1 /*
   2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
  26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "runtime/mutex.hpp"
  31 #ifdef TARGET_OS_ARCH_linux_x86
  32 # include "orderAccess_linux_x86.inline.hpp"
  33 #endif
  34 #ifdef TARGET_OS_ARCH_linux_sparc
  35 # include "orderAccess_linux_sparc.inline.hpp"
  36 #endif
  37 #ifdef TARGET_OS_ARCH_linux_zero
  38 # include "orderAccess_linux_zero.inline.hpp"
  39 #endif
  40 #ifdef TARGET_OS_ARCH_solaris_x86
  41 # include "orderAccess_solaris_x86.inline.hpp"
  42 #endif
  43 #ifdef TARGET_OS_ARCH_solaris_sparc
  44 # include "orderAccess_solaris_sparc.inline.hpp"
  45 #endif
  46 #ifdef TARGET_OS_ARCH_windows_x86
  47 # include "orderAccess_windows_x86.inline.hpp"
  48 #endif
  49 
  50 // Simple TaskQueue stats that are collected by default in debug builds.
  51 
  52 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  53 #define TASKQUEUE_STATS 1
  54 #elif !defined(TASKQUEUE_STATS)
  55 #define TASKQUEUE_STATS 0
  56 #endif
  57 
  58 #if TASKQUEUE_STATS
  59 #define TASKQUEUE_STATS_ONLY(code) code
  60 #else
  61 #define TASKQUEUE_STATS_ONLY(code)
  62 #endif // TASKQUEUE_STATS
  63 
  64 #if TASKQUEUE_STATS
  65 class TaskQueueStats {
  66 public:
  67   enum StatId {
  68     push,             // number of taskqueue pushes
  69     pop,              // number of taskqueue pops
  70     pop_slow,         // subset of taskqueue pops that were done slow-path
  71     steal_attempt,    // number of taskqueue steal attempts
  72     steal,            // number of taskqueue steals
  73     overflow,         // number of overflow pushes
  74     overflow_max_len, // max length of overflow stack
  75     last_stat_id
  76   };
  77 
  78 public:
  79   inline TaskQueueStats()       { reset(); }
  80 
  81   inline void record_push()     { ++_stats[push]; }
  82   inline void record_pop()      { ++_stats[pop]; }
  83   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  84   inline void record_steal(bool success);
  85   inline void record_overflow(size_t new_length);
  86 
  87   TaskQueueStats & operator +=(const TaskQueueStats & addend);
  88 
  89   inline size_t get(StatId id) const { return _stats[id]; }
  90   inline const size_t* get() const   { return _stats; }
  91 
  92   inline void reset();
  93 
  94   // Print the specified line of the header (does not include a line separator).
  95   static void print_header(unsigned int line, outputStream* const stream = tty,
  96                            unsigned int width = 10);
  97   // Print the statistics (does not include a line separator).
  98   void print(outputStream* const stream = tty, unsigned int width = 10) const;
  99 
 100   DEBUG_ONLY(void verify() const;)
 101 
 102 private:
 103   size_t                    _stats[last_stat_id];
 104   static const char * const _names[last_stat_id];
 105 };
 106 
 107 void TaskQueueStats::record_steal(bool success) {
 108   ++_stats[steal_attempt];
 109   if (success) ++_stats[steal];
 110 }
 111 
 112 void TaskQueueStats::record_overflow(size_t new_len) {
 113   ++_stats[overflow];
 114   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
 115 }
 116 
 117 void TaskQueueStats::reset() {
 118   memset(_stats, 0, sizeof(_stats));
 119 }
 120 #endif // TASKQUEUE_STATS
 121 
 122 template <unsigned int N>
 123 class TaskQueueSuper: public CHeapObj {
 124 protected:
 125   // Internal type for indexing the queue; also used for the tag.
 126   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 127 
 128   // The first free element after the last one pushed (mod N).
 129   volatile uint _bottom;
 130 
 131   enum { MOD_N_MASK = N - 1 };
 132 
 133   class Age {
 134   public:
 135     Age(size_t data = 0)         { _data = data; }
 136     Age(const Age& age)          { _data = age._data; }
 137     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 138 
 139     Age   get()        const volatile { return _data; }
 140     void  set(Age age) volatile       { _data = age._data; }
 141 
 142     idx_t top()        const volatile { return _fields._top; }
 143     idx_t tag()        const volatile { return _fields._tag; }
 144 
 145     // Increment top; if it wraps, increment tag also.
 146     void increment() {
 147       _fields._top = increment_index(_fields._top);
 148       if (_fields._top == 0) ++_fields._tag;
 149     }
 150 
 151     Age cmpxchg(const Age new_age, const Age old_age) volatile {
 152       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 153                                           (volatile intptr_t *)&_data,
 154                                           (intptr_t)old_age._data);
 155     }
 156 
 157     bool operator ==(const Age& other) const { return _data == other._data; }
 158 
 159   private:
 160     struct fields {
 161       idx_t _top;
 162       idx_t _tag;
 163     };
 164     union {
 165       size_t _data;
 166       fields _fields;
 167     };
 168   };
 169 
 170   volatile Age _age;
 171 
 172   // These both operate mod N.
 173   static uint increment_index(uint ind) {
 174     return (ind + 1) & MOD_N_MASK;
 175   }
 176   static uint decrement_index(uint ind) {
 177     return (ind - 1) & MOD_N_MASK;
 178   }
 179 
 180   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 181   // interpreted as 0.
 182   uint dirty_size(uint bot, uint top) const {
 183     return (bot - top) & MOD_N_MASK;
 184   }
 185 
 186   // Returns the size corresponding to the given "bot" and "top".
 187   uint size(uint bot, uint top) const {
 188     uint sz = dirty_size(bot, top);
 189     // Has the queue "wrapped", so that bottom is less than top?  There's a
 190     // complicated special case here.  A pair of threads could perform pop_local
 191     // and pop_global operations concurrently, starting from a state in which
 192     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 193     // and the pop_global in incrementing _top (in which case the pop_global
 194     // will be awarded the contested queue element.)  The resulting state must
 195     // be interpreted as an empty queue.  (We only need to worry about one such
 196     // event: only the queue owner performs pop_local's, and several concurrent
 197     // threads attempting to perform the pop_global will all perform the same
 198     // CAS, and only one can succeed.)  Any stealing thread that reads after
 199     // either the increment or decrement will see an empty queue, and will not
 200     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 201     // modified by concurrent queues, so the owner thread can reset the state to
 202     // _bottom == top so subsequent pushes will be performed normally.
 203     return (sz == N - 1) ? 0 : sz;
 204   }
 205 
 206 public:
 207   TaskQueueSuper() : _bottom(0), _age() {}
 208 
 209   // Return true if the TaskQueue contains/does not contain any tasks.
 210   bool peek()     const { return _bottom != _age.top(); }
 211   bool is_empty() const { return size() == 0; }
 212 
 213   // Return an estimate of the number of elements in the queue.
 214   // The "careful" version admits the possibility of pop_local/pop_global
 215   // races.
 216   uint size() const {
 217     return size(_bottom, _age.top());
 218   }
 219 
 220   uint dirty_size() const {
 221     return dirty_size(_bottom, _age.top());
 222   }
 223 
 224   void set_empty() {
 225     _bottom = 0;
 226     _age.set(0);
 227   }
 228 
 229   // Maximum number of elements allowed in the queue.  This is two less
 230   // than the actual queue size, for somewhat complicated reasons.
 231   uint max_elems() const { return N - 2; }
 232 
 233   // Total size of queue.
 234   static const uint total_size() { return N; }
 235 
 236   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 237 };
 238 
 239 template<class E, unsigned int N = TASKQUEUE_SIZE>
 240 class GenericTaskQueue: public TaskQueueSuper<N> {
 241 protected:
 242   typedef typename TaskQueueSuper<N>::Age Age;
 243   typedef typename TaskQueueSuper<N>::idx_t idx_t;
 244 
 245   using TaskQueueSuper<N>::_bottom;
 246   using TaskQueueSuper<N>::_age;
 247   using TaskQueueSuper<N>::increment_index;
 248   using TaskQueueSuper<N>::decrement_index;
 249   using TaskQueueSuper<N>::dirty_size;
 250 
 251 public:
 252   using TaskQueueSuper<N>::max_elems;
 253   using TaskQueueSuper<N>::size;
 254   TASKQUEUE_STATS_ONLY(using TaskQueueSuper<N>::stats;)
 255 
 256 private:
 257   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 258   bool push_slow(E t, uint dirty_n_elems);
 259   bool pop_local_slow(uint localBot, Age oldAge);
 260 
 261 public:
 262   typedef E element_type;
 263 
 264   // Initializes the queue to empty.
 265   GenericTaskQueue();
 266 
 267   void initialize();
 268 
 269   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 270   inline bool push(E t);
 271 
 272   // Attempts to claim a task from the "local" end of the queue (the most
 273   // recently pushed).  If successful, returns true and sets t to the task;
 274   // otherwise, returns false (the queue is empty).
 275   inline bool pop_local(E& t);
 276 
 277   // Like pop_local(), but uses the "global" end of the queue (the least
 278   // recently pushed).
 279   bool pop_global(E& t);
 280 
 281   // Delete any resource associated with the queue.
 282   ~GenericTaskQueue();
 283 
 284   // apply the closure to all elements in the task queue
 285   void oops_do(OopClosure* f);
 286 
 287 private:
 288   // Element array.
 289   volatile E* _elems;
 290 };
 291 
 292 template<class E, unsigned int N>
 293 GenericTaskQueue<E, N>::GenericTaskQueue() {
 294   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 295 }
 296 
 297 template<class E, unsigned int N>
 298 void GenericTaskQueue<E, N>::initialize() {
 299   _elems = NEW_C_HEAP_ARRAY(E, N);
 300 }
 301 
 302 template<class E, unsigned int N>
 303 void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
 304   // tty->print_cr("START OopTaskQueue::oops_do");
 305   uint iters = size();
 306   uint index = _bottom;
 307   for (uint i = 0; i < iters; ++i) {
 308     index = decrement_index(index);
 309     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
 310     //            index, &_elems[index], _elems[index]);
 311     E* t = (E*)&_elems[index];      // cast away volatility
 312     oop* p = (oop*)t;
 313     assert((*t)->is_oop_or_null(), "Not an oop or null");
 314     f->do_oop(p);
 315   }
 316   // tty->print_cr("END OopTaskQueue::oops_do");
 317 }
 318 
 319 template<class E, unsigned int N>
 320 bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
 321   if (dirty_n_elems == N - 1) {
 322     // Actually means 0, so do the push.
 323     uint localBot = _bottom;
 324     // g++ complains if the volatile result of the assignment is unused.
 325     const_cast<E&>(_elems[localBot] = t);
 326     OrderAccess::release_store(&_bottom, increment_index(localBot));
 327     TASKQUEUE_STATS_ONLY(stats.record_push());
 328     return true;
 329   }
 330   return false;
 331 }
 332 
 333 template<class E, unsigned int N>
 334 bool GenericTaskQueue<E, N>::pop_local_slow(uint localBot, Age oldAge) {
 335   // This queue was observed to contain exactly one element; either this
 336   // thread will claim it, or a competing "pop_global".  In either case,
 337   // the queue will be logically empty afterwards.  Create a new Age value
 338   // that represents the empty queue for the given value of "_bottom".  (We
 339   // must also increment "tag" because of the case where "bottom == 1",
 340   // "top == 0".  A pop_global could read the queue element in that case,
 341   // then have the owner thread do a pop followed by another push.  Without
 342   // the incrementing of "tag", the pop_global's CAS could succeed,
 343   // allowing it to believe it has claimed the stale element.)
 344   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 345   // Perhaps a competing pop_global has already incremented "top", in which
 346   // case it wins the element.
 347   if (localBot == oldAge.top()) {
 348     // No competing pop_global has yet incremented "top"; we'll try to
 349     // install new_age, thus claiming the element.
 350     Age tempAge = _age.cmpxchg(newAge, oldAge);
 351     if (tempAge == oldAge) {
 352       // We win.
 353       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 354       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 355       return true;
 356     }
 357   }
 358   // We lose; a completing pop_global gets the element.  But the queue is empty
 359   // and top is greater than bottom.  Fix this representation of the empty queue
 360   // to become the canonical one.
 361   _age.set(newAge);
 362   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 363   return false;
 364 }
 365 
 366 template<class E, unsigned int N>
 367 bool GenericTaskQueue<E, N>::pop_global(E& t) {
 368   Age oldAge = _age.get();
 369   uint localBot = _bottom;
 370   uint n_elems = size(localBot, oldAge.top());
 371   if (n_elems == 0) {
 372     return false;
 373   }
 374 
 375   const_cast<E&>(t = _elems[oldAge.top()]);
 376   Age newAge(oldAge);
 377   newAge.increment();
 378   Age resAge = _age.cmpxchg(newAge, oldAge);
 379 
 380   // Note that using "_bottom" here might fail, since a pop_local might
 381   // have decremented it.
 382   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 383   return resAge == oldAge;
 384 }
 385 
 386 template<class E, unsigned int N>
 387 GenericTaskQueue<E, N>::~GenericTaskQueue() {
 388   FREE_C_HEAP_ARRAY(E, _elems);
 389 }
 390 
 391 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 392 // elements that do not fit in the TaskQueue.
 393 //
 394 // Three methods from super classes are overridden:
 395 //
 396 // initialize() - initialize the super classes and create the overflow stack
 397 // push() - push onto the task queue or, if that fails, onto the overflow stack
 398 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 399 //
 400 // Note that size() is not overridden--it returns the number of elements in the
 401 // TaskQueue, and does not include the size of the overflow stack.  This
 402 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 403 template<class E, unsigned int N = TASKQUEUE_SIZE>
 404 class OverflowTaskQueue: public GenericTaskQueue<E, N>
 405 {
 406 public:
 407   typedef GrowableArray<E>       overflow_t;
 408   typedef GenericTaskQueue<E, N> taskqueue_t;
 409 
 410   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 411 
 412   OverflowTaskQueue();
 413   ~OverflowTaskQueue();
 414   void initialize();
 415 
 416   inline overflow_t* overflow_stack() const { return _overflow_stack; }
 417 
 418   // Push task t onto the queue or onto the overflow stack.  Return true.
 419   inline bool push(E t);
 420 
 421   // Attempt to pop from the overflow stack; return true if anything was popped.
 422   inline bool pop_overflow(E& t);
 423 
 424   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 425   inline bool overflow_empty()  const { return overflow_stack()->is_empty(); }
 426   inline bool is_empty()        const {
 427     return taskqueue_empty() && overflow_empty();
 428   }
 429 
 430 private:
 431   overflow_t* _overflow_stack;
 432 };
 433 
 434 template <class E, unsigned int N>
 435 OverflowTaskQueue<E, N>::OverflowTaskQueue()
 436 {
 437   _overflow_stack = NULL;
 438 }
 439 
 440 template <class E, unsigned int N>
 441 OverflowTaskQueue<E, N>::~OverflowTaskQueue()
 442 {
 443   if (_overflow_stack != NULL) {
 444     delete _overflow_stack;
 445     _overflow_stack = NULL;
 446   }
 447 }
 448 
 449 template <class E, unsigned int N>
 450 void OverflowTaskQueue<E, N>::initialize()
 451 {
 452   taskqueue_t::initialize();
 453   assert(_overflow_stack == NULL, "memory leak");
 454   _overflow_stack = new (ResourceObj::C_HEAP) GrowableArray<E>(10, true);
 455 }
 456 
 457 template <class E, unsigned int N>
 458 bool OverflowTaskQueue<E, N>::push(E t)
 459 {
 460   if (!taskqueue_t::push(t)) {
 461     overflow_stack()->push(t);
 462     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->length()));
 463   }
 464   return true;
 465 }
 466 
 467 template <class E, unsigned int N>
 468 bool OverflowTaskQueue<E, N>::pop_overflow(E& t)
 469 {
 470   if (overflow_empty()) return false;
 471   t = overflow_stack()->pop();
 472   return true;
 473 }
 474 
 475 class TaskQueueSetSuper: public CHeapObj {
 476 protected:
 477   static int randomParkAndMiller(int* seed0);
 478 public:
 479   // Returns "true" if some TaskQueue in the set contains a task.
 480   virtual bool peek() = 0;
 481 };
 482 
 483 template<class T>
 484 class GenericTaskQueueSet: public TaskQueueSetSuper {
 485 private:
 486   uint _n;
 487   T** _queues;
 488 
 489 public:
 490   typedef typename T::element_type E;
 491 
 492   GenericTaskQueueSet(int n) : _n(n) {
 493     typedef T* GenericTaskQueuePtr;
 494     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
 495     for (int i = 0; i < n; i++) {
 496       _queues[i] = NULL;
 497     }
 498   }
 499 
 500   bool steal_1_random(uint queue_num, int* seed, E& t);
 501   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 502   bool steal_best_of_all(uint queue_num, int* seed, E& t);
 503 
 504   void register_queue(uint i, T* q);
 505 
 506   T* queue(uint n);
 507 
 508   // The thread with queue number "queue_num" (and whose random number seed is
 509   // at "seed") is trying to steal a task from some other queue.  (It may try
 510   // several queues, according to some configuration parameter.)  If some steal
 511   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 512   // false.
 513   bool steal(uint queue_num, int* seed, E& t);
 514 
 515   bool peek();
 516 };
 517 
 518 template<class T> void
 519 GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
 520   assert(i < _n, "index out of range.");
 521   _queues[i] = q;
 522 }
 523 
 524 template<class T> T*
 525 GenericTaskQueueSet<T>::queue(uint i) {
 526   return _queues[i];
 527 }
 528 
 529 template<class T> bool
 530 GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
 531   for (uint i = 0; i < 2 * _n; i++) {
 532     if (steal_best_of_2(queue_num, seed, t)) {
 533       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 534       return true;
 535     }
 536   }
 537   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 538   return false;
 539 }
 540 
 541 template<class T> bool
 542 GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
 543   if (_n > 2) {
 544     int best_k;
 545     uint best_sz = 0;
 546     for (uint k = 0; k < _n; k++) {
 547       if (k == queue_num) continue;
 548       uint sz = _queues[k]->size();
 549       if (sz > best_sz) {
 550         best_sz = sz;
 551         best_k = k;
 552       }
 553     }
 554     return best_sz > 0 && _queues[best_k]->pop_global(t);
 555   } else if (_n == 2) {
 556     // Just try the other one.
 557     int k = (queue_num + 1) % 2;
 558     return _queues[k]->pop_global(t);
 559   } else {
 560     assert(_n == 1, "can't be zero.");
 561     return false;
 562   }
 563 }
 564 
 565 template<class T> bool
 566 GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
 567   if (_n > 2) {
 568     uint k = queue_num;
 569     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
 570     return _queues[2]->pop_global(t);
 571   } else if (_n == 2) {
 572     // Just try the other one.
 573     int k = (queue_num + 1) % 2;
 574     return _queues[k]->pop_global(t);
 575   } else {
 576     assert(_n == 1, "can't be zero.");
 577     return false;
 578   }
 579 }
 580 
 581 template<class T> bool
 582 GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 583   if (_n > 2) {
 584     uint k1 = queue_num;
 585     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
 586     uint k2 = queue_num;
 587     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
 588     // Sample both and try the larger.
 589     uint sz1 = _queues[k1]->size();
 590     uint sz2 = _queues[k2]->size();
 591     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 592     else return _queues[k1]->pop_global(t);
 593   } else if (_n == 2) {
 594     // Just try the other one.
 595     uint k = (queue_num + 1) % 2;
 596     return _queues[k]->pop_global(t);
 597   } else {
 598     assert(_n == 1, "can't be zero.");
 599     return false;
 600   }
 601 }
 602 
 603 template<class T>
 604 bool GenericTaskQueueSet<T>::peek() {
 605   // Try all the queues.
 606   for (uint j = 0; j < _n; j++) {
 607     if (_queues[j]->peek())
 608       return true;
 609   }
 610   return false;
 611 }
 612 
 613 // When to terminate from the termination protocol.
 614 class TerminatorTerminator: public CHeapObj {
 615 public:
 616   virtual bool should_exit_termination() = 0;
 617 };
 618 
 619 // A class to aid in the termination of a set of parallel tasks using
 620 // TaskQueueSet's for work stealing.
 621 
 622 #undef TRACESPINNING
 623 
 624 class ParallelTaskTerminator: public StackObj {
 625 private:
 626   int _n_threads;
 627   TaskQueueSetSuper* _queue_set;
 628   int _offered_termination;
 629 
 630 #ifdef TRACESPINNING
 631   static uint _total_yields;
 632   static uint _total_spins;
 633   static uint _total_peeks;
 634 #endif
 635 
 636   bool peek_in_queue_set();
 637 protected:
 638   virtual void yield();
 639   void sleep(uint millis);
 640 
 641 public:
 642 
 643   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 644   // queue sets of work queues of other threads.
 645   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
 646 
 647   // The current thread has no work, and is ready to terminate if everyone
 648   // else is.  If returns "true", all threads are terminated.  If returns
 649   // "false", available work has been observed in one of the task queues,
 650   // so the global task is not complete.
 651   bool offer_termination() {
 652     return offer_termination(NULL);
 653   }
 654 
 655   // As above, but it also terminates if the should_exit_termination()
 656   // method of the terminator parameter returns true. If terminator is
 657   // NULL, then it is ignored.
 658   bool offer_termination(TerminatorTerminator* terminator);
 659 
 660   // Reset the terminator, so that it may be reused again.
 661   // The caller is responsible for ensuring that this is done
 662   // in an MT-safe manner, once the previous round of use of
 663   // the terminator is finished.
 664   void reset_for_reuse();
 665 
 666 #ifdef TRACESPINNING
 667   static uint total_yields() { return _total_yields; }
 668   static uint total_spins() { return _total_spins; }
 669   static uint total_peeks() { return _total_peeks; }
 670   static void print_termination_counts();
 671 #endif
 672 };
 673 
 674 template<class E, unsigned int N> inline bool
 675 GenericTaskQueue<E, N>::push(E t) {
 676   uint localBot = _bottom;
 677   assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
 678   idx_t top = _age.top();
 679   uint dirty_n_elems = dirty_size(localBot, top);
 680   assert(dirty_n_elems < N, "n_elems out of range.");
 681   if (dirty_n_elems < max_elems()) {
 682     // g++ complains if the volatile result of the assignment is unused.
