_zone_base() - stack_red_zone_size();
2260   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2261     warning("Attempt to unguard stack red zone failed.");
2262   }
2263 }
2264 
2265 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2266   // ignore is there is no stack
2267   if (!has_last_Java_frame()) return;
2268   // traverse the stack frames. Starts from top frame.
2269   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2270     frame* fr = fst.current();
2271     f(fr, fst.register_map());
2272   }
2273 }
2274 
2275 
2276 #ifndef PRODUCT
2277 // Deoptimization
2278 // Function for testing deoptimization
2279 void JavaThread::deoptimize() {
2280   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2281   StackFrameStream fst(this, UseBiasedLocking);
2282   bool deopt = false;           // Dump stack only if a deopt actually happens.
2283   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2284   // Iterate over all frames in the thread and deoptimize
2285   for(; !fst.is_done(); fst.next()) {
2286     if(fst.current()->can_be_deoptimized()) {
2287 
2288       if (only_at) {
2289         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2290         // consists of comma or carriage return separated numbers so
2291         // search for the current bci in that string.
2292         address pc = fst.current()->pc();
2293         nmethod* nm =  (nmethod*) fst.current()->cb();
2294         ScopeDesc* sd = nm->scope_desc_at( pc);
2295         char buffer[8];
2296         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2297         size_t len = strlen(buffer);
2298         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2299         while (found != NULL) {
2300           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2301               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2302             // Check that the bci found is bracketed by terminators.
2303             break;
2304           }
2305           found = strstr(found + 1, buffer);
2306         }
2307         if (!found) {
2308           continue;
2309         }
2310       }
2311 
2312       if (DebugDeoptimization && !deopt) {
2313         deopt = true; // One-time only print before deopt
2314         tty->print_cr("[BEFORE Deoptimization]");
2315         trace_frames();
2316         trace_stack();
2317       }
2318       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2319     }
2320   }
2321 
2322   if (DebugDeoptimization && deopt) {
2323     tty->print_cr("[AFTER Deoptimization]");
2324     trace_frames();
2325   }
2326 }
2327 
2328 
2329 // Make zombies
2330 void JavaThread::make_zombies() {
2331   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2332     if (fst.current()->can_be_deoptimized()) {
2333       // it is a Java nmethod
2334       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2335       nm->make_not_entrant();
2336     }
2337   }
2338 }
2339 #endif // PRODUCT
2340 
2341 
2342 void JavaThread::deoptimized_wrt_marked_nmethods() {
2343   if (!has_last_Java_frame()) return;
2344   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2345   StackFrameStream fst(this, UseBiasedLocking);
2346   for(; !fst.is_done(); fst.next()) {
2347     if (fst.current()->should_be_deoptimized()) {
2348       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2349     }
2350   }
2351 }
2352 
2353 
2354 // GC support
2355 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2356 
2357 void JavaThread::gc_epilogue() {
2358   frames_do(frame_gc_epilogue);
2359 }
2360 
2361 
2362 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2363 
2364 void JavaThread::gc_prologue() {
2365   frames_do(frame_gc_prologue);
2366 }
2367 
2368 // If the caller is a NamedThread, then remember, in the current scope,
2369 // the given JavaThread in its _processed_thread field.
2370 class RememberProcessedThread: public StackObj {
2371   NamedThread* _cur_thr;
2372 public:
2373   RememberProcessedThread(JavaThread* jthr) {
2374     Thread* thread = Thread::current();
2375     if (thread->is_Named_thread()) {
2376       _cur_thr = (NamedThread *)thread;
2377       _cur_thr->set_processed_thread(jthr);
2378     } else {
2379       _cur_thr = NULL;
2380     }
2381   }
2382 
2383   ~RememberProcessedThread() {
2384     if (_cur_thr) {
2385       _cur_thr->set_processed_thread(NULL);
2386     }
2387   }
2388 };
2389 
2390 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2391   // Verify that the deferred card marks have been flushed.
2392   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2393 
2394   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2395   // since there may be more than one thread using each ThreadProfiler.
2396 
2397   // Traverse the GCHandles
2398   Thread::oops_do(f, cf);
2399 
2400   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2401           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2402 
2403   if (has_last_Java_frame()) {
2404     // Record JavaThread to GC thread
2405     RememberProcessedThread rpt(this);
2406 
2407     // Traverse the privileged stack
2408     if (_privileged_stack_top != NULL) {
2409       _privileged_stack_top->oops_do(f);
2410     }
2411 
2412     // traverse the registered growable array
2413     if (_array_for_gc != NULL) {
2414       for (int index = 0; index < _array_for_gc->length(); index++) {
2415         f->do_oop(_array_for_gc->adr_at(index));
2416       }
2417     }
2418 
2419     // Traverse the monitor chunks
2420     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2421       chunk->oops_do(f);
2422     }
2423 
2424     // Traverse the execution stack
2425     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2426       fst.current()->oops_do(f, cf, fst.register_map());
2427     }
2428   }
2429 
2430   // callee_target is never live across a gc point so NULL it here should
2431   // it still contain a methdOop.
2432 
2433   set_callee_target(NULL);
2434 
2435   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2436   // If we have deferred set_locals there might be oops waiting to be
2437   // written
2438   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2439   if (list != NULL) {
2440     for (int i = 0; i < list->length(); i++) {
2441       list->at(i)->oops_do(f);
2442     }
2443   }
2444 
2445   // Traverse instance variables at the end since the GC may be moving things
2446   // around using this function
2447   f->do_oop((oop*) &_threadObj);
2448   f->do_oop((oop*) &_vm_result);
2449   f->do_oop((oop*) &_vm_result_2);
2450   f->do_oop((oop*) &_exception_oop);
2451   f->do_oop((oop*) &_pending_async_exception);
2452 
2453   if (jvmti_thread_state() != NULL) {
2454     jvmti_thread_state()->oops_do(f);
2455   }
2456 }
2457 
2458 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2459   Thread::nmethods_do(cf);  // (super method is a no-op)
2460 
2461   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2462           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2463 
2464   if (has_last_Java_frame()) {
2465     // Traverse the execution stack
2466     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2467       fst.current()->nmethods_do(cf);
2468     }
2469   }
2470 }
2471 
2472 // Printing
2473 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2474   switch (_thread_state) {
2475   case _thread_uninitialized:     return "_thread_uninitialized";
2476   case _thread_new:               return "_thread_new";
2477   case _thread_new_trans:         return "_thread_new_trans";
2478   case _thread_in_native:         return "_thread_in_native";
2479   case _thread_in_native_trans:   return "_thread_in_native_trans";
2480   case _thread_in_vm:             return "_thread_in_vm";
2481   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2482   case _thread_in_Java:           return "_thread_in_Java";
2483   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2484   case _thread_blocked:           return "_thread_blocked";
2485   case _thread_blocked_trans:     return "_thread_blocked_trans";
2486   default:                        return "unknown thread state";
2487   }
2488 }
2489 
2490 #ifndef PRODUCT
2491 void JavaThread::print_thread_state_on(outputStream *st) const {
2492   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2493 };
2494 void JavaThread::print_thread_state() const {
2495   print_thread_state_on(tty);
2496 };
2497 #endif // PRODUCT
2498 
2499 // Called by Threads::print() for VM_PrintThreads operation
2500 void JavaThread::print_on(outputStream *st) const {
2501   st->print("\"%s\" ", get_thread_name());
2502   oop thread_oop = threadObj();
2503   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2504   Thread::print_on(st);
2505   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2506   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2507   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2508     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2509   }
2510 #ifndef PRODUCT
2511   print_thread_state_on(st);
2512   _safepoint_state->print_on(st);
2513 #endif // PRODUCT
2514 }
2515 
2516 // Called by fatal error handler. The difference between this and
2517 // JavaThread::print() is that we can't grab lock or allocate memory.
2518 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2519   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2520   oop thread_obj = threadObj();
2521   if (thread_obj != NULL) {
2522      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2523   }
2524   st->print(" [");
2525   st->print("%s", _get_thread_state_name(_thread_state));
2526   if (osthread()) {
2527     st->print(", id=%d", osthread()->thread_id());
2528   }
2529   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2530             _stack_base - _stack_size, _stack_base);
2531   st->print("]");
2532   return;
2533 }
2534 
2535 // Verification
2536 
2537 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2538 
2539 void JavaThread::verify() {
2540   // Verify oops in the thread.
2541   oops_do(&VerifyOopClosure::verify_oop, NULL);
2542 
2543   // Verify the stack frames.
2544   frames_do(frame_verify);
2545 }
2546 
2547 // CR 6300358 (sub-CR 2137150)
2548 // Most callers of this method assume that it can't return NULL but a
2549 // thread may not have a name whilst it is in the process of attaching to
2550 // the VM - see CR 6412693, and there are places where a JavaThread can be
2551 // seen prior to having it's threadObj set (eg JNI attaching threads and
2552 // if vm exit occurs during initialization). These cases can all be accounted
2553 // for such that this method never returns NULL.
2554 const char* JavaThread::get_thread_name() const {
2555 #ifdef ASSERT
2556   // early safepoints can hit while current thread does not yet have TLS
2557   if (!SafepointSynchronize::is_at_safepoint()) {
2558     Thread *cur = Thread::current();
2559     if (!(cur->is_Java_thread() && cur == this)) {
2560       // Current JavaThreads are allowed to get their own name without
2561       // the Threads_lock.
2562       assert_locked_or_safepoint(Threads_lock);
2563     }
2564   }
2565 #endif // ASSERT
2566     return get_thread_name_string();
2567 }
2568 
2569 // Returns a non-NULL representation of this thread's name, or a suitable
2570 // descriptive string if there is no set name
2571 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2572   const char* name_str;
2573   oop thread_obj = threadObj();
2574   if (thread_obj != NULL) {
2575     typeArrayOop name = java_lang_Thread::name(thread_obj);
2576     if (name != NULL) {
2577       if (buf == NULL) {
2578         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2579       }
2580       else {
2581         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2582       }
2583     }
2584     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2585       name_str = "<no-name - thread is attaching>";
2586     }
2587     else {
2588       name_str = Thread::name();
2589     }
2590   }
2591   else {
2592     name_str = Thread::name();
2593   }
2594   assert(name_str != NULL, "unexpected NULL thread name");
2595   return name_str;
2596 }
2597 
2598 
2599 const char* JavaThread::get_threadgroup_name() const {
2600   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2601   oop thread_obj = threadObj();
2602   if (thread_obj != NULL) {
2603     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2604     if (thread_group != NULL) {
2605       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2606       // ThreadGroup.name can be null
2607       if (name != NULL) {
2608         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2609         return str;
2610       }
2611     }
2612   }
2613   return NULL;
2614 }
2615 
2616 const char* JavaThread::get_parent_name() const {
2617   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2618   oop thread_obj = threadObj();
2619   if (thread_obj != NULL) {
2620     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2621     if (thread_group != NULL) {
2622       oop parent = java_lang_ThreadGroup::parent(thread_group);
2623       if (parent != NULL) {
2624         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2625         // ThreadGroup.name can be null
2626         if (name != NULL) {
2627           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2628           return str;
2629         }
2630       }
2631     }
2632   }
2633   return NULL;
2634 }
2635 
2636 ThreadPriority JavaThread::java_priority() const {
2637   oop thr_oop = threadObj();
2638   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2639   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2640   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2641   return priority;
2642 }
2643 
2644 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2645 
2646   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2647   // Link Java Thread object <-> C++ Thread
2648 
2649   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2650   // and put it into a new Handle.  The Handle "thread_oop" can then
2651   // be used to pass the C++ thread object to other methods.
2652 
2653   // Set the Java level thread object (jthread) field of the
2654   // new thread (a JavaThread *) to C++ thread object using the
2655   // "thread_oop" handle.
2656 
2657   // Set the thread field (a JavaThread *) of the
2658   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2659 
2660   Handle thread_oop(Thread::current(),
2661                     JNIHandles::resolve_non_null(jni_thread));
2662   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2663     "must be initialized");
2664   set_threadObj(thread_oop());
2665   java_lang_Thread::set_thread(thread_oop(), this);
2666 
2667   if (prio == NoPriority) {
2668     prio = java_lang_Thread::priority(thread_oop());
2669     assert(prio != NoPriority, "A valid priority should be present");
2670   }
2671 
2672   // Push the Java priority down to the native thread; needs Threads_lock
2673   Thread::set_priority(this, prio);
2674 
2675   // Add the new thread to the Threads list and set it in motion.
2676   // We must have threads lock in order to call Threads::add.
2677   // It is crucial that we do not block before the thread is
2678   // added to the Threads list for if a GC happens, then the java_thread oop
2679   // will not be visited by GC.
2680   Threads::add(this);
2681 }
2682 
2683 oop JavaThread::current_park_blocker() {
2684   // Support for JSR-166 locks
2685   oop thread_oop = threadObj();
2686   if (thread_oop != NULL &&
2687       JDK_Version::current().supports_thread_park_blocker()) {
2688     return java_lang_Thread::park_blocker(thread_oop);
2689   }
2690   return NULL;
2691 }
2692 
2693 
2694 void JavaThread::print_stack_on(outputStream* st) {
2695   if (!has_last_Java_frame()) return;
2696   ResourceMark rm;
2697   HandleMark   hm;
2698 
2699   RegisterMap reg_map(this);
2700   vframe* start_vf = last_java_vframe(&reg_map);
2701   int count = 0;
2702   for (vframe* f = start_vf; f; f = f->sender() ) {
2703     if (f->is_java_frame()) {
2704       javaVFrame* jvf = javaVFrame::cast(f);
2705       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2706 
2707       // Print out lock information
2708       if (JavaMonitorsInStackTrace) {
2709         jvf->print_lock_info_on(st, count);
2710       }
2711     } else {
2712       // Ignore non-Java frames
2713     }
2714 
2715     // Bail-out case for too deep stacks
2716     count++;
2717     if (MaxJavaStackTraceDepth == count) return;
2718   }
2719 }
2720 
2721 
2722 // JVMTI PopFrame support
2723 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2724   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2725   if (in_bytes(size_in_bytes) != 0) {
2726     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2727     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2728     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2729   }
2730 }
2731 
2732 void* JavaThread::popframe_preserved_args() {
2733   return _popframe_preserved_args;
2734 }
2735 
2736 ByteSize JavaThread::popframe_preserved_args_size() {
2737   return in_ByteSize(_popframe_preserved_args_size);
2738 }
2739 
2740 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2741   int sz = in_bytes(popframe_preserved_args_size());
2742   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2743   return in_WordSize(sz / wordSize);
2744 }
2745 
2746 void JavaThread::popframe_free_preserved_args() {
2747   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2748   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2749   _popframe_preserved_args = NULL;
2750   _popframe_preserved_args_size = 0;
2751 }
2752 
2753 #ifndef PRODUCT
2754 
2755 void JavaThread::trace_frames() {
2756   tty->print_cr("[Describe stack]");
2757   int frame_no = 1;
2758   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2759     tty->print("  %d. ", frame_no++);
2760     fst.current()->print_value_on(tty,this);
2761     tty->cr();
2762   }
2763 }
2764 
2765 
2766 void JavaThread::trace_stack_from(vframe* start_vf) {
2767   ResourceMark rm;
2768   int vframe_no = 1;
2769   for (vframe* f = start_vf; f; f = f->sender() ) {
2770     if (f->is_java_frame()) {
2771       javaVFrame::cast(f)->print_activation(vframe_no++);
2772     } else {
2773       f->print();
2774     }
2775     if (vframe_no > StackPrintLimit) {
2776       tty->print_cr("...<more frames>...");
2777       return;
2778     }
2779   }
2780 }
2781 
2782 
2783 void JavaThread::trace_stack() {
2784   if (!has_last_Java_frame()) return;
2785   ResourceMark rm;
2786   HandleMark   hm;
2787   RegisterMap reg_map(this);
2788   trace_stack_from(last_java_vframe(&reg_map));
2789 }
2790 
2791 
2792 #endif // PRODUCT
2793 
2794 
2795 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2796   assert(reg_map != NULL, "a map must be given");
2797   frame f = last_frame();
2798   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2799     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2800   }
2801   return NULL;
2802 }
2803 
2804 
2805 klassOop JavaThread::security_get_caller_class(int depth) {
2806   vframeStream vfst(this);
2807   vfst.security_get_caller_frame(depth);
2808   if (!vfst.at_end()) {
2809     return vfst.method()->method_holder();
2810   }
2811   return NULL;
2812 }
2813 
2814 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2815   assert(thread->is_Compiler_thread(), "must be compiler thread");
2816   CompileBroker::compiler_thread_loop();
2817 }
2818 
2819 // Create a CompilerThread
2820 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2821 : JavaThread(&compiler_thread_entry) {
2822   _env   = NULL;
2823   _log   = NULL;
2824   _task  = NULL;
2825   _queue = queue;
2826   _counters = counters;
2827   _buffer_blob = NULL;
2828 
2829 #ifndef PRODUCT
2830   _ideal_graph_printer = NULL;
2831 #endif
2832 }
2833 
2834 
2835 // ======= Threads ========
2836 
2837 // The Threads class links together all active threads, and provides
2838 // operations over all threads.  It is protected by its own Mutex
2839 // lock, which is also used in other contexts to protect thread
2840 // operations from having the thread being operated on from exiting
2841 // and going away unexpectedly (e.g., safepoint synchronization)
2842 
2843 JavaThread* Threads::_thread_list = NULL;
2844 int         Threads::_number_of_threads = 0;
2845 int         Threads::_number_of_non_daemon_threads = 0;
2846 int         Threads::_return_code = 0;
2847 size_t      JavaThread::_stack_size_at_create = 0;
2848 
2849 // All JavaThreads
2850 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2851 
2852 void os_stream();
2853 
2854 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2855 void Threads::threads_do(ThreadClosure* tc) {
2856   assert_locked_or_safepoint(Threads_lock);
2857   // ALL_JAVA_THREADS iterates through all JavaThreads
2858   ALL_JAVA_THREADS(p) {
2859     tc->do_thread(p);
2860   }
2861   // Someday we could have a table or list of all non-JavaThreads.
2862   // For now, just manually iterate through them.
2863   tc->do_thread(VMThread::vm_thread());
2864   Universe::heap()->gc_threads_do(tc);
2865   WatcherThread *wt = WatcherThread::watcher_thread();
2866   // Strictly speaking, the following NULL check isn't sufficient to make sure
2867   // the data for WatcherThread is still valid upon being examined. However,
2868   // considering that WatchThread terminates when the VM is on the way to
2869   // exit at safepoint, the chance of the above is extremely small. The right
2870   // way to prevent termination of WatcherThread would be to acquire
2871   // Terminator_lock, but we can't do that without violating the lock rank
2872   // checking in some cases.
2873   if (wt != NULL)
2874     tc->do_thread(wt);
2875 
2876   // If CompilerThreads ever become non-JavaThreads, add them here
2877 }
2878 
2879 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2880 
2881   extern void JDK_Version_init();
2882 
2883   // Check version
2884   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2885 
2886   // Initialize the output stream module
2887   ostream_init();
2888 
2889   // Process java launcher properties.
2890   Arguments::process_sun_java_launcher_properties(args);
2891 
2892   // Initialize the os module before using TLS
2893   os::init();
2894 
2895   // Initialize system properties.
2896   Arguments::init_system_properties();
2897 
2898   // So that JDK version can be used as a discrimintor when parsing arguments
2899   JDK_Version_init();
2900 
2901   // Update/Initialize System properties after JDK version number is known
2902   Arguments::init_version_specific_system_properties();
2903 
2904   // Parse arguments
2905   jint parse_result = Arguments::parse(args);
2906   if (parse_result != JNI_OK) return parse_result;
2907 
2908   if (PauseAtStartup) {
2909     os::pause();
2910   }
2911 
2912   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2913 
2914   // Record VM creation timing statistics
2915   TraceVmCreationTime create_vm_timer;
2916   create_vm_timer.start();
2917 
2918   // Timing (must come after argument parsing)
2919   TraceTime timer("Create VM", TraceStartupTime);
2920 
2921   // Initialize the os module after parsing the args
2922   jint os_init_2_result = os::init_2();
2923   if (os_init_2_result != JNI_OK) return os_init_2_result;
2924 
2925   // Initialize output stream logging
2926   ostream_init_log();
2927 
2928   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2929   // Must be before create_vm_init_agents()
2930   if (Arguments::init_libraries_at_startup()) {
2931     convert_vm_init_libraries_to_agents();
2932   }
2933 
2934   // Launch -agentlib/-agentpath and converted -Xrun agents
2935   if (Arguments::init_agents_at_startup()) {
2936     create_vm_init_agents();
2937   }
2938 
2939   // Initialize Threads state
2940   _thread_list = NULL;
2941   _number_of_threads = 0;
2942   _number_of_non_daemon_threads = 0;
2943 
2944   // Initialize TLS
2945   ThreadLocalStorage::init();
2946 
2947   // Initialize global data structures and create system classes in heap
2948   vm_init_globals();
2949 
2950   // Attach the main thread to this os thread
2951   JavaThread* main_thread = new JavaThread();
2952   main_thread->set_thread_state(_thread_in_vm);
2953   // must do this before set_active_handles and initialize_thread_local_storage
2954   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2955   // change the stack size recorded here to one based on the java thread
2956   // stacksize. This adjusted size is what is used to figure the placement
2957   // of the guard pages.
2958   main_thread->record_stack_base_and_size();
2959   main_thread->initialize_thread_local_storage();
2960 
2961   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2962 
2963   if (!main_thread->set_as_starting_thread()) {
2964     vm_shutdown_during_initialization(
2965       "Failed necessary internal allocation. Out of swap space");
2966     delete main_thread;
2967     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2968     return JNI_ENOMEM;
2969   }
2970 
2971   // Enable guard page *after* os::create_main_thread(), otherwise it would
2972   // crash Linux VM, see notes in os_linux.cpp.
2973   main_thread->create_stack_guard_pages();
2974 
2975   // Initialize Java-Leve synchronization subsystem
2976   ObjectSynchronizer::Initialize() ;
2977 
2978   // Initialize global modules
2979   jint status = init_globals();
2980   if (status != JNI_OK) {
2981     delete main_thread;
2982     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2983     return status;
2984   }
2985 
2986   // Should be done after the heap is fully created
2987   main_thread->cache_global_variables();
2988 
2989   HandleMark hm;
2990 
2991   { MutexLocker mu(Threads_lock);
2992     Threads::add(main_thread);
2993   }
2994 
2995   // Any JVMTI raw monitors entered in onload will transition into
2996   // real raw monitor. VM is setup enough here for raw monitor enter.
2997   JvmtiExport::transition_pending_onload_raw_monitors();
2998 
2999   if (VerifyBeforeGC &&
3000       Universe::heap()->total_collections() >= VerifyGCStartAt) {
3001     Universe::heap()->prepare_for_verify();
3002     Universe::verify();   // make sure we're starting with a clean slate
3003   }
3004 
3005   // Create the VMThread
3006   { TraceTime timer("Start VMThread", TraceStartupTime);
3007     VMThread::create();
3008     Thread* vmthread = VMThread::vm_thread();
3009 
3010     if (!os::create_thread(vmthread, os::vm_thread))
3011       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3012 
3013     // Wait for the VM thread to become ready, and VMThread::run to initialize
3014     // Monitors can have spurious returns, must always check another state flag
3015     {
3016       MutexLocker ml(Notify_lock);
3017       os::start_thread(vmthread);
3018       while (vmthread->active_handles() == NULL) {
3019         Notify_lock->wait();
3020       }
3021     }
3022   }
3023 
3024   assert (Universe::is_fully_initialized(), "not initialized");
3025   EXCEPTION_MARK;
3026 
3027   // At this point, the Universe is initialized, but we have not executed
3028   // any byte code.  Now is a good time (the only time) to dump out the
3029   // internal state of the JVM for sharing.
3030 
3031   if (DumpSharedSpaces) {
3032     Universe::heap()->preload_and_dump(CHECK_0);
3033     ShouldNotReachHere();
3034   }
3035 
3036   // Always call even when there are not JVMTI environments yet, since environments
3037   // may be attached late and JVMTI must track phases of VM execution
3038   JvmtiExport::enter_start_phase();
3039 
3040   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3041   JvmtiExport::post_vm_start();
3042 
3043   {
3044     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3045 
3046     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3047       create_vm_init_libraries();
3048     }
3049 
3050     if (InitializeJavaLangString) {
3051       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3052     } else {
3053       warning("java.lang.String not initialized");
3054     }
3055 
3056     if (AggressiveOpts) {
3057       {
3058         // Forcibly initialize java/util/HashMap and mutate the private
3059         // static final "frontCacheEnabled" field before we start creating instances
3060 #ifdef ASSERT
3061         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3062         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3063 #endif
3064         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3065         KlassHandle k = KlassHandle(THREAD, k_o);
3066         guarantee(k.not_null(), "Must find java/util/HashMap");
3067         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3068         ik->initialize(CHECK_0);
3069         fieldDescriptor fd;
3070         // Possible we might not find this field; if so, don't break
3071         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3072           k()->bool_field_put(fd.offset(), true);
3073         }
3074       }
3075 
3076       if (UseStringCache) {
3077         // Forcibly initialize java/lang/StringValue and mutate the private
3078         // static final "stringCacheEnabled" field before we start creating instances
3079         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3080         // Possible that StringValue isn't present: if so, silently don't break
3081         if (k_o != NULL) {
3082           KlassHandle k = KlassHandle(THREAD, k_o);
3083           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3084           ik->initialize(CHECK_0);
3085           fieldDescriptor fd;
3086           // Possible we might not find this field: if so, silently don't break
3087           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3088             k()->bool_field_put(fd.offset(), true);
3089           }
3090         }
3091       }
3092     }
3093 
3094     // Initialize java_lang.System (needed before creating the thread)
3095     if (InitializeJavaLangSystem) {
3096       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3097       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3098       Handle thread_group = create_initial_thread_group(CHECK_0);
3099       Universe::set_main_thread_group(thread_group());
3100       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3101       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3102       main_thread->set_threadObj(thread_object);
3103       // Set thread status to running since main thread has
3104       // been started and running.
3105       java_lang_Thread::set_thread_status(thread_object,
3106                                           java_lang_Thread::RUNNABLE);
3107 
3108       // The VM preresolve methods to these classes. Make sure that get initialized
3109       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3110       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3111       // The VM creates & returns objects of this class. Make sure it's initialized.
3112       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3113       call_initializeSystemClass(CHECK_0);
3114     } else {
3115       warning("java.lang.System not initialized");
3116     }
3117 
3118     // an instance of OutOfMemory exception has been allocated earlier
3119     if (InitializeJavaLangExceptionsErrors) {
3120       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3121       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3122       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3123       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3124       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3125       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3126       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3127     } else {
3128       warning("java.lang.OutOfMemoryError has not been initialized");
3129       warning("java.lang.NullPointerException has not been initialized");
3130       warning("java.lang.ClassCastException has not been initialized");
3131       warning("java.lang.ArrayStoreException has not been initialized");
3132       warning("java.lang.ArithmeticException has not been initialized");
3133       warning("java.lang.StackOverflowError has not been initialized");
3134     }
3135 
3136     if (EnableInvokeDynamic) {
3137       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3138       // the compiler.
3139       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3140     }
3141   }
3142 
3143   // See        : bugid 4211085.
3144   // Background : the static initializer of java.lang.Compiler tries to read
3145   //              property"java.compiler" and read & write property "java.vm.info".
3146   //              When a security manager is installed through the command line
3147   //              option "-Djava.security.manager", the above properties are not
3148   //              readable and the static initializer for java.lang.Compiler fails
3149   //              resulting in a NoClassDefFoundError.  This can happen in any
3150   //              user code which calls methods in java.lang.Compiler.
3151   // Hack :       the hack is to pre-load and initialize this class, so that only
3152   //              system domains are on the stack when the properties are read.
3153   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3154   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3155   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3156   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3157   //              Once that is done, we should remove this hack.
3158   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3159 
3160   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3161   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3162   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3163   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3164   // This should also be taken out as soon as 4211383 gets fixed.
3165   reset_vm_info_property(CHECK_0);
3166 
3167   quicken_jni_functions();
3168 
3169   // Set flag that basic initialization has completed. Used by exceptions and various
3170   // debug stuff, that does not work until all basic classes have been initialized.
3171   set_init_completed();
3172 
3173   HS_DTRACE_PROBE(hotspot, vm__init__end);
3174 
3175   // record VM initialization completion time
3176   Management::record_vm_init_completed();
3177 
3178   // Compute system loader. Note that this has to occur after set_init_completed, since
3179   // valid exceptions may be thrown in the process.
3180   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3181   // set_init_completed has just been called, causing exceptions not to be shortcut
3182   // anymore. We call vm_exit_during_initialization directly instead.
3183   SystemDictionary::compute_java_system_loader(THREAD);
3184   if (HAS_PENDING_EXCEPTION) {
3185     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3186   }
3187 
3188 #ifdef KERNEL
3189   if (JDK_Version::is_gte_jdk17x_version()) {
3190     set_jkernel_boot_classloader_hook(THREAD);
3191   }
3192 #endif // KERNEL
3193 
3194 #ifndef SERIALGC
3195   // Support for ConcurrentMarkSweep. This should be cleaned up
3196   // and better encapsulated. The ugly nested if test would go away
3197   // once things are properly refactored. XXX YSR
3198   if (UseConcMarkSweepGC || UseG1GC) {
3199     if (UseConcMarkSweepGC) {
3200       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3201     } else {
3202       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3203     }
3204     if (HAS_PENDING_EXCEPTION) {
3205       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3206     }
3207   }
3208 #endif // SERIALGC
3209 
3210   // Always call even when there are not JVMTI environments yet, since environments
3211   // may be attached late and JVMTI must track phases of VM execution
3212   JvmtiExport::enter_live_phase();
3213 
3214   // Signal Dispatcher needs to be started before VMInit event is posted
3215   os::signal_init();
3216 
3217   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3218   if (!DisableAttachMechanism) {
3219     if (StartAttachListener || AttachListener::init_at_startup()) {
3220       AttachListener::init();
3221     }
3222   }
3223 
3224   // Launch -Xrun agents
3225   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3226   // back-end can launch with -Xdebug -Xrunjdwp.
3227   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3228     create_vm_init_libraries();
3229   }
3230 
3231   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3232   JvmtiExport::post_vm_initialized();
3233 
3234   Chunk::start_chunk_pool_cleaner_task();
3235 
3236   // initialize compiler(s)
3237   CompileBroker::compilation_init();
3238 
3239   Management::initialize(THREAD);
3240   if (HAS_PENDING_EXCEPTION) {
3241     // management agent fails to start possibly due to
3242     // configuration problem and is responsible for printing
3243     // stack trace if appropriate. Simply exit VM.
3244     vm_exit(1);
3245   }
3246 
3247   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3248   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3249   if (MemProfiling)                   MemProfiler::engage();
3250   StatSampler::engage();
3251   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3252 
3253   BiasedLocking::init();
3254 
3255 
3256   // Start up the WatcherThread if there are any periodic tasks
3257   // NOTE:  All PeriodicTasks should be registered by now. If they
3258   //   aren't, late joiners might appear to start slowly (we might
3259   //   take a while to process their first tick).
3260   if (PeriodicTask::num_tasks() > 0) {
3261     WatcherThread::start();
3262   }
3263 
3264   // Give os specific code one last chance to start
3265   os::init_3();
3266 
3267   create_vm_timer.end();
3268   return JNI_OK;
3269 }
3270 
3271 // type for the Agent_OnLoad and JVM_OnLoad entry points
3272 extern "C" {
3273   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3274 }
3275 // Find a command line agent library and return its entry point for
3276 //         -agentlib:  -agentpath:   -Xrun
3277 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3278 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3279   OnLoadEntry_t on_load_entry = NULL;
3280   void *library = agent->os_lib();  // check if we have looked it up before
3281 
3282   if (library == NULL) {
3283     char buffer[JVM_MAXPATHLEN];
3284     char ebuf[1024];
3285     const char *name = agent->name();
3286     const char *msg = "Could not find agent library ";
3287 
3288     if (agent->is_absolute_path()) {
3289       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3290       if (library == NULL) {
3291         const char *sub_msg = " in absolute path, with error: ";
3292         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3293         char *buf = NEW_C_HEAP_ARRAY(char, len);
3294         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3295         // If we can't find the agent, exit.
3296         vm_exit_during_initialization(buf, NULL);
3297         FREE_C_HEAP_ARRAY(char, buf);
3298       }
3299     } else {
3300       // Try to load the agent from the standard dll directory
3301       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3302       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3303 #ifdef KERNEL
3304       // Download instrument dll
3305       if (library == NULL && strcmp(name, "instrument") == 0) {
3306         char *props = Arguments::get_kernel_properties();
3307         char *home  = Arguments::get_java_home();
3308         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3309                       " sun.jkernel.DownloadManager -download client_jvm";
3310         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3311         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3312         jio_snprintf(cmd, length, fmt, home, props);
3313         int status = os::fork_and_exec(cmd);
3314         FreeHeap(props);
3315         if (status == -1) {
3316           warning(cmd);
3317           vm_exit_during_initialization("fork_and_exec failed: %s",
3318                                          strerror(errno));
3319         }
3320         FREE_C_HEAP_ARRAY(char, cmd);
3321         // when this comes back the instrument.dll should be where it belongs.
3322         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3323       }
3324 #endif // KERNEL
3325       if (library == NULL) { // Try the local directory
3326         char ns[1] = {0};
3327         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3328         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3329         if (library == NULL) {
3330           const char *sub_msg = " on the library path, with error: ";
3331           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3332           char *buf = NEW_C_HEAP_ARRAY(char, len);
3333           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3334           // If we can't find the agent, exit.
3335           vm_exit_during_initialization(buf, NULL);
3336           FREE_C_HEAP_ARRAY(char, buf);
3337         }
3338       }
3339     }
3340     agent->set_os_lib(library);
3341   }
3342 
3343   // Find the OnLoad function.
3344   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3345     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3346     if (on_load_entry != NULL) break;
3347   }
3348   return on_load_entry;
3349 }
3350 
3351 // Find the JVM_OnLoad entry point
3352 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3353   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3354   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3355 }
3356 
3357 // Find the Agent_OnLoad entry point
3358 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3359   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3360   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3361 }
3362 
3363 // For backwards compatibility with -Xrun
3364 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3365 // treated like -agentpath:
3366 // Must be called before agent libraries are created
3367 void Threads::convert_vm_init_libraries_to_agents() {
3368   AgentLibrary* agent;
3369   AgentLibrary* next;
3370 
3371   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3372     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3373     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3374 
3375     // If there is an JVM_OnLoad function it will get called later,
3376     // otherwise see if there is an Agent_OnLoad
3377     if (on_load_entry == NULL) {
3378       on_load_entry = lookup_agent_on_load(agent);
3379       if (on_load_entry != NULL) {
3380         // switch it to the agent list -- so that Agent_OnLoad will be called,
3381         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3382         Arguments::convert_library_to_agent(agent);
3383       } else {
3384         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3385       }
3386     }
3387   }
3388 }
3389 
3390 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3391 // Invokes Agent_OnLoad
3392 // Called very early -- before JavaThreads exist
3393 void Threads::create_vm_init_agents() {
3394   extern struct JavaVM_ main_vm;
3395   AgentLibrary* agent;
3396 
3397   JvmtiExport::enter_onload_phase();
3398   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3399     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3400 
3401     if (on_load_entry != NULL) {
3402       // Invoke the Agent_OnLoad function
3403       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3404       if (err != JNI_OK) {
3405         vm_exit_during_initialization("agent library failed to init", agent->name());
3406       }
3407     } else {
3408       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3409     }
3410   }
3411   JvmtiExport::enter_primordial_phase();
3412 }
3413 
3414 extern "C" {
3415   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3416 }
3417 
3418 void Threads::shutdown_vm_agents() {
3419   // Send any Agent_OnUnload notifications
3420   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3421   extern struct JavaVM_ main_vm;
3422   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3423 
3424     // Find the Agent_OnUnload function.
3425     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3426       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3427                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3428 
3429       // Invoke the Agent_OnUnload function
3430       if (unload_entry != NULL) {
3431         JavaThread* thread = JavaThread::current();
3432         ThreadToNativeFromVM ttn(thread);
3433         HandleMark hm(thread);
3434         (*unload_entry)(&main_vm);
3435         break;
3436       }
3437     }
3438   }
3439 }
3440 
3441 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3442 // Invokes JVM_OnLoad
3443 void Threads::create_vm_init_libraries() {
3444   extern struct JavaVM_ main_vm;
3445   AgentLibrary* agent;
3446 
3447   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3448     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3449 
3450     if (on_load_entry != NULL) {
3451       // Invoke the JVM_OnLoad function
3452       JavaThread* thread = JavaThread::current();
3453       ThreadToNativeFromVM ttn(thread);
3454       HandleMark hm(thread);
3455       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3456       if (err != JNI_OK) {
3457         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3458       }
3459     } else {
3460       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3461     }
3462   }
3463 }
3464 
3465 // Last thread running calls java.lang.Shutdown.shutdown()
3466 void JavaThread::invoke_shutdown_hooks() {
3467   HandleMark hm(this);
3468 
3469   // We could get here with a pending exception, if so clear it now.
3470   if (this->has_pending_exception()) {
3471     this->clear_pending_exception();
3472   }
3473 
3474   EXCEPTION_MARK;
3475   klassOop k =
3476     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3477                                       THREAD);
3478   if (k != NULL) {
3479     // SystemDictionary::resolve_or_null will return null if there was
3480     // an exception.  If we cannot load the Shutdown class, just don't
3481     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3482     // and finalizers (if runFinalizersOnExit is set) won't be run.
3483     // Note that if a shutdown hook was registered or runFinalizersOnExit
3484     // was called, the Shutdown class would have already been loaded
3485     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3486     instanceKlassHandle shutdown_klass (THREAD, k);
3487     JavaValue result(T_VOID);
3488     JavaCalls::call_static(&result,
3489                            shutdown_klass,
3490                            vmSymbolHandles::shutdown_method_name(),
3491                            vmSymbolHandles::void_method_signature(),
3492                            THREAD);
3493   }
3494   CLEAR_PENDING_EXCEPTION;
3495 }
3496 
3497 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3498 // the program falls off the end of main(). Another VM exit path is through
3499 // vm_exit() when the program calls System.exit() to return a value or when
3500 // there is a serious error in VM. The two shutdown paths are not exactly
3501 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3502 // and VM_Exit op at VM level.
3503 //
3504 // Shutdown sequence:
3505 //   + Wait until we are the last non-daemon thread to execute
3506 //     <-- every thing is still working at this moment -->
3507 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3508 //        shutdown hooks, run finalizers if finalization-on-exit
3509 //   + Call before_exit(), prepare for VM exit
3510 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3511 //        currently the only user of this mechanism is File.deleteOnExit())
3512 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3513 //        post thread end and vm death events to JVMTI,
3514 //        stop signal thread
3515 //   + Call JavaThread::exit(), it will:
3516 //      > release JNI handle blocks, remove stack guard pages
3517 //      > remove this thread from Threads list
3518 //     <-- no more Java code from this thread after this point -->
3519 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3520 //     the compiler threads at safepoint
3521 //     <-- do not use anything that could get blocked by Safepoint -->
3522 //   + Disable tracing at JNI/JVM barriers
3523 //   + Set _vm_exited flag for threads that are still running native code
3524 //   + Delete this thread
3525 //   + Call exit_globals()
3526 //      > deletes tty
3527 //      > deletes PerfMemory resources
3528 //   + Return to caller
3529 
3530 bool Threads::destroy_vm() {
3531   JavaThread* thread = JavaThread::current();
3532 
3533   // Wait until we are the last non-daemon thread to execute
3534   { MutexLocker nu(Threads_lock);
3535     while (Threads::number_of_non_daemon_threads() > 1 )
3536       // This wait should make safepoint checks, wait without a timeout,
3537       // and wait as a suspend-equivalent condition.
3538       //
3539       // Note: If the FlatProfiler is running and this thread is waiting
3540       // for another non-daemon thread to finish, then the FlatProfiler
3541       // is waiting for the external suspend request on this thread to
3542       // complete. wait_for_ext_suspend_completion() will eventually
3543       // timeout, but that takes time. Making this wait a suspend-
3544       // equivalent condition solves that timeout problem.
3545       //
3546       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3547                          Mutex::_as_suspend_equivalent_flag);
3548   }
3549 
3550   // Hang forever on exit if we are reporting an error.
3551   if (ShowMessageBoxOnError && is_error_reported()) {
3552     os::infinite_sleep();
3553   }
3554 
3555   if (JDK_Version::is_jdk12x_version()) {
3556     // We are the last thread running, so check if finalizers should be run.
3557     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3558     HandleMark rm(thread);
3559     Universe::run_finalizers_on_exit();
3560   } else {
3561     // run Java level shutdown hooks
3562     thread->invoke_shutdown_hooks();
3563   }
3564 
3565   before_exit(thread);
3566 
3567   thread->exit(true);
3568 
3569   // Stop VM thread.
3570   {
3571     // 4945125 The vm thread comes to a safepoint during exit.
3572     // GC vm_operations can get caught at the safepoint, and the
3573     // heap is unparseable if they are caught. Grab the Heap_lock
3574     // to prevent this. The GC vm_operations will not be able to
3575     // queue until after the vm thread is dead.
3576     MutexLocker ml(Heap_lock);
3577 
3578     VMThread::wait_for_vm_thread_exit();
3579     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3580     VMThread::destroy();
3581   }
3582 
3583   // clean up ideal graph printers
3584 #if defined(COMPILER2) && !defined(PRODUCT)
3585   IdealGraphPrinter::clean_up();
3586 #endif
3587 
3588   // Now, all Java threads are gone except daemon threads. Daemon threads
3589   // running Java code or in VM are stopped by the Safepoint. However,
3590   // daemon threads executing native code are still running.  But they
3591   // will be stopped at native=>Java/VM barriers. Note that we can't
3592   // simply kill or suspend them, as it is inherently deadlock-prone.
3593 
3594 #ifndef PRODUCT
3595   // disable function tracing at JNI/JVM barriers
3596   TraceHPI = false;
3597   TraceJNICalls = false;
3598   TraceJVMCalls = false;
3599   TraceRuntimeCalls = false;
3600 #endif
3601 
3602   VM_Exit::set_vm_exited();
3603 
3604   notify_vm_shutdown();
3605 
3606   delete thread;
3607 
3608   // exit_globals() will delete tty
3609   exit_globals();
3610 
3611   return true;
3612 }
3613 
3614 
3615 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3616   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3617   return is_supported_jni_version(version);
3618 }
3619 
3620 
3621 jboolean Threads::is_supported_jni_version(jint version) {
3622   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3623   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3624   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3625   return JNI_FALSE;
3626 }
3627 
3628 
3629 void Threads::add(JavaThread* p, bool force_daemon) {
3630   // The threads lock must be owned at this point
3631   assert_locked_or_safepoint(Threads_lock);
3632   p->set_next(_thread_list);
3633   _thread_list = p;
3634   _number_of_threads++;
3635   oop threadObj = p->threadObj();
3636   bool daemon = true;
3637   // Bootstrapping problem: threadObj can be null for initial
3638   // JavaThread (or for threads attached via JNI)
3639   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3640     _number_of_non_daemon_threads++;
3641     daemon = false;
3642   }
3643 
3644   ThreadService::add_thread(p, daemon);
3645 
3646   // Possible GC point.
3647   Events::log("Thread added: " INTPTR_FORMAT, p);
3648 }
3649 
3650 void Threads::remove(JavaThread* p) {
3651   // Extra scope needed for Thread_lock, so we can check
3652   // that we do not remove thread without safepoint code notice
3653   { MutexLocker ml(Threads_lock);
3654 
3655     assert(includes(p), "p must be present");
3656 
3657     JavaThread* current = _thread_list;
3658     JavaThread* prev    = NULL;
3659 
3660     while (current != p) {
3661       prev    = current;
3662       current = current->next();
3663     }
3664 
3665     if (prev) {
3666       prev->set_next(current->next());
3667     } else {
3668       _thread_list = p->next();
3669     }
3670     _number_of_threads--;
3671     oop threadObj = p->threadObj();
3672     bool daemon = true;
3673     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3674       _number_of_non_daemon_threads--;
3675       daemon = false;
3676 
3677       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3678       // on destroy_vm will wake up.
3679       if (number_of_non_daemon_threads() == 1)
3680         Threads_lock->notify_all();
3681     }
3682     ThreadService::remove_thread(p, daemon);
3683 
3684     // Make sure that safepoint code disregard this thread. This is needed since
3685     // the thread might mess around with locks after this point. This can cause it
3686     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3687     // of this thread since it is removed from the queue.
3688     p->set_terminated_value();
3689   } // unlock Threads_lock
3690 
3691   // Since Events::log uses a lock, we grab it outside the Threads_lock
3692   Events::log("Thread exited: " INTPTR_FORMAT, p);
3693 }
3694 
3695 // Threads_lock must be held when this is called (or must be called during a safepoint)
3696 bool Threads::includes(JavaThread* p) {
3697   assert(Threads_lock->is_locked(), "sanity check");
3698   ALL_JAVA_THREADS(q) {
3699     if (q == p ) {
3700       return true;
3701     }
3702   }
3703   return false;
3704 }
3705 
3706 // Operations on the Threads list for GC.  These are not explicitly locked,
3707 // but the garbage collector must provide a safe context for them to run.
3708 // In particular, these things should never be called when the Threads_lock
3709 // is held by some other thread. (Note: the Safepoint abstraction also
3710 // uses the Threads_lock to gurantee this property. It also makes sure that
3711 // all threads gets blocked when exiting or starting).
3712 
3713 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3714   ALL_JAVA_THREADS(p) {
3715     p->oops_do(f, cf);
3716   }
3717   VMThread::vm_thread()->oops_do(f, cf);
3718 }
3719 
3720 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3721   // Introduce a mechanism allowing parallel threads to claim threads as
3722   // root groups.  Overhead should be small enough to use all the time,
3723   // even in sequential code.
3724   SharedHeap* sh = SharedHeap::heap();
3725   bool is_par = (sh->n_par_threads() > 0);
3726   int cp = SharedHeap::heap()->strong_roots_parity();
3727   ALL_JAVA_THREADS(p) {
3728     if (p->claim_oops_do(is_par, cp)) {
3729       p->oops_do(f, cf);
3730     }
3731   }
3732   VMThread* vmt = VMThread::vm_thread();
3733   if (vmt->claim_oops_do(is_par, cp))
3734     vmt->oops_do(f, cf);
3735 }
3736 
3737 #ifndef SERIALGC
3738 // Used by ParallelScavenge
3739 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3740   ALL_JAVA_THREADS(p) {
3741     q->enqueue(new ThreadRootsTask(p));
3742   }
3743   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3744 }
3745 
3746 // Used by Parallel Old
3747 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3748   ALL_JAVA_THREADS(p) {
3749     q->enqueue(new ThreadRootsMarkingTask(p));
3750   }
3751   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3752 }
3753 #endif // SERIALGC
3754 
3755 void Threads::nmethods_do(CodeBlobClosure* cf) {
3756   ALL_JAVA_THREADS(p) {
3757     p->nmethods_do(cf);
3758   }
3759   VMThread::vm_thread()->nmethods_do(cf);
3760 }
3761 
3762 void Threads::gc_epilogue() {
3763   ALL_JAVA_THREADS(p) {
3764     p->gc_epilogue();
3765   }
3766 }
3767 
3768 void Threads::gc_prologue() {
3769   ALL_JAVA_THREADS(p) {
3770     p->gc_prologue();
3771   }
3772 }
3773 
3774 void Threads::deoptimized_wrt_marked_nmethods() {
3775   ALL_JAVA_THREADS(p) {
3776     p->deoptimized_wrt_marked_nmethods();
3777   }
3778 }
3779 
3780 
3781 // Get count Java threads that are waiting to enter the specified monitor.
3782 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3783   address monitor, bool doLock) {
3784   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3785     "must grab Threads_lock or be at safepoint");
3786   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3787 
3788   int i = 0;
3789   {
3790     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3791     ALL_JAVA_THREADS(p) {
3792       if (p->is_Compiler_thread()) continue;
3793 
3794       address pending = (address)p->current_pending_monitor();
3795       if (pending == monitor) {             // found a match
3796         if (i < count) result->append(p);   // save the first count matches
3797         i++;
3798       }
3799     }
3800   }
3801   return result;
3802 }
3803 
3804 
3805 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3806   assert(doLock ||
3807          Threads_lock->owned_by_self() ||
3808          SafepointSynchronize::is_at_safepoint(),
3809          "must grab Threads_lock or be at safepoint");
3810 
3811   // NULL owner means not locked so we can skip the search
3812   if (owner == NULL) return NULL;
3813 
3814   {
3815     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3816     ALL_JAVA_THREADS(p) {
3817       // first, see if owner is the address of a Java thread
3818       if (owner == (address)p) return p;
3819     }
3820   }
3821   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3822   if (UseHeavyMonitors) return NULL;
3823 
3824   //
3825   // If we didn't find a matching Java thread and we didn't force use of
3826   // heavyweight monitors, then the owner is the stack address of the
3827   // Lock Word in the owning Java thread's stack.
3828   //
3829   JavaThread* the_owner = NULL;
3830   {
3831     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3832     ALL_JAVA_THREADS(q) {
3833       if (q->is_lock_owned(owner)) {
3834         the_owner = q;
3835         break;
3836       }
3837     }
3838   }
3839   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3840   return the_owner;
3841 }
3842 
3843 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3844 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3845   char buf[32];
3846   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3847 
3848   st->print_cr("Full thread dump %s (%s %s):",
3849                 Abstract_VM_Version::vm_name(),
3850                 Abstract_VM_Version::vm_release(),
3851                 Abstract_VM_Version::vm_info_string()
3852                );
3853   st->cr();
3854 
3855 #ifndef SERIALGC
3856   // Dump concurrent locks
3857   ConcurrentLocksDump concurrent_locks;
3858   if (print_concurrent_locks) {
3859     concurrent_locks.dump_at_safepoint();
3860   }
3861 #endif // SERIALGC
3862 
3863   ALL_JAVA_THREADS(p) {
3864     ResourceMark rm;
3865     p->print_on(st);
3866     if (print_stacks) {
3867       if (internal_format) {
3868         p->trace_stack();
3869       } else {
3870         p->print_stack_on(st);
3871       }
3872     }
3873     st->cr();
3874 #ifndef SERIALGC
3875     if (print_concurrent_locks) {
3876       concurrent_locks.print_locks_on(p, st);
3877     }
3878 #endif // SERIALGC
3879   }
3880 
3881   VMThread::vm_thread()->print_on(st);
3882   st->cr();
3883   Universe::heap()->print_gc_threads_on(st);
3884   WatcherThread* wt = WatcherThread::watcher_thread();
3885   if (wt != NULL) wt->print_on(st);
3886   st->cr();
3887   CompileBroker::print_compiler_threads_on(st);
3888   st->flush();
3889 }
3890 
3891 // Threads::print_on_error() is called by fatal error handler. It's possible
3892 // that VM is not at safepoint and/or current thread is inside signal handler.
3893 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3894 // memory (even in resource area), it might deadlock the error handler.
3895 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3896   bool found_current = false;
3897   st->print_cr("Java Threads: ( => current thread )");
3898   ALL_JAVA_THREADS(thread) {
3899     bool is_current = (current == thread);
3900     found_current = found_current || is_current;
3901 
3902     st->print("%s", is_current ? "=>" : "  ");
3903 
3904     st->print(PTR_FORMAT, thread);
3905     st->print(" ");
3906     thread->print_on_error(st, buf, buflen);
3907     st->cr();
3908   }
3909   st->cr();
3910 
3911   st->print_cr("Other Threads:");
3912   if (VMThread::vm_thread()) {
3913     bool is_current = (current == VMThread::vm_thread());
3914     found_current = found_current || is_current;
3915     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3916 
3917     st->print(PTR_FORMAT, VMThread::vm_thread());
3918     st->print(" ");
3919     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3920     st->cr();
3921   }
3922   WatcherThread* wt = WatcherThread::watcher_thread();
3923   if (wt != NULL) {
3924     bool is_current = (current == wt);
3925     found_current = found_current || is_current;
3926     st->print("%s", is_current ? "=>" : "  ");
3927 
3928     st->print(PTR_FORMAT, wt);
3929     st->print(" ");
3930     wt->print_on_error(st, buf, buflen);
3931     st->cr();
3932   }
3933   if (!found_current) {
3934     st->cr();
3935     st->print("=>" PTR_FORMAT " (exited) ", current);
3936     current->print_on_error(st, buf, buflen);
3937     st->cr();
3938   }
3939 }
3940 
3941 
3942 // Lifecycle management for TSM ParkEvents.
3943 // ParkEvents are type-stable (TSM).
3944 // In our particular implementation they happen to be immortal.
3945 //
3946 // We manage concurrency on the FreeList with a CAS-based
3947 // detach-modify-reattach idiom that avoids the ABA problems
3948 // that would otherwise be present in a simple CAS-based
3949 // push-pop implementation.   (push-one and pop-all)
3950 //
3951 // Caveat: Allocate() and Release() may be called from threads
3952 // other than the thread associated with the Event!
3953 // If we need to call Allocate() when running as the thread in
3954 // question then look for the PD calls to initialize native TLS.
3955 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3956 // accessed by the associated thread.
3957 // See also pd_initialize().
3958 //
3959 // Note that we could defer associating a ParkEvent with a thread
3960 // until the 1st time the thread calls park().  unpark() calls to
3961 // an unprovisioned thread would be ignored.  The first park() call
3962 // for a thread would allocate and associate a ParkEvent and return
3963 // immediately.
3964 
3965 volatile int ParkEvent::ListLock = 0 ;
3966 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3967 
3968 ParkEvent * ParkEvent::Allocate (Thread * t) {
3969   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3970   ParkEvent * ev ;
3971 
3972   // Start by trying to recycle an existing but unassociated
3973   // ParkEvent from the global free list.
3974   for (;;) {
3975     ev = FreeList ;
3976     if (ev == NULL) break ;
3977     // 1: Detach - sequester or privatize the list
3978     // Tantamount to ev = Swap (&FreeList, NULL)
3979     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3980        continue ;
3981     }
3982 
3983     // We've detached the list.  The list in-hand is now
3984     // local to this thread.   This thread can operate on the
3985     // list without risk of interference from other threads.
3986     // 2: Extract -- pop the 1st element from the list.
3987     ParkEvent * List = ev->FreeNext ;
3988     if (List == NULL) break ;
3989     for (;;) {
3990         // 3: Try to reattach the residual list
3991         guarantee (List != NULL, "invariant") ;
3992         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3993         if (Arv == NULL) break ;
3994 
3995         // New nodes arrived.  Try to detach the recent arrivals.
3996         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3997             continue ;
3998         }
3999         guarantee (Arv != NULL, "invariant") ;
4000         // 4: Merge Arv into List
4001         ParkEvent * Tail = List ;
4002         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4003         Tail->FreeNext = Arv ;
4004     }
4005     break ;
4006   }
4007 
4008   if (ev != NULL) {
4009     guarantee (ev->AssociatedWith == NULL, "invariant") ;
4010   } else {
4011     // Do this the hard way -- materialize a new ParkEvent.
4012     // In rare cases an allocating thread might detach a long list --
4013     // installing null into FreeList -- and then stall or be obstructed.
4014     // A 2nd thread calling Allocate() would see FreeList == null.
4015     // The list held privately by the 1st thread is unavailable to the 2nd thread.
4016     // In that case the 2nd thread would have to materialize a new ParkEvent,
4017     // even though free ParkEvents existed in the system.  In this case we end up
4018     // with more ParkEvents in circulation than we need, but the race is
4019     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
4020     // is equal to the maximum # of threads that existed at any one time.
4021     // Because of the race mentioned above, segments of the freelist
4022     // can be transiently inaccessible.  At worst we may end up with the
4023     // # of ParkEvents in circulation slightly above the ideal.
4024     // Note that if we didn't have the TSM/immortal constraint, then
4025     // when reattaching, above, we could trim the list.
4026     ev = new ParkEvent () ;
4027     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
4028   }
4029   ev->reset() ;                     // courtesy to caller
4030   ev->AssociatedWith = t ;          // Associate ev with t
4031   ev->FreeNext       = NULL ;
4032   return ev ;
4033 }
4034 
4035 void ParkEvent::Release (ParkEvent * ev) {
4036   if (ev == NULL) return ;
4037   guarantee (ev->FreeNext == NULL      , "invariant") ;
4038   ev->AssociatedWith = NULL ;
4039   for (;;) {
4040     // Push ev onto FreeList
4041     // The mechanism is "half" lock-free.
4042     ParkEvent * List = FreeList ;
4043     ev->FreeNext = List ;
4044     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
4045   }
4046 }
4047 
4048 // Override operator new and delete so we can ensure that the
4049 // least significant byte of ParkEvent addresses is 0.
4050 // Beware that excessive address alignment is undesirable
4051 // as it can result in D$ index usage imbalance as
4052 // well as bank access imbalance on Niagara-like platforms,
4053 // although Niagara's hash function should help.
4054 
4055 void * ParkEvent::operator new (size_t sz) {
4056   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4057 }
4058 
4059 void ParkEvent::operator delete (void * a) {
4060   // ParkEvents are type-stable and immortal ...
4061   ShouldNotReachHere();
4062 }
4063 
4064 
4065 // 6399321 As a temporary measure we copied & modified the ParkEvent::
4066 // allocate() and release() code for use by Parkers.  The Parker:: forms
4067 // will eventually be removed as we consolide and shift over to ParkEvents
4068 // for both builtin synchronization and JSR166 operations.
4069 
4070 volatile int Parker::ListLock = 0 ;
4071 Parker * volatile Parker::FreeList = NULL ;
4072 
4073 Parker * Parker::Allocate (JavaThread * t) {
4074   guarantee (t != NULL, "invariant") ;
4075   Parker * p ;
4076 
4077   // Start by trying to recycle an existing but unassociated
4078   // Parker from the global free list.
4079   for (;;) {
4080     p = FreeList ;
4081     if (p  == NULL) break ;
4082     // 1: Detach
4083     // Tantamount to p = Swap (&FreeList, NULL)
4084     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4085        continue ;
4086     }
4087 
4088     // We've detached the list.  The list in-hand is now
4089     // local to this thread.   This thread can operate on the
4090     // list without risk of interference from other threads.
4091     // 2: Extract -- pop the 1st element from the list.
4092     Parker * List = p->FreeNext ;
4093     if (List == NULL) break ;
4094     for (;;) {
4095         // 3: Try to reattach the residual list
4096         guarantee (List != NULL, "invariant") ;
4097         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4098         if (Arv == NULL) break ;
4099 
4100         // New nodes arrived.  Try to detach the recent arrivals.
4101         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4102             continue ;
4103         }
4104         guarantee (Arv != NULL, "invariant") ;
4105         // 4: Merge Arv into List
4106         Parker * Tail = List ;
4107         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4108         Tail->FreeNext = Arv ;
4109     }
4110     break ;
4111   }
4112 
4113   if (p != NULL) {
4114     guarantee (p->AssociatedWith == NULL, "invariant") ;
4115   } else {
4116     // Do this the hard way -- materialize a new Parker..
4117     // In rare cases an allocating thread might detach
4118     // a long list -- installing null into FreeList --and
4119     // then stall.  Another thread calling Allocate() would see
4120     // FreeList == null and then invoke the ctor.  In this case we
4121     // end up with more Parkers in circulation than we need, but
4122     // the race is rare and the outcome is benign.
4123     // Ideally, the # of extant Parkers is equal to the
4124     // maximum # of threads that existed at any one time.
4125     // Because of the race mentioned above, segments of the
4126     // freelist can be transiently inaccessible.  At worst
4127     // we may end up with the # of Parkers in circulation
4128     // slightly above the ideal.
4129     p = new Parker() ;
4130   }
4131   p->AssociatedWith = t ;          // Associate p with t
4132   p->FreeNext       = NULL ;
4133   return p ;
4134 }
4135 
4136 
4137 void Parker::Release (Parker * p) {
4138   if (p == NULL) return ;
4139   guarantee (p->AssociatedWith != NULL, "invariant") ;
4140   guarantee (p->FreeNext == NULL      , "invariant") ;
4141   p->AssociatedWith = NULL ;
4142   for (;;) {
4143     // Push p onto FreeList
4144     Parker * List = FreeList ;
4145     p->FreeNext = List ;
4146     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4147   }
4148 }
4149 
4150 void Threads::verify() {
4151   ALL_JAVA_THREADS(p) {
4152     p->verify();
4153   }
4154   VMThread* thread = VMThread::vm_thread();
4155   if (thread != NULL) thread->verify();
4156 }