1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc_implementation/shared/ageTable.hpp"
  29 #include "gc_implementation/shared/markSweep.inline.hpp"
  30 #include "gc_interface/collectedHeap.inline.hpp"
  31 #include "memory/barrierSet.inline.hpp"
  32 #include "memory/cardTableModRefBS.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/generation.hpp"
  35 #include "memory/specialized_oop_closures.hpp"
  36 #include "oops/arrayKlass.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/klass.hpp"
  39 #include "oops/markOop.inline.hpp"
  40 #include "oops/oop.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/os.hpp"
  43 #ifdef TARGET_ARCH_x86
  44 # include "bytes_x86.hpp"
  45 #endif
  46 #ifdef TARGET_ARCH_sparc
  47 # include "bytes_sparc.hpp"
  48 #endif
  49 #ifdef TARGET_ARCH_zero
  50 # include "bytes_zero.hpp"
  51 #endif
  52 #ifdef TARGET_ARCH_arm
  53 # include "bytes_arm.hpp"
  54 #endif
  55 #ifdef TARGET_ARCH_ppc
  56 # include "bytes_ppc.hpp"
  57 #endif
  58 
  59 // Implementation of all inlined member functions defined in oop.hpp
  60 // We need a separate file to avoid circular references
  61 
  62 inline void oopDesc::release_set_mark(markOop m) {
  63   OrderAccess::release_store_ptr(&_mark, m);
  64 }
  65 
  66 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  67   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  68 }
  69 
  70 inline Klass* oopDesc::klass() const {
  71   if (UseCompressedKlassPointers) {
  72     return decode_klass_not_null(_metadata._compressed_klass);
  73   } else {
  74     return _metadata._klass;
  75   }
  76 }
  77 
  78 inline Klass* oopDesc::klass_or_null() const volatile {
  79   // can be NULL in CMS
  80   if (UseCompressedKlassPointers) {
  81     return decode_klass(_metadata._compressed_klass);
  82   } else {
  83     return _metadata._klass;
  84   }
  85 }
  86 
  87 inline int oopDesc::klass_gap_offset_in_bytes() {
  88   assert(UseCompressedKlassPointers, "only applicable to compressed klass pointers");
  89   return oopDesc::klass_offset_in_bytes() + sizeof(narrowOop);
  90 }
  91 
  92 inline Klass** oopDesc::klass_addr() {
  93   // Only used internally and with CMS and will not work with
  94   // UseCompressedOops
  95   assert(!UseCompressedKlassPointers, "only supported with uncompressed klass pointers");
  96   return (Klass**) &_metadata._klass;
  97 }
  98 
  99 inline narrowOop* oopDesc::compressed_klass_addr() {
 100   assert(UseCompressedKlassPointers, "only called by compressed klass pointers");
 101   return (narrowOop*) &_metadata._compressed_klass;
 102 }
 103 
 104 inline void oopDesc::set_klass(Klass* k) {
 105   // since klasses are promoted no store check is needed
 106   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
 107   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
 108   if (UseCompressedKlassPointers) {
 109     *compressed_klass_addr() = encode_klass_not_null(k);
 110   } else {
 111     *klass_addr() = k;
 112   }
 113 }
 114 
 115 inline int oopDesc::klass_gap() const {
 116   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 117 }
 118 
 119 inline void oopDesc::set_klass_gap(int v) {
 120   if (UseCompressedKlassPointers) {
 121     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 122   }
 123 }
 124 
 125 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 126   // This is only to be used during GC, for from-space objects, so no
 127   // barrier is needed.
 128   if (UseCompressedKlassPointers) {
 129     _metadata._compressed_klass = encode_heap_oop(k);  // may be null (parnew overflow handling)
 130   } else {
 131     _metadata._klass = (Klass*)(address)k;
 132   }
 133 }
 134 
 135 inline oop oopDesc::list_ptr_from_klass() {
 136   // This is only to be used during GC, for from-space objects.