 683     const_cast<E&>(_elems[localBot] = t);
 684     OrderAccess::release_store(&_bottom, increment_index(localBot));
 685     TASKQUEUE_STATS_ONLY(stats.record_push());
 686     return true;
 687   } else {
 688     return push_slow(t, dirty_n_elems);
 689   }
 690 }
 691 
 692 template<class E, unsigned int N> inline bool
 693 GenericTaskQueue<E, N>::pop_local(E& t) {
 694   uint localBot = _bottom;
 695   // This value cannot be N-1.  That can only occur as a result of
 696   // the assignment to bottom in this method.  If it does, this method
 697   // resets the size to 0 before the next call (which is sequential,
 698   // since this is pop_local.)
 699   uint dirty_n_elems = dirty_size(localBot, _age.top());
 700   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 701   if (dirty_n_elems == 0) return false;
 702   localBot = decrement_index(localBot);
 703   _bottom = localBot;
 704   // This is necessary to prevent any read below from being reordered
 705   // before the store just above.
 706   OrderAccess::fence();
 707   const_cast<E&>(t = _elems[localBot]);
 708   // This is a second read of "age"; the "size()" above is the first.
 709   // If there's still at least one element in the queue, based on the
 710   // "_bottom" and "age" we've read, then there can be no interference with
 711   // a "pop_global" operation, and we're done.
 712   idx_t tp = _age.top();    // XXX
 713   if (size(localBot, tp) > 0) {
 714     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 715     TASKQUEUE_STATS_ONLY(stats.record_pop());
 716     return true;
 717   } else {
 718     // Otherwise, the queue contained exactly one element; we take the slow
 719     // path.
 720     return pop_local_slow(localBot, _age.get());
 721   }
 722 }
 723 
 724 typedef GenericTaskQueue<oop>             OopTaskQueue;
 725 typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
 726 
 727 #ifdef _MSC_VER
 728 #pragma warning(push)
 729 // warning C4522: multiple assignment operators specified
 730 #pragma warning(disable:4522)
 731 #endif
 732 
 733 // This is a container class for either an oop* or a narrowOop*.
 734 // Both are pushed onto a task queue and the consumer will test is_narrow()
 735 // to determine which should be processed.
 736 class StarTask {
 737   void*  _holder;        // either union oop* or narrowOop*
 738 
 739   enum { COMPRESSED_OOP_MASK = 1 };
 740 
 741  public:
 742   StarTask(narrowOop* p) {
 743     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 744     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 745   }
 746   StarTask(oop* p)       {
 747     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 748     _holder = (void*)p;
 749   }
 750   StarTask()             { _holder = NULL; }
 751   operator oop*()        { return (oop*)_holder; }
 752   operator narrowOop*()  {
 753     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 754   }
 755 
 756   StarTask& operator=(const StarTask& t) {
 757     _holder = t._holder;
 758     return *this;
 759   }
 760   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 761     _holder = t._holder;
 762     return *this;
 763   }
 764 
 765   bool is_narrow() const {
 766     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 767   }
 768 };
 769 
 770 class ObjArrayTask
 771 {
 772 public:
 773   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 774   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 775     assert(idx <= size_t(max_jint), "too big");
 776   }
 777   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 778 
 779   ObjArrayTask& operator =(const ObjArrayTask& t) {
 780     _obj = t._obj;
 781     _index = t._index;
 782     return *this;
 783   }
 784   volatile ObjArrayTask&
 785   operator =(const volatile ObjArrayTask& t) volatile {
 786     _obj = t._obj;
 787     _index = t._index;
 788     return *this;
 789   }
 790 
 791   inline oop obj()   const { return _obj; }
 792   inline int index() const { return _index; }
 793 
 794   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 795 
 796 private:
 797   oop _obj;
 798   int _index;
 799 };
 800 
 801 #ifdef _MSC_VER
 802 #pragma warning(pop)
 803 #endif
 804 
 805 typedef OverflowTaskQueue<StarTask>           OopStarTaskQueue;
 806 typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
 807 
 808 typedef OverflowTaskQueue<size_t>             RegionTaskQueue;
 809 typedef GenericTaskQueueSet<RegionTaskQueue>  RegionTaskQueueSet;
 810 
 811 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP