1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodDataOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/jvmtiThreadState.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/monitorChunk.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/vframe.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "runtime/vframe_hp.hpp"
  40 #include "utilities/events.hpp"
  41 #ifdef COMPILER2
  42 #include "opto/runtime.hpp"
  43 #endif
  44 
  45 
  46 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  47 
  48 void vframeArrayElement::free_monitors(JavaThread* jt) {
  49   if (_monitors != NULL) {
  50      MonitorChunk* chunk = _monitors;
  51      _monitors = NULL;
  52      jt->remove_monitor_chunk(chunk);
  53      delete chunk;
  54   }
  55 }
  56 
  57 void vframeArrayElement::fill_in(compiledVFrame* vf) {
  58 
  59 // Copy the information from the compiled vframe to the
  60 // interpreter frame we will be creating to replace vf
  61 
  62   _method = vf->method();
  63   _bci    = vf->raw_bci();
  64   _reexecute = vf->should_reexecute();
  65 
  66   int index;
  67 
  68   // Get the monitors off-stack
  69 
  70   GrowableArray<MonitorInfo*>* list = vf->monitors();
  71   if (list->is_empty()) {
  72     _monitors = NULL;
  73   } else {
  74 
  75     // Allocate monitor chunk
  76     _monitors = new MonitorChunk(list->length());
  77     vf->thread()->add_monitor_chunk(_monitors);
  78 
  79     // Migrate the BasicLocks from the stack to the monitor chunk
  80     for (index = 0; index < list->length(); index++) {
  81       MonitorInfo* monitor = list->at(index);
  82       assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
  83       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  84       BasicObjectLock* dest = _monitors->at(index);
  85       dest->set_obj(monitor->owner());
  86       monitor->lock()->move_to(monitor->owner(), dest->lock());
  87     }
  88   }
  89 
  90   // Convert the vframe locals and expressions to off stack
  91   // values. Because we will not gc all oops can be converted to
  92   // intptr_t (i.e. a stack slot) and we are fine. This is
  93   // good since we are inside a HandleMark and the oops in our
  94   // collection would go away between packing them here and
  95   // unpacking them in unpack_on_stack.
  96 
  97   // First the locals go off-stack
  98 
  99   // FIXME this seems silly it creates a StackValueCollection
 100   // in order to get the size to then copy them and
 101   // convert the types to intptr_t size slots. Seems like it
 102   // could do it in place... Still uses less memory than the
 103   // old way though
 104 
 105   StackValueCollection *locs = vf->locals();
 106   _locals = new StackValueCollection(locs->size());
 107   for(index = 0; index < locs->size(); index++) {
 108     StackValue* value = locs->at(index);
 109     switch(value->type()) {
 110       case T_OBJECT:
 111         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
 112         // preserve object type
 113         _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
 114         break;
 115       case T_CONFLICT:
 116         // A dead local.  Will be initialized to null/zero.
 117         _locals->add( new StackValue());
 118         break;
 119       case T_INT:
 120         _locals->add( new StackValue(value->get_int()));
 121         break;
 122       default:
 123         ShouldNotReachHere();
 124     }
 125   }
 126 
 127   // Now the expressions off-stack
 128   // Same silliness as above
 129 
 130   StackValueCollection *exprs = vf->expressions();
 131   _expressions = new StackValueCollection(exprs->size());
 132   for(index = 0; index < exprs->size(); index++) {
 133     StackValue* value = exprs->at(index);
 134     switch(value->type()) {
 135       case T_OBJECT:
 136         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
 137         // preserve object type
 138         _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
 139         break;
 140       case T_CONFLICT:
 141         // A dead stack element.  Will be initialized to null/zero.
 142         // This can occur when the compiler emits a state in which stack
 143         // elements are known to be dead (because of an imminent exception).
 144         _expressions->add( new StackValue());
 145         break;
 146       case T_INT:
 147         _expressions->add( new StackValue(value->get_int()));
 148         break;
 149       default:
 150         ShouldNotReachHere();
 151     }
 152   }
 153 }
 154 
 155 int unpack_counter = 0;
 156 
 157 void vframeArrayElement::unpack_on_stack(int callee_parameters,
 158                                          int callee_locals,
 159                                          frame* caller,
 160                                          bool is_top_frame,
 161                                          int exec_mode) {
 162   JavaThread* thread = (JavaThread*) Thread::current();
 163 
 164   // Look at bci and decide on bcp and continuation pc
 165   address bcp;
 166   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 167   // begins execution
 168   address pc;
 169   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 170                              // rather than the one associated with bcp
 171   if (raw_bci() == SynchronizationEntryBCI) {
 172     // We are deoptimizing while hanging in prologue code for synchronized method
 173     bcp = method()->bcp_from(0); // first byte code
 174     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 175   } else if (should_reexecute()) { //reexecute this bytecode
 176     assert(is_top_frame, "reexecute allowed only for the top frame");
 177     bcp = method()->bcp_from(bci());
 178     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 179   } else {
 180     bcp = method()->bcp_from(bci());
 181     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 182     use_next_mdp = true;
 183   }
 184   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 185 
 186   // Monitorenter and pending exceptions:
 187   //
 188   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 189   // because there is no safepoint at the null pointer check (it is either handled explicitly
 190   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 191   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 192   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 193   // the monitorenter to place it in the proper exception range.
 194   //
 195   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 196   // in which case bcp should point to the monitorenter since it is within the exception's range.
 197 
 198   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 199   // TIERED Must know the compiler of the deoptee QQQ
 200   COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
 201                               "shouldn't get exception during monitorenter");)
 202 
 203   int popframe_preserved_args_size_in_bytes = 0;
 204   int popframe_preserved_args_size_in_words = 0;
 205   if (is_top_frame) {
 206     JvmtiThreadState *state = thread->jvmti_thread_state();
 207     if (JvmtiExport::can_pop_frame() &&
 208         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 209       if (thread->has_pending_popframe()) {
 210         // Pop top frame after deoptimization
 211 #ifndef CC_INTERP
 212         pc = Interpreter::remove_activation_preserving_args_entry();
 213 #else
 214         // Do an uncommon trap type entry. c++ interpreter will know
 215         // to pop frame and preserve the args
 216         pc = Interpreter::deopt_entry(vtos, 0);
 217         use_next_mdp = false;
 218 #endif
 219       } else {
 220         // Reexecute invoke in top frame
 221         pc = Interpreter::deopt_entry(vtos, 0);
 222         use_next_mdp = false;
 223         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 224         // Note: the PopFrame-related extension of the expression stack size is done in
 225         // Deoptimization::fetch_unroll_info_helper
 226         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 227       }
 228     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 229       // Force early return from top frame after deoptimization
 230 #ifndef CC_INTERP
 231       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 232 #else
 233      // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
 234 #endif
 235     } else {
 236       // Possibly override the previous pc computation of the top (youngest) frame
 237       switch (exec_mode) {
 238       case Deoptimization::Unpack_deopt:
 239         // use what we've got
 240         break;
 241       case Deoptimization::Unpack_exception:
 242         // exception is pending
 243         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 244         // [phh] We're going to end up in some handler or other, so it doesn't
 245         // matter what mdp we point to.  See exception_handler_for_exception()
 246         // in interpreterRuntime.cpp.
 247         break;
 248       case Deoptimization::Unpack_uncommon_trap:
 249       case Deoptimization::Unpack_reexecute:
 250         // redo last byte code
 251         pc  = Interpreter::deopt_entry(vtos, 0);
 252         use_next_mdp = false;
 253         break;
 254       default:
 255         ShouldNotReachHere();
 256       }
 257     }
 258   }
 259 
 260   // Setup the interpreter frame
 261 
 262   assert(method() != NULL, "method must exist");
 263   int temps = expressions()->size();
 264 
 265   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 266 
 267   Interpreter::layout_activation(method(),
 268                                  temps + callee_parameters,
 269                                  popframe_preserved_args_size_in_words,
 270                                  locks,
 271                                  callee_parameters,
 272                                  callee_locals,
 273                                  caller,
 274                                  iframe(),
 275                                  is_top_frame);
 276 
 277   // Update the pc in the frame object and overwrite the temporary pc
 278   // we placed in the skeletal frame now that we finally know the
 279   // exact interpreter address we should use.
 280 
 281   _frame.patch_pc(thread, pc);
 282 
 283   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
 284 
 285   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 286   for (int index = 0; index < locks; index++) {
 287     top = iframe()->previous_monitor_in_interpreter_frame(top);
 288     BasicObjectLock* src = _monitors->at(index);
 289     top->set_obj(src->obj());
 290     src->lock()->move_to(src->obj(), top->lock());
 291   }
 292   if (ProfileInterpreter) {
 293     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
 294   }
 295   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
 296   if (ProfileInterpreter) {
 297     methodDataOop mdo = method()->method_data();
 298     if (mdo != NULL) {
 299       int bci = iframe()->interpreter_frame_bci();
 300       if (use_next_mdp) ++bci;
 301       address mdp = mdo->bci_to_dp(bci);
 302       iframe()->interpreter_frame_set_mdp(mdp);
 303     }
 304   }
 305 
 306   // Unpack expression stack
 307   // If this is an intermediate frame (i.e. not top frame) then this
 308   // only unpacks the part of the expression stack not used by callee
 309   // as parameters. The callee parameters are unpacked as part of the
 310   // callee locals.
 311   int i;
 312   for(i = 0; i < expressions()->size(); i++) {
 313     StackValue *value = expressions()->at(i);
 314     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 315     switch(value->type()) {
 316       case T_INT:
 317         *addr = value->get_int();
 318         break;
 319       case T_OBJECT:
 320         *addr = value->get_int(T_OBJECT);
 321         break;
 322       case T_CONFLICT:
 323         // A dead stack slot.  Initialize to null in case it is an oop.
 324         *addr = NULL_WORD;
 325         break;
 326       default:
 327         ShouldNotReachHere();
 328     }
 329   }
 330 
 331 
 332   // Unpack the locals
 333   for(i = 0; i < locals()->size(); i++) {
 334     StackValue *value = locals()->at(i);
 335     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 336     switch(value->type()) {
 337       case T_INT:
 338         *addr = value->get_int();
 339         break;
 340       case T_OBJECT:
 341         *addr = value->get_int(T_OBJECT);
 342         break;
 343       case T_CONFLICT:
 344         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 345         *addr = NULL_WORD;
 346         break;
 347       default:
 348         ShouldNotReachHere();
 349     }
 350   }
 351 
 352   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 353     // An interpreted frame was popped but it returns to a deoptimized
 354     // frame. The incoming arguments to the interpreted activation
 355     // were preserved in thread-local storage by the
 356     // remove_activation_preserving_args_entry in the interpreter; now
 357     // we put them back into the just-unpacked interpreter frame.
 358     // Note that this assumes that the locals arena grows toward lower
 359     // addresses.
 360     if (popframe_preserved_args_size_in_words != 0) {
 361       void* saved_args = thread->popframe_preserved_args();
 362       assert(saved_args != NULL, "must have been saved by interpreter");
 363 #ifdef ASSERT
 364       assert(popframe_preserved_args_size_in_words <=
 365              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 366              "expression stack size should have been extended");
 367 #endif // ASSERT
 368       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 369       intptr_t* base;
 370       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 371         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 372       } else {
 373         base = iframe()->interpreter_frame_expression_stack();
 374       }
 375       Copy::conjoint_jbytes(saved_args,
 376                             base,
 377                             popframe_preserved_args_size_in_bytes);
 378       thread->popframe_free_preserved_args();
 379     }
 380   }
 381 
 382 #ifndef PRODUCT
 383   if (TraceDeoptimization && Verbose) {
 384     ttyLocker ttyl;
 385     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 386     iframe()->print_on(tty);
 387     RegisterMap map(thread);
 388     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 389     f->print();
 390 
 391     tty->print_cr("locals size     %d", locals()->size());
 392     tty->print_cr("expression size %d", expressions()->size());
 393 
 394     method()->print_value();
 395     tty->cr();
 396     // method()->print_codes();
 397   } else if (TraceDeoptimization) {
 398     tty->print("     ");
 399     method()->print_value();
 400     Bytecodes::Code code = Bytecodes::java_code_at(bcp);
 401     int bci = method()->bci_from(bcp);
 402     tty->print(" - %s", Bytecodes::name(code));
 403     tty->print(" @ bci %d ", bci);
 404     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 405   }
 406 #endif // PRODUCT
 407 
 408   // The expression stack and locals are in the resource area don't leave
 409   // a dangling pointer in the vframeArray we leave around for debug
 410   // purposes
 411 
 412   _locals = _expressions = NULL;
 413 
 414 }
 415 
 416 int vframeArrayElement::on_stack_size(int callee_parameters,
 417                                       int callee_locals,
 418                                       bool is_top_frame,
 419                                       int popframe_extra_stack_expression_els) const {
 420   assert(method()->max_locals() == locals()->size(), "just checking");
 421   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 422   int temps = expressions()->size();
 423   return Interpreter::size_activation(method(),
 424                                       temps + callee_parameters,
 425                                       popframe_extra_stack_expression_els,
 426                                       locks,
 427                                       callee_parameters,
 428                                       callee_locals,
 429                                       is_top_frame);
 430 }
 431 
 432 
 433 
 434 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 435                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
 436 
 437   // Allocate the vframeArray
 438   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 439                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 440                                                      "vframeArray::allocate");
 441   result->_frames = chunk->length();
 442   result->_owner_thread = thread;
 443   result->_sender = sender;
 444   result->_caller = caller;
 445   result->_original = self;
 446   result->set_unroll_block(NULL); // initialize it
 447   result->fill_in(thread, frame_size, chunk, reg_map);
 448   return result;
 449 }
 450 
 451 void vframeArray::fill_in(JavaThread* thread,
 452                           int frame_size,
 453                           GrowableArray<compiledVFrame*>* chunk,
 454                           const RegisterMap *reg_map) {
 455   // Set owner first, it is used when adding monitor chunks
 456 
 457   _frame_size = frame_size;
 458   for(int i = 0; i < chunk->length(); i++) {
 459     element(i)->fill_in(chunk->at(i));
 460   }
 461 
 462   // Copy registers for callee-saved registers
 463   if (reg_map != NULL) {
 464     for(int i = 0; i < RegisterMap::reg_count; i++) {
 465 #ifdef AMD64
 466       // The register map has one entry for every int (32-bit value), so
 467       // 64-bit physical registers have two entries in the map, one for
 468       // each half.  Ignore the high halves of 64-bit registers, just like
 469       // frame::oopmapreg_to_location does.
 470       //
 471       // [phh] FIXME: this is a temporary hack!  This code *should* work
 472       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 473       // in frame_amd64.cpp and the values of the phantom high half registers
 474       // in amd64.ad.
 475       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 476         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 477         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 478         //      } else {
 479         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 480         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 481         //      }
 482 #else
 483       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 484       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 485 #endif
 486       if (src == NULL) {
 487         set_location_valid(i, false);
 488       } else {
 489         set_location_valid(i, true);
 490         jint* dst = (jint*) register_location(i);
 491         *dst = *src;
 492       }
 493     }
 494   }
 495 }
 496 
 497 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
 498   // stack picture
 499   //   unpack_frame
 500   //   [new interpreter frames ] (frames are skeletal but walkable)
 501   //   caller_frame
 502   //
 503   //  This routine fills in the missing data for the skeletal interpreter frames
 504   //  in the above picture.
 505 
 506   // Find the skeletal interpreter frames to unpack into
 507   RegisterMap map(JavaThread::current(), false);
 508   // Get the youngest frame we will unpack (last to be unpacked)
 509   frame me = unpack_frame.sender(&map);
 510   int index;
 511   for (index = 0; index < frames(); index++ ) {
 512     *element(index)->iframe() = me;
 513     // Get the caller frame (possibly skeletal)
 514     me = me.sender(&map);
 515   }
 516 
 517   frame caller_frame = me;
 518 
 519   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 520 
 521   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 522 
 523   for (index = frames() - 1; index >= 0 ; index--) {
 524     int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
 525     int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
 526     element(index)->unpack_on_stack(callee_parameters,
 527                                     callee_locals,
 528                                     &caller_frame,
 529                                     index == 0,
 530                                     exec_mode);
 531     if (index == frames() - 1) {
 532       Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
 533     }
 534     caller_frame = *element(index)->iframe();
 535   }
 536 
 537 
 538   deallocate_monitor_chunks();
 539 }
 540 
 541 void vframeArray::deallocate_monitor_chunks() {
 542   JavaThread* jt = JavaThread::current();
 543   for (int index = 0; index < frames(); index++ ) {
 544      element(index)->free_monitors(jt);
 545   }
 546 }
 547 
 548 #ifndef PRODUCT
 549 
 550 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 551   if (owner_thread() != thread) return false;
 552   int index = 0;
 553 #if 0 // FIXME can't do this comparison
 554 
 555   // Compare only within vframe array.
 556   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 557     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 558     index++;
 559   }
 560   if (index != chunk->length()) return false;
 561 #endif
 562 
 563   return true;
 564 }
 565 
 566 #endif
 567 
 568 address vframeArray::register_location(int i) const {
 569   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 570   return (address) & _callee_registers[i];
 571 }
 572 
 573 
 574 #ifndef PRODUCT
 575 
 576 // Printing
 577 
 578 // Note: we cannot have print_on as const, as we allocate inside the method
 579 void vframeArray::print_on_2(outputStream* st)  {
 580   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 581   st->print(" - thread: ");
 582   Thread::current()->print();
 583   st->print_cr(" - frame size: %d", frame_size());
 584   for (int index = 0; index < frames() ; index++ ) {
 585     element(index)->print(st);
 586   }
 587 }
 588 
 589 void vframeArrayElement::print(outputStream* st) {
 590   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 591 }
 592 
 593 void vframeArray::print_value_on(outputStream* st) const {
 594   st->print_cr("vframeArray [%d] ", frames());
 595 }
 596 
 597 
 598 #endif