 137   if (UseCompressedKlassPointers) {
 138     return (oop)decode_heap_oop((oop)(address)_metadata._compressed_klass);
 139   } else {
 140     // Special case for GC
 141     return (oop)(address)_metadata._klass;
 142   }
 143 }
 144 
 145 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 146 
 147 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 148 
 149 inline bool oopDesc::is_instance()           const { return klass()->oop_is_instance(); }
 150 inline bool oopDesc::is_instanceMirror()     const { return klass()->oop_is_instanceMirror(); }
 151 inline bool oopDesc::is_instanceRef()        const { return klass()->oop_is_instanceRef(); }
 152 inline bool oopDesc::is_array()              const { return klass()->oop_is_array(); }
 153 inline bool oopDesc::is_objArray()           const { return klass()->oop_is_objArray(); }
 154 inline bool oopDesc::is_typeArray()          const { return klass()->oop_is_typeArray(); }
 155 
 156 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 157 
 158 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 159 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 160 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 161 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 162 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 163 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 164 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 165 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 166 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 167 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 168 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 169 
 170 
 171 // Functions for getting and setting oops within instance objects.
 172 // If the oops are compressed, the type passed to these overloaded functions
 173 // is narrowOop.  All functions are overloaded so they can be called by
 174 // template functions without conditionals (the compiler instantiates via
 175 // the right type and inlines the appopriate code).
 176 
 177 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 178 inline bool oopDesc::is_null(Klass* obj)  { return obj == NULL; }
 179 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 180 
 181 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 182 // offset from the heap base.  Saving the check for null can save instructions
 183 // in inner GC loops so these are separated.
 184 
 185 inline bool check_obj_alignment(oop obj) {
 186   return (intptr_t)obj % MinObjAlignmentInBytes == 0;
 187 }
 188 inline bool check_obj_alignment(Klass* obj) {
 189   return (intptr_t)obj % MinObjAlignmentInBytes == 0;
 190 }
 191 
 192 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 193   assert(!is_null(v), "oop value can never be zero");
 194   assert(check_obj_alignment(v), "Address not aligned");
 195   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 196   address base = Universe::narrow_oop_base();
 197   int    shift = Universe::narrow_oop_shift();
 198   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 199   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 200   uint64_t result = pd >> shift;
 201   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 202   assert(decode_heap_oop(result) == v, "reversibility");
 203   return (narrowOop)result;
 204 }
 205 
 206 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 207   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 208 }
 209 
 210 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 211   assert(!is_null(v), "narrow oop value can never be zero");
 212   address base = Universe::narrow_oop_base();
 213   int    shift = Universe::narrow_oop_shift();
 214   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 215   assert(check_obj_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result));
 216   return result;
 217 }
 218 
 219 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 220   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 221 }
 222 
 223 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 224 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 225 
 226 // Encoding and decoding for klass field.  It is copied code, but someday
 227 // might not be the same as oop.
 228 
 229 inline narrowOop oopDesc::encode_klass_not_null(Klass* v) {
 230   assert(!is_null(v), "oop value can never be zero");
 231   assert(check_obj_alignment(v), "Address not aligned");
 232   address base = Universe::narrow_oop_base();
 233   int    shift = Universe::narrow_oop_shift();
 234   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 235   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 236   uint64_t result = pd >> shift;
 237   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow klass pointer overflow");
 238   assert(decode_klass(result) == v, "reversibility");
 239   return (narrowOop)result;
 240 }
 241 
 242 inline narrowOop oopDesc::encode_klass(Klass* v) {
 243   return (is_null(v)) ? (narrowOop)0 : encode_klass_not_null(v);
 244 }
 245 
 246 inline Klass* oopDesc::decode_klass_not_null(narrowOop v) {
 247   assert(!is_null(v), "narrow oop value can never be zero");
 248   address base = Universe::narrow_oop_base();
 249   int    shift = Universe::narrow_oop_shift();
 250   Klass* result = (Klass*)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 251   assert(check_obj_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result));
 252   return result;
 253 }
 254 
 255 inline Klass* oopDesc::decode_klass(narrowOop v) {
 256   return is_null(v) ? (Klass*)NULL : decode_klass_not_null(v);
 257 }
 258 
 259 // Load an oop out of the Java heap as is without decoding.
 260 // Called by GC to check for null before decoding.
 261 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 262 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 263 
 264 // Load and decode an oop out of the Java heap into a wide oop.
 265 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 266 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 267   return decode_heap_oop_not_null(*p);
 268 }
 269 
 270 // Load and decode an oop out of the heap accepting null
 271 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 272 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 273   return decode_heap_oop(*p);
 274 }
 275 
 276 // Store already encoded heap oop into the heap.
 277 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 278 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 279 
 280 // Encode and store a heap oop.
 281 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 282   *p = encode_heap_oop_not_null(v);
 283 }
 284 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 285 
 286 // Encode and store a heap oop allowing for null.
 287 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 288   *p = encode_heap_oop(v);
 289 }
 290 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 291 
 292 // Store heap oop as is for volatile fields.
 293 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 294   OrderAccess::release_store_ptr(p, v);
 295 }
 296 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 297                                             narrowOop v) {
 298   OrderAccess::release_store(p, v);
 299 }
 300 
 301 inline void oopDesc::release_encode_store_heap_oop_not_null(
 302                                                 volatile narrowOop* p, oop v) {
 303   // heap oop is not pointer sized.
 304   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 305 }
 306 
 307 inline void oopDesc::release_encode_store_heap_oop_not_null(
 308                                                       volatile oop* p, oop v) {
 309   OrderAccess::release_store_ptr(p, v);
 310 }
 311 
 312 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 313                                                            oop v) {
 314   OrderAccess::release_store_ptr(p, v);
 315 }
 316 inline void oopDesc::release_encode_store_heap_oop(
 317                                                 volatile narrowOop* p, oop v) {
 318   OrderAccess::release_store(p, encode_heap_oop(v));
 319 }
 320 
 321 
 322 // These functions are only used to exchange oop fields in instances,
 323 // not headers.
 324 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 325   if (UseCompressedOops) {
 326     // encode exchange value from oop to T
 327     narrowOop val = encode_heap_oop(exchange_value);
 328     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 329     // decode old from T to oop
 330     return decode_heap_oop(old);
 331   } else {
 332     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 333   }
 334 }
 335 
 336 // In order to put or get a field out of an instance, must first check
 337 // if the field has been compressed and uncompress it.
 338 inline oop oopDesc::obj_field(int offset) const {
 339   return UseCompressedOops ?
 340     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 341     load_decode_heap_oop(obj_field_addr<oop>(offset));
 342 }
 343 inline volatile oop oopDesc::obj_field_volatile(int offset) const {
 344   volatile oop value = obj_field(offset);
 345   OrderAccess::acquire();
 346   return value;
 347 }
 348 inline void oopDesc::obj_field_put(int offset, oop value) {
 349   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 350                       oop_store(obj_field_addr<oop>(offset),       value);
 351 }
 352 
 353 inline Metadata* oopDesc::metadata_field(int offset) const {
 354   return *metadata_field_addr(offset);
 355 }
 356 
 357 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 358   *metadata_field_addr(offset) = value;
 359 }
 360 
 361 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 362   UseCompressedOops ?
 363     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 364     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 365 }
 366 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 367   OrderAccess::release();
 368   obj_field_put(offset, value);
 369   OrderAccess::fence();
 370 }
 371 
 372 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 373 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 374 
 375 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 376 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 377 
 378 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 379 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 380 
 381 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 382 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 383 
 384 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 385 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 386 
 387 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 388 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 389 
 390 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 391 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 392 
 393 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 394 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 395 
 396 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 397 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 398 
 399 inline oop oopDesc::obj_field_acquire(int offset) const {
 400   return UseCompressedOops ?
 401              decode_heap_oop((narrowOop)
 402                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 403            : decode_heap_oop((oop)
 404                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 405 }
 406 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 407   UseCompressedOops ?
 408     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 409     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 410 }
 411 
 412 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 413 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 414 
 415 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 416 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 417 
 418 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 419 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 420 
 421 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 422 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 423 
 424 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 425 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 426 
 427 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 428 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 429 
 430 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 431 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 432 
 433 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 434 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 435 
 436 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 437 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 438 
 439 inline int oopDesc::size_given_klass(Klass* klass)  {
 440   int lh = klass->layout_helper();
 441   int s;
 442 
 443   // lh is now a value computed at class initialization that may hint
 444   // at the size.  For instances, this is positive and equal to the
 445   // size.  For arrays, this is negative and provides log2 of the
 446   // array element size.  For other oops, it is zero and thus requires
 447   // a virtual call.
 448   //
 449   // We go to all this trouble because the size computation is at the
 450   // heart of phase 2 of mark-compaction, and called for every object,
 451   // alive or dead.  So the speed here is equal in importance to the
 452   // speed of allocation.
 453 
 454   if (lh > Klass::_lh_neutral_value) {
 455     if (!Klass::layout_helper_needs_slow_path(lh)) {
 456       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 457     } else {
 458       s = klass->oop_size(this);
 459     }
 460   } else if (lh <= Klass::_lh_neutral_value) {
 461     // The most common case is instances; fall through if so.
 462     if (lh < Klass::_lh_neutral_value) {
 463       // Second most common case is arrays.  We have to fetch the
 464       // length of the array, shift (multiply) it appropriately,
 465       // up to wordSize, add the header, and align to object size.
 466       size_t size_in_bytes;
 467 #ifdef _M_IA64
 468       // The Windows Itanium Aug 2002 SDK hoists this load above
 469       // the check for s < 0.  An oop at the end of the heap will
 470       // cause an access violation if this load is performed on a non
 471       // array oop.  Making the reference volatile prohibits this.
 472       // (%%% please explain by what magic the length is actually fetched!)
 473       volatile int *array_length;
 474       array_length = (volatile int *)( (intptr_t)this +
 475                           arrayOopDesc::length_offset_in_bytes() );
 476       assert(array_length > 0, "Integer arithmetic problem somewhere");
 477       // Put into size_t to avoid overflow.
 478       size_in_bytes = (size_t) array_length;
 479       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 480 #else
 481       size_t array_length = (size_t) ((arrayOop)this)->length();
 482       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 483 #endif
 484       size_in_bytes += Klass::layout_helper_header_size(lh);
 485 
 486       // This code could be simplified, but by keeping array_header_in_bytes
 487       // in units of bytes and doing it this way we can round up just once,
 488       // skipping the intermediate round to HeapWordSize.  Cast the result
 489       // of round_to to size_t to guarantee unsigned division == right shift.
 490       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 491         HeapWordSize);
 492 
 493       // UseParNewGC, UseParallelGC and UseG1GC can change the length field
 494       // of an "old copy" of an object array in the young gen so it indicates
 495       // the grey portion of an already copied array. This will cause the first
 496       // disjunct below to fail if the two comparands are computed across such
 497       // a concurrent change.
 498       // UseParNewGC also runs with promotion labs (which look like int
 499       // filler arrays) which are subject to changing their declared size
 500       // when finally retiring a PLAB; this also can cause the first disjunct
 501       // to fail for another worker thread that is concurrently walking the block
 502       // offset table. Both these invariant failures are benign for their
 503       // current uses; we relax the assertion checking to cover these two cases below:
 504       //     is_objArray() && is_forwarded()   // covers first scenario above
 505       //  || is_typeArray()                    // covers second scenario above
 506       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 507       // technique, we will need to suitably modify the assertion.
 508       assert((s == klass->oop_size(this)) ||
 509              (Universe::heap()->is_gc_active() &&
 510               ((is_typeArray() && UseParNewGC) ||
 511                (is_objArray()  && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))),
 512              "wrong array object size");
 513     } else {
 514       // Must be zero, so bite the bullet and take the virtual call.
 515       s = klass->oop_size(this);
 516     }
 517   }
 518 
 519   assert(s % MinObjAlignment == 0, "alignment check");
 520   assert(s > 0, "Bad size calculated");
 521   return s;
 522 }
 523 
 524 
 525 inline int oopDesc::size()  {
 526   return size_given_klass(klass());
 527 }
 528 
 529 inline void update_barrier_set(void* p, oop v) {
 530   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 531   oopDesc::bs()->write_ref_field(p, v);
 532 }
 533 
 534 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 535   oopDesc::bs()->write_ref_field_pre(p, v);
 536 }
 537 
 538 template <class T> inline void oop_store(T* p, oop v) {
 539   if (always_do_update_barrier) {
 540     oop_store((volatile T*)p, v);
 541   } else {
 542     update_barrier_set_pre(p, v);
 543     oopDesc::encode_store_heap_oop(p, v);
 544     update_barrier_set((void*)p, v);  // cast away type
 545   }
 546 }
 547 
 548 template <class T> inline void oop_store(volatile T* p, oop v) {
 549   update_barrier_set_pre((T*)p, v);   // cast away volatile
 550   // Used by release_obj_field_put, so use release_store_ptr.
 551   oopDesc::release_encode_store_heap_oop(p, v);
 552   update_barrier_set((void*)p, v);    // cast away type
 553 }
 554 
 555 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 556 // (without having to remember the function name this calls).
 557 inline void oop_store_raw(HeapWord* addr, oop value) {
 558   if (UseCompressedOops) {
 559     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 560   } else {
 561     oopDesc::encode_store_heap_oop((oop*)addr, value);
 562   }
 563 }
 564 
 565 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 566                                                 volatile HeapWord *dest,
 567                                                 oop compare_value,
 568                                                 bool prebarrier) {
 569   if (UseCompressedOops) {
 570     if (prebarrier) {
 571       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 572     }
 573     // encode exchange and compare value from oop to T
 574     narrowOop val = encode_heap_oop(exchange_value);
 575     narrowOop cmp = encode_heap_oop(compare_value);
 576 
 577     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 578     // decode old from T to oop
 579     return decode_heap_oop(old);
 580   } else {
 581     if (prebarrier) {
 582       update_barrier_set_pre((oop*)dest, exchange_value);
 583     }
 584     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 585   }
 586 }
 587 
 588 // Used only for markSweep, scavenging
 589 inline bool oopDesc::is_gc_marked() const {
 590   return mark()->is_marked();
 591 }
 592 
 593 inline bool oopDesc::is_locked() const {
 594   return mark()->is_locked();
 595 }
 596 
 597 inline bool oopDesc::is_unlocked() const {
 598   return mark()->is_unlocked();
 599 }
 600 
 601 inline bool oopDesc::has_bias_pattern() const {
 602   return mark()->has_bias_pattern();
 603 }
 604 
 605 
 606 // used only for asserts
 607 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 608   oop obj = (oop) this;
 609   if (!check_obj_alignment(obj)) return false;
 610   if (!Universe::heap()->is_in_reserved(obj)) return false;
 611   // obj is aligned and accessible in heap
 612   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 613 
 614   // Header verification: the mark is typically non-NULL. If we're
 615   // at a safepoint, it must not be null.
 616   // Outside of a safepoint, the header could be changing (for example,
 617   // another thread could be inflating a lock on this object).
 618   if (ignore_mark_word) {
 619     return true;
 620   }
 621   if (mark() != NULL) {
 622     return true;
 623   }
 624   return !SafepointSynchronize::is_at_safepoint();
 625 }
 626 
 627 
 628 // used only for asserts
 629 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 630   return this == NULL ? true : is_oop(ignore_mark_word);
 631 }
 632 
 633 #ifndef PRODUCT
 634 // used only for asserts
 635 inline bool oopDesc::is_unlocked_oop() const {
 636   if (!Universe::heap()->is_in_reserved(this)) return false;
 637   return mark()->is_unlocked();
 638 }
 639 #endif // PRODUCT
 640 
 641 inline void oopDesc::follow_contents(void) {
 642   assert (is_gc_marked(), "should be marked");
 643   klass()->oop_follow_contents(this);
 644 }
 645 
 646 // Used by scavengers
 647 
 648 inline bool oopDesc::is_forwarded() const {
 649   // The extra heap check is needed since the obj might be locked, in which case the
 650   // mark would point to a stack location and have the sentinel bit cleared
 651   return mark()->is_marked();
 652 }
 653 
 654 // Used by scavengers
 655 inline void oopDesc::forward_to(oop p) {
 656   assert(check_obj_alignment(p),
 657          "forwarding to something not aligned");
 658   assert(Universe::heap()->is_in_reserved(p),
 659          "forwarding to something not in heap");
 660   markOop m = markOopDesc::encode_pointer_as_mark(p);
 661   assert(m->decode_pointer() == p, "encoding must be reversable");
 662   set_mark(m);
 663 }
 664 
 665 // Used by parallel scavengers
 666 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 667   assert(check_obj_alignment(p),
 668          "forwarding to something not aligned");
 669   assert(Universe::heap()->is_in_reserved(p),
 670          "forwarding to something not in heap");
 671   markOop m = markOopDesc::encode_pointer_as_mark(p);
 672   assert(m->decode_pointer() == p, "encoding must be reversable");
 673   return cas_set_mark(m, compare) == compare;
 674 }
 675 
 676 // Note that the forwardee is not the same thing as the displaced_mark.
 677 // The forwardee is used when copying during scavenge and mark-sweep.
 678 // It does need to clear the low two locking- and GC-related bits.
 679 inline oop oopDesc::forwardee() const {
 680   return (oop) mark()->decode_pointer();
 681 }
 682 
 683 inline bool oopDesc::has_displaced_mark() const {
 684   return mark()->has_displaced_mark_helper();
 685 }
 686 
 687 inline markOop oopDesc::displaced_mark() const {
 688   return mark()->displaced_mark_helper();
 689 }
 690 
 691 inline void oopDesc::set_displaced_mark(markOop m) {
 692   mark()->set_displaced_mark_helper(m);
 693 }
 694 
 695 // The following method needs to be MT safe.
 696 inline int oopDesc::age() const {
 697   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 698   if (has_displaced_mark()) {
 699     return displaced_mark()->age();
 700   } else {
 701     return mark()->age();
 702   }
 703 }
 704 
 705 inline void oopDesc::incr_age() {
 706   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 707   if (has_displaced_mark()) {
 708     set_displaced_mark(displaced_mark()->incr_age());
 709   } else {
 710     set_mark(mark()->incr_age());
 711   }
 712 }
 713 
 714 
 715 inline intptr_t oopDesc::identity_hash() {
 716   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 717   // Note: The mark must be read into local variable to avoid concurrent updates.
 718   markOop mrk = mark();
 719   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 720     return mrk->hash();
 721   } else if (mrk->is_marked()) {
 722     return mrk->hash();
 723   } else {
 724     return slow_identity_hash();
 725   }
 726 }
 727 
 728 inline int oopDesc::adjust_pointers() {
 729   debug_only(int check_size = size());
 730   int s = klass()->oop_adjust_pointers(this);
 731   assert(s == check_size, "should be the same");
 732   return s;
 733 }
 734 
 735 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                        \
 736                                                                            \
 737 inline int oopDesc::oop_iterate(OopClosureType* blk) {                     \
 738   SpecializationStats::record_call();                                      \
 739   return klass()->oop_oop_iterate##nv_suffix(this, blk);               \
 740 }                                                                          \
 741                                                                            \
 742 inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {       \
 743   SpecializationStats::record_call();                                      \
 744   return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr);       \
 745 }
 746 
 747 
 748 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 749   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 750   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 751   NoHeaderExtendedOopClosure cl(blk);
 752   return oop_iterate(&cl);
 753 }
 754 
 755 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 756   NoHeaderExtendedOopClosure cl(blk);
 757   return oop_iterate(&cl, mr);
 758 }
 759 
 760 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_DEFN)
 761 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_DEFN)
 762 
 763 #ifndef SERIALGC
 764 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)              \
 765                                                                            \
 766 inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {           \
 767   SpecializationStats::record_call();                                      \
 768   return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);     \
 769 }
 770 
 771 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_BACKWARDS_DEFN)
 772 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_BACKWARDS_DEFN)
 773 #endif // !SERIALGC
 774 
 775 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP